TW202032181A - Light emitting device and liquid crystal display device - Google Patents

Light emitting device and liquid crystal display device Download PDF

Info

Publication number
TW202032181A
TW202032181A TW108105876A TW108105876A TW202032181A TW 202032181 A TW202032181 A TW 202032181A TW 108105876 A TW108105876 A TW 108105876A TW 108105876 A TW108105876 A TW 108105876A TW 202032181 A TW202032181 A TW 202032181A
Authority
TW
Taiwan
Prior art keywords
light
layer
wavelength conversion
reflective
light emitting
Prior art date
Application number
TW108105876A
Other languages
Chinese (zh)
Other versions
TWI671558B (en
Inventor
詹鈞翔
蔡旻錦
范鐸正
江啟聖
李欣浤
蔡庭瑋
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to TW108105876A priority Critical patent/TWI671558B/en
Application granted granted Critical
Publication of TWI671558B publication Critical patent/TWI671558B/en
Priority to CN201910996026.9A priority patent/CN110783433B/en
Publication of TW202032181A publication Critical patent/TW202032181A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/508Wavelength conversion elements having a non-uniform spatial arrangement or non-uniform concentration, e.g. patterned wavelength conversion layer, wavelength conversion layer with a concentration gradient of the wavelength conversion material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Led Device Packages (AREA)
  • Planar Illumination Modules (AREA)

Abstract

A light emitting device includes a light emitting diode. The light emitting diode includes a blue light emitting layer and a first wavelength conversion layer. The first wavelength conversion layer is disposed on a light outgoing surface of the blue light emitting layer. The light emitting device also includes a second wavelength conversion layer and a substrate. The blue light emitting layer is between the first wavelength conversion layer and the second wavelength conversion layer. The substrate includes a light reflection surface and an outermost surface opposite to the light reflection surface. The first wavelength conversion layer is between the blue light emitting layer and the light reflection surface.

Description

發光裝置與液晶顯示器 Light emitting device and liquid crystal display

本揭露是關於一種發光裝置與液晶顯示器。 This disclosure relates to a light emitting device and a liquid crystal display.

液晶顯示器(Liquid Crystal Display,LCD)具有省電、重量輕、低輻射及易攜帶等優點,可廣泛應用於電視、電腦螢幕、筆記型電腦、汽車導航系統、行動通訊裝置等,已逐漸取代傳統的顯示器,成為市面上之主流產品。其中,用以提供光源的關鍵零組件之一即是背光模組(Backlight Module),其目的在於將發光元件所發射之點光源或線光源,進一步形成均勻之面光源,以提供液晶面板使用。 Liquid Crystal Display (LCD) has the advantages of power saving, light weight, low radiation and easy portability. It can be widely used in TVs, computer screens, notebook computers, car navigation systems, mobile communication devices, etc., and has gradually replaced traditional The display has become the mainstream product on the market. Among them, one of the key components used to provide the light source is the Backlight Module, whose purpose is to further form the point light source or the line light source emitted by the light-emitting element into a uniform surface light source to provide the use of a liquid crystal panel.

以發光二極體作為發光元件已廣泛地應用在顯示器與照明方面的領域。然而,就現有以發光二極體作為光源的發光元件的結構而言,較不易使發光二極體發出之光線均勻化。因此,如何提高發光元件之發光效率以及發光區的亮度均勻性,已成為亟待解決的課題。 The use of light-emitting diodes as light-emitting elements has been widely used in the fields of displays and lighting. However, with regard to the structure of the existing light-emitting element using a light-emitting diode as a light source, it is relatively difficult to homogenize the light emitted by the light-emitting diode. Therefore, how to improve the luminous efficiency of the light-emitting element and the brightness uniformity of the light-emitting area has become an urgent issue to be solved.

本揭露之實施例提供一種發光裝置以及一種液晶 顯示器。透過使第一波長轉換層在第一基板的垂直投影面積落在藍光發光層在第一基板的垂直投影面積之內,提升第一波長轉換層的光轉換效率,並且,藉由設置第一波長轉換層與第二波長轉換層於藍光發光層的相異側,可以提升發光裝置的色度均勻度及亮度,發光裝置還包括第一反光結構及第二反光結構,第一反光結構用以使藍光與第一色光朝第一基板左右兩側反射,避免藍光與第一色光反射回發光二極體,第二反光結構用以破壞光線在導光層中的全反射,提高發光裝置之出光效率。 The embodiment of the disclosure provides a light-emitting device and a liquid crystal monitor. By making the vertical projection area of the first wavelength conversion layer on the first substrate fall within the vertical projection area of the blue light-emitting layer on the first substrate, the light conversion efficiency of the first wavelength conversion layer is improved, and by setting the first wavelength The conversion layer and the second wavelength conversion layer are on different sides of the blue light-emitting layer, which can improve the chromaticity uniformity and brightness of the light-emitting device. The light-emitting device further includes a first light-reflecting structure and a second light-reflecting structure. The blue light and the first color light are reflected toward the left and right sides of the first substrate to prevent the blue light and the first color light from being reflected back to the light emitting diode. The second light reflecting structure is used to destroy the total reflection of the light in the light guide layer and improve the performance of the light emitting device. Light efficiency.

於一實施例中,一種發光裝置包括發光二極體,發光二極體包括藍光發光層以及第一波長轉換層,第一波長轉換層設置於藍光發光層之出光面。發光裝置還包括第二波長轉換層以及基板。藍光發光層位於第一波長轉換層與第二波長轉換層之間。基板具有反光面與相對於反光面之外表面,第一波長轉換層位於藍光發光層與反光面之間。 In one embodiment, a light emitting device includes a light emitting diode, the light emitting diode includes a blue light emitting layer and a first wavelength conversion layer, and the first wavelength conversion layer is disposed on a light emitting surface of the blue light emitting layer. The light emitting device further includes a second wavelength conversion layer and a substrate. The blue light emitting layer is located between the first wavelength conversion layer and the second wavelength conversion layer. The substrate has a reflective surface and an outer surface opposite to the reflective surface, and the first wavelength conversion layer is located between the blue light emitting layer and the reflective surface.

於一實施例中,一種液晶顯示器包括複數個如上所述之發光裝置以及液晶顯示面板,液晶顯示面板位於發光裝置上。 In one embodiment, a liquid crystal display includes a plurality of light-emitting devices and a liquid crystal display panel as described above, and the liquid crystal display panel is located on the light-emitting device.

