TW202032822A - Color uniformity in converted light emitting diode using nanostructures - Google Patents

Color uniformity in converted light emitting diode using nanostructures Download PDF

Info

Publication number
TW202032822A
TW202032822A TW108147252A TW108147252A TW202032822A TW 202032822 A TW202032822 A TW 202032822A TW 108147252 A TW108147252 A TW 108147252A TW 108147252 A TW108147252 A TW 108147252A TW 202032822 A TW202032822 A TW 202032822A
Authority
TW
Taiwan
Prior art keywords
light
metasurface
emitting device
angle
nano
Prior art date
Application number
TW108147252A
Other languages
Chinese (zh)
Other versions
TWI788612B (en
Inventor
茱莉亞 安東尼歐 羅伯茲
維卡達 安納斯 湯瑪
Original Assignee
荷蘭商露明控股公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/230,811 external-priority patent/US11322669B2/en
Application filed by 荷蘭商露明控股公司 filed Critical 荷蘭商露明控股公司
Publication of TW202032822A publication Critical patent/TW202032822A/en
Application granted granted Critical
Publication of TWI788612B publication Critical patent/TWI788612B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/508Wavelength conversion elements having a non-uniform spatial arrangement or non-uniform concentration, e.g. patterned wavelength conversion layer, wavelength conversion layer with a concentration gradient of the wavelength conversion material

Abstract

A nanostructure layer is disclosed. The nanostructure layer includes an array of nanostructure material configured to receive a first light beam at a first angle of incidence and to emit the first light beam at a second angle greater than the first angle, the nanostructure material each having a largest dimension of less than 1000nm.

Description

使用奈米結構之轉換發光二極體中之色彩均勻性Color uniformity in conversion light emitting diodes using nanostructures

一典型發光二極體(LED)經歷發射之基於源或角變色之非均勻性。在此等LED中,色彩通常在一給定LED內變化,最顯著地依據來自舉例而言一作用層(其為LED之半導體結構之部分)之發射光之角度而變化。此角變色(CoA)效應可導致一般非均勻性且亦可導致更顯著視覺現象,諸如一白色LED之遠場中之大角處的「黃環」。A typical light emitting diode (LED) experiences source-based or angular discoloration-based non-uniformity of emission. In these LEDs, the color usually varies within a given LED, most significantly depending on the angle of the emitted light from, for example, an active layer that is part of the semiconductor structure of the LED. This corner discoloration (CoA) effect can lead to general non-uniformity and can also lead to more significant visual phenomena, such as "yellow rings" at large corners in the far field of a white LED.

亦可由於由一作用層發射之光與一波長轉換層之有限相互作用而發生基於CoA之非均勻性。可由於按處於或接近法線之一角度透過波長轉換發射之光而發生此有限相互作用,使得光發射與波長轉換層內之最少數目個粒子相互作用。CoA-based non-uniformity can also occur due to the limited interaction between the light emitted by an active layer and a wavelength conversion layer. This limited interaction can occur due to the light transmitted through the wavelength conversion emission at an angle at or close to the normal, so that the light emission interacts with the minimum number of particles in the wavelength conversion layer.

揭示一種奈米結構層。該奈米結構層包含一奈米結構材料陣列,該奈米結構材料陣列經組態以按一第一入射角接收一第一光束且相對於法線按大於該第一角之一第二角發射該第一光束,該奈米結構材料各具有小於1000 nm之一最大尺寸。Reveal a kind of nanostructure layer. The nanostructured layer includes a nanostructured material array configured to receive a first beam at a first incident angle and at a second angle greater than the first angle relative to the normal The first light beam is emitted, and each of the nanostructured materials has a largest dimension less than 1000 nm.

相關申請案之交叉參考Cross reference of related applications

本申請案主張2019年2月13日申請之歐洲專利申請案19156833.6及2018年12月21日申請之美國專利申請案16/230,811之優先權利,該等案各者之全文以引用的方式併入本文中。This application claims the priority rights of European patent application 19156833.6 filed on February 13, 2019 and U.S. patent application 16/230,811 filed on December 21, 2018. The full text of each of these cases is incorporated by reference. In this article.

下文將參考隨附圖式更充分地描述不同光照明系統及/或發光二極體實施方案之實例。此等實例並不互斥,且在一個實例中發現之特徵可與在一或多個其他實例中發現之特徵組合以達成額外實施方案。因此,將瞭解,在隨附圖式中展示之實例僅經提供用於闡釋性目的且其等不意欲以任何方式限制本發明。通篇,相同元件符號指代相同元件。Hereinafter, examples of different lighting systems and/or light-emitting diode implementations will be described more fully with reference to the accompanying drawings. These examples are not mutually exclusive, and features found in one example can be combined with features found in one or more other examples to achieve additional implementations. Therefore, it will be understood that the examples shown in the accompanying drawings are only provided for illustrative purposes and they are not intended to limit the invention in any way. Throughout the text, the same component symbols refer to the same components.

將瞭解,儘管本文中可使用術語第一、第二、第三等來描述各種元件,然此等元件不應受此等術語限制。此等術語可用來區分一個元件與另一元件。舉例而言,在不脫離本發明之範疇之情況下,一第一元件可被稱為一第二元件且一第二元件可被稱為一第一元件。如本文中使用,術語「及/或」可包含相關聯列出項目之一或多者之任何及全部組合。It will be understood that although the terms first, second, third, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms can be used to distinguish one element from another. For example, without departing from the scope of the present invention, a first element can be referred to as a second element and a second element can be referred to as a first element. As used herein, the term "and/or" can include any and all combinations of one or more of the associated listed items.

將瞭解,當諸如一層、區或基板之一元件被稱為「在」另一元件「上」或延伸「至」另一元件「上」時,其可直接在該另一元件上或直接延伸至該另一元件上,或亦可存在中介元件。相比之下,當一元件被稱為「直接在」另一元件「上」或「直接」延伸至另一元件「上」時,可能不存在中介元件。亦將瞭解,當一元件被稱為「連接」或「耦合」至另一元件時,其可直接連接或耦合至該另一元件及/或經由一或多個中介元件連接或耦合至該另一元件。相比之下,當一元件被稱為「直接連接」或「直接耦合」至另一元件時,該元件與該另一元件之間不存在中介元件。將瞭解,此等術語意欲涵蓋元件之除圖中描繪之任何定向以外之不同定向。It will be understood that when an element such as a layer, region or substrate is referred to as being "on" or extending "on" another element, it can be directly on or extend directly on the other element On this other element, there may also be an intermediate element. In contrast, when an element is said to be "directly on" another element or "directly" extends to another element "on", there may be no intervening element. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element and/or connected or coupled to the other element through one or more intervening elements. One element. In contrast, when an element is referred to as being "directly connected" or "directly coupled" to another element, there is no intervening element between the element and the other element. It will be understood that these terms are intended to cover different orientations of elements other than any orientation depicted in the figures.

本文中可使用諸如「在…下方」、「在…上方」、「上」、「下」、「水平」或「垂直」之相對術語來描述如圖中繪示之一個元件、層或區與另一元件、層或區之一關係。將瞭解,此等術語意欲涵蓋裝置之除圖中描繪之定向以外之不同定向。Relative terms such as "below", "above", "upper", "below", "horizontal" or "vertical" may be used in this text to describe an element, layer or area as shown in the figure. The relationship of another element, layer, or region. It will be appreciated that these terms are intended to cover different orientations of the device other than those depicted in the figures.

半導體發光裝置或光學功率發射裝置(諸如發射紫外(UV)或紅外(IR)光學功率之裝置)躋身當前可用之最有效光源(下文「LED」)。此等LED可包含發光二極體、諧振腔發光二極體、垂直腔雷射二極體、邊緣發射雷射或類似者。歸因於其等緊湊大小及較低功率要求,舉例而言,LED可為許多不同應用之有吸引力的候選者。舉例而言,其等可用作手持式電池供電裝置(諸如相機及行動電話)之光源(例如,閃光燈及相機閃光燈)。其等亦可用於舉例而言汽車照明、抬頭顯示器(HUD)照明、園藝照明、街道照明、用於視訊之手電筒、普通照明(例如,家庭、商店、辦公室及工作室照明、劇院/舞台照明及建築照明)、擴增實境(AR)照明、虛擬實境(VR)照明、作為顯示器之背光及IR光譜。一單個LED可提供不如一白熾光源明亮之光,且因此多接面裝置或LED陣列(諸如單片LED陣列、微型LED陣列等)可用於其中期望或需要更大亮度之應用。Semiconductor light-emitting devices or optical power emitting devices (such as devices that emit ultraviolet (UV) or infrared (IR) optical power) rank among the most effective light sources currently available (hereinafter "LED"). These LEDs may include light emitting diodes, resonant cavity light emitting diodes, vertical cavity laser diodes, edge emitting lasers, or the like. Due to their compact size and lower power requirements, for example, LEDs can be attractive candidates for many different applications. For example, they can be used as light sources (e.g., flashes and camera flashes) for handheld battery-powered devices, such as cameras and mobile phones. They can also be used for, for example, automotive lighting, head-up display (HUD) lighting, garden lighting, street lighting, flashlights for video, general lighting (e.g., home, shop, office and studio lighting, theater/stage lighting and Architectural lighting), augmented reality (AR) lighting, virtual reality (VR) lighting, backlighting as a display and IR spectrum. A single LED can provide less bright light than an incandescent light source, and therefore multi-junction devices or LED arrays (such as monolithic LED arrays, micro LED arrays, etc.) can be used in applications where greater brightness is desired or required.

揭示包含一或多個波長轉換層之LED中之色彩均勻性之改良。將瞭解,儘管本文中使用白色LED、藍色泵浦光及磷光體粒子,然其等僅用作實例。值得注意的係,與白色LED有關之揭示內容可應用於一或多個其他色譜之LED。與藍色泵浦光有關之揭示內容可與在一或多個其他波長下發射之光有關。與磷光體粒子有關之揭示內容可應用於一般而言可提供波長轉換性質之一或多個其他粒子類型、層或材料。The improvement of color uniformity in LEDs containing one or more wavelength conversion layers is disclosed. It will be understood that although white LEDs, blue pump light, and phosphor particles are used herein, they are only used as examples. It is worth noting that the disclosures related to white LEDs can be applied to one or more LEDs of other colors. The disclosure related to the blue pump light may be related to the light emitted at one or more other wavelengths. The disclosures related to phosphor particles can be applied to other particle types, layers, or materials that generally provide one or more wavelength conversion properties.

