TW202033172A - 下肢外骨骼機器人及其輔助方法 - Google Patents

下肢外骨骼機器人及其輔助方法 Download PDF

Info

Publication number
TW202033172A
TW202033172A TW108107304A TW108107304A TW202033172A TW 202033172 A TW202033172 A TW 202033172A TW 108107304 A TW108107304 A TW 108107304A TW 108107304 A TW108107304 A TW 108107304A TW 202033172 A TW202033172 A TW 202033172A
Authority
TW
Taiwan
Prior art keywords
exoskeleton
lower limb
joint
axis
signals
Prior art date
Application number
TW108107304A
Other languages
English (en)
Other versions
TWI687215B (zh
Inventor
黃國興
陳冠宏
陳啟鈞
賴仲亮
Original Assignee
國立勤益科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立勤益科技大學 filed Critical 國立勤益科技大學
Priority to TW108107304A priority Critical patent/TWI687215B/zh
Application granted granted Critical
Publication of TWI687215B publication Critical patent/TWI687215B/zh
Publication of TW202033172A publication Critical patent/TW202033172A/zh

Links

Images

Landscapes

  • Rehabilitation Tools (AREA)
  • Manipulator (AREA)

Abstract

一種下肢外骨骼機器人,供使用者之至少一下肢穿戴,下肢外骨骼機器人包含三運動感測單元、三外骨骼馬達、三馬達編碼器、演算單元及下肢輔具。運動感測單元分別鄰設於下肢的髖關節、膝關節及踝關節,各運動感測單元用以提供鄰設的關節的三維空間的複數感測信號。各馬達編碼器依據鄰設的外骨骼馬達提供至少一編碼信號。演算單元用以依據感測信號、編碼信號及三連動的DH參數運算得到複數輸出值,輸出值分別轉換為三外骨骼馬達控制信號。藉此,本發明之下肢外骨骼機器人有助提升對使用者的助益及增加其普及性。

