TW202033450A - 結晶二氧化矽之隔離 - Google Patents

結晶二氧化矽之隔離 Download PDF

Info

Publication number
TW202033450A
TW202033450A TW109102126A TW109102126A TW202033450A TW 202033450 A TW202033450 A TW 202033450A TW 109102126 A TW109102126 A TW 109102126A TW 109102126 A TW109102126 A TW 109102126A TW 202033450 A TW202033450 A TW 202033450A
Authority
TW
Taiwan
Prior art keywords
quartz
crystalline silica
crystalline
silica
silicon dioxide
Prior art date
Application number
TW109102126A
Other languages
English (en)
Other versions
TWI812835B (zh
Inventor
爵格 奧利奇 義利斯
麥克斯 凱勒曼
Original Assignee
德商夸茲沃克公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商夸茲沃克公司 filed Critical 德商夸茲沃克公司
Publication of TW202033450A publication Critical patent/TW202033450A/zh
Application granted granted Critical
Publication of TWI812835B publication Critical patent/TWI812835B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/40Inorganic substances
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Silicon Compounds (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Disintegrating Or Milling (AREA)
  • Medicinal Preparation (AREA)
  • Glass Compositions (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Detergent Compositions (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

揭示一種處理結晶二氧化矽的方法,該方法包含如下步驟:將結晶二氧化矽與0.05至1.00重量%之選自由以下所組成之群組的物質一起研磨:多元醇、高嶺土、鋁醇化物、及其混合物。

