TW202030862A - Dynamic random access memory and method of fabricating the same - Google Patents

Dynamic random access memory and method of fabricating the same Download PDF

Info

Publication number
TW202030862A
TW202030862A TW108103976A TW108103976A TW202030862A TW 202030862 A TW202030862 A TW 202030862A TW 108103976 A TW108103976 A TW 108103976A TW 108103976 A TW108103976 A TW 108103976A TW 202030862 A TW202030862 A TW 202030862A
Authority
TW
Taiwan
Prior art keywords
isolation structures
isolation
random access
structures
access memory
Prior art date
Application number
TW108103976A
Other languages
Chinese (zh)
Other versions
TWI678794B (en
Inventor
張峰榮
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW108103976A priority Critical patent/TWI678794B/en
Application granted granted Critical
Publication of TWI678794B publication Critical patent/TWI678794B/en
Publication of TW202030862A publication Critical patent/TW202030862A/en

Links

Images

Abstract

A dynamic random access memory (DRAM) and a method of fabricating the same are provided. The DRAM includes a substrate, a plurality of first isolation structures, a plurality of word line structures, a plurality of second isolation structures, and a plurality of third isolation structures. The first isolation structures are located in the substrate to define a plurality of active areas arranged along a first direction, wherein the active areas and the first isolation structures are alternately arranged along the first direction. The word line structures pass through the active areas and the first isolation structures and are arranged along a second direction and extended along a third direction. The second isolation structures are located in the substrate where the word line structures and the active areas are staggered and between two adjacent of the first isolation structures. The third isolation structures cover the word line structures.

Description

動態隨機存取記憶體及其製造方法Dynamic random access memory and its manufacturing method

本發明是有關於一種記憶體及其製造方法,且特別是有關於一種動態隨機存取記憶體及其製造方法。The present invention relates to a memory and its manufacturing method, and more particularly to a dynamic random access memory and its manufacturing method.

動態隨機存取記憶體(Dynamic Random Access Memory,DRAM)屬於一種揮發性記憶體,其是由多個記憶胞所構成。詳細地說,每一個記憶胞主要是由一個電晶體與一個由電晶體所操控的電容器所構成,且每一個記憶胞藉由字元線與位元線彼此電性連接。為提升動態隨機存取記憶體的積集度以加快元件的操作速度,並符合消費者對於小型化電子裝置的需求,近年來發展出埋入式字元線動態隨機存取記憶體(buried word line DRAM),以滿足上述種種需求。Dynamic random access memory (Dynamic Random Access Memory, DRAM) is a type of volatile memory, which is composed of multiple memory cells. In detail, each memory cell is mainly composed of a transistor and a capacitor controlled by the transistor, and each memory cell is electrically connected to each other by a word line and a bit line. In order to increase the integration of dynamic random access memory to speed up the operation speed of components, and to meet consumer demand for miniaturized electronic devices, buried word line dynamic random access memory (buried word memory) has been developed in recent years. line DRAM) to meet the above requirements.

在先前技術中,通常是藉由形成淺溝渠隔離(shallow trench isolation)結構來定義主動區(active area)以及主動區之間的隔離區。在現有技術中,埋入式字元線通常須穿越隔離區設置。在記憶體的積集度提高與元件尺寸縮小的情況下,增大隔離區面積雖可降低位元線與隔離區之間重疊位移(overlay shift)的問題發生,但較大的隔離區面積卻會限縮主動區的面積,導致主動區與電容器接觸窗之間的接觸面積縮小。當主動區與電容器接觸窗之間的接觸面積變小,將使得主動區與電容器接觸窗之間的阻值增加,進而降低產品可靠度。因此,如何發展一種動態隨機存取記憶體及其製造方法,其可避免位元線與隔離區之間重疊位移的問題並同時維持主動區與電容器接觸窗之間的接觸面積將成為重要的一門課題。In the prior art, the active area and the isolation area between the active areas are usually defined by forming a shallow trench isolation structure. In the prior art, the buried character line usually has to pass through the isolation area. In the case of increased memory integration and reduced device size, increasing the isolation area can reduce the overlap shift between the bit line and the isolation area, but the larger isolation area area It will limit the area of the active area, resulting in a reduction in the contact area between the active area and the capacitor contact window. When the contact area between the active area and the capacitor contact window becomes smaller, the resistance between the active area and the capacitor contact window will increase, thereby reducing product reliability. Therefore, how to develop a dynamic random access memory and its manufacturing method, which can avoid the problem of overlap and displacement between the bit line and the isolation region while maintaining the contact area between the active region and the capacitor contact window will become an important issue Subject.