Description

下肢外骨骼機器人及其輔助方法
本發明是有關於一種外骨骼機器人及其輔助方法,且特別是有關於一種應用於人體下肢的外骨骼機器人及其輔助方法。
全球的老年化議題近幾年持續發燒,所衍生出來老人照護中的復健需求則是逐日攀升,若此時有一個智慧化的復健器材甚至是機器人能給予輔助,幫助人的各項復健運動控制,就能減緩復健醫療需求裡醫生、護理師的負擔,給予一定的醫療品質。
然而,在復健的醫療服務中,現階段下肢關節的復健還是需要投入很多人力資源在其中,且這些第一線的物理治療師都會隨著高齡化社會導致人力缺乏及導致超時工作。因此,市場上亟欲發展一種有助於普及的下肢外骨骼機器人及其輔助方法,以有效協助復健人力。
本發明提供一種下肢外骨骼機器人及其輔助方法,其用以輔助使用者之左側下肢及右側下肢中至少一下肢,藉由運動感測單元提供之感測信號及馬達編碼器提供之編碼信號,並搭配可有效且精簡演算下肢的前進步態(Gait)及後退步態的運動模型,以提升下肢外骨骼機器人及其輔助方法對使用者的助益及增加普及性。
依據本發明提供一種下肢外骨骼機器人,供使用者之至少一下肢穿戴,下肢外骨骼機器人包含三運動感測單元、三外骨骼馬達、三馬達編碼器、演算單元及下肢輔具。運動感測單元分別鄰設於下肢的髖關節、膝關節及踝關節,各運動感測單元用以提供鄰設的關節的三維空間的複數感測信號。外骨骼馬達分別鄰設於髖關節、膝關節及踝關節。所述三馬達編碼器分別鄰設於所述三外骨骼馬達,各馬達編碼器依據鄰設的外骨骼馬達提供至少一編碼信號。演算單元通信連接運動感測單元及馬達編碼器,演算單元用以依據感測信號、編碼信號及三連動的DH參數運算得到複數輸出值,輸出值分別轉換為三外骨骼馬達控制信號。所述三外骨骼馬達分別依據所述三外骨骼馬達控制信號產生三輔助力矩,下肢輔具受輔助力矩驅動以分別輔助髖關節、膝關節及踝關節。藉此,搭配可有效且精簡演算下肢的前進步態及後退步態的運動模型,以提升本發明之下肢外骨骼機器人對使用者的助益及增加普及性。
根據前述的下肢外骨骼機器人,其中各運動感測單元可為三軸加速度計及三軸陀螺儀。
根據前述的下肢外骨骼機器人,可更包含肌電感測端,其鄰設下肢的大腿,且肌電感測端用以量測大腿之肌電信號,肌電信號用以控制是否將輸出值分別轉換為外骨骼馬達控制信號。
根據前述的下肢外骨骼機器人,其中所述三連動的DH參數中,在第Xi軸觀察到的從第Zi-1軸到第Zi軸的距離為ai,在第Zi軸觀察到的從第Xi-1軸到第Xi軸的距離為di,i的數值為1至3,且ai及di的數值可皆為零。
根據前述的下肢外骨骼機器人,其可供使用者之二下肢穿戴,運動感測單元、外骨骼馬達及馬達編碼器的數量皆為六個並鄰設於二下肢的二髖關節、二膝關節及二踝關節,演算單元通信連接運動感測單元及馬達編碼器,演算單元用以依據感測信號、編碼信號及三連動的DH參數運算得到輸出值,輸出值分別轉換為外骨骼馬達控制信號,外骨骼馬達分別依據外骨骼馬達控制信號產生輔助力矩,下肢輔具受輔助力矩驅動以分別輔助髖關節、膝關節及踝關節。演算單元包含類神經網路模組,類神經網路模組用以運算輸出值且包含輸入層、第一層、第二層、第三層及輸出層。輸入層係以所述二下肢的感測信號及編碼信號作為變數輸入模糊規則,模糊規則依據三連動的DH參數建立。第一層係將模糊規則進行適合度運算,得到複數規則強度。第二層係將規則強度進行正規化運算,得到複數正規化值。第三層係將正規化值與Sugeno模糊模式相乘運算。輸出層係將第三層的運算結果進行總和運算得到輸出值。
藉由前述的下肢外骨骼機器人,有助於下肢外骨骼機器人有效地掌握及預測使用者的步態。
依據本發明提供一種下肢外骨骼機器人輔助方法,其用以輔助使用者之至少一下肢,下肢外骨骼機器人輔助方法包含運動感測步驟、馬達編碼步驟、演算步驟及下肢輔助步驟。運動感測步驟係提供下肢的髖關節、膝關節及踝關節中各關節的三維空間的複數感測信號。馬達編碼步驟係提供分別鄰設於髖關節、膝關節及踝關節的外骨骼馬達中各者的至少一編碼信號。演算步驟係依據感測信號、編碼信號及三連動的DH參數運算得到複數輸出值,並將輸出值分別轉換為三外骨骼馬達控制信號。下肢輔助步驟中,所述三外骨骼馬達分別依據所述三外骨骼馬達控制信號產生三輔助力矩,下肢輔具受輔助力矩驅動以分別輔助髖關節、膝關節及踝關節。藉此,以提升本發明之下肢外骨骼機器人輔助方法對使用者的助益及增加普及性,進一步有效協助復健人力。
根據前述的下肢外骨骼機器人輔助方法,其中運動感測步驟中,髖關節、膝關節及踝關節中各關節的感測信號可由三軸加速度計及三軸陀螺儀提供。