Description

結晶二氧化矽之隔離
本發明係關於一種處理結晶二氧化矽的方法,以及關於由此獲得之結晶二氧化矽粉末。
矽肺病為結核性肺纖維化,其可因長期及密集地吸入結晶SiO2 之肺泡可吸入性部分而導致,且在長期暴露下,可能導致形成肺腫瘤。因此,石英及方矽石的A部分已被國際癌症研究機構(International Agency for Research on Cancer,IARC)評為1級人類致癌物。然而,源自於顆粒SiO2 物種之實際的危害係實質上取決於其來源及其化學性、熱及機械加工、及相應的工業暴露狀況(IARC (1997),『Silica, some silicates, coal dust and para-aramid fibrils』,Lyon: IARC,第41–240頁,ISBN 9 283 21268 1)。
儘管材料與SiO2 基質具有相同的化學及礦物學組成,其經表面改質後可能具有顯著不同的毒性潛能(Fubini (1998),『Surface chemistry and quartz hazard』,Ann Occup Hyg; 42(8): 521–30,以及 (1998a) 『Health effects of silica』,於「The Surface Properties of Silica」中, New York: Wiley,第415-464頁,ISBN 978 0 4719 5332 6)。
基於職業性安全及消費者安全,如下作法係理想的:將結晶二氧化矽表面選擇性地改質,使得表面之不欲的生物活性失去活性,但保留技術上重要的性質,如水性溶液的良好潤濕性。因此,對處理或製造結晶SiO2 的工業產業而言,除了觀察權威人士所界定的職業性暴露之極值之外,表面改質的SiO2 粉末的使用可代表預防矽肺病之風險管理的一種額外方法。
SiO2 表面上的反應性矽醇基已被Schlipköter與Brockhaus (1961)描述為病理效果之非常重要的觸發因子。因此,使其失活可導致加工SiO2 時的風險降低。
JP 2005263566描述一種藉由以聚烷二醇處理矽石粉塵來防止矽石粉塵固化的方法。所描述的矽石粉塵為一種具有特別小之晶粒尺寸的非晶質材料。
在文獻中,聚乙烯吡啶-N-氧化物及鋁鹽(如乳酸鋁)被重複測試以用於石英的表面改質,並因此用於預防矽肺病。然而,至今對於此類非共價鍵結物質仍不能顯示足夠的體內(in vivo)效果(Weller (1975),『Long-term test on rhesus monkeys for the PVNO therapy of anthracosilicosis』,Inhaled Part; 4(1): 379-87, 1975;Zhao等人 (1983),『Long-term follow-up observations of the therapeutic effect of PVNO on human silicosis』,Zentralbl Bakteriol Mikrobiol Hyg B; 178(3): 259-62;Prügger等人 (1984),『Polyvinylpyridine N-oxide (Bay 3504, P-204, PVNO) in the treatment of human silicosis』,Wien Klin Wochenschr; 96(23): 848-53;Bégin等人 (1986) ,『Aluminum lactate treatment alters the lung biological activity of quartz』,Exp Lung Res; 10: 385–99;Goldstein與Rendall (1987) ,『The prophylactic use of polyvinylpyridine-N-oxide (PVNO) in baboons exposed to quartz dust』,Environ Res; 42(2): 469-81;Dubois等人 (1988) ,『Aluminum inhalation reduces silicosis in a sheep model』,Am Rev Respir Dis; 137(5): 1172-9;Dufresne等人 (1994) ,『Influence of aluminum treatments on pulmonary retention of quartz in sheep silicosis』,Exp Lung Res; 20(2): 157-68;Bégin等人 (1995) ,『 Further information on aluminum inhalation in silicosis』,Occup Environ Med; 52(11): 778-80)。
因此,目前仍需要更有效的解決方法以用於將結晶SiO2 粉末改質,使得粉末產生不欲之生物效果的潛能趨向較低。
本發明之一目的在於提供此種方法。
上述目的係藉由一種處理結晶二氧化矽的方法來達成,該方法包含如下步驟:將結晶二氧化矽與0.05至1.00重量%之選自由以下所組成之群組的物質一起研磨:多元醇、高嶺土、鋁醇化物、及其混合物。
因此,根據本發明,結晶二氧化矽係與多元醇、鋁醇化物、或高嶺土一起研磨。此提供使多元醇、鋁醇化物、及/或高嶺土與結晶二氧化矽及其新破壞/生成的表面進行緊密的混合與立即反應。
在此步驟中,結晶二氧化矽藉由研磨步驟而在晶粒尺寸上產生的實際改變為次重要的,而破壞以生成反應性表面為重要的。
研磨之後,結晶二氧化矽粉末之合適的晶粒尺寸為d50晶粒尺寸介於0.2至90微米,更佳為0.3至10微米。
d50係指晶粒尺寸中,50體積%大於給定之d50值,而50體積%小於該d50值。此值可藉由雷射繞射儀獲得。
通常,此類研磨之二氧化矽材料的d90值係d50值的二至三倍,d95值係d50值的五倍。若文獻描述1微米為晶粒尺寸的上限,則代表d50值係於至多0.3微米的尺度,甚至可能更小。此類材料的通常值為: -    d50 = 0.5微米 à d90 = 1微米 -    d50 = 2微米à d90 = 6微米 -    d50 = 3微米à d90 = 10微米。
具有介於0.5微米或更小之d50晶粒尺寸的材料不能夠藉由機械加工而再進一步粉碎。
較佳地,根據本發明所獲得的產物具有d90值為1微米或更大,較佳為2微米或更大。例如,在研磨之後,d90晶粒尺寸可為1至300微米,更佳為1至15微米。
於本發明中所用之「結晶二氧化矽」係指具有至少70%之結晶質量比例的二氧化矽。結晶比例係藉由X-射線繞射來量測。較佳地,結晶比例為至少75質量%。
二氧化矽之結晶比例的測定可藉由實驗部分中所描述的方法來進行。
特別佳的二氧化矽包括石英、方矽石、或鱗矽石,特別是粉末形式者。
甘油及聚乙二醇或聚丙二醇係特別適合作為所述多元醇。亦可使用這些物質的混合物或共聚物。
使用甘油或聚乙二醇係較佳的。
合適的聚乙二醇包括特別是PEG200、PEG300、PEG500、PEG1500、PEG35000、及其混合物。
較佳地,所述多元醇具有莫耳質量為92至50,000公克/莫耳。
高嶺土為一種白色岩石,其主成分為高嶺石,高嶺石為具有小於10微米之晶粒尺寸(d50)的板狀矽酸鋁。具有小於2微米之d50的高嶺土係較佳的。