通常,在白色LED應用中,由一作用半導體層提供泵浦光(例如,藍色泵浦)且使用該泵浦光來激發一波長轉換層中之粒子,該波長轉換層可為含有色彩轉換器之一材料,諸如磷光體。可基於來自未轉換殘餘藍色泵浦及經轉換磷光體光之貢獻來達成此一LED中之白色光譜。作為一實例,由一作用層發射之藍色泵浦光之一部分可橫穿一波長轉換器且可不與任何波長轉換粒子發生碰撞使得其未更改地穿過波長轉換器。由作用層發射之藍色泵浦光之一不同部分可橫穿波長轉換器且可與一或多個波長轉換粒子(例如,磷光體粒子)發生碰撞,使得來自(若干)碰撞之所得光係一波長轉換光且可為比與一或多個波長轉換粒子碰撞之藍色泵浦光更黃的光。組合之藍色泵浦光及經轉換黃光可導致LED之白光輸出。Generally, in white LED applications, an active semiconductor layer provides pump light (for example, blue pump) and uses the pump light to excite particles in a wavelength conversion layer. The wavelength conversion layer may contain color conversion One of the materials of the device, such as phosphor. The white spectrum in such an LED can be achieved based on the contribution from the unconverted residual blue pump and converted phosphor light. As an example, a part of the blue pump light emitted by an active layer may traverse a wavelength converter and may not collide with any wavelength conversion particles so that it passes through the wavelength converter unchanged. A different part of the blue pump light emitted by the active layer can traverse the wavelength converter and can collide with one or more wavelength conversion particles (for example, phosphor particles), so that the resulting optical system from the collision(s) A wavelength-converted light may be lighter than the blue pump light that collides with one or more wavelength-converted particles. The combined blue pump light and converted yellow light can cause the white light output of the LED.

在上文提供之實例中,轉換光之光譜可取決於應用而變化且可為窄頻或寬頻。類似地,在一些情況中,藍光可選取為完全轉換以在由一LED輸出之光中達成某些色彩。波長轉換層可大致分類為粉末狀磷光體,其由堆積至聚矽氧膜中之微米大小轉換器粒子或摻雜至陶瓷材料之一平板中之轉換器組成。兩個類型之磷光體之光散射性質隨粉末狀磷光體固有地為一體積散射介質而變化,而陶瓷磷光體可包含表面及體積散射以促進光吸收及轉換。In the example provided above, the spectrum of the converted light can vary depending on the application and can be narrow or broadband. Similarly, in some cases, blue light can be selected to be fully converted to achieve certain colors in the light output by an LED. The wavelength conversion layer can be roughly classified as a powdered phosphor, which is composed of micron-sized converter particles stacked in a polysilicon oxide film or a converter doped into a flat plate of ceramic material. The light scattering properties of the two types of phosphors vary as the powdered phosphor is inherently a volume scattering medium, and the ceramic phosphor may include surface and volume scattering to promote light absorption and conversion.

一波長轉換層內之散射可指示在波長轉換層內橫越並吸收之光之路徑長度且可導致磷光體材料內之藍色泵浦光之過度轉換或轉換不足。作為一實例,一波長轉換層內之大量散射可對應於一較高路徑長度,從而導致與波長轉換層內之波長轉換粒子之更多碰撞(或潛在碰撞)。歸因於特定於各類型之波長轉換層之散射及轉換性質且亦歸因於選取之LED封裝之架構,可在近場或遠場中經歷源變色問題。源變色之特徵在於一波長轉換材料之發光表面上缺乏色彩均勻性(不同成分之相對光譜分佈)。源變色在使用投射光學元件投射至遠場中時導致在不同角度內具有色彩非均勻性之遠場光斑。源變色通常被稱為角變色,該兩者通常屬於相同現象。色彩非均勻性可導致非所要光學效應且導致次佳LED效能。Scattering in a wavelength conversion layer can indicate the path length of the light that is traversed and absorbed in the wavelength conversion layer and can result in excessive or insufficient conversion of the blue pump light in the phosphor material. As an example, a large amount of scattering in a wavelength conversion layer can correspond to a higher path length, resulting in more collisions (or potential collisions) with wavelength conversion particles in the wavelength conversion layer. Due to the scattering and conversion properties specific to each type of wavelength conversion layer and also due to the selected LED package architecture, source discoloration problems can be experienced in the near field or the far field. The source of color change is characterized by the lack of color uniformity (relative spectral distribution of different components) on the light-emitting surface of a wavelength conversion material. When the source discoloration is projected into the far field using the projection optics, it results in far-field light spots with color non-uniformity at different angles. Source discoloration is usually called angular discoloration, and the two are usually the same phenomenon. Color non-uniformity can lead to undesirable optical effects and lead to sub-optimal LED performance.

本文中揭示之標的係關於藉由使用由奈米結構材料(諸如超表面或超材料(例如,惠更斯超表面)、光子晶體及/或亞波長散射器)製成之光子奈米結構層而改良一波長轉換層之表面上之色彩混合及色彩均勻性的技術及材料。The subject disclosed in this article relates to the use of photonic nanostructured layers made of nanostructured materials (such as metasurfaces or metamaterials (e.g., Huygens metasurface), photonic crystals and/or subwavelength diffusers). Technologies and materials to improve the color mixing and color uniformity on the surface of a wavelength conversion layer.

可用奈米結構材料(諸如超分子(例如,產生超表面之超分子)、光子晶體、亞波長散射器等)來實施一奈米結構層。如本文中使用,光子晶體、亞波長散射器及超表面可為對稱或非對稱超分子及/或奈米天線之週期性配置。一超分子奈米結構層可包含一超分子陣列。一奈米天線奈米結構層可包含一或多個奈米天線。如本文中揭示,奈米結構層可併入具有放置於一LED表面(例如,一藍寶石基板)上之奈米級光學天線之LED裝置之設計。Nanostructured materials (such as supramolecules (for example, supramolecules that produce supersurfaces), photonic crystals, sub-wavelength diffusers, etc.) can be used to implement a nanostructured layer. As used herein, photonic crystals, subwavelength diffusers, and metasurfaces can be periodic configurations of symmetric or asymmetric supramolecular and/or nano antennas. A supramolecular nanostructure layer can include a supramolecular array. A nano antenna nanostructure layer can include one or more nano antennas. As disclosed herein, the nanostructure layer can be incorporated into the design of an LED device with a nano-level optical antenna placed on an LED surface (for example, a sapphire substrate).

一奈米結構層中之光子晶體、亞波長散射器及/或超表面可為:純電漿,其由金屬奈米粒子構成;或金屬介電質,其由金屬及介電奈米粒子構成;或純介電質,其由介電奈米粒子、通常高折射率介電質構成。可使用自上而下或自下而上製造方法來製造一奈米結構層中之光子晶體及/或超表面且其等可利用奈米粒子自組裝來提供製造及可擴展性之優點。可針對一維、二維或三維製造光子晶體。一維光子晶體可由沈積或粘附在一起之層組成。可藉由光微影或藉由在一適合基板中鑽孔而製成二維光子晶體。三維光子晶體之製造方法包含在不同角下鑽孔、將多個2D層彼此疊置、直接雷射寫入、或舉例而言促使將球體自組裝於一矩陣中並溶解球體。奈米結構層中之光子晶體及/或超表面內之超分子可藉由包含但不限於分子連接子、DNA及類似者之不同技術固持在一起。替代地,其等可藉由自上而下製造技術(諸如奈米壓印微影、奈米球微影或類似者)及使用剝離技術釋放之個別超分子來製造。可藉由諸如二氧化矽或二氧化鋁之介電質囊封一奈米結構層以防止超分子性質隨時間之降級。The photonic crystal, subwavelength diffuser and/or supersurface in a nanostructured layer can be: pure plasma, which is composed of metal nanoparticles; or metal dielectric, which is composed of metal and dielectric nanoparticles ; Or pure dielectric, which is composed of dielectric nanoparticles, usually high refractive index dielectric. Top-down or bottom-up manufacturing methods can be used to manufacture photonic crystals and/or metasurfaces in a nanostructured layer, and self-assembly of nanoparticles can be used to provide advantages in manufacturing and scalability. Photonic crystals can be manufactured for one, two or three dimensions. One-dimensional photonic crystals can be composed of layers deposited or adhered together. Two-dimensional photonic crystals can be made by photolithography or by drilling holes in a suitable substrate. Three-dimensional photonic crystal manufacturing methods include drilling holes at different angles, stacking multiple 2D layers on top of each other, direct laser writing, or for example, prompting the spheres to self-assemble in a matrix and dissolve the spheres. The photonic crystals in the nanostructure layer and/or the supramolecules in the supersurface can be held together by different technologies including but not limited to molecular linkers, DNA and the like. Alternatively, they can be manufactured by top-down manufacturing techniques (such as nanoimprint lithography, nanosphere lithography, or the like) and individual supramolecules released using exfoliation techniques. A nanostructure layer can be encapsulated by a dielectric such as silica or alumina to prevent the degradation of supramolecular properties over time.

揭示用於使用一奈米結構層使LED中之光轉向的設計及最佳化。藉由實例且為提供具體描述,描述具有一藍寶石基板之晶片級封裝(CSP) LED之一覆晶,而本文中之原理及教示可應用於任何適用LED設計。具有一光滑光逸出表面(LES)之一基於藍寶石之CSP發射器可允許沈積一奈米結構層使得由LED之一作用層發射之光經由藍寶石基板入射於奈米結構層上。Reveal the design and optimization for using a nanostructured layer to redirect light in the LED. By way of example and in order to provide a specific description, a flip chip of a chip-scale package (CSP) LED with a sapphire substrate is described, and the principles and teachings herein can be applied to any applicable LED design. A sapphire-based CSP emitter with a smooth light escape surface (LES) allows the deposition of a nanostructured layer so that light emitted by an active layer of the LED is incident on the nanostructured layer via the sapphire substrate.

根據本文中揭示之標的,一奈米結構層可藉由憑藉使入射光相對於法線轉向一較高角度(例如,從小於10度至大於90度)來增大入射於奈米結構層上之一光束之入射角而增大色彩均勻性。替代地或另外,奈米結構層可藉由允許大於一截止角之光穿過奈米結構層而增大色彩均勻性,使得僅按更可能增加光路徑長度之角度入射於奈米結構層上之光穿過奈米結構層。According to the subject disclosed in this article, a nanostructured layer can increase incidence on the nanostructured layer by turning incident light at a higher angle with respect to the normal (for example, from less than 10 degrees to greater than 90 degrees) One of the incident angles of the beam increases the color uniformity. Alternatively or in addition, the nanostructure layer can increase the color uniformity by allowing light greater than a cut-off angle to pass through the nanostructure layer, so that it is incident on the nanostructure layer only at an angle that is more likely to increase the light path length The light passes through the nanostructure layer.