根據前述的下肢外骨骼機器人輔助方法,可更包含肌電感測步驟,量測下肢的大腿之肌電信號。演算步驟中,肌電信號用以控制是否將輸出值分別轉換為外骨骼馬達控制信號。
根據前述的下肢外骨骼機器人輔助方法,其中所述三連動的DH參數中,在第Xi軸觀察到的從第Zi-1軸到第Zi軸的距離為ai,在第Zi軸觀察到的從第Xi-1軸到第Xi軸的距離為di,i的數值為1至3,且ai及di的數值可皆為零。
根據前述的下肢外骨骼機器人輔助方法,其可用以輔助使用者之二下肢。運動感測步驟中,提供二下肢的二髖關節、二膝關節及二踝關節中各關節的三維空間的感測信號。馬達編碼步驟中,提供分別鄰設於髖關節、膝關節及踝關節的所述六外骨骼馬達中各者的編碼信號。演算步驟中,以類神經網路模組依據感測信號、編碼信號及三連動的DH參數運算得到輸出值,並將輸出值分別轉換為所述六外骨骼馬達控制信號。下肢輔助步驟中,所述六外骨骼馬達分別依據所述六外骨骼馬達控制信號產生所述六輔助力矩,下肢輔具受輔助力矩驅動以分別輔助髖關節、膝關節及踝關節。類神經網路模組包含輸入層、第一層、第二層、第三層及輸出層。輸入層係以所述二下肢的感測信號及編碼信號作為變數輸入模糊規則,模糊規則依據三連動的DH參數建立。第一層係將模糊規則進行適合度運算,得到複數規則強度。第二層係將規則強度進行正規化運算,得到複數正規化值。第三層係將正規化值與Sugeno模糊模式相乘運算。輸出層係將第三層的運算結果進行總和運算得到輸出值。
藉由前述的下肢外骨骼機器人輔助方法,有助於下肢外骨骼機器人輔助方法學習並即時輔助不同的使用者。
100‧‧‧下肢外骨骼機器人
131、132、133、134、135、136‧‧‧運動感測單元
141、142、143、144、145、146‧‧‧外骨骼馬達
151、152、153、154、155、156‧‧‧馬達編碼器
167、168‧‧‧肌電感測端
170‧‧‧演算單元
190‧‧‧下肢輔具
80‧‧‧使用者
97、98‧‧‧大腿
91、92‧‧‧髖關節
93、94‧‧‧膝關節
95、96‧‧‧踝關節
177‧‧‧類神經網路模組
180‧‧‧輸入層
181‧‧‧第一層
182‧‧‧第二層
183‧‧‧第三層
184‧‧‧輸出層
A0‧‧‧感測信號
B0‧‧‧編碼信號
P0,11、P0,12、P0,21、P0,22、P1,1、P1,2、P2,1、P2,2、P3,1、P3,2‧‧‧運算值
Poutput‧‧‧輸出值
200‧‧‧下肢外骨骼機器人輔助方法
230‧‧‧運動感測步驟
250‧‧‧馬達編碼步驟
260‧‧‧肌電感測步驟
270‧‧‧演算步驟
290‧‧‧下肢輔助步驟
第1圖繪示本發明第一實施例的下肢外骨骼機器人的方塊圖;第2圖繪示第一實施例的下肢外骨骼機器人的使用示意圖;第3圖繪示第一實施例中類神經網路模組的示意圖;以及第4圖繪示本發明第二實施例的下肢外骨骼機器人輔助方法的流程圖。
以下將參照圖式說明本發明之複數個實施例。為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明部分實施例中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之;並且重複之元件將可能使用相同的編號表示之。
請參照第1圖及第2圖,第1圖繪示本發明第一實施例的下肢外骨骼機器人100的方塊圖,第2圖繪示第一實施例的下肢外骨骼機器人100的使用示意圖。由第1圖及第2圖可知,下肢外骨骼機器人100供使用者80之左側下肢及右側下肢中至少一下肢(未另標號)穿戴。就下肢外骨骼機器人100供使用者80之右側下肢穿戴而言,下肢外骨骼機器 人100包含運動感測單元131、133、135、外骨骼馬達141、143、145、馬達編碼器151、153、155、演算單元170及下肢輔具190。依據本發明的其他實施例中(圖未揭示),下肢外骨骼機器人可依使用者所需設計為僅供左側下肢穿戴、僅供右側下肢穿戴、或是同時供二下肢穿戴(如本發明之第一實施例的下肢外骨骼機器人100)。