三異丙醇鋁(aluminum tri-isopropanolate)(三異丙氧化鋁,aluminum tris-isopropoxide)為特別合適的鋁醇化物。
令人驚訝地,已證實結晶二氧化矽粉末的細胞毒性及促炎性潛能可藉由根據本發明的方法而降低。
細胞毒性及促炎性潛能可藉由本申請案之實驗部分中所描述的方法來測量。此方法係根據夫朗禾斐毒物及實驗藥物協會(Fraunhofer Institut für Toxikologie und Experimentelle Medizin ITEM)(漢諾威,德國)的樣品及標準而進行。
本發明還關於一種結晶二氧化矽的組合物(formulation),包含結晶二氧化矽及0.05至1.00重量%之選自由以下所組成之群組的物質:多元醇、鋁醇化物、高嶺土、及其混合物。
根據本發明之此組合物包含由X-射線螢光方法所量測之至少97重量%的二氧化矽,較佳至少98重量%的二氧化矽,或99重量%或更多的二氧化矽。
經由X-射線繞射方法所量測,此二氧化矽的結晶程度係至少70重量%或更多。
經由所量測之d50,本發明之結晶二氧化矽的組合物具有較佳d50晶粒尺寸為0.2至90微米,更佳0.3至10微米。
本發明另外關於多元醇、鋁醇化物、及/或高嶺土用於降低結晶二氧化矽之細胞毒性及促炎性潛能的用途,以及關於一種由根據本發明之方法可獲得的結晶二氧化矽的組合物。
材料
負控制(樣品: 1 :D-MEM細胞培養基 + 10%FCS
作為非顆粒狀負控制/載體控制(vehicle control),使用度爾貝科最低必須培養基(Dulbecco's Minimum Essential Medium,D-MEM)與高葡萄糖(4.5公克/公升)、GlutaMaxTM及丙酮酸鈉(110毫克/公升),其購自生命科技有限公司(Life Technologies GmbH)(達姆城,德國),根據文獻(Ziemann等人,2017,以及Ziemann C、 Reamon-Buettner SM、Tillmann T等人 (2014b),『The SILICOAT project: In vitro and in vivo toxicity screening of quartz varieties from traditional ceramics industry and approaches for an effective quartz surface coating』,Naunyn Schmiedebergs Arch Pharmacol; 387 (Suppl 1): 第23頁)進行。
顆粒狀負控制(樣 品: 2 :氧化鋁(Al2 O3
為了能夠從石英-誘發效果界定出一般顆粒效果,搭配使用氧化鋁(Al2 O3 ;「氧化鋁粉末,>10毫米,99.5% 微量金屬基礎」;西格瑪奧瑞奇化學有限公司(Sigma-Aldrich Chemie GmbH),慕尼黑)作為顆粒負控制。試管內(In vitro)研究顯示Al2 O3 在所用之模型系統中幾乎不具有不利的生物活性(Ziemann等人,2009;Ziemann等人,2014;Ziemann等人,2017)。
正控制(石英效果;樣品: 3 :石英DQ12(DQ12)
作為石英相依效果的正控制,使用來自德倫特魯普(Dörentrup)的石英DQ12(87% α-石英,13%非晶質SiO2 ;質量平均幾何直徑:2.99 ± 1.53微米;Bergbauforschung公司,埃森,德國),其代表歐洲公認的實驗毒理學之正標準(Robock (1973),『Standard quartz DQ12 > 5 μm for experimental pneumoconiosis research projects in the Federal Republic of Germany』,Ann Occup Hyg; 16: 63–6;Clouter等人 (2001),『Inflammatory effects of respirable quartz collected in workplaces versus standard DQ12 quartz: particle surface correlates』,Toxicol Sci; 63: 90-8;Creutzenberg等人 (2008) ,『Toxicity of a quartz with occluded surfaces in a 90-day intratracheal instillation study in rats』,Inhal Toxicol; 20: 995–1008)。DQ12在所用之模型系統中能夠重複誘發DNA及膜破損(Monfort等人,2008;Ziemann等人,2009、2014及2017),並於老鼠的肺中導致發炎反應。
石英相依效果的猝滅( quenching :乳酸鋁(AL)
為了能夠分辨石英相依之生物效果與非由石英媒合的效果,測試各石英粉末樣品 ± 乳酸鋁(AL;100 µM;西格瑪奧瑞奇化學有限公司,慕尼黑)。AL對石英相依之生物效果的滅活反應可於來自老鼠的主要肺泡巨噬細胞(AM)中重複確認(Monfort等人,2008;Ziemann等人,2009;Ziemann等人,2014;Ziemann等人,2017)。
正控制(膜破損) :Triton X-100
將細胞以Triton X-100處理,作為正控制(高控制)以及與乳酸脫氫酶(LDH)釋放相關之實驗的計算參考(100%毒性)。藉由以此非離子界面活性劑處理細胞,細胞膜完全破損,且所存在之任何平常集中於細胞內的乳酸脫氫酶(LDH)酵素均被釋放。
測試物質
樣品 研磨 研磨介質 基於石英的濃度 [%]
37797 球磨 (產品名:Alubit Grinding Media) -
37935 球磨 (產品名:Alubit Grinding Media) 聚二醇 35000 S 科萊恩公司(Clariant)製造 材料號:107915 0.4
38132 球磨 (產品名:Alubit Grinding Media) 矽酸四乙酯 CAS號:78-10-4 Wacker® TES 28 ETHYLSILIKAT 0.4
38157 球磨 (產品名:Alubit Grinding Media) 矽石溶膠 Ludox® TM-50 格雷斯公司(Grace)製造 0.4
38174 球磨 (產品名:Alubit Grinding Media) 甘油 CAS號:56-81-5 0.4
38193 球磨 (產品名:Alubit Grinding Media) 三異丙氧化鋁 CAS號:555-31-7 0.4
38272 球磨 (產品名:Alubit Grinding Media) 高嶺土KBE-1 安貝格高嶺土工廠(Amberger Kaolinwerke)製造 0.4
38287 球磨 (產品名:Alubit Grinding Media) ε-己內醯胺 CAS號:105-60-2 0.4
38328 球磨 (產品名:Alubit Grinding Media) 3-(三乙氧基矽基)丙基琥珀酸酐 CAS號:93642-68-3 Geniosil® GF 20 瓦克公司(Wacker)製造 0.4
38423 自生氣體噴射研磨 -