圖1A繪示一LED裝置100,其包含在包含一磊晶生長半導體層130及基板120之一LED裝置上之一奈米結構層110。磊晶生長半導體層130可包含藉由一間隙133分離的一第一接觸件137及一第二接觸件138,間隙133可為一氣隙或可填充有介電材料。一p型層134可接近一作用層135及一n型層139。作用層135可經組態以發射遠離接觸件137及138之光使得從作用層135發射之光束大體上朝向基板120發射。為易於理解本發明,以一簡化形式呈現LED裝置100,已知相關技術之一般技術者將理解包含於一LED內之其他元件。FIG. 1A shows an LED device 100 which includes a nanostructure layer 110 on an LED device including an epitaxial growth semiconductor layer 130 and a substrate 120. The epitaxial growth semiconductor layer 130 may include a first contact 137 and a second contact 138 separated by a gap 133. The gap 133 may be an air gap or may be filled with a dielectric material. A p-type layer 134 can be close to an active layer 135 and an n-type layer 139. The active layer 135 may be configured to emit light away from the contacts 137 and 138 so that the light beam emitted from the active layer 135 is emitted toward the substrate 120 generally. To facilitate the understanding of the present invention, the LED device 100 is presented in a simplified form, and those skilled in the related art will understand other elements included in an LED.

磊晶生長半導體層130可由經組態以在被激發時發射光子之任何適用材料形成,包含藍寶石、SiC、GaN、聚矽氧,且更明確言之可由以下各者形成:一Ⅲ-Ⅴ族半導體,包含但不限於AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb;Ⅱ-Ⅵ族半導體,包含但不限於ZnS、ZnSe、CdSe、CdTe;Ⅳ族半導體,包含但不限於Ge、Si、SiC;及其等之混合物或合金。此等例示性材料在其中存在其等之LED的典型發射波長下可具有在自約2.4至約4.1之範圍內的折射率。The epitaxial growth semiconductor layer 130 may be formed of any suitable material that is configured to emit photons when excited, including sapphire, SiC, GaN, polysilicon oxide, and more specifically, may be formed of any of the following: Group III-V Semiconductors, including but not limited to AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb; Group II-VI semiconductors, including but not limited to ZnS, ZnSe, CdSe, CdTe; Group IV Semiconductors include but are not limited to Ge, Si, SiC; and their mixtures or alloys. These exemplary materials may have a refractive index ranging from about 2.4 to about 4.1 at the typical emission wavelength of the LED in which they are present.

舉例而言,可使用氮化鋁(AlN)且其係一寬帶隙(在室溫下為6.01 eV至6.05 eV)材料。AlN可具有約1.9至2.2 (例如,在632.8 nm下為2.165)之折射率。諸如GaN之Ⅲ族氮化物半導體在500 nm下可具有約2.4之折射率,且諸如InGaP之Ⅲ族磷化物半導體在600 nm下可具有約3.7之折射率。一例示性氮化鎵(GaN)層可採取一pGaN層之形式。如相關技術之一般技術者將理解,GaN係常用於發光二極體中之一二元III/V直接帶隙半導體。GaN可具有具3.4 eV之一寬帶隙之一晶體結構,此使材料對於光電子、高功率及高頻率裝置中之應用而言為理想的。GaN可摻雜有矽(Si)或氧以產生一n型GaN且摻雜有鎂(Mg)以產生如本發明實例中使用之一p型GaN。作用層135係其中在發生電致發光時發射光的區。耦合至LED裝置100之接觸件137及/或138可由諸如AuSn、AuGa、AuSi或SAC焊料之一焊料形成。For example, aluminum nitride (AlN) can be used and it is a wide band gap (6.01 eV to 6.05 eV at room temperature) material. AlN may have a refractive index of about 1.9 to 2.2 (for example, 2.165 at 632.8 nm). Group III nitride semiconductors such as GaN may have a refractive index of about 2.4 at 500 nm, and group III phosphide semiconductors such as InGaP may have a refractive index of about 3.7 at 600 nm. An exemplary gallium nitride (GaN) layer may take the form of a pGaN layer. As those skilled in the related art will understand, GaN is often used as a binary III/V direct band gap semiconductor in light-emitting diodes. GaN can have a crystal structure with a wide band gap of 3.4 eV, which makes the material ideal for applications in optoelectronics, high-power, and high-frequency devices. GaN can be doped with silicon (Si) or oxygen to produce an n-type GaN and doped with magnesium (Mg) to produce a p-type GaN as used in the example of the present invention. The active layer 135 is a region in which light is emitted when electroluminescence occurs. The contacts 137 and/or 138 coupled to the LED device 100 may be formed of solder such as AuSn, AuGa, AuSi, or SAC solder.

如圖1A中展示,基板120可定位於半導體層130與奈米結構層110之間。基板可為具有實現奈米結構層110之沈積之一光滑LES之一CSP發射器。基板120可包括藍寶石(其係亦稱為剛玉之氧化鋁(Al2 O3 )),且可展現包含非常堅硬、牢固、易於機器加工、一良好電絕緣體及一極佳熱導體的性質。藍寶石在合成產生時通常為透明的,其中自然出現藍寶石中之藍色(及另一形式之剛玉之紅寶石中之紅色)來自晶格中之雜質。在其他LED中,可用氮化鎵(GaN)替換藍寶石。半導體層130可在發生電致發光時發射光的區中。As shown in FIG. 1A, the substrate 120 may be positioned between the semiconductor layer 130 and the nanostructure layer 110. The substrate may be a CSP emitter with a smooth LES that realizes the deposition of the nanostructure layer 110. The substrate 120 may include sapphire (which is also known as alumina of corundum (Al 2 O 3 )), and may exhibit properties including being very hard, strong, easy to machine, a good electrical insulator, and an excellent thermal conductor. Sapphire is usually transparent when produced synthetically, where the blue color in sapphire (and the red color in ruby of another form of corundum) comes from impurities in the crystal lattice. In other LEDs, gallium nitride (GaN) can be used to replace sapphire. The semiconductor layer 130 may be in a region where light is emitted when electroluminescence occurs.

如圖1A中展示,基板120之側壁可由側壁材料140覆蓋。側壁材料140亦可覆蓋半導體層130之一或多個層,使得相同側壁材料140覆蓋基板120及半導體層130或與半導體層130不同之一材料可覆蓋基板120之側壁。側壁材料140可為任何適用反射或散射材料。根據一實施例,側壁材料140可為一分佈式布拉格(Bragg)反射器(DBR)。As shown in FIG. 1A, the sidewall of the substrate 120 may be covered by the sidewall material 140. The sidewall material 140 can also cover one or more layers of the semiconductor layer 130, so that the same sidewall material 140 covers the substrate 120 and the semiconductor layer 130 or a material different from the semiconductor layer 130 can cover the sidewall of the substrate 120. The sidewall material 140 can be any suitable reflective or scattering material. According to an embodiment, the sidewall material 140 may be a distributed Bragg reflector (DBR).

奈米結構層110可包含併入至可包含超分子及/或奈米天線之光子晶體及/或超表面中的光子材料,使得一超分子或奈米天線之最大尺寸小於1000 nm。奈米天線可經實施為定位於奈米結構層中之一奈米粒子陣列,如本文中進一步揭示。奈米天線可經配置成週期性或非週期性圖案,如本文中進一步揭示。類似於由原子構成之化學分子,一超表面由超分子構成,其中超分子組合在一起且相互作用以給出超表面獨特光學性質。個別超表面之大小可為亞波長或可按相同使用波長順序形成。The nanostructure layer 110 may include photonic materials incorporated into photonic crystals and/or metasurfaces that may include supramolecular and/or nano antennas, so that the maximum dimension of a supramolecular or nano antenna is less than 1000 nm. The nano antenna can be implemented as a nanoparticle array positioned in one of the nanostructure layers, as further disclosed herein. Nano antennas can be configured in periodic or non-periodic patterns, as further disclosed herein. Similar to chemical molecules composed of atoms, a supersurface is composed of supramolecules, where the supramolecules combine and interact to give the supersurface unique optical properties. The size of individual metasurfaces can be sub-wavelength or can be formed in the same order of wavelength.

奈米結構層110亦可包含分佈於整個一主體介電介質中的奈米天線。奈米天線之大小可為波長數量級之一亞波長。The nanostructure layer 110 may also include nano antennas distributed throughout a bulk dielectric medium. The size of the nano antenna can be a sub-wavelength on the order of the wavelength.

如本文中揭示,為促進橫穿波長轉換層102之光之一較長光路徑,一奈米結構層110可產生一角濾光片,該角濾光片按大於一角截止角之角度透射光且相對於法線反射角截止角以下之輻射。因此,僅按一高角(例如,非法向或接近法向)入射於奈米結構層110上之光束橫穿奈米結構層110。鑑於高角,此等光束之光路徑比舉例而言將以其他方式按一較低(例如,在法向或接近法向)角入射於波長轉換層102上之光束更長。As disclosed herein, in order to promote a longer light path of light traversing the wavelength conversion layer 102, a nanostructure layer 110 can produce a corner filter that transmits light at an angle greater than a corner cut-off angle and Radiation below the cutoff angle relative to the normal reflection angle. Therefore, the light beam incident on the nanostructure layer 110 only at a high angle (for example, illegal or close to normal) traverses the nanostructure layer 110. In view of the high angle, the light path of these light beams is longer than the light beams that, for example, would otherwise be incident on the wavelength conversion layer 102 at a lower (eg, at or near normal) angle.

如本文中揭示,入射於圖1A之一奈米結構層110上之光束可反射回至基板120中,使得反射光束入射於側壁材料140及/或定位於作用層135下方且遠離基板120之面向奈米結構層110之表面的一背反射器125上。背反射器125可為包含平坦金屬鏡、一分佈式布拉格反射器(DBR)及/或其他已知LED反射器的一電漿層。背反射器125經設計以重新反射被反射回至基板120中之光束。背反射器125可在光束從側壁材料140彈回之前或之後反射光束或可反射由奈米結構層110直接反射之光束。As disclosed herein, the light beam incident on the nanostructure layer 110 of FIG. 1A can be reflected back into the substrate 120, so that the reflected light beam is incident on the sidewall material 140 and/or positioned below the active layer 135 and away from the surface of the substrate 120 On a back reflector 125 on the surface of the nanostructure layer 110. The back reflector 125 may be a plasma layer including flat metal mirrors, a distributed Bragg reflector (DBR), and/or other known LED reflectors. The back reflector 125 is designed to re-reflect the light beam reflected back into the substrate 120. The back reflector 125 can reflect the light beam before or after the light beam bounces back from the sidewall material 140 or can reflect the light beam directly reflected by the nanostructure layer 110.