運動感測單元131、133、135分別鄰設於下肢的髖關節91、膝關節93及踝關節95,運動感測單元131、133、135中各者用以提供鄰設的關節的三維空間的複數感測信號A0。外骨骼馬達141、143、145分別鄰設於髖關節91、膝關節93及踝關節95。馬達編碼器151、153、155分別鄰設於外骨骼馬達141、143、145,馬達編碼器151、153、155中各者依據鄰設的外骨骼馬達141、143、145提供至少一編碼信號B0。演算單元170通信連接運動感測單元131、133、135及馬達編碼器151、153、155,演算單元170用以依據感測信號A0、編碼信號B0及三連動的DH參數(3-link Denavit-Hartenberg Parameters)運算得到複數輸出值Poutput,輸出值Poutput分別轉換為外骨骼馬達控制信號。外骨骼馬達141、143、145分別依據外骨骼馬達控制信號產生三輔助力矩,下肢輔具190受輔助力矩驅動以分別輔助髖關節91、膝關節93及踝關節95。藉此,下肢外骨骼機器人100使用可有效且精簡演算下肢的前進步態及後退步態的三連動的DH參數之運動模型,以輔助或帶動使用者 80行走等動作,並能增加下肢外骨骼機器人100的普及性,進而有效協助復健人力。
進一步而言,演算單元170中的三連動的DH參數係為三個DH轉換矩陣(Denavit-Hartenberg Conversion Matrix)0M11M22M3中的參數,其中DH轉換矩陣i-1Mi如以下式(1)所示。本發明第一實施例的下肢外骨骼機器人100的三連動的DH參數如以下表1所示,其中係以使用者80的上半身為參考基座(第0軸),i的數值為1至3,i為1代表髖關節91(一連動,第1軸),i為2代表膝關節93(二連動,第2軸),i為3代表踝關節95(三連動,第3軸),第Zi軸描述使用者80的下肢中各關節朝前轉動或朝後轉動等主要轉動,第Xi軸描述使用者80的下肢朝上運動、朝下運動、朝左運動或朝右運動,在第Xi軸觀察到的從第Zi-1軸到第Zi軸的角度為αi,在第Xi軸觀察到的從第Zi-1軸到第Zi軸的距離為ai,在第Zi軸觀察到的從第Xi-1軸到第Xi軸的距離為di,在第Zi軸觀察到的從第Xi-1軸到第Xi軸的角度為θi。再者,踝關節95相對於使用者80的上半身的相對運動可以下列式(2)表示。敬請參照以下式(1)及式(2):
Figure 108107304-A0101-12-0008-1
;以及0 M 3=0 M 1 1 M 2 2 M 3 式(2)。
Figure 108107304-A0101-12-0009-2
具體而言,第一實施例的下肢外骨骼機器人100可供使用者80之二下肢穿戴,下肢外骨骼機器人100包含運動感測單元131、132、133、134、135、136(分別提供感測信號A0)、外骨骼馬達141、142、143、144、145、146及馬達編碼器151、152、153、154、155、156(分別提供編碼信號B0),即運動感測單元、外骨骼馬達及馬達編碼器的數量皆為六個,其中運動感測單元131、132、外骨骼馬達141、142、馬達編碼器151、152鄰設於髖關節91、92,運動感測單元133、134、外骨骼馬達143、144、馬達編碼器153、154鄰設於膝關節93、94,運動感測單元135、136、外骨骼馬達145、146、馬達編碼器155、156鄰設於踝關節95、96。演算單元170通信連接運動感測單元131、132、133、134、135、136及馬達編碼器151、152、153、154、155、156,演算單元170用以依據感測信號A0、編碼信號B0及三連動的DH參數運算得到輸出值Poutput,輸出值Poutput分別轉換為外骨骼馬達控制信號,外骨骼馬達141、142、143、144、145、146分別依據外骨骼馬達控制信號產生輔助力矩,下肢輔具190受輔助力矩驅動以分別輔助髖關節91、92、膝關節93、94及踝關節95、96。藉此, 下肢外骨骼機器人100可提供二下肢皆有輔助需求的使用者80穿戴。
第一實施例中,運動感測單元131、132、133、134、135、136、外骨骼馬達141、142、143、144、145、146及馬達編碼器151、152、153、154、155、156的設置位置皆不僅限於第2圖中的示意位置。再者,演算單元170用以依據感測信號A0、編碼信號B0及三連動的DH參數運算得到三個輸出值Poutput,其中三維空間的感測信號A0可進一步轉換為四元數(Quaternion),再轉換為歐拉角(Eulerian Angles)以供運算。三個輸出值Poutput分別轉換為三個外骨骼馬達控制信號,即外骨骼馬達141、142(對應髖關節91、92)依據其一外骨骼馬達控制信號,外骨骼馬達143、144(對應膝關節93、94)依據其二外骨骼馬達控制信號,外骨骼馬達145、146(對應踝關節95、96)依據其三外骨骼馬達控制信號。