38360 球磨 (產品名:Alubit Grinding Media) 具有烷氧基之烷基矽氧烷樹脂 Silres® BS 1260 瓦克公司製造 0.4
38361 工業標準購買 Dörentrup DQ12 (假定無) -
該等產品具有均一的平均顆粒尺寸為2微米。
無菌試驗及內毒素含量測試
首先,對結晶二氧化矽進行無菌試驗及內毒素含量測試,因為相應的污染可能於體外測試中導致非特定效應。特別而言,用於測試促炎性潛能的終點(end point)可能會受假影(artefact)影響。
針對無菌試驗,將樣品於巰基乙酸鹽培養液(thioglycolate broth)中於34至35℃下培養14天,該巰基乙酸鹽培養液支持廣泛之細菌及真菌的生長。將受金黃色葡萄球菌(Staphylococcus aureus )接種的培養物作為正控制。於14天後藉由目視檢測(濁度、型態上的真菌生長)進行評價。
另外,內毒素含量係藉由獨立實驗室(龍沙集團股份公司,韋爾維耶,比利時)的「動力比色法(Kinetic Chromogenic LAL Assay)」,方法D(參見歐洲藥典(European Pharmacopoeia)第2.6.14節)以三階段稀釋測定,因為內毒素亦能夠導致免疫反應而成為體外實驗的假影。
處理溶液
根據Ziemann等人,2017,之方法製備AM的預培養物,然後謹慎地添加測試及參考材料,在藉由超音波去凝聚之後作為二倍濃度的顆粒懸浮液。每種顆粒添加三種不同的濃度(25、50、及75微克/平方公分),以利於說明LDH釋放及Cxcl2基因表現的敏感性的最佳範圍。在初步實驗後,將該範圍定於75微克/平方公分,以確保足夠的反應以用於區分不同的樣品。
所有的測試及參考材料均於乳酸鋁(AL)存在及不存在下進行檢驗。
細胞系統
使用來自老鼠肺部的主要肺泡巨噬細胞(AM)作為石英相關性體外細胞模型。來自老鼠之經培養的AM代表用於篩檢石英及方矽石效果之非常敏感的體外模型系統,此可由諸多實例證實(如Ziemann等人, 2009;Ziemann等人,2014;Ziemann等人,2017)。
AM的回收及培養以及顆粒懸浮液的添加及進一步培養係根據Ziemann等人,2017,之解說來進行。
方法:
藉由 X- 射線測定結晶部分
二氧化矽之結晶部分的測定係對照如下來進行:「標準作業程序第A04號,根據BGIA 8522之X-射線繞射之石英細粉塵測定 – A-粉塵中之方矽石及鱗矽石的測定與材料樣品中結晶矽酸的分析(Röntgendiffraktometrische Quarzfeinstaubbestimmung gemäß BGIA 8522 - Bestimmung von Cristobalit und Tridymit im A-Staub sowie Analyse kristalliner Kieselsäuren in Materialproben);Dr. M. Kirchner,IGF分析,Dr. H.-H. Fricke,IGF分析,T. Faak,IGF分析;04/2014」以及「ISO標準24095;第一版 2009-12-15;工作場所空氣 – 測量可吸入之結晶二氧化矽的準則(Workplace air — Guidance for the measurement of respirable crystalline silica)」。
礦物填料中結晶相的鑑別及定量係於夸茲沃克有限公司(Quarzwerke GmbH)的中央實驗室進行,藉由布魯克公司(Bruker AXS)所提供之具有布拉格-布倫塔諾(Bragg-Brentano)幾何形狀的D4 Endeavor型之X-射線繞射儀、使用銅X-射線管進行。
樣品係以經加壓的粉末粒進行量測,其係藉由購自荷索公司(Herzog)的自動樣品製備裝置加壓至鋼環中,或者使用玻璃片人工地塗佈至樣品支持具中。
繞射圖形的定性評價係藉由使用購自布魯克公司的DIFFRAC.EVA軟體第4版來進行,使用ICDD結構資料庫PDF-2(1998發行)。
定量分析係藉由裏特沃爾德法(Rietveld method)(購自布魯克公司的TOPAS 5)、藉由額外方法(根據DIN 32633)、或藉由校正(購自布魯克公司的DIFFRAC.DQUANT第1版)來進行。
乳酸脫氫 酶( LDH )釋放
LDH釋放
在以測試及參考材料培養老鼠的主要肺泡巨噬細胞之後,藉由比色法測定培養上清液中的LDH活性。
在細胞培養上清液中偵測到增加的酵素活性係代表細胞膜破損,此可為與反應性石英粉末之石英-細胞膜的直接交互作用所誘發。
除了其容易測定與其可靠性外,此終點(end point)還提供可用作肺灌洗(lung lavage)中體外及早期體內試驗的終點之優點,且因此使得可用於體外與體內試驗所產生之數據之間的校正。
使用購自羅氏應用科學公司(Roche Applied Science)(曼海姆,德國)的「細胞毒性偵測套組(LDH)」根據製造商指示來測定LDH活性。
此數據代表3個獨立的培養物之平均 ± 標準差,其各自係以三重複製(triplicate)之形式分析。
最後,經Triton X-100處理而完全溶解的細胞係作為正控制以用於計算細胞毒性百分比。所有自經處理之樣品所量測到的值最終均係基於經Triton X-100處理的細胞的值。
Cxcl2 基因表現
Cxcl2 RTqPCR (Δ-CT方法)
為了評價具有不同表面改質之石英粉末樣品的生物活性,選擇藉由RT-qPCR對促炎性「C-X-C模體趨化因子配體2(C-X-C motif chemokine ligand 2,Cxcl2)」基因之基因表現進行的測定作為另外的終點。
促炎性蛋白Cxcl2係由活化的巨噬細胞製造且對多核嗜中性球(PMN)具有吸引效應。PMN的數目及百分比為重要的體內試驗終點。例如,在暴露於石英之動物的情況下,石英在肺中之不利的生物活性程度可藉由在肺灌洗液中PMN之計數及使用被高度揭示的方式進行估計。此已顯示於歐盟計畫(SILICOAT)中。對於石英相依的Cxcl2(MIP-2)反應,參見Driscoll等人 (1996),『Alpha-quartz-induced chemokine expression by rat lung epithelial cells: effects of in vivo and in vitro particle exposure』, Am J Pathol. 149(5): 1627-37。
在初始生長期間24小時之後,以測試及參考材料將AM培養4小時。然後測定Cxcl2及Hprt1的基因表現並藉由RT-qPCR計算。數據係源自於每種條件下3個技術複製品的平均值。評價係根據比較CT法(comparative CT method)(Schmittgen TD、Livak KJ (2008),『Analyzing real-time PCR data by the comparative C(T) method』,Nat Protoc. 3:1101-1108)來進行,其中亦測試線性度及效率。
與引子相關的資訊係列於下表中:
基因名稱 NCBI 參考序列 訂貨公司 特殊識別碼 產品長度
Cxcl2 NM_053647 BioRad公司 gRnoCED0003624 102 bp
基因名稱 NCBI 參考序列 正引子 反引子 產品長度