本發明提供一種動態隨機存取記憶體,其可避免位元線與隔離區之間重疊位移的問題,並同時維持主動區與電容器接觸窗之間的接觸面積,進而提升產品的可靠度。The invention provides a dynamic random access memory, which can avoid the problem of overlapping displacement between the bit line and the isolation area, while maintaining the contact area between the active area and the capacitor contact window, thereby improving the reliability of the product.

本發明提供一種動態隨機存取記憶體的製造方法,其可同時定義字元線結構和隔離區的位置,不僅可避免位元線與隔離區之間重疊位移的問題,由於製程所需的光罩數量減少,亦可降低整體製程的成本。The present invention provides a method for manufacturing a dynamic random access memory, which can simultaneously define the position of the word line structure and the isolation area, not only can avoid the problem of overlap and displacement between the bit line and the isolation area, but also because of the light required by the manufacturing process. The reduction in the number of covers can also reduce the cost of the overall manufacturing process.

本發明提供一種動態隨機存取記憶體,其包括基底、多個第一隔離結構、多個字元線結構、多個第二隔離結構以及多個第三隔離結構。多個第一隔離結構位於基底中,以定義出沿第一方向排列的多個主動區,其中多個主動區與多個第一隔離結構沿第一方向交替排列。多個字元線結構穿過多個主動區與多個第一隔離結構,多個字元線結構沿第二方向排列且沿第三方向延伸,其中第二方向與第三方向垂直,且第一方向與第二方向相交一角度。多個第二隔離結構位於多個字元線結構與多個主動區交錯的基底中且位於兩個相鄰的第一隔離結構之間。多個第三隔離結構覆蓋多個字元線結構。The present invention provides a dynamic random access memory, which includes a substrate, a plurality of first isolation structures, a plurality of word line structures, a plurality of second isolation structures, and a plurality of third isolation structures. The plurality of first isolation structures are located in the substrate to define a plurality of active regions arranged along the first direction, wherein the plurality of active regions and the plurality of first isolation structures are alternately arranged along the first direction. A plurality of character line structures pass through a plurality of active regions and a plurality of first isolation structures. The plurality of character line structures are arranged along a second direction and extend along a third direction, wherein the second direction is perpendicular to the third direction, and the first The direction intersects the second direction at an angle. The plurality of second isolation structures are located in the substrate where the plurality of word line structures and the plurality of active regions are interlaced and between two adjacent first isolation structures. The plurality of third isolation structures cover the plurality of character line structures.

本發明提供一種動態隨機存取記憶體的製造方法,其包括以下步驟。在基底中形成多個第一隔離結構,以定義出沿第一方向排列的多個主動區,其中多個主動區與多個第一隔離結構沿第一方向交替排列。移除部分多個第一隔離結構以及多個主動區的部分基底,以形成沿第二方向排列且沿第三方向延伸的多個溝渠,其中第二方向與第三方向垂直,且第一方向與第二方向相交一角度。移除部分多個第一隔離結構,以在多個溝渠中形成多個第一開口。移除多個主動區與多個溝渠交錯的部分基底,以形成多個第二開口,其中第二開口位於兩個相鄰的第一隔離結構之間,且多個第二開口的底面低於多個第一開口的底面。在多個第二開口中形成多個第二隔離結構,以填滿多個第二開口。在多個溝渠中形成字元線結構。形成多個第三隔離結構,以覆蓋多個字元線結構並填滿多個溝渠。The present invention provides a method for manufacturing a dynamic random access memory, which includes the following steps. A plurality of first isolation structures are formed in the substrate to define a plurality of active regions arranged along the first direction, wherein the plurality of active regions and the plurality of first isolation structures are alternately arranged along the first direction. Part of the plurality of first isolation structures and part of the substrate of the plurality of active regions are removed to form a plurality of trenches arranged in a second direction and extending in a third direction, wherein the second direction is perpendicular to the third direction, and the first direction Intersect the second direction at an angle. Part of the plurality of first isolation structures is removed to form a plurality of first openings in the plurality of trenches. A part of the substrate where the active regions and the trenches intersect is removed to form a plurality of second openings, wherein the second openings are located between two adjacent first isolation structures, and the bottom surfaces of the plurality of second openings are lower than The bottom surface of the plurality of first openings. A plurality of second isolation structures are formed in the plurality of second openings to fill the plurality of second openings. A character line structure is formed in the plurality of trenches. A plurality of third isolation structures are formed to cover a plurality of character line structures and fill a plurality of trenches.