10、10a、10b‧‧‧發光裝置 10, 10a, 10b‧‧‧Lighting device

12‧‧‧液晶顯示器 12‧‧‧LCD display

14‧‧‧光源模組 14‧‧‧Light source module

16‧‧‧液晶顯示面板 16‧‧‧LCD display panel

18‧‧‧導線 18‧‧‧Wire

100‧‧‧發光二極體 100‧‧‧Light Emitting Diode

102‧‧‧藍光發光層 102‧‧‧Blue light emitting layer

102a‧‧‧出光面 102a‧‧‧Glossy surface

104‧‧‧第一波長轉換層 104‧‧‧First wavelength conversion layer

106‧‧‧第二波長轉換層 106‧‧‧Second wavelength conversion layer

108‧‧‧第一基板 108‧‧‧First substrate

108a‧‧‧反光面 108a‧‧‧Reflective surface

108b‧‧‧外表面 108b‧‧‧Outer surface

109‧‧‧反射牆 109‧‧‧Reflective Wall

110‧‧‧第一反光結構 110‧‧‧First reflective structure

111‧‧‧底座 111‧‧‧Base

112‧‧‧第二反光結構 112‧‧‧Second reflective structure

114a‧‧‧第一絕緣凸塊 114a‧‧‧First insulating bump

114b‧‧‧第二絕緣凸塊 114b‧‧‧Second insulating bump

116a‧‧‧第一反射層 116a‧‧‧First reflective layer

116b‧‧‧第二反射層 116b‧‧‧Second reflective layer

118‧‧‧導光層 118‧‧‧Light guide layer

120‧‧‧透光介質層 120‧‧‧Transparent dielectric layer

122‧‧‧第二基板 122‧‧‧Second substrate

124‧‧‧第一半導體層 124‧‧‧First semiconductor layer

126‧‧‧第二半導體層 126‧‧‧Second semiconductor layer

128‧‧‧第一電極 128‧‧‧First electrode

130‧‧‧第二電極 130‧‧‧Second electrode

132‧‧‧第三電極 132‧‧‧Third electrode

134‧‧‧第四電極 134‧‧‧Fourth electrode

136‧‧‧光擴散層 136‧‧‧Light diffusion layer

136a‧‧‧頂面 136a‧‧‧Top surface

136b‧‧‧底面 136b‧‧‧Bottom

B1、B2‧‧‧底面 B1, B2‧‧‧Bottom

BL‧‧‧藍光 BL‧‧‧Blu-ray

D1、D2‧‧‧距離 D1, D2‧‧‧Distance

H1、H2‧‧‧高度 H1, H2‧‧‧Height

L1‧‧‧第一色光 L1‧‧‧First color light

L2‧‧‧第二色光 L2‧‧‧Second color light

S1、S2‧‧‧側面 S1, S2‧‧‧Side

T‧‧‧厚度 T‧‧‧Thickness

WL‧‧‧白光 WL‧‧‧White light

θ 1‧‧‧第一角度 θ 1‧‧‧First angle

θ 2‧‧‧第二角度 θ 2‧‧‧second angle

閱讀以下詳細敘述並搭配對應之圖式,可了解本揭露之多個樣態。需留意的是,圖式中的多個特徵並未依照該業界領域之標準作法繪製實際比例。事實上,所述之特徵的尺寸可以任意的增加或減少以利於討論的清晰性。 Read the following detailed description and match the corresponding drawings to understand many aspects of this disclosure. It should be noted that many of the features in the drawing are not drawn in actual proportions according to the standard practice in the industry. In fact, the size of the feature can be increased or decreased arbitrarily to facilitate the clarity of the discussion.

第1A圖繪示根據本揭露之一實施例之發光裝置的剖面圖;第1B圖繪示第1A圖之出光路徑示意圖;第2圖繪示根據本揭露之另一實施例之發光裝置的剖面圖;第3圖繪示根據本揭露之一實施例之液晶顯示器的剖面圖;以及第4圖繪示根據本揭露之一實施例之光源模組的俯視圖。 Figure 1A shows a cross-sectional view of a light emitting device according to an embodiment of the present disclosure; Figure 1B shows a schematic diagram of a light exit path of Figure 1A; Figure 2 shows a cross section of a light emitting device according to another embodiment of the present disclosure Figures; Figure 3 shows a cross-sectional view of a liquid crystal display according to an embodiment of the present disclosure; and Figure 4 shows a top view of a light source module according to an embodiment of the present disclosure.

以下將以圖式及詳細說明清楚說明本揭露之精神,任何所屬技術領域中具有通常知識者在瞭解本揭露之實施例後,當可由本揭露所教示之技術,加以改變及修飾,其並不脫離本揭露之精神與範圍。舉例而言,敘述「第一特徵形成於第二特徵上方或上」,於實施例中將包含第一特徵及第二特徵具有直接接觸;且也將包含第一特徵和第二特徵為非直接接觸,具有額外的特徵形成於第一特徵和第二特徵之間。此外,本揭露在多個範例中將重複使用元件標號以和/或文字。重複的目的在於簡化與釐清,而其本身並不會決定多個實施例以和/或所討論的配置之間的關係。 The following will clearly illustrate the spirit of the present disclosure with drawings and detailed descriptions. Anyone with ordinary knowledge in the relevant technical field can change and modify the techniques taught in the present disclosure after understanding the embodiments of the present disclosure. Depart from the spirit and scope of this disclosure. For example, the statement that "the first feature is formed on or on the second feature" will include the first feature and the second feature having direct contact; and will also include the first feature and the second feature being indirect The contact has an additional feature formed between the first feature and the second feature. In addition, the present disclosure will reuse component numbers and/or text in multiple examples. The purpose of repetition is to simplify and clarify, and it does not determine the relationship between multiple embodiments and/or the discussed configurations.

此外,方位相對詞彙,如「在...之下」、「下面」、「下」、「上方」或「上」或類似詞彙,在本文中為用來便於描述繪示於圖式中的一個元件或特徵至另外的元件或特徵之關係。方位相對詞彙除了用來描述裝置在圖式中的方位外,其包含裝置於使用或操作下之不同的方位。當裝置被另外設置 (旋轉90度或者其他面向的方位),本文所用的方位相對詞彙同樣可以相應地進行解釋。 In addition, relative terms such as "below", "below", "below", "above" or "up" or similar terms are used in this article to facilitate the description of the words shown in the diagram The relationship of one element or feature to another element or feature. In addition to describing the position of the device in the diagram, the relative position vocabulary includes the different positions of the device under use or operation. When the device is additionally set (Rotate by 90 degrees or other orientations), the relative vocabulary of orientation used in this article can also be explained accordingly.