運動感測單元131、132、133、134、135、136中各者可為三軸加速度計及三軸陀螺儀。藉此,有助於下肢外骨骼機器人100有效地掌握及預測使用者80的步態。
下肢外骨骼機器人100可更包含肌電感測端167、168,其分別鄰設下肢的大腿97、98,且肌電感測端167、168用以分別量測大腿97、98之肌電信號(Electromyographic Signal,EMG signal),肌電信號用以控制是否將輸出值Poutput分別轉換為外骨骼馬達控制信號。藉此,有助於下肢外骨骼機器人100即時依據使用者80 的動作需求啟動或暫停輔助模式。再者,肌電感測端167、168可為非侵入式的電極貼片並可連接放大器,肌電感測端167、168可分別設置於大腿97、98的肌肉纖維最多之處,如大腿股四頭肌,以提高肌電信號的強度及準確度。
請參照前述式(1)及表1,所述三連動的DH參數中,在第Xi軸觀察到的從第Zi-1軸到第Zi軸的距離為ai,在第Zi軸觀察到的從第Xi-1軸到第Xi軸的距離為di,i的數值為1至3,且ai及di的數值可皆為零。藉此,有助於精簡演算單元170的運算數據量,並可有效避免過於龐雜的運算數據量而導致下肢外骨骼機器人100延誤輔助時機或產生誤動作。進一步而言,第一實施例的下肢外骨骼機器人100中,係應用正逆向運動學理論、下肢前進步態及後退步態的零力矩點(Zero Moment Point,ZMP)理論推算出穩定行走的步態模型或步態週期(Gait Cycle),進而精簡所述三連動的DH參數。
請參照第3圖,其繪示第一實施例中類神經網路模組177的示意圖。由第1圖及第3圖可知,演算單元170包含類神經網路模組177,類神經網路模組177用以運算三個輸出值Poutput且可為適應性網路模糊推論系統(Adaptive-Network-based Fuzzy Inference System,ANFIS),類神經網路模組177包含輸入層180、第一層181、第二層182、第三層183及輸出層184。輸入層180係以所述二下肢的感測信號A0及編碼信號B0作為變數輸入模糊規則,模糊規則依據三連動的DH參數建立。第一層181 係將模糊規則進行適合度運算,得到複數規則強度。第二層182係將規則強度進行正規化運算,得到複數正規化值。第三層183係將正規化值與Sugeno模糊模式相乘運算。輸出層184係將第三層183的運算結果進行總和運算得到輸出值Poutput。藉此,有助於下肢外骨骼機器人100學習並即時輔助不同的使用者。
第一實施例中,前段所述的類神經網路模組177依據以下式(3)至式(7),其中j的數值為1至2,k的數值為1表示感測信號A0作為變數輸入,k的數值為2表示編碼信號B0作為變數輸入,且運算出三個輸出值Poutput(分別輔助髖關節91、92、膝關節93、94、踝關節95、96)的類神經網路模組177中的參數數值(包含三連動的DH參數)可能不同。
參照以下式(3),輸入層180係以二下肢的感測信號A0及編碼信號B0作為變數輸入模糊規則,得到運算值P0,kj,其中x表示感測信號A0或編碼信號B0,且其隸屬函數為高斯函數uAj,學習參數為aj、bj、cj
Figure 108107304-A0101-12-0012-3
參照以下式(4),第一層181係將模糊規則進行適合度運算(即wj),得到複數規則強度,即是運算值P1,j
Figure 108107304-A0101-12-0012-4
參照以下式(5),第二層182係將規則強度進行正規化運算,得到複數正規化值,即是運算值P2,j,其中運算值P2,j介於0與1之間:
Figure 108107304-A0101-12-0013-5
參照以下式(6),第三層183係將正規化值與Sugeno模糊模式(即fj)相乘運算,得到運算值P3,j,其中pj、qj及rj為Sugeno模糊模式的參數:
Figure 108107304-A0101-12-0013-6
參照以下式(7),輸出層184係將第三層183的運算值P3,j進行總和運算得到類神經網路模組177的輸出值Poutput
Figure 108107304-A0101-12-0013-7
此外,本發明之下肢外骨骼機器人100能在人機介面中提供選擇復健醫療模式或是自主行走人體信號控制模式,使下肢外骨骼機器人100智慧多功能化。再者,下肢外骨骼機器人100還可實現智慧控制及監控,應用物聯網之概念,運用雲端技術將每個使用者80的數值保留,利用簡單的上網裝置就能做出復健行為的動作,且還能將使用者80的數據備存後利用大數據分析加以應用。