Hprt NM_012583 CTGTCATGTCGACCCTCAGT TCGAGCAAGTCT­TTCAGTCC 158 bp
統計
在LDH釋放的情況下,結果係以來自三個培養物的平均 ± 相關的標準差(SD)呈現於圖中,其中三個培養物又以三重複製或二重複製的形式量測。
統計分析係使用SigmaStat 3.1®軟體(Systat軟體公司,里士滿角,美國)進行。所得結果的統計學評價係藉由學生t檢驗(Student's t-test)進行。將二面、未配對的t檢驗應用於針對顆粒負控制之統計學上顯著差異的測定,以及經AL處理與未經AL處理的培養物之間、及參考石英37797與表面改質石英粉末樣品之間的顯著差異的評價。因具有低於5%之誤差機率(p > 0.05),該結果為統計學上顯著的。
結果與討論
首先,對所有12個所送達的石英粉末樣品針對無菌及其內毒素含量進行檢測,因為石英粉末之相應的汙染可能於體外測試中導致人為生物效應。
基於內部(in-house)所進行的無菌檢測及內毒素測試,所檢測之石英粉末樣品均未顯示具有細菌、真菌或內毒素之汙染。因此,基於相應汙染之人為生物效應幾乎完全被排除。
在前導實驗(pilot experiment)中,參考石英(37797;新,在無研磨介質下研磨之石英)的生物活性在一方面上係於體外模型系統(AM)內表徵,並確定用於進一步量測的最佳測試濃度。
參考石英粉末37797、38361(DQ12 QW)及DQ12 (Fraunhofer ITEM)係納入作為正控制,且Al2 O3 (75微克/平方公分)係納入作為顆粒負控制。
針對石英粉末樣品37797與38361,顯然在所有實驗中均應尋求75微克/平方公分的濃度,因為僅有在此濃度下才可發現37797(36.43 [2^-CT x 10^2])相對於顆粒負控制(2.88 [2^-CT x 10^2])之顯著增加的Cxcl2基因表現,此基因表現又可藉由AL之存在而完全抑制(2.77 [2^-CT x 10^2]),此意味著該效果的石英特定性(quartz specificity)。
在最佳測試濃度下,對總共十二個不同之研磨/表面改質的石英粉末針對其細胞毒性及促炎性潛能進行比較性體外篩檢。評價LDH釋放及Cxcl2基因表現,以使得在各自方法具特定限制下仍可作出清楚的評述。
另外,進行與顆粒負控制Al2 O3 比較的顯著性測試以及經AL處理與未經AL處理之石英粉末樣品之間的顯著差異之測試,以獲得有關實際與石英相關之效果的資訊。
乳酸脫氫 酶( LDH )釋放
在以75微克/平方公分之測試及參考材料培養AM四小時之後,終點LDH釋放提供非常清楚的概念。負控制(細胞培養基)與顆粒負控制(Al2 O3 )具有5.3 ± 0.10與4.6 ± 0.29 %之低的細胞毒性值(此代表細胞之良好的生命力),而在所有「活性」樣品(DQ12、33797、38423、38361)之培養上清液中則可偵測到與顆粒負控制相比顯著較高的LDH活性(P ≤ 0.001;參見第2圖)。因具有61.6 ± 0.27與48.7 ± 2.95 %之細胞毒性,正控制(DQ12)與樣品38361(DQ12 QW – 正空白組(positive blank))誘發最嚴重的膜破損。樣品38423(在自生氣體噴射研磨機上新研磨的石英)亦如可預期般地顯示30.1 ± 6.25 %之高的細胞毒性。在主測量中具有16.0 ± 0.42 %之細胞毒性的參考石英粉末37797(在球磨機上新研磨的石英)(第2圖),相較於其在用於確定活性濃度範圍之第一測量中(第1圖)(39.4 ± 0.38 %)係明顯較不活躍,這可表示老化效應。然而,其餘之膜破損效應的強度使得可清楚地與表面改質的樣品作區別。藉由以AL平行處理細胞,「活性」石英粉末樣品的膜破損效應可幾乎完全被抑制。
樣品37935(處理劑:聚二醇35000 S)顯示不多於顆粒負控制Al2 O3 與負控制(無顆粒)的細胞毒性。38174(處理劑:甘油)亦無顯示負面效果,接著是38193(處理劑:三異丙氧化鋁)與38272(處理劑:高嶺土KBE-1)亦無顯示負面效果。
Cxcl2 基因表現
測定以石英粉末處理之培養物的Cxcl2基因表現以作為另外的終點。
若考慮純Cxcl2基因表現數據,所有定義上為「活性」的石英粉末樣品(DQ12、37797、38423、及38361)均顯示明顯誘發Cxcl2基因表現(第3圖)。特別而言,參考石英37797(無處理劑下在球磨機上新研磨的石英)相較於顆粒負控制Al2 O3 (2.88 [2^-CT x 10^2])係顯示非常顯著增加的Cxcl2基因表現(增加至36.43 [2^-CT x 10^2]),此可藉由AL而幾乎完全抑制(2.77 [2^-CT x 10^2])。非顆粒負控制顯示的基因表現為3.43 [2^-CT x 10^2]。樣品38361相較於DQ12之明顯較低的Cxcl2基因表現結果可由樣品的老化來解釋。樣品38361已於二個細胞毒性實驗中(第1圖及第2圖)顯示相較於DQ12之較低的反應。在Cxcl2基因表現中,此效應更強烈地可見。
因此,基於Cxcl2基因表現的數據,表面改質石英粉末的區別是非常可行的。相對於正控制37797,樣品37935(處理劑:聚二醇35000 S)具有2.68 [2^-CT x 10^2]、38174(處理劑:甘油)具有3.65 [2^-CT x 10^2]、38193(處理劑:三異丙氧化鋁)具有2.22 [2^-CT x 10^2]、與38272(處理劑:高嶺土KBE-1)具有1.95 [2^-CT x 10^2])、以及38328(處理劑:3-(三乙氧基矽基)丙基琥珀酸酐)具有2.54 [2^-CT x 10^2],該等樣品顯示非常低誘發的Cxcl2基因表現並因此顯示低的促炎性潛能。相較下,樣品38132(處理劑:矽酸四乙酯)具有26.39 [2^-CT x 10^2]、38157(處理劑:矽石溶膠)具有18.02 [2^-CT x 10^2]、以及38287(ε-己內醯胺)具有10.45 [2^-CT x 10^2],在該等樣品中,明顯可見Cxcl2基因表現之顯著增加,此於所有情況下均可藉由AL而顯著地抑制,並因此顯示為基於石英相依的機制。
結論
若考量二個體外試驗終點(LDH細胞毒性作為主要效果,Cxcl2基因表現作為次要效果),以聚二醇(樣品37935)或以甘油(樣品38174)處理結晶SiO2 顯示同樣良好的猝滅活性。因此,於體外不會再偵測到由此改質的結晶SiO2 顆粒對老鼠之肺泡巨噬細胞的負面效果。因此,因具有與負控制(培養基與Al2 O3 )相同量度的效果,所述的表面改質促進了結晶SiO2 之細胞毒性及促炎性潛能的最大程度降低。另外,鋁化合物-三異丙氧化鋁(樣品38193)與高嶺土KBE-1(樣品38272)顯示其對於SiO2 表面之以負面方式(即產生生物上不利的效果)活躍之位置係具良好的「隔離潛能」。
第1圖顯示LDH釋放,其用於測量由標準材料所誘發的膜破損。
第2圖顯示LDH釋放,其用於測量由各種石英粉末樣品所誘發的膜破損並與標準比較。
第3圖顯示Cxcl2 RTqPCR(Δ-CT方法),其用於測量於老鼠之主要肺泡巨噬細胞中,由各種石英粉末樣品所誘發的Cxcl2基因表現,其係基於Hprt1基因作為對照基因。
:無。
Figure 12_A0101_SEQ_0001
Figure 12_A0101_SEQ_0002