第1A圖繪示根據本揭露之一實施例之發光裝置10的剖面圖。第1B圖繪示第1A圖之出光路徑示意圖。請一併參照第1A圖及第1B圖。發光裝置10包括發光二極體100,發光二極體100包括藍光發光層102以及第一波長轉換層104。第一波長轉換層104設置於藍光發光層102之出光面102a,藍光發光層102發出藍光BL,第一波長轉換層104用以轉換藍光BL為第一色光L1。發光裝置10還包括第二波長轉換層106、第一基板108以及反射牆109,第一基板108及反射牆109構成底座111,發光二極體100位於第二波長轉換層106與第一基板108之間,藍光發光層102位於第一波長轉換層104與第二波長轉換層106之間。第一基板108具有反光面108a與相對於反光面108a之外表面108b。第一基板108的材質可以是透光材料,舉例而言,第一基板108可為玻璃基板、石英基板、藍寶石基板或其他合適之硬質基板或可撓式基板等,但本揭露並非僅限於此。反射牆109具反射光線之能力,故其材料為反射材料。反射牆109之材質可包含金屬材質或非金屬材質。金屬材質可包含如鈦、金、鋁、銀、鉑、鈀或以上之複合金屬。非金屬材質可選自聚鄰苯二甲醯胺、陶瓷、聚碳酸酯。非金屬材質亦可為摻雜具反射效果之材料之高分子材料,其中該摻雜之材料包含具反射效果之非金屬材料或金屬材料。 FIG. 1A is a cross-sectional view of a light emitting device 10 according to an embodiment of the disclosure. Figure 1B shows a schematic diagram of the light exit path of Figure 1A. Please refer to Figure 1A and Figure 1B together. The light emitting device 10 includes a light emitting diode 100, and the light emitting diode 100 includes a blue light emitting layer 102 and a first wavelength conversion layer 104. The first wavelength conversion layer 104 is disposed on the light emitting surface 102a of the blue light emitting layer 102, the blue light emitting layer 102 emits blue light BL, and the first wavelength conversion layer 104 is used to convert the blue light BL into the first color light L1. The light emitting device 10 further includes a second wavelength conversion layer 106, a first substrate 108, and a reflective wall 109. The first substrate 108 and the reflective wall 109 constitute a base 111, and the light emitting diode 100 is located on the second wavelength conversion layer 106 and the first substrate 108 In between, the blue light emitting layer 102 is located between the first wavelength conversion layer 104 and the second wavelength conversion layer 106. The first substrate 108 has a reflective surface 108a and an outer surface 108b opposite to the reflective surface 108a. The material of the first substrate 108 may be a light-transmitting material. For example, the first substrate 108 may be a glass substrate, a quartz substrate, a sapphire substrate, or other suitable hard substrates or flexible substrates, but the present disclosure is not limited to this. . The reflective wall 109 has the ability to reflect light, so its material is a reflective material. The material of the reflective wall 109 may include metal material or non-metal material. The metal material may include composite metals such as titanium, gold, aluminum, silver, platinum, palladium or more. The non-metallic material may be selected from polyphthalamide, ceramics, and polycarbonate. The non-metallic material can also be a polymer material doped with a reflective material, wherein the doped material includes a reflective non-metallic material or a metallic material.

第一波長轉換層104在第一基板108的垂直投影面積位於藍光發光層102在第一基板108的垂直投影面積之 內,由於藍光發光層102所發出的藍光BL光束近似於圓形,且其光強度近似於朗伯分佈(Lambertian distribution),如此一來,使藍光發光層102所發出的藍光BL容易進入第一波長轉換層104,從而提升第一波長轉換層104的光轉換效率,並可使藍光BL與第一色光L1混光均勻。 The vertical projection area of the first wavelength conversion layer 104 on the first substrate 108 is within the vertical projection area of the blue light emitting layer 102 on the first substrate 108 Inside, because the blue light BL emitted by the blue light emitting layer 102 is approximately circular, and its light intensity is similar to the Lambertian distribution, as a result, the blue light BL emitted by the blue light emitting layer 102 can easily enter the first The wavelength conversion layer 104 improves the light conversion efficiency of the first wavelength conversion layer 104 and can mix the blue light BL and the first color light L1 uniformly.

第二波長轉換層106可以將藍光發光層102所發出的藍光BL轉換成第二色光L2,第一色光L1的波長不同於第二色光L2的波長,於一實施例中,第一色光L1、第二色光L2及藍光BL混光成為白光WL。透過將第一波長轉換層104與第二波長轉換層106設置於相異層,能夠充分的混合第一色光L1、第二色光L2與藍光BL為白光WL,使發光裝置10的色度與亮度均勻化。於一實施例中,第一波長轉換層104包含紅光波長轉換材料,第二波長轉換層106包含綠光波長轉換材料,第一色光L1為紅光,第二色光L2為綠光。由於綠光易被紅光波長轉換材料吸收,藉由設置第二波長轉換層106與第一波長轉換層104於藍光發光層102的相異側,而且,第二波長轉換層106比第一波長轉換層104更遠離第一基板108的反光面108a,且第一波長轉換層104在第一基板108的垂直投影面積小於第二波長轉換層106在第一基板108的垂直投影面積,可以降低綠光被第一波長轉換層104吸收的機率,提升發光裝置10的出光亮度。 The second wavelength conversion layer 106 can convert the blue light BL emitted by the blue light emitting layer 102 into a second color light L2. The wavelength of the first color light L1 is different from the wavelength of the second color light L2. In one embodiment, the first color light The mixed light of L1, the second color light L2 and the blue light BL becomes white light WL. By disposing the first wavelength conversion layer 104 and the second wavelength conversion layer 106 on different layers, the first color light L1, the second color light L2, and the blue light BL can be fully mixed into white light WL, so that the chromaticity of the light emitting device 10 is The brightness is uniform. In an embodiment, the first wavelength conversion layer 104 includes a red light wavelength conversion material, the second wavelength conversion layer 106 includes a green light wavelength conversion material, the first color light L1 is red light, and the second color light L2 is green light. Since the green light is easily absorbed by the red wavelength conversion material, the second wavelength conversion layer 106 and the first wavelength conversion layer 104 are arranged on the different side of the blue light emitting layer 102, and the second wavelength conversion layer 106 is longer than the first wavelength conversion layer. The conversion layer 104 is farther away from the reflective surface 108a of the first substrate 108, and the vertical projection area of the first wavelength conversion layer 104 on the first substrate 108 is smaller than the vertical projection area of the second wavelength conversion layer 106 on the first substrate 108, which can reduce green The probability of light being absorbed by the first wavelength conversion layer 104 improves the brightness of the light-emitting device 10.

並且,第二波長轉換層106與發光二極體100間隔一距離D1,如此一來,可以提供足夠的空間充分混合第一色光L1、第二色光L2以及藍光BL。第一波長轉換層104及第二波 長轉換層106的材料例如是螢光粉、量子點、或光轉換物質。 In addition, the second wavelength conversion layer 106 is separated from the light emitting diode 100 by a distance D1, so that enough space can be provided to fully mix the first color light L1, the second color light L2, and the blue light BL. The first wavelength conversion layer 104 and the second wave The material of the long conversion layer 106 is, for example, phosphor, quantum dot, or light conversion material.