基於上述,在本發明的動態隨機存取記憶體中,藉由定義字元線結構的製程中,同時定義隔離區中的第二隔離結構以及第三隔離結構的位置,故可避免隔離區中第二隔離結構以及第三隔離結構與字元線結構之間重疊位移的問題,進而避免動態隨機存取記憶體不正常刷新的問題。同時,藉此製程製備的動態隨機存取記憶體可具有較窄的隔離區並同時保持較寬的電容器接觸窗,故可達到較低的電容器接觸窗阻抗以及較高的記憶胞電晶體(transistor,Tr)通道啟動電流,進而使動態隨機存取記憶體具有較佳的資料讀寫表現。另一方面,由於製程所需的光罩數量減少,亦可降低整體製程的成本。Based on the above, in the dynamic random access memory of the present invention, by defining the position of the second isolation structure and the third isolation structure in the isolation area in the process of defining the character line structure, it is possible to avoid The problem of overlapping displacement between the second isolation structure and the third isolation structure and the word line structure, thereby avoiding the problem of abnormal refresh of the dynamic random access memory. At the same time, the dynamic random access memory prepared by this process can have a narrower isolation area while maintaining a wider capacitor contact window, so it can achieve a lower capacitor contact window impedance and a higher memory cell transistor (transistor). , Tr) Channel start current, and then the dynamic random access memory has better data read and write performance. On the other hand, since the number of masks required for the manufacturing process is reduced, the overall manufacturing process cost can also be reduced.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings.

參照本實施例之圖式以更全面地闡述本發明。然而,本發明亦可以各種不同的形式體現,而不應限於本文中所述之實施例。圖式中的層與區域的厚度會為了清楚起見而放大。相同或相似之標號表示相同或相似之元件,以下段落將不再一一贅述。The present invention will be explained more fully with reference to the drawings of this embodiment. However, the present invention can also be embodied in various different forms and should not be limited to the embodiments described herein. The thickness of the layers and regions in the drawing will be exaggerated for clarity. The same or similar reference numerals indicate the same or similar elements, and the following paragraphs will not repeat them one by one.

圖1A至圖12A是本發明一實施例的動態隨機存取記憶體之製造流程的上視示意圖。圖1B至圖12B是分別沿圖1A至圖12A之線段A-A’的剖面示意圖。圖1C至圖12C是分別沿圖1A至圖12A之線段B-B’的剖面示意圖。1A to 12A are schematic top views of a manufacturing process of a dynamic random access memory according to an embodiment of the invention. Figures 1B to 12B are schematic cross-sectional views taken along the line A-A' of Figures 1A to 12A, respectively. Figures 1C to 12C are schematic cross-sectional views taken along the line B-B' of Figures 1A to 12A, respectively.