圖1B展示經由一奈米結構層之光轉向之一實例。LED裝置111A經展示具有一基板120A及波長轉換層102A。光束112A及113A橫穿基板120A且分別按角Θ1A 及Θ2A 入射於波長轉換層102A上。根據所揭示之標的,LED裝置111B經展示具有一基板120B、波長轉換層102B、以及一奈米結構層110B。光束112B及113B以與光束112A及113A在橫穿類似於基板120B或與基板120B相同之基板120A時相同之光學性質(例如,角、頻率、方向)橫穿基板120B。光束112B及113B在橫穿奈米結構層110B之後入射於波長轉換層102B上。如展示,光束112B及113B在奈米結構層110B內轉向,使得其等分別按角Θ1B 及Θ2B 入射於波長轉換層102B上。將注意,相對於法線,角Θ1B 及Θ2B 大於角Θ1 A 及Θ2 A 。為清楚起見,奈米結構層110B使入射於奈米結構層110B上之光束轉向,使得按大於奈米結構層110B未使光束轉向(即,波長轉換層102A之實例)的一角度進入波長轉換層102B。因此,透過波長轉換層102B發射之光之路徑長度大於透過波長轉換層102A發射之光之路徑長度,且因此,光束112B及113B更可能與波長轉換層102B內之粒子發生碰撞,從而有效地增加轉換機會,提供色彩均勻性。Figure 1B shows an example of light redirection through a nanostructured layer. The LED device 111A is shown to have a substrate 120A and a wavelength conversion layer 102A. The light beams 112A and 113A traverse the substrate 120A and are incident on the wavelength conversion layer 102A at angles θ 1A and θ 2A , respectively. According to the disclosed subject matter, the LED device 111B is shown to have a substrate 120B, a wavelength conversion layer 102B, and a nanostructure layer 110B. The beams 112B and 113B traverse the substrate 120B with the same optical properties (eg, angle, frequency, direction) as the beams 112A and 113A when traversing the substrate 120A similar to the substrate 120B or the same as the substrate 120B. The light beams 112B and 113B are incident on the wavelength conversion layer 102B after traversing the nanostructure layer 110B. As shown, the light beams 112B and 113B are deflected within the nanostructure layer 110B so that they are incident on the wavelength conversion layer 102B at angles θ 1B and θ 2B , respectively. It will be noted that the angles Θ 1B and Θ 2B are greater than the angles Θ 1 A and Θ 2 A relative to the normal. For the sake of clarity, the nanostructured layer 110B turns the light beam incident on the nanostructured layer 110B so that it enters the wavelength at an angle greater than that of the nanostructured layer 110B without turning the light beam (ie, an example of the wavelength conversion layer 102A) Conversion layer 102B. Therefore, the path length of the light emitted through the wavelength conversion layer 102B is greater than the path length of the light emitted through the wavelength conversion layer 102A, and therefore, the light beams 112B and 113B are more likely to collide with the particles in the wavelength conversion layer 102B, thereby effectively increasing Conversion opportunities to provide color uniformity.

根據一實施例,如本文中揭示,圖1A之奈米結構層110可按小於一截止角之一角度反射入射於奈米結構層110上之光束。在圖1C中藉由光束122及123展示此現象之一例示性視覺表示。光束122及123可橫穿基板120且入射於奈米結構層121上。奈米結構層121可經組態使得按低於一給定截止角之一角度入射之光束反射回且高於截止角之光束透射穿過奈米結構層(例如,進入一波長轉換層中)。光束122可按可為低於一截止角(即,較接近法線)之角度的一入射角Θ3 入射使得奈米結構層反射光束122,如展示。光束123可按高於截止角(即,進一步遠離法線)之一入射角Θ4 入射於奈米結構層121上且可橫穿奈米結構層121,如展示。根據所揭示之標的,光束123可在奈米結構層121內經歷光轉向。如本文中揭示,反射回至基板120中之光束可在基板內及/或在一背反射器上經歷一或多次彈回,使得其等可在藉由奈米結構層121反射至基板120中之後第二次入射於奈米結構層121上。在一第一時間藉由奈米結構層121反射至基板中之一光束可在基板內(例如,在側壁材料、背反射器等處)經歷一或多次彈回且可在第一時間之後之一第二時間入射於奈米結構層121上。在第二時間之光束之入射角可高於截止角,且因此,光束可穿過奈米結構層121。According to an embodiment, as disclosed herein, the nanostructure layer 110 of FIG. 1A can reflect the light beam incident on the nanostructure layer 110 at an angle less than a cut-off angle. An exemplary visual representation of this phenomenon is shown by light beams 122 and 123 in FIG. 1C. The light beams 122 and 123 may traverse the substrate 120 and be incident on the nanostructure layer 121. The nanostructure layer 121 can be configured so that light beams incident at an angle lower than a given cutoff angle are reflected back and light beams higher than the cutoff angle are transmitted through the nanostructure layer (for example, into a wavelength conversion layer) . Beam 122 may be lower than a cut-off angles (i.e., closer to normal) angle of incidence Θ 3 is an incident angle such that a nanostructure layer reflected beam 122, such as a display. Beam 123 may be higher than the cutoff angle (i.e., further away from the normal) one angle of incidence Θ 4 is incident on the nanostructure layer 121 and layer 121 may traverse nano structures, such as impressions. According to the disclosed subject matter, the light beam 123 can undergo light turning within the nanostructure layer 121. As disclosed herein, the light beam reflected back into the substrate 120 can experience one or more bounces within the substrate and/or on a back reflector, so that it can be reflected into the substrate 120 by the nanostructure layer 121 After that, it is incident on the nanostructure layer 121 for the second time. A light beam reflected by the nanostructure layer 121 into the substrate at a first time may experience one or more bounces within the substrate (for example, at the sidewall material, the back reflector, etc.) and may be returned after the first time It is incident on the nanostructure layer 121 for a second time. The incident angle of the light beam at the second time can be higher than the cut-off angle, and therefore, the light beam can pass through the nanostructure layer 121.

圖1D展示來自如針對圖1C描述之與奈米結構層121之例示性光束相互作用之一奈米結構層之φ平均透射127相對於角圖。如展示,奈米結構層121之組態在近似45度之截止角之後實現一或接近一透射且在截止角之前不允許透射(例如,反射光束)。FIG. 1D shows a graph of φ average transmission 127 versus angle from a nanostructure layer that interacts with the exemplary light beam of nanostructure layer 121 as described for FIG. 1C. As shown, the configuration of the nanostructure layer 121 achieves a transmission or close to a transmission after a cut-off angle of approximately 45 degrees and does not allow transmission (for example, reflected beams) before the cut-off angle.

圖1E展示穿過圖1A之基板120及奈米結構層110之一光束透射之一例示性製程1400 (注意,此製程亦可應用於圖1C及圖1D之奈米結構層121)。在步驟1410,一第一光束可在橫穿基板120之後入射於奈米結構層110上。第一光束可按低於奈米結構層110之截止角之一角度入射。在步驟1420,第一光束可基於與奈米結構層110之相互作用按低於截止角之一角度反射回至基板120中。在步驟1430,一第二光束可透過基板120入射於奈米結構層110上。第二光束可按高於奈米結構層110之截止角之一角度入射。在步驟1440,第二光束可基於其與奈米結構層110之相互作用按高於截止角之一角度透過奈米結構層110發射。根據一實施例,如本文中論述,第一光束可從基板、側壁材料及/或背反射器之一或多個內部表面彈回且接著可按高於截止角之一角度入射於奈米結構層110上。接著,可基於高於截止角之入射角透過奈米結構層110發射第一光束。FIG. 1E shows an exemplary process 1400 of beam transmission through the substrate 120 and the nanostructure layer 110 of FIG. 1A (note that this process can also be applied to the nanostructure layer 121 of FIG. 1C and FIG. 1D). In step 1410, a first beam may be incident on the nanostructure layer 110 after traversing the substrate 120. The first light beam can be incident at an angle lower than the cut-off angle of the nanostructure layer 110. In step 1420, the first light beam may be reflected back into the substrate 120 at an angle lower than the cut-off angle based on the interaction with the nanostructure layer 110. In step 1430, a second light beam can be incident on the nanostructure layer 110 through the substrate 120. The second light beam can be incident at an angle higher than the cut-off angle of the nanostructure layer 110. In step 1440, the second light beam may be emitted through the nanostructure layer 110 at an angle higher than the cut-off angle based on its interaction with the nanostructure layer 110. According to an embodiment, as discussed herein, the first light beam may bounce off one or more internal surfaces of the substrate, sidewall material, and/or back reflector and then may be incident on the nanostructure at an angle higher than the cut-off angle On layer 110. Then, the first light beam can be emitted through the nanostructure layer 110 based on the incident angle higher than the cut-off angle.

本文中將進一步論述奈米結構層組態。This article will further discuss nanostructure layer configuration.

圖1F至圖1H展示根據本文中之標的之奈米結構層110C、110D及110E之不同組態。圖1F展示一基板131、一黏著劑層136、及一波長轉換層132。一奈米結構層110C經安置於波長轉換層132內波長轉換層132之一第一表面與一第二表面之間,使得第一表面及第二表面相對於基板131為平坦的。圖1G展示一基板131、一黏著劑層136、及一波長轉換層132。一奈米結構層110D經安置於波長轉換層132之一表面上,該表面接近基板131。圖1G展示一基板131、一黏著劑層136、及一波長轉換層132。一奈米結構層110E經安置於基板131與波長轉換層132之間使得其經安置於黏著劑層136內。Figures 1F to 1H show different configurations of the nanostructure layers 110C, 110D, and 110E according to the subject matter herein. 1F shows a substrate 131, an adhesive layer 136, and a wavelength conversion layer 132. A nanostructure layer 110C is disposed between a first surface and a second surface of the wavelength conversion layer 132 in the wavelength conversion layer 132 so that the first surface and the second surface are flat relative to the substrate 131. FIG. 1G shows a substrate 131, an adhesive layer 136, and a wavelength conversion layer 132. A nanostructure layer 110D is disposed on a surface of the wavelength conversion layer 132 which is close to the substrate 131. FIG. 1G shows a substrate 131, an adhesive layer 136, and a wavelength conversion layer 132. A nanostructure layer 110E is disposed between the substrate 131 and the wavelength conversion layer 132 so that it is disposed in the adhesive layer 136.

如本文中揭示,光子奈米結構層經結構化使得其在將光之角朝向一選取方向彎曲(例如,至比入射角更大之一角度)之後透射入射於一波長轉換層上之輻射。舉例而言,對於具有陶瓷磷光體之一應用,法向入射於一奈米結構層上之光可相對於法線彎曲至磷光體層內之較大偏轉角。此導致此光之光路徑長度增加,從而導致增加轉換及色彩混合及色彩均勻性之改良。奈米結構層之偏轉角及奈米結構層內之奈米結構之分佈可經選取以最佳化色彩混合及色彩均勻性,如本文中揭示。As disclosed herein, the photonic nanostructure layer is structured so that it transmits radiation incident on a wavelength conversion layer after bending the angle of light toward a selected direction (for example, to an angle larger than the incident angle). For example, for an application with a ceramic phosphor, light normally incident on a nanostructure layer can be bent to a larger deflection angle in the phosphor layer with respect to the normal. This leads to an increase in the light path length of this light, which results in increased conversion and improvement in color mixing and color uniformity. The deflection angle of the nanostructure layer and the distribution of the nanostructures within the nanostructure layer can be selected to optimize color mixing and color uniformity, as disclosed in this article.