藍光發光層102之出光面102a面對第一基板108之反光面108a,第一波長轉換層104位於藍光發光層102與反光面108a之間。反光面108a具有至少第一反光結構110與複數第二反光結構112,於一實施例中,第一反光結構110具有第一絕緣凸塊114a以及第一反射層116a,第二反光結構112具有第二絕緣凸塊114b以及第二反射層116b,第一反射層116a及第二反射層116b分別位於第一絕緣凸塊114a及第二絕緣凸塊114b上。第一、第二絕緣凸塊114a、114b可包括無機介電材料及樹脂材料,無機介電材料則可選擇氮化硼、氧化鋁、氮化鋁、氧化鈹、硫酸鋇、氧化鎂或氧化鋯。第一、第二反射層116a、116b可為金屬反射層,舉例而言,第一、第二反射層116a、116b的材料包括鋁、銀、其他具高反射率的材料或以上之組合。於一實施例中,底座111呈杯狀,被第一反光結構110及第二反光結構112反射的第一色光L1、第二色光L2以及藍光BL可以被反射牆109反射至外界,藉此提高發光裝置10之發光效率。 The light emitting surface 102a of the blue light emitting layer 102 faces the light reflecting surface 108a of the first substrate 108, and the first wavelength conversion layer 104 is located between the blue light emitting layer 102 and the light reflecting surface 108a. The reflective surface 108a has at least a first reflective structure 110 and a plurality of second reflective structures 112. In one embodiment, the first reflective structure 110 has a first insulating bump 114a and a first reflective layer 116a, and the second reflective structure 112 has a Two insulating bumps 114b and a second reflective layer 116b. The first reflective layer 116a and the second reflective layer 116b are respectively located on the first insulating bump 114a and the second insulating bump 114b. The first and second insulating bumps 114a, 114b can include inorganic dielectric materials and resin materials, and the inorganic dielectric materials can be boron nitride, aluminum oxide, aluminum nitride, beryllium oxide, barium sulfate, magnesium oxide, or zirconium oxide. . The first and second reflective layers 116a, 116b may be metal reflective layers. For example, the materials of the first and second reflective layers 116a, 116b include aluminum, silver, other materials with high reflectivity, or a combination thereof. In one embodiment, the base 111 is cup-shaped, and the first color light L1, the second color light L2, and the blue light BL reflected by the first reflective structure 110 and the second reflective structure 112 can be reflected by the reflective wall 109 to the outside, thereby The luminous efficiency of the light-emitting device 10 is improved.

由於藍光發光層102之出光面102a面對第一基板108的反光面108a,藍光發光層102所發出的藍光BL以及其被第一波長轉換層104轉換的第一色光L1射向第一基板108的反光面108a,具體而言,射向第一反光結構110及第二反光結構112。於一實施例中,第一反光結構110為軸對稱結構,舉例而言,第一反光結構110可呈等腰三角形,且第一反光結構110的絕緣凸塊114在第一基板108的垂直投影部分重疊於發光二極體100在第一基板108的垂直投影,所以第一反光結構110可 將大部分的藍光BL與大部分的第一色光L1朝第一基板108左右側反射,如此一來,可避免藍光BL與第一色光L1射回發光二極體100,使發光二極體100在操作時降低光損耗而提高其光輸出效率,使發光裝置10的亮度提升。發光二極體100與第一反光結構110的頂端的垂直距離D2介於約10微米至約100微米之間,如此一來,第一反光結構110可以使藍光BL與第一色光L1有效朝第一基板108左右側反射。 Since the light emitting surface 102a of the blue light emitting layer 102 faces the reflective surface 108a of the first substrate 108, the blue light BL emitted by the blue light emitting layer 102 and the first color light L1 converted by the first wavelength conversion layer 104 are directed toward the first substrate The reflective surface 108a of 108 is specifically directed toward the first reflective structure 110 and the second reflective structure 112. In one embodiment, the first reflective structure 110 is an axisymmetric structure. For example, the first reflective structure 110 may be an isosceles triangle, and the insulating bump 114 of the first reflective structure 110 is vertically projected on the first substrate 108 Partially overlaps the vertical projection of the light emitting diode 100 on the first substrate 108, so the first reflective structure 110 can Reflect most of the blue light BL and most of the first color light L1 toward the left and right sides of the first substrate 108. In this way, the blue light BL and the first color light L1 can be prevented from being reflected back to the light emitting diode 100 to make the light emitting diode The body 100 reduces light loss during operation and improves its light output efficiency, so that the brightness of the light emitting device 10 is improved. The vertical distance D2 between the light emitting diode 100 and the top of the first reflective structure 110 is between about 10 microns and about 100 microns. As a result, the first reflective structure 110 can make the blue light BL and the first color light L1 effectively face The left and right sides of the first substrate 108 are reflected.

發光裝置10還包括導光層118及透光介質層120,導光層118位於藍光發光層102與第一反光結構110與第二反光結構112之間,導光層118的厚度T大於第一反光結構110的高度(例如第一絕緣凸塊114a的高度H及第一反射層116a的厚度的總和)且大於第二反光結構112的高度(例如第二絕緣凸塊114b的高度H及第二反射層116b的厚度的總和),透光介質層120位於導光層118與第二波長轉換層106之間。透光介質層120的折射率小於導光層118的折射率。於一實施例中,導光層118的折射率介於約1.46至約5之間,透光介質層120的折射率介於約1至約1.3之間。藍光BL及第一色光L1的行進路線先依序進入透光介質層120及導光層118中,接著被第一反光結構110及第二反光結構112反射,導光層118用以將第一反光結構110與第二反光結構112所反射的藍光BL及第一色光L1朝透光介質層120出射,而提升發光裝置10之正面出光效率。第二色光L2的行進路線依序進入透光介質層120及導光層118中,然後被第一反光結構110及第二反光結構112反射,導光層118用以將第一反光結構110與第二反光結構112所反射的第 二色光L2朝透光介質層120出射,而提升發光裝置10之正面出光效率。導光層118的厚度T介於約10微米至約100微米之間,以有效將藍光BL、第一色光L1及第二色光L2反射至透光介質層120。導光層118之材料可為樹脂(resin)材料或矽膠(silicon)材料。於一實施例中,透光介質層120可為空氣,其折射率趨近於1。 The light emitting device 10 further includes a light guide layer 118 and a light transmissive medium layer 120. The light guide layer 118 is located between the blue light emitting layer 102 and the first light reflecting structure 110 and the second light reflecting structure 112. The thickness T of the light guide layer 118 is greater than that of the first light reflecting structure. The height of the reflective structure 110 (such as the sum of the height H of the first insulating bump 114a and the thickness of the first reflective layer 116a) is greater than the height of the second reflective structure 112 (such as the height H of the second insulating bump 114b and the second The total thickness of the reflective layer 116b), the light-transmitting medium layer 120 is located between the light guide layer 118 and the second wavelength conversion layer 106. The refractive index of the light-transmitting medium layer 120 is smaller than the refractive index of the light guide layer 118. In one embodiment, the refractive index of the light guide layer 118 is between about 1.46 and about 5, and the refractive index of the light-transmitting medium layer 120 is between about 1 and about 1.3. The travel route of the blue light BL and the first color light L1 first enter the transparent medium layer 120 and the light guide layer 118 in sequence, and then are reflected by the first light reflecting structure 110 and the second light reflecting structure 112. The light guide layer 118 is used to The blue light BL and the first color light L1 reflected by the light reflecting structure 110 and the second light reflecting structure 112 are emitted toward the light-transmitting medium layer 120 to improve the front light emission efficiency of the light emitting device 10. The travel path of the second color light L2 enters the light-transmitting medium layer 120 and the light guide layer 118 in sequence, and is then reflected by the first light reflecting structure 110 and the second light reflecting structure 112. The light guide layer 118 is used to connect the first light reflecting structure 110 with The second reflective structure 112 reflects the The dichroic light L2 is emitted toward the light-transmitting medium layer 120 to improve the front light emission efficiency of the light-emitting device 10. The thickness T of the light guide layer 118 is between about 10 μm and about 100 μm, so as to effectively reflect the blue light BL, the first color light L1 and the second color light L2 to the transparent medium layer 120. The material of the light guide layer 118 can be resin material or silicon material. In an embodiment, the light-transmitting medium layer 120 may be air, and its refractive index is close to 1.