請參照第4圖,其繪示本發明第二實施例的下肢外骨骼機器人輔助方法200的流程圖。請一併參考第1圖至第4圖,係以第一實施例的下肢外骨骼機器人100輔助說明第二實施例的下肢外骨骼機器人輔助方法200,下肢外骨骼機器人輔助方法200用以輔助使用者80之左側下肢及右側下肢中至少一下肢,下肢外骨骼機器人輔助方法200包含運動感測步驟230、馬達編碼步驟250、演算步驟270及下肢輔助步驟290。就下肢外骨骼機器人輔助方法200輔助使用者80之右側下肢而言,運動感測步驟230係提供下肢的髖關節91、膝關節93及踝關節95中各關節的三維空間的複數感測信號A0。馬達編碼步驟250係提供分別鄰設於髖關節91、膝關節93及踝關節95的外骨骼馬達141、143、145中各者的至少一編碼信號B0。演算步驟270係依據感測信號A0、編碼信號B0及三連動的DH參數運算得到複數輸出值Poutput,並將輸出值分別轉換為三外骨骼馬達控制信號。下肢輔助步驟290中,所述三外骨骼馬達141、143、145分別依據所述三外骨骼馬達控制信號產生三輔助力矩,下肢輔具190受輔助力矩驅動以分別輔助髖關節91、膝關節93及踝關節95。藉此,搭配可有效且精簡演算下肢的前進步態及後退步態的三連動的DH參數之運動模型,以增進下肢外骨骼機器人輔助方法200協助復健人力。
進一步而言,下肢外骨骼機器人輔助方法200可用以輔助使用者80之二下肢。運動感測步驟230中,提供二下肢的髖關節91、92、膝關節93、94及踝關節95、96 中各關節的三維空間的感測信號A0。馬達編碼步驟250中,提供分別鄰設於髖關節91、92、膝關節93、94及踝關節95、96的所述六外骨骼馬達141、142、143、144、145、146中各者的編碼信號B0。演算步驟270中,以類神經網路模組177依據感測信號A0、編碼信號B0及三連動的DH參數運算得到輸出值Poutput,並將輸出值Poutput分別轉換為所述六外骨骼馬達控制信號。下肢輔助步驟290中,所述六外骨骼馬達141、142、143、144、145、146分別依據所述六外骨骼馬達控制信號產生所述六輔助力矩,下肢輔具190受輔助力矩驅動以分別輔助髖關節91、92、膝關節93、94及踝關節95、96。
下肢外骨骼機器人輔助方法200的運動感測步驟230中,髖關節91、92、膝關節93、94及踝關節95、96中各關節的感測信號A0可由三軸加速度計及三軸陀螺儀提供。藉此,有助於下肢外骨骼機器人輔助方法200有效地掌握及預測使用者80的步態。
下肢外骨骼機器人輔助方法200可更包含肌電感測步驟260,係量測下肢的大腿97、98之肌電信號。演算步驟270中,肌電信號用以控制是否將輸出值Poutput分別轉換為外骨骼馬達控制信號。藉此,有助於下肢外骨骼機器人輔助方法200即時依據使用者80的動作需求啟動或暫停輔助模式。
請參照前述式(1)及表1,下肢外骨骼機器人輔助方法200的三連動的DH參數中,在第Xi軸觀察到的從第 Zi-1軸到第Zi軸的距離為ai,在第Zi軸觀察到的從第Xi-1軸到第Xi軸的距離為di,i的數值為1至3,且ai及di的數值可皆為零。藉此,有助於精簡演算步驟270的運算數據量,並可有效避免過於龐雜的運算數據量而導致下肢外骨骼機器人輔助方法200延誤輔助時機或產生誤動作。
演算步驟270中的類神經網路模組177包含輸入層180、第一層181、第二層182、第三層183及輸出層184。輸入層180係以所述二下肢的感測信號A0及編碼信號B0作為變數輸入模糊規則,模糊規則依據三連動的DH參數建立。第一層181係將模糊規則進行適合度運算,得到複數規則強度。第二層182係將規則強度進行正規化運算,得到複數正規化值。第三層183係將正規化值與Sugeno模糊模式相乘運算。輸出層184係將第三層183的運算結果進行總和運算得到輸出值Poutput。藉此,有助於下肢外骨骼機器人輔助方法200學習並即時輔助不同的使用者。有關類神經網路模組177的細節請參照前述式(3)至式(7)的相關內容,在此不另贅述。
雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明的精神和範圍內,當可作各種的更動與潤飾,因此本發明的保護範圍當視後附的申請專利範圍所界定者為準。
100‧‧‧下肢外骨骼機器人
131、136‧‧‧運動感測單元
141、146‧‧‧外骨骼馬達
151、156‧‧‧馬達編碼器
167、168‧‧‧肌電感測端
170‧‧‧演算單元
177‧‧‧類神經網路模組
190‧‧‧下肢輔具