Claims (15)

  1. 一種處理結晶二氧化矽的方法,包含如下步驟:將結晶二氧化矽與0.05至1.00重量%之選自由以下所組成之群組的物質一起研磨:多元醇、高嶺土、鋁醇化物、及其混合物。
  2. 如請求項1所述之方法,其中該結晶二氧化矽在研磨之後具有d50晶粒尺寸為0.2至90微米,及/或在研磨之後具有d90晶粒尺寸為1至300微米。
  3. 如請求項1或2所述之方法,其中該多元醇係選自由以下所組成之群組:甘油、聚乙二醇、聚丙二醇、鋁醇化物、及其混合物及共聚物。
  4. 如請求項1或2所述之方法,其中該多元醇具有莫耳質量為90至50,000公克/莫耳。
  5. 如請求項1或2所述之方法,其中該結晶二氧化矽具有至少70%的結晶比例。
  6. 如請求項1或2所述之方法,其中該結晶二氧化矽為石英、方矽石、或鱗矽石。
  7. 如請求項1或2所述之方法,其中該處理會降低結晶二氧化矽的細胞毒性及促炎性潛能。
  8. 一種結晶二氧化矽的組合物,包含結晶二氧化矽及0.05至1.00重量%之選自由以下所組成之群組的物質:多元醇、鋁醇化物、高嶺土、及其混合物。
  9. 如請求項8所述之結晶二氧化矽的組合物,包含至少97重量%的二氧化矽。
  10. 如請求項8或9所述之結晶二氧化矽的組合物,包含具有至少70%之結晶比例的結晶二氧化矽。
  11. 如請求項8或9所述之結晶二氧化矽的組合物,其中該結晶二氧化矽具有d50晶粒尺寸為0.2至90微米。
  12. 一種多元醇用於降低結晶二氧化矽之細胞毒性及促炎性潛能的用途。
  13. 一種高嶺土用於降低結晶二氧化矽之細胞毒性及促炎性潛能的用途。
  14. 一種鋁醇化物用於降低結晶二氧化矽之細胞毒性及促炎性潛能的用途。
  15. 一種藉由如請求項1至7任一項所述之方法可獲得的結晶二氧化矽的組合物。
TW109102126A 2019-01-30 2020-01-21 結晶二氧化矽之隔離 TWI812835B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP19154567 2019-01-30
EP19154567.2 2019-01-30
EP19172386 2019-05-02
EP19172386.5 2019-05-02