根據一惠更斯超表面組態之一奈米結構層可包含配置成六邊形或矩形晶格之奈米圓柱體、奈米錐或奈米立方體。晶格週期可為亞波長或大於波長。此等奈米結構可經選取以滿足第一科克條件,使得磁及電偶極輻射沿向後方向抵消,從而產生一大的正向散射。對於包含一垂直二聚體及/或同軸二聚體之奈米天線,可在各自超分子內提供干涉模式,其使用結構參數來提供對散射模式之更佳控制。According to a Huygens metasurface configuration, a nanostructure layer may include nano cylinders, nano cones, or nano cubes arranged in a hexagonal or rectangular lattice. The lattice period can be sub-wavelength or greater than the wavelength. These nanostructures can be selected to satisfy the first Kok condition, so that the magnetic and electric dipole radiation is cancelled in the backward direction, resulting in a large forward scattering. For nano antennas containing a vertical dimer and/or coaxial dimer, interference modes can be provided in the respective supramolecules, which use structural parameters to provide better control over the scattering modes.

圖1I繪示一些不同可能奈米天線之各個橫截面。奈米天線可由具有配置成六邊形或矩形晶格之垂直或同軸二聚體之奈米圓柱體191、奈米錐192、或奈米錐193及195形成。晶格週期可為亞波長或大於波長。奈米天線可為惠更斯超分子及/或支持波導模式。各光子晶體或超表面可呈現一定量之光束彎曲性質,使得入射光束可經塑形為所需角分佈。Figure 1I shows various cross-sections of some different possible nano antennas. The nano antenna can be formed by nano cylinders 191, nano cones 192, or nano cones 193 and 195 with vertical or coaxial dimers arranged in a hexagonal or rectangular lattice. The lattice period can be sub-wavelength or greater than the wavelength. Nano antennas can be Huygens supramolecular and/or support waveguide mode. Each photonic crystal or metasurface can exhibit a certain amount of beam bending properties, so that the incident beam can be shaped into a desired angular distribution.

作為一替代組態實例,圖1K展示由非對稱散射器167及172形成之亞波長光柵。非對稱散射器168包含一基板162上之具有一高度H之兩個奈米圓柱體164及166。如展示,散射器168係非對稱的使得奈米圓柱體165及166並非相同大小/形狀。散射器168陣列可產生一奈米散射層,使得陣列包含散射器168之多個複本。散射器172係一L形散射器,其中散射器172之一側大於散射器172之另一側。散射器168陣列可產生一奈米散射層,使得陣列包含散射器168及/或172之多個複本。此等亞波長散射器可將按法向入射入射之光散射至大的傾斜角。非對稱奈米結構(例如,168、172)可經選取為排列成一二維光柵。此等奈米結構之設計及放置可旨在達成最佳可能色彩混合及色彩均勻性。As an example of an alternative configuration, FIG. 1K shows a sub-wavelength grating formed by asymmetric diffusers 167 and 172. The asymmetric diffuser 168 includes two nano-cylinders 164 and 166 with a height H on a substrate 162. As shown, the diffuser 168 is asymmetric so that the nano-cylinders 165 and 166 are not the same size/shape. The array of diffusers 168 can generate a nano-scattering layer so that the array contains multiple copies of diffusers 168. The diffuser 172 is an L-shaped diffuser, wherein one side of the diffuser 172 is larger than the other side of the diffuser 172. The array of diffusers 168 can generate a nano-scattering layer such that the array includes multiple copies of diffusers 168 and/or 172. These sub-wavelength diffusers can scatter the normal incident light to a large tilt angle. Asymmetric nanostructures (e.g., 168, 172) can be selected to be arranged in a two-dimensional grating. The design and placement of these nanostructures can be aimed at achieving the best possible color mixing and color uniformity.

此外,可以建立一給定截止角之一配置組態奈米天線,使得在截止角以上入射之光穿過奈米天線及因此奈米結構層,且在截止角以下入射之光未穿過或反射回。In addition, it is possible to set up a configuration of the nano antenna at a given cut-off angle, so that the light incident above the cut-off angle passes through the nano-antenna and therefore the nanostructure layer, and the light incident below the cut-off angle does not pass through or Reflected back.

奈米天線可形成或排列為單奈米光子結構,使得相同奈米天線重複多次以形成一奈米結構層。替代地或另外,奈米天線可形成或排列為多奈米結構材料,使得一奈米天線陣列重複多次以形成一奈米結構層。圖1J繪示一例示性多奈米結構材料1300。如展示,多奈米結構材料1300包含奈米圓柱體1301及1302,使得不同奈米圓柱體1301及1302在相互比較時具有一或多個不同性質。作為一視覺實例,如圖1J中展示,奈米圓柱體1301之體積小於奈米圓柱體1302。此等多奈米結構可經排列使得一奈米結構層110包含多奈米結構材料1300之多個反覆。一奈米結構層110之各小多奈米結構材料1300可向入射於奈米結構層110上之光提供光束彎曲。藉由將具有不同光束彎曲性質之大量不同奈米圓柱體1301適當地放置於奈米結構層110內之一多奈米結構材料1300內,入射於奈米結構層110上之光可經塑形以呈現一定量之光束彎曲性質或獲取一預定或較佳角分佈。可由一優化器選擇圖1A之奈米結構層110內之設計及放置以從圖1A之LED裝置100獲取最佳可能通量。Nano antennas can be formed or arranged as a single nanophotonic structure, so that the same nano antenna is repeated multiple times to form a nanostructure layer. Alternatively or in addition, the nano antennas may be formed or arranged in a multi-nano structured material such that a nano antenna array is repeated multiple times to form a nano structure layer. FIG. 1J shows an exemplary multi-nano structure material 1300. As shown, the multi-nano structure material 1300 includes nano-cylinders 1301 and 1302, so that different nano-cylinders 1301 and 1302 have one or more different properties when compared with each other. As a visual example, as shown in FIG. 1J, the volume of the nano-cylinder 1301 is smaller than that of the nano-cylinder 1302. These poly-nanometer structures can be arranged such that a nano-structure layer 110 includes multiple iterations of the poly-nanometer structure material 1300. Each small multi-nanostructured material 1300 of a nanostructure layer 110 can provide beam bending to the light incident on the nanostructure layer 110. By appropriately placing a large number of different nano-cylinders 1301 with different beam bending properties in a multi-nano-structured material 1300 in the nano-structure layer 110, the light incident on the nano-structure layer 110 can be shaped To show a certain amount of beam bending properties or obtain a predetermined or better angular distribution. An optimizer can select the design and placement in the nanostructure layer 110 of FIG. 1A to obtain the best possible flux from the LED device 100 of FIG. 1A.

可由所需光束彎曲或角分佈指示光子晶體及/或超表面之設計且可基於一優化器判定光子晶體及/或超表面之放置以獲取最佳可能色彩混合及色彩均勻性。The design of the photonic crystal and/or metasurface can be indicated by the required beam bending or angular distribution, and the placement of the photonic crystal and/or metasurface can be determined based on an optimizer to obtain the best possible color mixing and color uniformity.

再次參考圖1A,側反射器140、背反射器125、或側反射器140及背反射器125可為經設計以進一步增強按所要增大(例如,傾斜)角透過奈米結構層110輸出至波長轉換層102中之定向光的非鏡面反射奈米結構層。1A again, the side reflector 140, the back reflector 125, or the side reflector 140 and the back reflector 125 may be designed to further enhance the output to the nanostructure layer 110 through the nanostructure layer 110 at a desired increase (eg, tilt) angle The non-specular reflection nanostructure layer of the directional light in the wavelength conversion layer 102.

舉例而言,側反射器140及/或背反射器125可為奈米結構層,該等奈米結構層經設計使得與一鏡面反射器相比,其等增加在一所要(例如,大的)入射角範圍中直接反射至奈米結構層110或在所要入射角範圍中間接反射至奈米結構層110 (經由一或多個額外反射)之入射於其等上之光射線之分率。奈米結構層110上之所要入射角範圍可為舉例而言大於如上文描述之一截止角之入射角。此等奈米結構側反射器及背反射器可視情況彼此組合使用。For example, the side reflector 140 and/or the back reflector 125 may be nanostructured layers that are designed so that compared with a specular reflector, they increase by a desired amount (for example, large ) The fraction of light rays incident on the nanostructure layer 110 directly reflected to the nanostructure layer 110 in the incident angle range or indirectly reflected to the nanostructure layer 110 (via one or more additional reflections) in the desired incident angle range. The desired incident angle range on the nanostructure layer 110 may be, for example, an incident angle greater than a cut-off angle as described above. These nano-structure side reflectors and back reflectors can be combined with each other depending on the situation.

如剛剛描述之側反射器140及背反射器125可採取經設計以使角輻射轉向之一奈米結構光子層之形式。僅藉由非限制實例,此一奈米結構側或背反射器可包含非對稱散射元件(本文中亦稱為奈米天線)之一光子晶體、超材料、超表面或亞波長光柵或由其等組成。此一奈米結構側或背反射器之主要功能係將入射於其上之輻射從一給定角範圍反射至一選取角範圍。此受限角範圍可經選取以按所要入射角將儘可能多的光從LED之後表面或側引導朝向奈米結構層110。The side reflector 140 and the back reflector 125 as just described can take the form of a nano-structured photonic layer designed to divert angular radiation. By way of non-limiting example only, this nano-structure side or back reflector may include asymmetric scattering elements (also referred to herein as nano-antennas), a photonic crystal, a metamaterial, a metasurface, or a subwavelength grating, or a combination thereof And other composition. The main function of this nanostructure side or back reflector is to reflect the radiation incident on it from a given angular range to a selected angular range. This limited angle range can be selected to direct as much light as possible from the rear surface or side of the LED toward the nanostructure layer 110 according to the desired incident angle.

此一奈米結構背或側反射器可包括形成為或排列為單元胞的散射元件。各單元胞可向入射於側反射器上之光提供光束彎曲。藉由適當地配置具有不同光束彎曲性質之大量不同單元胞,光可經塑形為所需角分佈。Such a nanostructured back or side reflector may include scattering elements formed or arranged as unit cells. Each unit cell can provide beam bending to the light incident on the side reflector. By appropriately arranging a large number of different unit cells with different beam bending properties, the light can be shaped into a desired angular distribution.

在此一奈米結構側或背反射器中,反射光束彎曲器(單元胞)可舉例而言配置成一週期性二維圖案或光柵,且可由囊封或以其他方式含有一或多個散射元件之背景材料形成且定位成鄰近基板120。複數個散射元件可被背景材料包圍。一鏡面反射器可鄰近基板120遠端之背景材料。可舉例而言藉由使用經設計以將來自鏡面反射器之反射場連結至來自散射元件之散射場之非對稱散射元件而達成非對稱散射。此等場之間之干涉導致光沿一特定方向散射。散射元件之配置可產生相位之一空間梯度。In this nanostructure side or back reflector, the reflected beam bender (unit cell) can be configured as a periodic two-dimensional pattern or grating, for example, and can be encapsulated or otherwise contain one or more scattering elements The background material is formed and positioned adjacent to the substrate 120. A plurality of scattering elements can be surrounded by background material. A specular reflector can be adjacent to the background material at the distal end of the substrate 120. Asymmetric scattering can be achieved, for example, by using an asymmetric scattering element designed to connect the reflected field from the specular reflector to the scattering field from the scattering element. The interference between these fields causes light to scatter in a specific direction. The disposition of the scattering element can produce a spatial gradient of phase.