第一反光結構110的尺寸不同於各第二反光結構112的尺寸。於一實施例中,第一反光結構110在第一基板108的垂直投影面積大於各第二反光結構112在第一基板108的垂直投影面積。於一實施例中,第一絕緣凸塊114a的側面S1與底面B1夾第一角度θ 1,第二絕緣凸塊114b的側面S2與底面B2夾第二角度θ 2,第一角度θ 1及第二角度θ 2大於約30°且小於約60°,且第一角度θ 1小於第二角度θ 2,如此一來,第二反光結構112可以破壞第一色光L1、第二色光L2及藍光BL在導光層118中的全反射,藉此增加第一色光L1、第二色光L2及藍光BL的出光效率。 The size of the first reflective structure 110 is different from the size of each second reflective structure 112. In one embodiment, the vertical projection area of the first reflective structure 110 on the first substrate 108 is larger than the vertical projection area of each second reflective structure 112 on the first substrate 108. In an embodiment, the side surface S1 and the bottom surface B1 of the first insulating bump 114a sandwich a first angle θ1, the side surface S2 and the bottom surface B2 of the second insulating bump 114b sandwich a second angle θ2, and the first angle θ1 and The second angle θ 2 is greater than about 30° and less than about 60°, and the first angle θ 1 is smaller than the second angle θ 2. As a result, the second light reflecting structure 112 can damage the first color light L1, the second color light L2, and The total reflection of the blue light BL in the light guide layer 118 increases the light extraction efficiency of the first color light L1, the second color light L2, and the blue light BL.

發光二極體100還包括第二基板122、第一半導體層124、第二半導體層126、第一電極128以及第二電極130,第一電極128與第二電極130電性相反。藍光發光層102設置於第一半導體層124上,第一波長轉換層104設置於藍光發光層102與第二半導體層126之間。第一電極128設置於第一半導體層124上,第二電極130設置於第二半導體層126上。導光層118之頂面配置有第三電極132與第四電極134,第三電極132與第四電極134電性相反,發光二極體100的第一電極128與導光層 118的第三電極132電性連接,發光二極體100的第二電極130與導光層118的第四電極134電性連接,於一實施例中,可利用銲錫使第一電極128、第二電極130分別與第三電極132、第四電極134電性連接。 The light emitting diode 100 further includes a second substrate 122, a first semiconductor layer 124, a second semiconductor layer 126, a first electrode 128, and a second electrode 130. The first electrode 128 and the second electrode 130 are electrically opposite. The blue light emitting layer 102 is disposed on the first semiconductor layer 124, and the first wavelength conversion layer 104 is disposed between the blue light emitting layer 102 and the second semiconductor layer 126. The first electrode 128 is disposed on the first semiconductor layer 124, and the second electrode 130 is disposed on the second semiconductor layer 126. The top surface of the light guide layer 118 is provided with a third electrode 132 and a fourth electrode 134. The third electrode 132 and the fourth electrode 134 are electrically opposite to each other. The first electrode 128 of the light emitting diode 100 and the light guide layer The third electrode 132 of the 118 is electrically connected, and the second electrode 130 of the light emitting diode 100 is electrically connected to the fourth electrode 134 of the light guide layer 118. In one embodiment, the first electrode 128, the The two electrodes 130 are electrically connected to the third electrode 132 and the fourth electrode 134 respectively.

在一些實施例中,第二基板122為透明材料製成,以便於光線的出射。舉例而言,第二基板122可為玻璃基板、石英基板、藍寶石基板或其他合適之硬質基板或可撓式基板等,但本揭露並非僅限於此。於一實施例中,第一半導體層124為N型半導體層,第二半導體層126為P型半導體層,第一電極128為正極,第二電極130為負極,N型半導體層和P型半導體層的材料為氮化鎵(GaN)。N型半導體層主要提供電子,P型半導體層主要提供電洞。藍光發光層102的材料包括為多重量子井結構(multiple quantum well,MQW),可包括氮化鎵基材料,主要使電子和電洞聚集而產生光。 In some embodiments, the second substrate 122 is made of a transparent material to facilitate light emission. For example, the second substrate 122 can be a glass substrate, a quartz substrate, a sapphire substrate, or other suitable hard substrates or flexible substrates, but the disclosure is not limited to this. In one embodiment, the first semiconductor layer 124 is an N-type semiconductor layer, the second semiconductor layer 126 is a P-type semiconductor layer, the first electrode 128 is a positive electrode, and the second electrode 130 is a negative electrode, an N-type semiconductor layer and a P-type semiconductor layer The material of the layer is gallium nitride (GaN). The N-type semiconductor layer mainly provides electrons, and the P-type semiconductor layer mainly provides holes. The material of the blue light emitting layer 102 includes a multiple quantum well (MQW) structure, which may include a gallium nitride-based material, which mainly gathers electrons and holes to generate light.