Publications (2)

Publication Number Publication Date
TW202033450A true TW202033450A (zh) 2020-09-16
TWI812835B TWI812835B (zh) 2023-08-21

Family

ID=69190812

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109102126A TWI812835B (zh) 2019-01-30 2020-01-21 結晶二氧化矽之隔離

Country Status (11)

Country Link
US (1) US20220162080A1 (zh)
EP (1) EP3917881B9 (zh)
JP (1) JP7453982B2 (zh)
KR (1) KR20210118092A (zh)
CN (1) CN113423664A (zh)
BR (1) BR112021014856A2 (zh)
CA (1) CA3127921A1 (zh)
ES (1) ES2954908T3 (zh)
PL (1) PL3917881T3 (zh)
TW (1) TWI812835B (zh)
WO (1) WO2020157193A1 (zh)

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5018003B1 (zh) * 1969-02-26 1975-06-25
US5096733A (en) * 1989-10-30 1992-03-17 The United States Of America As Represented By The Secretary Of The Dept. Of Health And Human Services Prevention of the acute cytotoxicity associated with silica containing minerals
ATE424811T1 (de) * 2000-08-31 2009-03-15 Jagotec Ag Gemahlene partikel
JP4249643B2 (ja) * 2004-03-19 2009-04-02 電気化学工業株式会社 シリカフュームの圧密固化防止方法
ATE509891T1 (de) * 2005-12-20 2011-06-15 Evonik Degussa Gmbh Pyrogen hergestelltes siliciumdioxid
JP4903493B2 (ja) 2006-05-31 2012-03-28 日本製紙株式会社 複合粒子の製造方法
FI20070174A0 (fi) * 2007-02-28 2007-02-28 Delsitech Oy Menetelmä silikakoostumusten valmistamiseksi, silikakoostumukset ja niiden käytöt
RU2011138097A (ru) * 2009-03-18 2013-04-27 Косентино, С.А. Панель или плита, образованная из каменного агломерата, содержащего органическое связывающее растительного происхождения
KR101345625B1 (ko) * 2011-06-24 2013-12-31 서울대학교산학협력단 이산화규소 및 이산화규소를 함유한 광물을 이용한 리튬 이차전지용 음극활물질 및 그 제조방법
KR101443836B1 (ko) * 2012-04-17 2014-09-30 송병옥 카올린(큐랙스)에서 알루미나와 실리카를 분리하는 장치 및 방법
CN103373844A (zh) * 2012-04-24 2013-10-30 黄崧基 一种开采风化花岗岩矿山的资源综合利用的方法
JP6324396B2 (ja) * 2012-11-12 2018-05-16 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 生物活性物質の改変放出のための酸化ケイ素ベース材料の使用
CN103274365B (zh) * 2013-06-13 2015-02-25 南京大学 一种金属氧化物球形级联结构的制备方法
US10253219B2 (en) 2014-08-25 2019-04-09 Nippon Steel & Sumikin Materials Co., Ltd. Spherical crystalline silica particles and method for producing same
WO2016146079A1 (en) * 2015-03-17 2016-09-22 Sheau-Long Lee Use of ginsenoside m1 for preventing or treating silicosis
CN106495742B (zh) 2016-11-07 2019-09-24 美丽大道有限公司 抗蜡块粘结釉料、抗蜡块粘结陶瓷及其制备工艺
US11274045B2 (en) * 2017-04-05 2022-03-15 Nippon Steel Chemical & Material Co., Ltd. Spherical crystalline silica particles and method for producing same
CN109095907A (zh) * 2018-09-28 2018-12-28 湖南华联瓷业股份有限公司 一种以石英为基体材料的高硅陶瓷和制备方法