Claims (10)

  1. 一種下肢外骨骼機器人,供一使用者之至少一下肢穿戴,該下肢外骨骼機器人包含:三運動感測單元,其分別鄰設於該下肢的一髖關節、一膝關節及一踝關節,各該運動感測單元用以提供鄰設的該關節的三維空間的複數感測信號;三外骨骼馬達,其分別鄰設於該髖關節、該膝關節及該踝關節;三馬達編碼器,其分別鄰設於該三外骨骼馬達,各該馬達編碼器依據鄰設的該外骨骼馬達提供至少一編碼信號;一演算單元,其通信連接該三運動感測單元及該三馬達編碼器,該演算單元用以依據該些感測信號、該些編碼信號及三連動的DH參數運算得到複數輸出值,該些輸出值分別轉換為三外骨骼馬達控制信號;以及一下肢輔具,其中該三外骨骼馬達分別依據該三外骨骼馬達控制信號產生三輔助力矩,該下肢輔具受該三輔助力矩驅動以分別輔助該髖關節、該膝關節及該踝關節。
  2. 如申請專利範圍第1項所述的下肢外骨骼機器人,其中各該運動感測單元為三軸加速度計及三軸陀螺儀。
  3. 如申請專利範圍第1項所述的下肢外骨骼機器人,更包含:一肌電感測端,其鄰設該下肢的一大腿,且該肌電感測端用以量測該大腿之一肌電信號,該肌電信號用以控制是否將該些輸出值分別轉換為該三外骨骼馬達控制信號。
  4. 如申請專利範圍第1項所述的下肢外骨骼機器人,其中該三連動的DH參數中,在第Xi軸觀察到的從第Zi-1軸到第Zi軸的距離為ai,在第Zi軸觀察到的從第Xi-1軸到第Xi軸的距離為di,i的數值為1至3,且ai及di的數值皆為零。
  5. 如申請專利範圍第1項所述的下肢外骨骼機器人,其中該下肢外骨骼機器人供該使用者之二下肢穿戴,該些運動感測單元、該些外骨骼馬達及該些馬達編碼器的數量皆為六個並鄰設於該二下肢的該二髖關節、該二膝關節及該二踝關節,該演算單元通信連接該六運動感測單元及該六馬達編碼器,該演算單元用以依據該些感測信號、該些編碼信號及該三連動的DH參數運算得到該些輸出值,該些輸出值分別轉換為該六外骨骼馬達控制信號,該六外骨骼馬達分別依據該六外骨骼馬達控制信號產生該六 輔助力矩,該下肢輔具受該六輔助力矩驅動以分別輔助該二髖關節、該二膝關節及該二踝關節;其中,該演算單元包含一類神經網路模組,該類神經網路模組用以運算該些輸出值且包含:一輸入層,以該二下肢的該些感測信號及該些編碼信號作為變數輸入一模糊規則,該模糊規則依據該三連動的DH參數建立;一第一層,將該模糊規則進行適合度運算,得到複數規則強度;一第二層,將該些規則強度進行正規化運算,得到複數正規化值;一第三層,將該些正規化值與Sugeno模糊模式相乘運算;以及一輸出層,將該第三層的運算結果進行總和運算得到該些輸出值。
  6. 一種下肢外骨骼機器人輔助方法,其用以輔助一使用者之至少一下肢,該下肢外骨骼機器人輔助方法包含:一運動感測步驟,提供該下肢的一髖關節、一膝關節及一踝關節中各關節的三維空間的複數感測信號; 一馬達編碼步驟,提供分別鄰設於該髖關節、該膝關節及該踝關節的三外骨骼馬達中各者的至少一編碼信號;一演算步驟,依據該些感測信號、該些編碼信號及三連動的DH參數運算得到複數輸出值,並將該些輸出值分別轉換為三外骨骼馬達控制信號;以及一下肢輔助步驟,該三外骨骼馬達分別依據該三外骨骼馬達控制信號產生該三輔助力矩,一下肢輔具受該三輔助力矩驅動以分別輔助該髖關節、該膝關節及該踝關節。
  7. 如申請專利範圍第6項所述的下肢外骨骼機器人輔助方法,其中該運動感測步驟中,該髖關節、該膝關節及該踝關節中各關節的該些感測信號由三軸加速度計及三軸陀螺儀提供。
  8. 如申請專利範圍第6項所述的下肢外骨骼機器人輔助方法,更包含:一肌電感測步驟,量測該下肢的一大腿之一肌電信號;其中,該演算步驟中,該肌電信號用以控制是否將該些輸出值分別轉換為該三外骨骼馬達控制信號。
  9. 如申請專利範圍第6項所述的下肢外骨骼機器人輔助方法,其中該三連動的DH參數中,在第Xi軸觀察 到的從第Zi-1軸到第Zi軸的距離為ai,在第Zi軸觀察到的從第Xi-1軸到第Xi軸的距離為di,i的數值為1至3,且ai及di的數值皆為零。
  10. 如申請專利範圍第6項所述的下肢外骨骼機器人輔助方法,其用以輔助該使用者之二下肢;其中,該運動感測步驟中,提供該二下肢的該二髖關節、該二膝關節及該二踝關節中各關節的三維空間的該些感測信號;其中,該馬達編碼步驟中,提供分別鄰設於該二髖關節、該二膝關節及該二踝關節的該六外骨骼馬達中各者的該編碼信號;其中,該演算步驟中,以一類神經網路模組依據該些感測信號、該些編碼信號及該三連動的DH參數運算得到該些輸出值,並將該些輸出值分別轉換為該六外骨骼馬達控制信號;其中,該下肢輔助步驟中,該六外骨骼馬達分別依據該六外骨骼馬達控制信號產生該六輔助力矩,該下肢輔具受該六輔助力矩驅動以分別輔助該二髖關節、該二膝關節及該二踝關節;其中,該類神經網路模組包含: 一輸入層,以該二下肢的該些感測信號及該些編碼信號作為變數輸入一模糊規則,該模糊規則依據該三連動的DH參數建立;一第一層,將該模糊規則進行適合度運算,得到複數規則強度;一第二層,將該些規則強度進行正規化運算,得到複數正規化值;一第三層,將該些正規化值與Sugeno模糊模式相乘運算;以及一輸出層,將該第三層的運算結果進行總和運算得到該些輸出值。
TW108107304A 2019-03-05 2019-03-05 下肢外骨骼機器人及其輔助方法 TWI687215B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108107304A TWI687215B (zh) 2019-03-05 2019-03-05 下肢外骨骼機器人及其輔助方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108107304A TWI687215B (zh) 2019-03-05 2019-03-05 下肢外骨骼機器人及其輔助方法