一奈米結構側反射器中之光束彎曲器之一週期性陣列之一單元胞在尺寸上可為矩形且包含一系列層,包含一鏡面反射器、一或多個散射元件及如上文描述之背景材料。週期性可以一使用中波長為中心,諸如(舉例而言)由LED發射之峰值波長(例如,450 nm)。在單元胞中,一或多個散射元件可經定位成鄰近鏡面反射器遠端之基板層120及/或一或多個散射元件可與鏡面反射器接觸或接近接觸。A unit cell of a periodic array of beam benders in a nanostructure side reflector can be rectangular in size and include a series of layers, including a specular reflector, one or more scattering elements, and as described above Background material. The periodicity can be centered on a mid-wavelength used, such as, for example, the peak wavelength emitted by the LED (e.g., 450 nm). In the unit cell, one or more scattering elements may be positioned adjacent to the substrate layer 120 at the distal end of the specular reflector and/or one or more scattering elements may be in contact or close contact with the specular reflector.

散射元件可具有任何適合高度及寬度且可舉例而言由矽(Si)或氧化鈦(TiO2 )或其等之一組合形成。背景材料可為一低折射率材料,諸如(舉例而言)氟化鎂(MgF2 )。舉例而言,鏡面反射器(若存在)可為一金屬鏡(舉例而言,一金或銀鏡)、一介電鏡或一布拉格反射器。The scattering element can have any suitable height and width and can be formed of silicon (Si) or titanium oxide (TiO 2 ) or a combination thereof, for example. The background material may be a low refractive index material, such as, for example, magnesium fluoride (MgF 2 ). For example, the specular reflector (if present) can be a metal mirror (for example, a gold or silver mirror), a dielectric mirror, or a Bragg reflector.

散射元件可採取本文中描述之散射元件之任一者之形式。舉例而言,一散射元件可包括一單一光散射器(一單一偶極)、或可類似於一八木天線組態之一光散射器(偶極)陣列。The scattering element can take the form of any of the scattering elements described herein. For example, a scattering element may include a single light diffuser (a single dipole), or an array of light diffusers (dipole) may be configured similar to a Yagi antenna.

一散射元件可經設計為兩個干涉惠更斯超原子。散射元件可經選擇以滿足第一科克條件,使得磁及電偶極輻射沿向後方向抵消,從而產生一大的正向散射,此稱為惠更斯超原子。一散射元件可形成為一二維散射器(諸如(舉例而言)一光柵)或一三維散射。一例示性三維散射可為一奈米圓柱體。亦可採用其他幾何散射器,包含舉例而言L形散射器。A scattering element can be designed as two interfering Huygens superatoms. The scattering element can be selected to meet the first Kirk condition, so that the magnetic and electric dipole radiation cancels out in the backward direction, resulting in a large forward scattering, which is called a Huygens superatom. A scattering element can be formed as a two-dimensional diffuser (such as, for example, a grating) or a three-dimensional scattering. An exemplary three-dimensional scattering can be a nano-cylinder. Other geometric diffusers can also be used, including, for example, L-shaped diffusers.

散射元件可舉例而言由舉例而言配置成一六邊形或一矩形晶格之奈米圓柱體、奈米錐或奈米立方體形成。晶格週期可為亞波長或大於波長。在一奈米圓柱體垂直二聚體及同軸二聚體之情況中,超原子或奈米天線內之干涉模式使用結構參數來提供對散射模式之額外控制。The scattering element can be formed by, for example, a nano cylinder, a nano cone, or a nano cube arranged in a hexagon or a rectangular lattice. The lattice period can be sub-wavelength or greater than the wavelength. In the case of a nanocylinder vertical dimer and coaxial dimer, the interference mode in the superatom or nano antenna uses structural parameters to provide additional control over the scattering mode.

散射元件亦可由光子超材料(PM) (亦稱為一光學超材料,其係與光相互作用、覆蓋太赫茲(THz)、紅外(IR)或可見波長之一類型之電磁超材料)形成。材料採用一週期性蜂巢式結構。亞波長週期性區分光子超材料與光子帶隙或光子晶體結構。胞在大於原子而遠小於輻射波長之量值之尺度上,且為奈米數量級。在超材料中,胞在大於胞之尺度上均勻之一材料中發揮原子之作用,從而產生一有效介質模型。The scattering element can also be formed of a photonic metamaterial (PM) (also called an optical metamaterial, which is an electromagnetic metamaterial that interacts with light and covers one of terahertz (THz), infrared (IR) or visible wavelengths). The material adopts a periodic honeycomb structure. Subwavelength periodicity distinguishes photonic metamaterials from photonic band gaps or photonic crystal structures. Cells are on a scale larger than atoms and far smaller than the wavelength of radiation, and are on the order of nanometers. In metamaterials, cells play the role of atoms in a material that is uniform on a scale larger than the cell, thereby creating an effective medium model.

圖2A係一例示性實施例中之一LED裝置200之一圖式。LED裝置200可包含一或多個磊晶層202、一作用層204、及一基板206。在其他實施例中,一LED裝置可包含一波長轉換器層及/或初級光學器件。如圖2A中展示,作用層204可鄰近基板206且在激發時發射光。磊晶層202可接近作用層204及/或一或多個中間層可介於作用層204與磊晶層202之間。基板206可接近作用層204及/或一或多個中間層可介於作用層204與基板206之間。作用層204將光發射至基板206中。一奈米結構層可放置於基板206上,使得入射於奈米結構層上之光藉由奈米結構層彎曲或藉由奈米結構層濾波,使得僅相對於法線高於一截止角之光束透過奈米結構層發射。FIG. 2A is a diagram of an LED device 200 in an exemplary embodiment. The LED device 200 may include one or more epitaxial layers 202, an active layer 204, and a substrate 206. In other embodiments, an LED device may include a wavelength converter layer and/or primary optics. As shown in FIG. 2A, the active layer 204 may be adjacent to the substrate 206 and emit light when excited. The epitaxial layer 202 may be close to the active layer 204 and/or one or more intermediate layers may be between the active layer 204 and the epitaxial layer 202. The substrate 206 may be close to the active layer 204 and/or one or more intermediate layers may be between the active layer 204 and the substrate 206. The active layer 204 emits light into the substrate 206. A nanostructure layer can be placed on the substrate 206, so that the light incident on the nanostructure layer is bent by the nanostructure layer or filtered by the nanostructure layer, so that only the light beam with a cut-off angle higher than the normal is transmitted through Launch of nanostructure layer.

圖2B展示包含具有像素201A、201B及201C之一LED陣列210之一照明系統220之一橫截面視圖。LED陣列210包含像素201A、201B及201C,其等各包含一各自基板206B、作用層204B及一磊晶層202B。LED陣列210中之像素201A、201B及201C可使用陣列分段或替代地使用取置技術來形成且可舉例而言發射諸如紅色、綠色及藍色之不同峰值波長之光。一或多個像素201A、201B及201C之間展示之空間203可包含一氣隙或可由諸如可為一接觸件(例如,n接觸件)之一金屬材料的一材料填充。根據一些實施例,可提供諸如一或多個透鏡及/或一或多個波導之次级光學器件。Figure 2B shows a cross-sectional view of an illumination system 220 including an LED array 210 having pixels 201A, 201B, and 201C. The LED array 210 includes pixels 201A, 201B, and 201C, each of which includes a respective substrate 206B, an active layer 204B, and an epitaxial layer 202B. The pixels 201A, 201B, and 201C in the LED array 210 can be formed using array segmentation or alternatively using pick-and-place technology and can emit light of different peak wavelengths such as red, green, and blue, for example. The space 203 displayed between the one or more pixels 201A, 201B, and 201C may include an air gap or may be filled with a material such as a metal material that may be a contact (eg, n-contact). According to some embodiments, secondary optics such as one or more lenses and/or one or more waveguides may be provided.

LED裝置200或像素201A、201B及201C可為單波長發射器且可個別地或經由一陣列供電。LED裝置200或像素201A、201B及201C可為包含一或多個電子板、電力模組、感測器、連接能力及控制模組、LED附接區或類似者之一照明系統之部分。一陣列中之像素可基於不同通道信號供電且其等操作可由一微控制器進行判定。The LED device 200 or the pixels 201A, 201B, and 201C can be single-wavelength emitters and can be powered individually or via an array. The LED device 200 or the pixels 201A, 201B, and 201C may be part of a lighting system that includes one or more electronic boards, power modules, sensors, connectivity and control modules, LED attachment areas, or the like. Pixels in an array can be powered based on signals from different channels and their operations can be determined by a microcontroller.

圖3展示包含一應用平台560及LED系統552及556的一例示性系統550。LED系統552產生箭頭561a與561b之間展示之光束561。LED系統556可在箭頭562a與562b之間產生光束562。作為一例示性實施例,LED系統552及556可為一汽車之部分且可發射紅外(IR)光通信光束使得光束561及/或562之路徑中之一迎面駛來車輛能夠接收來自汽車之通信。在例示性實施例中,系統550可為一相機閃光燈系統之一行動電話、室內住宅或商業照明、室外燈(諸如街道照明)、一汽車、一醫療裝置、AR/VR裝置、及機器人裝置。FIG. 3 shows an exemplary system 550 including an application platform 560 and LED systems 552 and 556. The LED system 552 generates a light beam 561 shown between arrows 561a and 561b. The LED system 556 can generate a light beam 562 between the arrows 562a and 562b. As an exemplary embodiment, the LED systems 552 and 556 can be part of a car and can emit infrared (IR) optical communication beams so that one of the paths of the beams 561 and/or 562 can receive communications from the car. . In an exemplary embodiment, the system 550 may be a camera flash system, a mobile phone, indoor residential or commercial lighting, outdoor lights (such as street lighting), an automobile, a medical device, an AR/VR device, and a robotic device.

應用平台560可經由線565或其他適用輸入經由一電源匯流排將電力提供至LED系統552及/或556,如本文中論述。此外,應用平台560可經由線565提供輸入信號用於LED系統552及LED系統556之操作,該輸入可基於一使用者輸入/偏好、一經感測讀取、一預程式化或自主判定輸出或類似者。一或多個感測器可在應用平台560之外殼之內部或外部。The application platform 560 can provide power to the LED system 552 and/or 556 via a power bus via line 565 or other suitable input, as discussed herein. In addition, the application platform 560 can provide input signals for the operation of the LED system 552 and the LED system 556 via the line 565. The input can be based on a user input/preference, a sensed reading, a preprogrammed or autonomously determined output or Similar. One or more sensors may be inside or outside the housing of the application platform 560.