Also Published As

Publication number Publication date
CA3127921A1 (en) 2020-08-06
KR20210118092A (ko) 2021-09-29
EP3917881A1 (de) 2021-12-08
JP2022519249A (ja) 2022-03-22
ES2954908T3 (es) 2023-11-27
WO2020157193A1 (de) 2020-08-06
EP3917881C0 (de) 2023-06-07
US20220162080A1 (en) 2022-05-26
BR112021014856A2 (pt) 2021-12-21
TWI812835B (zh) 2023-08-21
PL3917881T3 (pl) 2023-09-25
CN113423664A (zh) 2021-09-21
EP3917881B9 (de) 2023-09-27
JP7453982B2 (ja) 2024-03-21
EP3917881B1 (de) 2023-06-07

Similar Documents

Publication Publication Date Title
Duffin et al. Aluminium lactate treatment of DQ12 quartz inhibits its ability to cause inflammation, chemokine expression, and nuclear factor-κB activation
Kukiattrakoon et al. Effect of acidic agents on surface roughness of dental ceramics
Wu et al. Inhibitory effect of reduced graphene oxide-silver nanocomposite on progression of artificial enamel caries
Burlingham et al. Three size-classes of intracellular adenovirus deoxyribonucleic acid
Yoo et al. Increasing trend of isolation of non-tuberculous mycobacteria in a tertiary university hospital in South Korea
TWI812835B (zh) 結晶二氧化矽之隔離
Lee et al. Aerosol particle size distribution and genetic characteristics of aerosolized influenza A H1N1 virus vaccine particles
Zboun et al. In vitro comparison of titanium surface conditioning via boron-compounds and sand-blasting acid-etching
Ziemann et al. Organosilane-based coating of quartz species from the traditional ceramics industry: evidence of hazard reduction using in vitro and in vivo tests
RU2810166C2 (ru) Маскировка кристаллического диоксида кремния
Hubbs et al. Comparative pulmonary toxicity of 6 abrasive blasting agents
Baptista et al. Antibacterial activity improvement of dental glass-ceramic by incorporation of AgVO3 nanoparticles
Ramkissoon et al. Understanding the pathogenesis of engineered stone‐associated silicosis: The effect of particle chemistry on the lung cell response
Pan et al. Sprayable copper and copper–zinc nanowires inks for antiviral surface coating
Porter et al. Comparative pulmonary toxicity of blasting sand and five substitute abrasive blasting agents
Tharavichitkul et al. Activity of Fosfomycin Against Extended-Spectrum- beta-Lactamase-Producing Klebsiella pneumoniae and Escherichia coli in Maharaj Nakorn Chiang Mai Hospital
Martin et al. Contrasting effects on ganciclovir susceptibility and replicative capacity of two mutations at codon 466 of the human cytomegalovirus UL97 gene
Barros et al. Prophylactic agents and bacterial adherence to titanium
Metri Basavaraj et al. Chronic suppurative Otitis Media (CSOM): Etiological agents and antibiotic sensitivity pattern of the isolates.
Hieu et al. Synthesis of SiO 2-coated Fe 3 O 4 nanoparticles using ultrasound and its application in DNA extraction from formalin-fixed, paraffin-embedded human cancer tissues
Fauzi et al. Detection of human papillomavirus types 16 and 18 in oral squamous cell carcinoma samples in Malaysia.
Maru et al. Biocompatibility, bioactivity and gene expression analysis of SHEDS cultured in various calcium silicate based cements: a systematic review and meta-analysis of in vitro studies
Fallahi Isolation and molecular diagnosis of Peste des petits ruminants (PPR) virus from contaminated areas in Iran
MUNOT et al. Effect of Surface Characteristics of Different Implant Abutment Materials on the Microbial Adhesion-An Invitro Study.
Zani et al. Virucidal efficacy of a novel silver-based disinfectant against SARS-CoV-2 Omicron BA. 5