Publications (2)

Publication Number Publication Date
TWI687215B TWI687215B (zh) 2020-03-11
TW202033172A true TW202033172A (zh) 2020-09-16

Family

ID=70767192

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108107304A TWI687215B (zh) 2019-03-05 2019-03-05 下肢外骨骼機器人及其輔助方法

Country Status (1)

Country Link
TW (1) TWI687215B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI759953B (zh) * 2020-11-06 2022-04-01 國立勤益科技大學 下肢外骨骼輔助方法及下肢外骨骼機器人

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101278836B1 (ko) * 2011-12-12 2013-07-01 인하대학교 산학협력단 인간형 관절 구성의 6축 로봇 팔 제어 장치 및 방법
AU2014207668A1 (en) * 2013-01-16 2015-06-04 Ekso Bionics, Inc. Interface for adjusting the motion of a powered orthotic device through externally applied forces
TWI564129B (zh) * 2015-11-27 2017-01-01 財團法人工業技術研究院 行動輔助機器人之姿態估測方法
CN105938364B (zh) * 2016-01-15 2018-09-25 浙江大学 一种3d欠驱动双足机器人的动力学模型计算方法
TWI619488B (zh) * 2017-01-19 2018-04-01 國立勤益科技大學 下肢外骨骼輔助裝置及其方法
CN108748259B (zh) * 2018-04-10 2020-03-03 北京华航唯实机器人科技股份有限公司 机器人模型生成方法及装置

Also Published As

Publication number Publication date
TWI687215B (zh) 2020-03-11

Similar Documents

Publication Publication Date Title
Gui et al. A practical and adaptive method to achieve EMG-based torque estimation for a robotic exoskeleton
Niyetkaliyev et al. Review on design and control aspects of robotic shoulder rehabilitation orthoses
Stauffer et al. The walktrainer—a new generation of walking reeducation device combining orthoses and muscle stimulation
Huo et al. Lower limb wearable robots for assistance and rehabilitation: A state of the art
Martinez et al. A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton
Wei et al. Synergy-based control of assistive lower-limb exoskeletons by skill transfer
Fong et al. A therapist-taught robotic system for assistance during gait therapy targeting foot drop
Zhu et al. Design and voluntary control of variable stiffness exoskeleton based on sEMG driven model
Maeda et al. Muscle synergy analysis of human adaptation to a variable-stiffness exoskeleton: Human walk with a knee exoskeleton with pneumatic artificial muscles
Yi et al. Continuous prediction of lower-limb kinematics from multi-modal biomedical signals
Chen et al. Design of a lower extremity exoskeleton for motion assistance in paralyzed individuals
Wu et al. Adaptive cooperative control of a soft elbow rehabilitation exoskeleton based on improved joint torque estimation
Ruiz-Olaya et al. Upper and lower extremity exoskeletons
Mayag et al. Human-in-the-loop control for agora unilateral lower-limb exoskeleton
Camardella et al. Gait phases blended control for enhancing transparency on lower-limb exoskeletons
CN112025682A (zh) 基于肌肉协同理论的柔性外骨骼机器人控制方法及系统
Biao et al. Design and control of a flexible exoskeleton to generate a natural full gait for lower-limb rehabilitation
Hwang et al. An optimal method of training the specific lower limb muscle group using an exoskeletal robot
Febrer-Nafría et al. Evaluation of optimal control approaches for predicting active knee-ankle-foot-orthosis motion for individuals with spinal cord injury
TWI687215B (zh) 下肢外骨骼機器人及其輔助方法
Tageldeen et al. Motion control for a multiple input rehabilitation wearable exoskeleton using fuzzy logic and PID
Chen et al. Step length adaptation for walking assistance
Safizadeh et al. Kinematic analysis of powered lower limb orthoses for gait rehabilitation of hemiplegic and hemiparetic patients
Weerasingha et al. C-JAE: 3 DOF robotic ankle exoskeleton with compatible joint axes
TWI619488B (zh) 下肢外骨骼輔助裝置及其方法