第2圖繪示根據本揭露之另一實施例之發光裝置10a的剖面圖,發光裝置10a之出光路徑類似於發光裝置10,因此省略於圖中。如第2圖所示,本實施例與第1A圖及第1B圖所示的實施例之間的差異主要在於:本實施例更包含光擴散層136,光擴散層136設置於第二波長轉換層106與藍光發光層102之間,也就是說,光擴散層136射置於第二波長轉換層106與發光二極體100之間。光擴散層136具有相對的頂面136a與底面136b,底面136b可具有霧面處理、散射點設計或類似設計,底面136b接觸透光介質層120,使第一色光L1與藍光BL均勻混合,光擴散層136的頂面136a接觸第二波長轉換層 106,如此一來,混合均勻的第一色光L1與藍光BL抵達第二波長轉換層106時,藍光BL可均勻的被第二波長轉換層106轉換為第二色光L2,如此一來,可提升發光裝置10a的第一色光L1、第二色光L2及藍光BL混光均勻度。並且,朝透光介質層120射出的第二色光L2反射回光擴散層136時,光擴散層136亦可使第二色光L2與第一色光L1、藍光BL均勻混合,提升發光裝置10a的第一色光L1、第二色光L2及藍光BL混光均勻度,使發光裝置10a發出亮度均勻且高演色性的光線。 FIG. 2 is a cross-sectional view of a light-emitting device 10a according to another embodiment of the present disclosure. The light-emitting path of the light-emitting device 10a is similar to that of the light-emitting device 10, so it is omitted from the figure. As shown in Figure 2, the difference between this embodiment and the embodiment shown in Figures 1A and 1B is mainly that: this embodiment further includes a light diffusion layer 136, which is disposed on the second wavelength conversion Between the layer 106 and the blue light emitting layer 102, that is, the light diffusion layer 136 is placed between the second wavelength conversion layer 106 and the light emitting diode 100. The light diffusion layer 136 has a top surface 136a and a bottom surface 136b opposite to each other. The bottom surface 136b can have a matte surface treatment, a scattering point design or the like. The bottom surface 136b contacts the light-transmitting medium layer 120, so that the first color light L1 and the blue light BL are uniformly mixed. The top surface 136a of the light diffusion layer 136 contacts the second wavelength conversion layer 106. In this way, when the uniformly mixed first color light L1 and blue light BL reach the second wavelength conversion layer 106, the blue light BL can be uniformly converted into the second color light L2 by the second wavelength conversion layer 106. In this way, The uniformity of mixing of the first color light L1, the second color light L2 and the blue light BL of the light emitting device 10a is improved. Moreover, when the second color light L2 emitted toward the light-transmitting medium layer 120 is reflected back to the light diffusion layer 136, the light diffusion layer 136 can also uniformly mix the second color light L2 with the first color light L1 and the blue light BL, thereby improving the performance of the light emitting device 10a. The uniformity of the mixing of the first color light L1, the second color light L2 and the blue light BL enables the light emitting device 10a to emit light with uniform brightness and high color rendering.

第3圖繪示根據本揭露之一實施例之液晶顯示器12(liquid crystal display,LCD)的剖面圖,液晶顯示器12包括由複數個發光裝置10b構成的光源模組14及液晶顯示面板16,發光裝置10b的結構可依需求採用發光裝置10或發光裝置10a的結構,發光裝置10b可以矩陣排列,液晶顯示面板16位於光源模組14上,以接收來自光源模組14之光線,發光裝置10b可提供亮度均勻且高演色性的光線給液晶顯示面板16,提升液晶顯示面板16的顯示品質。第4圖繪示根據本揭露之一實施例之光源模組14的俯視圖。請一併參照第3圖及第4圖,光源模組14更包括數條導線18,導電一端電性連接發光裝置10b,另一端電性連接至控制電路與接地端(未繪示)。導線18可以是利用如焊接或是熱壓等方式與第三電極132及第四電極134電性連接。在此並不限定發光裝置10b之連接方式,發光裝置10b可以是並聯、串聯或是部份並聯、部分串聯之方式連接,此領域具有通常知識者可以根據發光裝置10b之數量以及實際使用之需求調整發光裝置10b之連接方式。可以理解的是,為了滿 足更大功率的發光需求,發光裝置10b的數量可以根據需要作選擇。 FIG. 3 shows a cross-sectional view of a liquid crystal display (LCD) 12 according to an embodiment of the present disclosure. The liquid crystal display 12 includes a light source module 14 and a liquid crystal display panel 16 composed of a plurality of light emitting devices 10b, and emits light The structure of the device 10b can adopt the structure of the light emitting device 10 or the light emitting device 10a as required. The light emitting devices 10b can be arranged in a matrix. The liquid crystal display panel 16 is located on the light source module 14 to receive light from the light source module 14. The light emitting device 10b can The liquid crystal display panel 16 is provided with uniform brightness and high color rendering light to improve the display quality of the liquid crystal display panel 16. FIG. 4 is a top view of the light source module 14 according to an embodiment of the disclosure. Please refer to FIGS. 3 and 4 together. The light source module 14 further includes a plurality of wires 18, one end of which is electrically connected to the light emitting device 10b, and the other end is electrically connected to the control circuit and ground (not shown). The wire 18 may be electrically connected to the third electrode 132 and the fourth electrode 134 by means such as welding or hot pressing. The connection method of the light-emitting devices 10b is not limited here. The light-emitting devices 10b can be connected in parallel, in series, or partially in parallel or partially in series. Those with ordinary knowledge in this field can base on the number of light-emitting devices 10b and actual requirements. Adjust the connection mode of the light emitting device 10b. Understandably, in order to fill The number of light-emitting devices 10b can be selected according to the needs to meet the light-emitting requirements of greater power.

光源模組14可更包括有擴散片、稜鏡片、增亮片等光學片(未繪示),且光學片可以設置於液晶顯示面板16與發光裝置10b之間。在其他實施例中,光源模組14如果採用側面入光式背光模組的型態來實施,則光源模組14可以包括一導光板,其具有相鄰的入光面與出光面。此時,發光裝置10b的發光方向可以朝向導光板的入光面,而導光板的出光面可以面向液晶顯示面板16。 The light source module 14 may further include an optical sheet (not shown) such as a diffusion sheet, a rim sheet, a brightness enhancement sheet, etc., and the optical sheet may be disposed between the liquid crystal display panel 16 and the light emitting device 10b. In other embodiments, if the light source module 14 is implemented in the form of a side-lit backlight module, the light source module 14 may include a light guide plate having adjacent light incident surfaces and light output surfaces. At this time, the light emitting direction of the light emitting device 10b may face the light incident surface of the light guide plate, and the light output surface of the light guide plate may face the liquid crystal display panel 16.