在各項實施例中,應用平台560感測器及/或LED系統552及/或556感測器可收集資料,諸如視覺資料(例如,LIDAR資料、IR資料、經由一相機收集之資料等)、音頻資料、基於距離之資料、移動資料、環境資料、或類似者或其等之一組合。可基於藉由舉例而言LED系統552及/或556發射一光學信號(諸如一IR信號)且基於發射之光學信號收集資料而收集資料。可藉由與發射用於資料收集之光學信號之組件不同的一組件收集資料。繼續實例,感測設備可定位於一汽車上且可使用一垂直腔表面發射雷射(VCSEL)來發射一光束。一或多個感測器可感測對於發射光束或任何其他適用輸入之一回應。In various embodiments, the application platform 560 sensor and/or the LED system 552 and/or 556 sensor can collect data, such as visual data (eg, LIDAR data, IR data, data collected through a camera, etc.) , Audio data, distance-based data, mobile data, environmental data, or the like or a combination thereof. Data can be collected based on, for example, the LED systems 552 and/or 556 emitting an optical signal (such as an IR signal) and collecting data based on the emitted optical signal. Data can be collected by a component that is different from the component that emits optical signals for data collection. To continue the example, the sensing device can be positioned on a car and can use a vertical cavity surface emitting laser (VCSEL) to emit a beam. One or more sensors can sense a response to one of the emitted light beam or any other applicable input.

儘管上文以特定組合描述特徵及元件,然一般技術者將明白,各特徵或元件可單獨或以與或不與其他特徵及元件之任何組合使用。另外,可在併入一電腦可讀媒體中之一電腦程式、軟體或韌體中實施本文中描述之方法以由一電腦或處理器執行。電腦可讀媒體之實例包含電子信號(經由有線或無線連接傳輸)及電腦可讀儲存媒體。電腦可讀儲存媒體之實例包含但不限於一唯讀記憶體(ROM)、一隨機存取記憶體(RAM)、一暫存器、快取記憶體、半導體記憶體裝置、磁性媒體(諸如內置硬碟及可抽換式磁碟)、磁光媒體、及光學媒體(諸如CD-ROM光碟及數位多功能光碟(DVD))。Although the features and elements are described above in specific combinations, those skilled in the art will appreciate that each feature or element can be used alone or in any combination with or without other features and elements. In addition, the methods described herein can be implemented in a computer program, software, or firmware incorporated in a computer-readable medium to be executed by a computer or processor. Examples of computer-readable media include electronic signals (transmitted via wired or wireless connections) and computer-readable storage media. Examples of computer-readable storage media include, but are not limited to, a read-only memory (ROM), a random access memory (RAM), a register, a cache memory, a semiconductor memory device, magnetic media (such as built-in Hard disks and removable disks), magneto-optical media, and optical media (such as CD-ROM discs and digital versatile discs (DVD)).

100:發光二極體(LED)裝置 102:波長轉換層 102A:波長轉換層 102B:波長轉換層 110:奈米結構層 110B:奈米結構層 110C:奈米結構層 110D:奈米結構層 110E:奈米結構層 111A:發光二極體(LED)裝置 111B:發光二極體(LED)裝置 112A:光束 112B:光束 113A:光束 113B:光束 120:基板 120A:基板 120B:基板 121:奈米結構層 122:光束 123:光束 125:背反射器 127:φ平均透射 130:磊晶生長半導體層 131:基板 132:波長轉換層 133:間隙 134:p型層 135:作用層 136:黏著劑層 137:第一接觸件 138:第二接觸件 139:n型層 140:側壁材料 162:基板 164:奈米圓柱體 166:奈米圓柱體 168:非對稱散射器 172:非對稱散射器 191:奈米圓柱體 192:奈米錐 193:奈米錐 195:奈米錐 200:發光二極體(LED)裝置 201A:像素 201B:像素 201C:像素 202:磊晶層 202B:磊晶層 203:空間 204:作用層 204B:作用層 206:基板 206B:基板 210:發光二極體(LED)陣列 220:照明系統 550:系統 552:發光二極體(LED)系統 556:發光二極體(LED)系統 560:應用平台 561:光束 561a:箭頭 561b:箭頭 562:光束 562a:箭頭 562b:箭頭 565:線 1301:奈米圓柱體 1302:奈米圓柱體 1400:製程 1410:步驟 1420:步驟 1430:步驟 1440:步驟100: Light-emitting diode (LED) device 102: Wavelength conversion layer 102A: Wavelength conversion layer 102B: Wavelength conversion layer 110: Nano structure layer 110B: Nano structure layer 110C: Nano structure layer 110D: Nano structure layer 110E: Nano structure layer 111A: Light Emitting Diode (LED) device 111B: Light Emitting Diode (LED) device 112A: beam 112B: beam 113A: beam 113B: beam 120: substrate 120A: substrate 120B: substrate 121: Nano structure layer 122: beam 123: beam 125: back reflector 127: φ average transmission 130: epitaxial growth of semiconductor layer 131: Substrate 132: Wavelength conversion layer 133: Gap 134: p-type layer 135: Action layer 136: Adhesive layer 137: first contact 138: second contact 139: n-type layer 140: sidewall material 162: Substrate 164: Nano cylinder 166: Nano Cylinder 168: Asymmetric diffuser 172: Asymmetric diffuser 191: Nano cylinder 192: Nano cone 193: Nano cone 195: Nano cone 200: Light-emitting diode (LED) device 201A: pixel 201B: pixel 201C: Pixel 202: epitaxial layer 202B: epitaxial layer 203: Space 204: Action layer 204B: active layer 206: substrate 206B: substrate 210: Light Emitting Diode (LED) Array 220: lighting system 550: System 552: Light Emitting Diode (LED) System 556: Light Emitting Diode (LED) System 560: Application Platform 561: beam 561a: Arrow 561b: Arrow 562: beam 562a: Arrow 562b: Arrow 565: line 1301: Nano cylinder 1302: Nano cylinder 1400: Process 1410: step 1420: step 1430: steps 1440: step

可從藉由實例結合隨附圖式給出之以下描述得到一更詳細理解,其中:A more detailed understanding can be obtained from the following description given by examples in conjunction with the accompanying drawings, in which:

圖1A係具有一奈米結構層之發光裝置之一圖式;Figure 1A is a schematic diagram of a light emitting device with a nanostructure layer;

圖1B係展示具有及不具有一奈米結構層之光發射之一圖式;Figure 1B shows a diagram of light emission with and without a nanostructure layer;

圖1C係展示具有一奈米結構層之光發射之一圖式;Figure 1C shows a diagram of light emission with a nanostructure layer;

圖1D係展示依據角度而變化之透射之一圖表;Figure 1D is a graph showing the transmission that changes according to the angle;

圖1E係具有一奈米結構層之光發射之流程圖;Figure 1E is a flow chart of light emission with a nanostructure layer;

圖1F係具有一奈米結構層之一結構;Figure 1F has a structure of one nanostructure layer;

圖1G係具有一奈米結構層之另一結構;Figure 1G shows another structure with a nanostructure layer;

圖1H係具有一奈米結構層之另一結構;Figure 1H is another structure with a nanostructure layer;

圖1I係不同奈米天線之一圖式;Figure 1I is a schematic diagram of different nano antennas;

圖1J係一多奈米結構材料陣列;Figure 1J is a multi-nano structure material array;

圖1K係不同奈米天線之另一圖式;Figure 1K is another diagram of different nano antennas;

圖2A係展示一發光二極體(LED)裝置之一圖式;Figure 2A shows a diagram of a light emitting diode (LED) device;

圖2B係展示多個LED裝置之一圖式;及Figure 2B shows a diagram of multiple LED devices; and

圖3係一例示性應用系統之一圖式。Figure 3 is a diagram of an exemplary application system.

100:發光二極體(LED)裝置 100: Light-emitting diode (LED) device

102:波長轉換層 102: Wavelength conversion layer

110:奈米結構層 110: Nano structure layer

120:基板 120: substrate

125:背反射器 125: back reflector

130:磊晶生長半導體層 130: epitaxial growth of semiconductor layer

133:間隙 133: Gap

134:p型層 134: p-type layer

135:作用層 135: Action layer

137:第一接觸件 137: first contact

138:第二接觸件 138: second contact

139:n型層 139: n-type layer

140:側壁材料 140: sidewall material

Claims (36)