發光裝置透過使第一波長轉換層在第一基板的垂直投影面積落在藍光發光層在第一基板的垂直投影面積之內,提升第一波長轉換層的光轉換效率,並且,藉由設置第一波長轉換層與第二波長轉換層於藍光發光層的相異側,可以提升發光裝置的色度均勻度及亮度,發光裝置還包括第一反光結構及第二反光結構,第一反光結構用以使藍光與第一色光朝第一基板左右兩側反射,避免藍光與第一色光反射回發光二極體,第二反光結構用以破壞光線在導光層中的全反射,提高發光裝置之出光效率。 The light emitting device improves the light conversion efficiency of the first wavelength conversion layer by making the vertical projection area of the first wavelength conversion layer on the first substrate fall within the vertical projection area of the blue light emitting layer on the first substrate, and by setting the A wavelength conversion layer and a second wavelength conversion layer are on different sides of the blue light emitting layer, which can improve the chromaticity uniformity and brightness of the light emitting device. The light emitting device further includes a first light reflecting structure and a second light reflecting structure. In order to make the blue light and the first color light reflect toward the left and right sides of the first substrate to prevent the blue light and the first color light from being reflected back to the light emitting diode, the second light reflecting structure is used to destroy the total reflection of the light in the light guide layer and improve the light emission The light output efficiency of the device.

以上概述數個實施方式或實施例的特徵,使所屬領域中具有通常知識者可以從各個方面更加瞭解本揭露。本技術領域中具有通常知識者應可理解,且可輕易地以本揭露為基礎來設計或修飾其他製程及結構,並以此達到相同的目的及/或達到在此介紹的實施方式或實施例相同之優點。本技術領域中具有通常知識者也應了解這些相等的結構並未背離本揭露 的揭露精神與範圍。在不背離本揭露的精神與範圍之前提下,可對本揭露進行各種改變、置換或修改。 The above summarizes the characteristics of several implementations or embodiments, so that those with ordinary knowledge in the field can better understand the present disclosure from various aspects. Those skilled in the art should understand, and can easily design or modify other processes and structures based on this disclosure, so as to achieve the same purpose and/or to achieve the implementation modes or embodiments introduced herein The same advantages. Those with ordinary knowledge in the technical field should also understand that these equivalent structures do not deviate from this disclosure The spirit and scope of disclosure. Without departing from the spirit and scope of this disclosure, various changes, substitutions or modifications can be made to this disclosure.

10‧‧‧發光裝置 10‧‧‧Light-emitting device

100‧‧‧發光二極體 100‧‧‧Light Emitting Diode

102‧‧‧藍光發光層 102‧‧‧Blue light emitting layer

102a‧‧‧出光面 102a‧‧‧Glossy surface

104‧‧‧第一波長轉換層 104‧‧‧First wavelength conversion layer

106‧‧‧第二波長轉換層 106‧‧‧Second wavelength conversion layer

108‧‧‧第一基板 108‧‧‧First substrate

108a‧‧‧反光面 108a‧‧‧Reflective surface

108b‧‧‧外表面 108b‧‧‧Outer surface

109‧‧‧反射牆 109‧‧‧Reflective Wall

110‧‧‧第一反光結構 110‧‧‧First reflective structure

111‧‧‧底座 111‧‧‧Base

112‧‧‧第二反光結構 112‧‧‧Second reflective structure

114a‧‧‧第一絕緣凸塊 114a‧‧‧First insulating bump

114b‧‧‧第二絕緣凸塊 114b‧‧‧Second insulating bump

116a‧‧‧第一反射層 116a‧‧‧First reflective layer

116b‧‧‧第二反射層 116b‧‧‧Second reflective layer

118‧‧‧導光層 118‧‧‧Light guide layer

120‧‧‧透光介質層 120‧‧‧Transparent dielectric layer

122‧‧‧第二基板 122‧‧‧Second substrate

124‧‧‧第一半導體層 124‧‧‧First semiconductor layer

126‧‧‧第二半導體層 126‧‧‧Second semiconductor layer

128‧‧‧第一電極 128‧‧‧First electrode

130‧‧‧第二電極 130‧‧‧Second electrode

132‧‧‧第三電極 132‧‧‧Third electrode

134‧‧‧第四電極 134‧‧‧Fourth electrode

B1、B2‧‧‧底面 B1, B2‧‧‧Bottom

D1、D2‧‧‧距離 D1, D2‧‧‧Distance

H1、H2‧‧‧高度 H1, H2‧‧‧Height

S1、S2‧‧‧側面 S1, S2‧‧‧Side

T‧‧‧厚度 T‧‧‧Thickness

θ 1‧‧‧第一角度 θ 1‧‧‧First angle

θ 2‧‧‧第二角度 θ 2‧‧‧second angle

Claims (10)