一種發光裝置,其包括: 一半導體二極體結構; 一基板,其對由該半導體二極體結構發射之光透明且包括一頂部表面、一相對定位底部表面、及連接該頂部表面及該底部表面之側表面,該底部表面安置於該半導體二極體結構上或鄰近該半導體二極體結構; 一波長轉換結構,其包括一頂部表面及安置於該基板之該頂部表面上或鄰近該頂部表面的一相對定位底部表面;及 一奈米結構超表面,其包括複數個奈米天線,該超表面定位於該基板之該頂部表面與該波長轉換結構之該頂部表面之間且經組態以: 按大於其等在該超表面上之入射角之一角度將由該半導體二極體結構發射且從該超表面之該基板側入射於該超表面上之光射線透射至該波長轉換器中;或 反射由該半導體二極體結構發射且按小於或等於一截止角之一角度從該超表面之該基板側入射於該超表面上之光射線,且將由該半導體二極體結構發射且按大於該截止角之一角度從該超表面之該基板側入射於該超表面上之光射線透射至該波長轉換器中;或 反射由該半導體二極體結構發射且按小於或等於一截止角之一角度從該超表面之該基板側入射於該超表面上之光射線,且按大於其等在該超表面上之入射角之一角度將由該半導體二極體結構發射且按大於該截止角之一角度從該超表面之該基板側入射於該超表面上之光射線透射至該波長轉換器中。A light emitting device, which includes: A semiconductor diode structure; A substrate that is transparent to the light emitted by the semiconductor diode structure and includes a top surface, a relatively positioned bottom surface, and a side surface connecting the top surface and the bottom surface, the bottom surface being disposed on the semiconductor diode On or adjacent to the semiconductor diode structure; A wavelength conversion structure including a top surface and a relatively positioned bottom surface disposed on or adjacent to the top surface of the substrate; and A nanostructure metasurface, which includes a plurality of nano antennas, the metasurface is positioned between the top surface of the substrate and the top surface of the wavelength conversion structure and is configured to: Transmitting the light rays emitted by the semiconductor diode structure and incident on the metasurface from the substrate side of the metasurface to the wavelength converter at an angle greater than the angle of incidence on the metasurface; or Reflects the light rays emitted by the semiconductor diode structure and incident on the metasurface from the substrate side of the metasurface at an angle less than or equal to a cutoff angle, and will be emitted by the semiconductor diode structure at an angle greater than One of the cut-off angles is that the light rays incident on the metasurface from the substrate side of the metasurface are transmitted into the wavelength converter; or Reflects the light rays emitted by the semiconductor diode structure and incident on the metasurface from the substrate side of the metasurface at an angle less than or equal to a cutoff angle, and is greater than the incident on the metasurface An angle of the angle transmits the light rays emitted from the semiconductor diode structure and incident on the metasurface from the substrate side of the metasurface at an angle greater than the cut-off angle to the wavelength converter. 如請求項1之發光裝置,其中該超表面經安置於該波長轉換器之該底部表面上或鄰近該底部表面。The light-emitting device of claim 1, wherein the supersurface is disposed on or adjacent to the bottom surface of the wavelength converter. 如請求項1之發光裝置,其中該超表面經安置於該波長轉換器內。The light-emitting device of claim 1, wherein the metasurface is arranged in the wavelength converter. 如請求項1之發光裝置,其中該等奈米天線經配置成一週期性晶格。The light-emitting device of claim 1, wherein the nano-antennas are arranged in a periodic lattice. 如請求項1之發光裝置,其中該等奈米天線各具有小於由該半導體二極體結構發射之光之一波長的一最大尺寸。The light emitting device of claim 1, wherein each of the nano antennas has a maximum size smaller than a wavelength of the light emitted by the semiconductor diode structure. 如請求項1之發光裝置,其中至少一個奈米天線係非對稱的。Such as the light-emitting device of claim 1, wherein at least one nano antenna is asymmetrical. 如請求項1之發光裝置,其中至少一個奈米天線包括兩個或兩個以上光散射物件。Such as the light-emitting device of claim 1, wherein at least one nano antenna includes two or more light scattering objects. 如請求項7之發光裝置,其中該等光散射物件係對稱物件。Such as the light-emitting device of claim 7, wherein the light scattering objects are symmetrical objects. 如請求項8之發光裝置,其中該等光散射物件非對稱地配置。Such as the light emitting device of claim 8, wherein the light scattering objects are arranged asymmetrically. 如請求項1之發光裝置,其中該超表面經組態以按大於其等在該超表面上之入射角之一角度將由該半導體二極體結構發射且從該超表面之該基板側入射於該超表面上之光射線透射至該波長轉換器中。The light-emitting device of claim 1, wherein the metasurface is configured to be emitted from the semiconductor diode structure at an angle greater than its angle of incidence on the metasurface and incident on the substrate side of the metasurface The light rays on the metasurface are transmitted to the wavelength converter. 如請求項10之發光裝置,其中該超表面經安置於該波長轉換器之該底部表面上或鄰近該底部表面。The light-emitting device of claim 10, wherein the metasurface is disposed on or adjacent to the bottom surface of the wavelength converter. 如請求項10之發光裝置,其中該超表面經安置於該波長轉換器內。The light-emitting device of claim 10, wherein the metasurface is arranged in the wavelength converter. 如請求項10之發光裝置,其中該等奈米天線經配置成一週期性晶格。Such as the light-emitting device of claim 10, wherein the nano-antennas are arranged in a periodic lattice. 如請求項10之發光裝置,其中該等奈米天線各具有小於由該半導體二極體結構發射之光之一波長的一最大尺寸。The light emitting device of claim 10, wherein each of the nano-antennas has a maximum size smaller than a wavelength of the light emitted by the semiconductor diode structure. 如請求項10之發光裝置,其中至少一個奈米天線係非對稱的。Such as the light emitting device of claim 10, wherein at least one nano antenna is asymmetrical. 如請求項10之發光裝置,其中至少一個奈米天線包括兩個或兩個以上光散射物件。Such as the light-emitting device of claim 10, wherein at least one nanometer antenna includes two or more light scattering objects. 如請求項16之發光裝置,其中該等光散射物件係對稱物件。Such as the light-emitting device of claim 16, wherein the light scattering objects are symmetrical objects. 如請求項17之發光裝置,其中該等光散射物件非對稱地配置。Such as the light emitting device of claim 17, wherein the light scattering objects are arranged asymmetrically. 如請求項1之發光裝置,其中該超表面經組態以反射由該半導體二極體結構發射且按小於或等於一截止角之一角度從該超表面之該基板側入射於該超表面上的光射線,且將由該半導體二極體結構發射且按大於該截止角之一角度從該超表面之該基板側入射於該超表面上的光射線透射至該波長轉換器中。The light emitting device of claim 1, wherein the metasurface is configured to reflect emission from the semiconductor diode structure and incident on the metasurface from the substrate side of the metasurface at an angle less than or equal to a cut-off angle The light rays emitted by the semiconductor diode structure and incident on the metasurface from the substrate side of the metasurface at an angle greater than the cut-off angle are transmitted to the wavelength converter. 如請求項19之發光裝置,其中該超表面經安置於該波長轉換器之該底部表面上或鄰近該底部表面。The light emitting device of claim 19, wherein the metasurface is disposed on or adjacent to the bottom surface of the wavelength converter. 如請求項19之發光裝置,其中該超表面經安置於該波長轉換器內。The light emitting device of claim 19, wherein the metasurface is arranged in the wavelength converter. 如請求項19之發光裝置,其中該等奈米天線經配置成一週期性晶格。The light-emitting device of claim 19, wherein the nano-antennas are arranged in a periodic lattice. 如請求項19之發光裝置,其中該等奈米天線各具有小於由該半導體二極體結構發射之光之一波長的一最大尺寸。The light emitting device of claim 19, wherein each of the nano antennas has a maximum size smaller than a wavelength of the light emitted by the semiconductor diode structure. 如請求項19之發光裝置,其中至少一個奈米天線係非對稱的。Such as the light-emitting device of claim 19, wherein at least one nano-antenna is asymmetrical. 如請求項19之發光裝置,其中至少一個奈米天線包括兩個或兩個以上光散射物件。Such as the light emitting device of claim 19, wherein at least one nano antenna includes two or more light scattering objects. 如請求項25之發光裝置,其中該等光散射物件係對稱物件。Such as the light-emitting device of claim 25, wherein the light scattering objects are symmetrical objects. 如請求項26之發光裝置,其中該等光散射物件非對稱地配置。Such as the light emitting device of claim 26, wherein the light scattering objects are arranged asymmetrically. 如請求項1之發光裝置,其中該超表面經組態以反射由該半導體二極體結構發射且按小於或等於一截止角之一角度從該超表面之該基板側入射於該超表面上的光射線,且按大於其等在該超表面上之入射角之一角度將由該半導體二極體結構發射且按大於該截止角之一角度從該超表面之該基板側入射於該超表面上的光射線透射至該波長轉換器中。The light emitting device of claim 1, wherein the metasurface is configured to reflect emission from the semiconductor diode structure and incident on the metasurface from the substrate side of the metasurface at an angle less than or equal to a cut-off angle Ray, and will be emitted from the semiconductor diode structure at an angle greater than its incident angle on the metasurface and incident on the metasurface from the substrate side of the metasurface at an angle greater than the cut-off angle The light rays above are transmitted to the wavelength converter. 如請求項28之發光裝置,其中該超表面經安置於該波長轉換器之該底部表面上或鄰近該底部表面。The light emitting device of claim 28, wherein the supersurface is disposed on or adjacent to the bottom surface of the wavelength converter. 如請求項28之發光裝置,其中該超表面經安置於該波長轉換器內。The light emitting device of claim 28, wherein the metasurface is arranged in the wavelength converter. 如請求項28之發光裝置,其中該等奈米天線經配置成一週期性晶格。The light-emitting device of claim 28, wherein the nano-antennas are arranged in a periodic lattice. 如請求項28之發光裝置,其中該等奈米天線各具有小於由該半導體二極體結構發射之光之一波長的一最大尺寸。The light emitting device of claim 28, wherein each of the nano antennas has a maximum size smaller than a wavelength of the light emitted by the semiconductor diode structure. 如請求項28之發光裝置,其中至少一個奈米天線係非對稱的。Such as the light-emitting device of claim 28, wherein at least one nano antenna is asymmetrical. 如請求項28之發光裝置,其中至少一個奈米天線包括兩個或兩個以上光散射物件。Such as the light-emitting device of claim 28, wherein at least one nano antenna includes two or more light scattering objects. 如請求項34之發光裝置,其中該等光散射物件係對稱物件。Such as the light emitting device of claim 34, wherein the light scattering objects are symmetrical objects. 如請求項35之發光裝置,其中該等光散射物件非對稱地配置。Such as the light emitting device of claim 35, wherein the light scattering objects are arranged asymmetrically.
TW108147252A 2018-12-21 2019-12-23 Color uniformity in converted light emitting diode using nanostructures TWI788612B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US16/230,811 US11322669B2 (en) 2018-12-21 2018-12-21 Color uniformity in converted light emitting diode using nano-structures
US16/230,811 2018-12-21
EP19156833 2019-02-13
EP19156833.6 2019-02-13

Publications (2)

Publication Number Publication Date
TW202032822A true TW202032822A (en) 2020-09-01
TWI788612B TWI788612B (en) 2023-01-01

Family

ID=69743609

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108147252A TWI788612B (en) 2018-12-21 2019-12-23 Color uniformity in converted light emitting diode using nanostructures

Country Status (3)

Country Link
EP (1) EP3900057A1 (en)
TW (1) TWI788612B (en)
WO (1) WO2020128629A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10489924B2 (en) * 2016-03-30 2019-11-26 Samsung Electronics Co., Ltd. Structured light generator and object recognition apparatus including the same
CN113130716B (en) * 2021-04-21 2023-02-28 京东方科技集团股份有限公司 Light emitting diode device, preparation method thereof and display device
WO2024037950A1 (en) * 2022-08-16 2024-02-22 Ams-Osram International Gmbh Optoelectronic component

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7521862B2 (en) * 2006-11-20 2009-04-21 Philips Lumileds Lighting Co., Llc Light emitting device including luminescent ceramic and light-scattering material
EP2477240A1 (en) * 2011-01-18 2012-07-18 Koninklijke Philips Electronics N.V. Illumination device
JP6165346B2 (en) * 2014-10-14 2017-07-19 フィリップス ライティング ホールディング ビー ヴィ Side-emitting luminescence structure and lighting device including the luminescence structure
JP6384508B2 (en) * 2016-04-06 2018-09-05 日亜化学工業株式会社 Light emitting device
US10088114B2 (en) * 2016-06-02 2018-10-02 Philips Lighting Holding B.V. Plasmonic white light source based on FRET coupled emitters
US11204452B2 (en) * 2016-10-05 2021-12-21 Agency For Science, Technology And Research Diffractive optical element and method of forming thereof

Also Published As

Publication number Publication date
WO2020128629A1 (en) 2020-06-25
EP3900057A1 (en) 2021-10-27
TWI788612B (en) 2023-01-01

Similar Documents

Publication Publication Date Title
US11870023B2 (en) Color uniformity in converted light emitting diode using nano-structures
KR102411403B1 (en) LED with structured layers and nanophosphors
US11041983B2 (en) High brightness directional direct emitter with photonic filter of angular momentum
US11870012B2 (en) High brightness LEDs with non-specular nanostructured thin film reflectors
TWI788612B (en) Color uniformity in converted light emitting diode using nanostructures
KR102231533B1 (en) Particle system for monolithic LED arrays
US11217731B2 (en) Light extraction through adhesive layer between LED and converter
TWI729650B (en) Improved light extraction through adhesive layer between led and converter
TWI762847B (en) High brightness directional direct emitter with photonic filter of angular momentum