一種發光裝置,包含:一發光二極體,包含一藍光發光層以及一第一波長轉換層,該第一波長轉換層設置於該藍光發光層之一出光面;一第二波長轉換層,其中該藍光發光層位於該第一波長轉換層與該第二波長轉換層之間;以及一基板,具有一反光面與相對於該反光面之一外表面,該第一波長轉換層位於該藍光發光層與該反光面之間。 A light-emitting device includes: a light-emitting diode, including a blue light-emitting layer and a first wavelength conversion layer, the first wavelength conversion layer is arranged on a light-emitting surface of the blue light-emitting layer; a second wavelength conversion layer, wherein The blue light emitting layer is located between the first wavelength conversion layer and the second wavelength conversion layer; and a substrate has a light reflecting surface and an outer surface opposite to the light reflecting surface. The first wavelength conversion layer is located on the blue light emitting layer. Between the layer and the reflective surface. 如請求項1所述之發光裝置,更包含:一反射牆,該反射牆與該基板構成一底座,該底座呈杯狀,其中該反光面具有至少一第一反光結構與複數第二反光結構,該第一反光結構的尺寸不同於各該第二反光結構的尺寸。 The light-emitting device according to claim 1, further comprising: a reflective wall, the reflective wall and the substrate forming a base, the base is cup-shaped, and the reflective surface has at least one first reflective structure and a plurality of second reflective structures The size of the first reflective structure is different from the size of each of the second reflective structures. 如請求項2所述之發光裝置,其中該第一反光結構具有一第一絕緣凸塊以及一第一反射層,該第一反射層位於該第一絕緣凸塊上,該第一絕緣凸塊在該基板的垂直投影部分重疊於該發光二極體在該基板的垂直投影。 The light emitting device according to claim 2, wherein the first reflective structure has a first insulating bump and a first reflective layer, the first reflective layer is located on the first insulating bump, and the first insulating bump The vertical projection on the substrate overlaps the vertical projection of the light-emitting diode on the substrate. 如請求項2所述之發光裝置,其中該第一反光結構在該基板的垂直投影面積大於各該第二反光結構在該基板的垂直投影面積,其中該第二反光結構具有一第二絕緣凸塊以及一第二反射層,該第二反射層位於該第二絕緣凸塊 上,且該第一絕緣凸塊的側面與底面夾一第一角度,該第二絕緣凸塊的側面與底面夾一第二角度,該第一角度及該第二角度大於約30°且小於約60°,且該第一角度小於該第二角度。 The light emitting device according to claim 2, wherein the vertical projection area of the first reflective structure on the substrate is larger than the vertical projection area of each of the second reflective structures on the substrate, wherein the second reflective structure has a second insulating protrusion Block and a second reflective layer located on the second insulating bump And the side surface and the bottom surface of the first insulation bump sandwich a first angle, the side surface and the bottom surface of the second insulation bump sandwich a second angle, the first angle and the second angle are greater than about 30° and less than It is about 60°, and the first angle is smaller than the second angle. 如請求項2所述之發光裝置,其中該發光二極體包含:一第一半導體層,該藍光發光層設置於該第一半導體層上;一第二半導體層,該第一波長轉換層設置於該藍光發光層與該第二半導體層之間;一第一電極,設置於該第一半導體層上;以及一第二電極,設置於該第二半導體層上,其中該發光二極體與該第一反光結構的頂端的垂直距離介於約10微米至約100微米之間。 The light-emitting device according to claim 2, wherein the light-emitting diode comprises: a first semiconductor layer, the blue light-emitting layer is disposed on the first semiconductor layer; a second semiconductor layer, the first wavelength conversion layer is disposed Between the blue light emitting layer and the second semiconductor layer; a first electrode disposed on the first semiconductor layer; and a second electrode disposed on the second semiconductor layer, wherein the light emitting diode and The vertical distance of the top of the first reflective structure is between about 10 microns and about 100 microns. 如請求項2所述之發光裝置,更包含:一導光層,位於該藍光發光層與該第一反光結構與該些第二反光結構之間,該導光層的厚度介於約10微米至約100微米之間;以及一透光介質層,位於該導光層與該第二波長轉換層之間,其中該透光介質層的折射率低於該導光層的折射率,該透光介質層的折射率介於約1至約1.3之間。 The light emitting device according to claim 2, further comprising: a light guide layer located between the blue light emitting layer and the first light reflecting structure and the second light reflecting structures, and the thickness of the light guide layer is about 10 microns And a light-transmitting medium layer located between the light guide layer and the second wavelength conversion layer, wherein the refractive index of the light-transmitting medium layer is lower than the refractive index of the light guide layer, and the transparent The refractive index of the optical medium layer is between about 1 and about 1.3. 如請求項6所述之發光裝置,更包含:一光擴散層,設置於該第二波長轉換層與該藍光發光層之間,該光擴散層接觸該第二波長轉換層與該透光介質層。 The light-emitting device according to claim 6, further comprising: a light diffusion layer disposed between the second wavelength conversion layer and the blue light emitting layer, the light diffusion layer contacting the second wavelength conversion layer and the light-transmitting medium Floor. 如請求項1所述之發光裝置,其中該第一波長轉換層在該基板的垂直投影面積位於該藍光發光層在該基板的垂直投影面積之內。 The light-emitting device according to claim 1, wherein the vertical projection area of the first wavelength conversion layer on the substrate is within the vertical projection area of the blue light emitting layer on the substrate. 如請求項1所述之發光裝置,其中該第一波長轉換層包含紅光波長轉換材料,該第二波長轉換層包含綠光波長轉換材料。 The light-emitting device according to claim 1, wherein the first wavelength conversion layer includes a red wavelength conversion material, and the second wavelength conversion layer includes a green wavelength conversion material. 一種液晶顯示器,包含:複數個如請求項1至9任一項中所述的發光裝置;以及一液晶顯示面板,位於該些發光裝置上。 A liquid crystal display, comprising: a plurality of light-emitting devices as described in any one of claims 1 to 9; and a liquid crystal display panel located on the light-emitting devices.
TW108105876A 2019-02-21 2019-02-21 Light emitting device and liquid crystal display device TWI671558B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW108105876A TWI671558B (en) 2019-02-21 2019-02-21 Light emitting device and liquid crystal display device
CN201910996026.9A CN110783433B (en) 2019-02-21 2019-10-18 Light emitting device and liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108105876A TWI671558B (en) 2019-02-21 2019-02-21 Light emitting device and liquid crystal display device

Publications (2)

Publication Number Publication Date
TWI671558B TWI671558B (en) 2019-09-11
TW202032181A true TW202032181A (en) 2020-09-01

Family

ID=68618698

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108105876A TWI671558B (en) 2019-02-21 2019-02-21 Light emitting device and liquid crystal display device

Country Status (2)

Country Link
CN (1) CN110783433B (en)
TW (1) TWI671558B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI708081B (en) * 2019-12-20 2020-10-21 台灣愛司帝科技股份有限公司 Backlight module
TW202125066A (en) * 2019-12-20 2021-07-01 台灣愛司帝科技股份有限公司 Method for manufacturing a backlight module

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9142740B2 (en) * 2003-07-04 2015-09-22 Epistar Corporation Optoelectronic element and manufacturing method thereof
JP5050045B2 (en) * 2009-12-22 2012-10-17 株式会社東芝 Light emitting device
KR101843501B1 (en) * 2011-03-30 2018-03-29 서울반도체 주식회사 Lighting apparatus
CN102290508A (en) * 2011-09-14 2011-12-21 武汉大学 Fluorescent-powder-free white light-emitting diode (LED)
TWI611602B (en) * 2013-05-24 2018-01-11 晶元光電股份有限公司 Light-emitting element having a reflective structure with high efficiency
TWI552391B (en) * 2014-03-06 2016-10-01 隆達電子股份有限公司 Comprehensive light-emitting diode device and lighting-module
TW201621851A (en) * 2014-12-12 2016-06-16 泰金寶電通股份有限公司 Light source module
TWM562403U (en) * 2018-03-13 2018-06-21 睿亞光電股份有限公司 Backlight assembly

Also Published As

Publication number Publication date
CN110783433A (en) 2020-02-11
TWI671558B (en) 2019-09-11
CN110783433B (en) 2021-05-07

Similar Documents

Publication Publication Date Title
JP5318100B2 (en) Optical element connected to a thin side-emitting LED
US8545083B2 (en) Light-emitting device, light source and method of manufacturing the same
US8755005B2 (en) Thin edge backlight with LEDS optically coupled to the back surface
JP5329548B2 (en) Thin backlight using thin side-emitting LEDs
JP5613361B2 (en) Low profile side-emitting LED
JP2018056367A (en) Light emitting device
KR20130005792A (en) Backlight unit
JP7189451B2 (en) Light emitting module, liquid crystal display
TW202125069A (en) Light-emitting device and liquid crystal display device
US9726801B2 (en) Backlight unit and a display device
US8882322B2 (en) Backlight unit
TWI671558B (en) Light emitting device and liquid crystal display device
WO2019056985A1 (en) Light guide plate, backlight module and display device
KR20150025437A (en) Light source module and backlight unit having the same
CN216979527U (en) Backlight module and display device
CN117826476A (en) Display device
KR102075510B1 (en) Backlight unit
JP2020167364A (en) Light-emitting device
KR20130000815A (en) Backlight unit
KR20120134455A (en) Backlight unit
KR20120099549A (en) Light emitting device package, fabrication method for light emitting device package and lighting system