請參照圖1A至圖1C,本實施例提供一種動態隨機存取記憶體的製造方法,其步驟如下所述。首先,在基底100中形成多個第一隔離結構110,以定義出沿第一方向D1排列的多個主動區120,其中多個主動區120與多個第一隔離結構110沿第一方向D1交替排列。在一些實施例中,基底100可例如為半導體基底、半導體化合物基底或是絕緣層上有半導體基底(Semiconductor Over Insulator,SOI)。在一些實施例中,在基底100中形成多個第一隔離結構110的方法利如是微影蝕刻,但本發明不限於此。在一些實施例中,在基底100中形成多個第一隔離結構110的步驟例如是先在基底上形成硬罩幕層,以硬罩幕層為罩幕,移除部分基底,以於基底中形成多個溝渠,其中多個溝渠沿第一方向D1排列。接著,在多個溝渠中填入介電材料,以於基底100中形成多個第一隔離結構110。在本實施例中,第一隔離結構110例如是包括氮化矽層112和氧化矽層114,其中氧化矽層114例如是共形地形成在溝渠中,以覆蓋溝渠的側壁和底面,氮化矽層112例如是形成在氧化矽層114的內表面上,並填滿溝渠,但本發明不限於此。第一隔離結構110將基底100分隔成多個條狀圖案,條狀圖案即代表主動區120(如圖1A所示)。至此,即形成第一隔離結構110與主動區120。在一些實施例中,第一隔離結構110的深度例如是介於250奈米至330奈米之間,例如是約300奈米,但本發明不限於此。在一些實施例中,第一隔離結構110例如是淺溝渠隔離結構(STI),但本發明不限於此。在一些實施例中,第一方向D1例如是與X軸非正交且相交一角度。在本實施例中,第一方向D1例如是與X軸相交一角度θ,其中角度θ例如是介於15度至25度之間,但本發明不限於此。請參照圖1A,圖中虛線方框所指為後續形成隔離區150的預定區域,將於後文詳述。1A to 1C, this embodiment provides a method for manufacturing a dynamic random access memory, the steps of which are as follows. First, a plurality of first isolation structures 110 are formed in the substrate 100 to define a plurality of active regions 120 arranged along the first direction D1, wherein the plurality of active regions 120 and the plurality of first isolation structures 110 are along the first direction D1. Alternate arrangement. In some embodiments, the substrate 100 may be, for example, a semiconductor substrate, a semiconductor compound substrate, or a semiconductor substrate (Semiconductor Over Insulator, SOI) on an insulating layer. In some embodiments, the method of forming the plurality of first isolation structures 110 in the substrate 100 is lithographic etching, but the invention is not limited thereto. In some embodiments, the step of forming a plurality of first isolation structures 110 in the substrate 100 is, for example, first forming a hard mask layer on the substrate, using the hard mask layer as a mask, and removing a part of the substrate to put it in the substrate. A plurality of trenches are formed, and the plurality of trenches are arranged along the first direction D1. Then, a plurality of trenches are filled with a dielectric material to form a plurality of first isolation structures 110 in the substrate 100. In this embodiment, the first isolation structure 110 includes, for example, a silicon nitride layer 112 and a silicon oxide layer 114. The silicon oxide layer 114 is, for example, conformally formed in the trench to cover the sidewall and bottom surface of the trench. The silicon layer 112 is, for example, formed on the inner surface of the silicon oxide layer 114 and fills the trench, but the invention is not limited to this. The first isolation structure 110 separates the substrate 100 into a plurality of strip patterns, and the strip patterns represent the active area 120 (as shown in FIG. 1A). So far, the first isolation structure 110 and the active region 120 are formed. In some embodiments, the depth of the first isolation structure 110 is, for example, between 250 nanometers and 330 nanometers, such as about 300 nanometers, but the invention is not limited thereto. In some embodiments, the first isolation structure 110 is, for example, a shallow trench isolation structure (STI), but the invention is not limited thereto. In some embodiments, the first direction D1 is non-orthogonal to the X axis and intersects with an angle, for example. In this embodiment, the first direction D1 intersects the X axis by an angle θ, for example, the angle θ is between 15 degrees and 25 degrees, but the invention is not limited to this. Please refer to FIG. 1A. The dashed box in the figure refers to a predetermined area where the isolation region 150 is subsequently formed, which will be described in detail later.

接著,請參照圖1A至圖2C,移除部分多個第一隔離結構110以及多個主動區120的部分基底110,以形成沿第二方向D2排列且沿第三方向D3延伸的多個溝渠140。在一些實施例中,形成多個溝渠140的方法例如是微影蝕刻,但本發明不限於此。在一些實施例中,形成多個溝渠140的步驟例如是先在基底100上形成圖案化遮罩122,形成圖案化遮罩122的方法利如是微影蝕刻,但本發明不限於此。接著,以圖案化遮罩122為罩幕,進行一蝕刻製程,移除部分多個第一隔離結構110以及多個主動區120的部分基底110,以形成多個溝渠140。在此步驟中,基底110以及第一隔離結構110的氮化矽層112和氧化矽層114例如是同時移除。在一些實施例中,第二方向D2例如是與第三方向D3垂直,且第一方向D1例如是與第二方向D2非正交且相交一角度。在本實施例中,第二方向D2例如是平行於X軸,第三方向D3例如是平行於Y軸,且第一方向D1例如是與第二方向D2相交一角度θ,其中角度θ例如是介於65度至75度之間,但本發明不限於此。也就是說,在本實施例中,多個溝渠140沿X軸排列且沿Y軸延伸,但本發明不限於此。在一些實施例中,圖案化遮罩122的材料例如是氧化矽,但本發明不限於此。在本實施例中,形成多個溝渠140後,直接進行後續製程,並未移除圖案化遮罩122。在本實施例中,多個溝渠140例如是後續形成字元線結構的預定位置,將於後文詳述。Next, referring to FIGS. 1A to 2C, a portion of the first isolation structure 110 and a portion of the substrate 110 of the plurality of active regions 120 are removed to form a plurality of trenches arranged along the second direction D2 and extending along the third direction D3 140. In some embodiments, the method for forming the plurality of trenches 140 is, for example, lithography etching, but the invention is not limited thereto. In some embodiments, the step of forming a plurality of trenches 140 is, for example, first forming a patterned mask 122 on the substrate 100. The method of forming the patterned mask 122 is lithography etching, but the invention is not limited thereto. Then, using the patterned mask 122 as a mask, an etching process is performed to remove part of the first isolation structures 110 and part of the substrate 110 of the active regions 120 to form a plurality of trenches 140. In this step, the substrate 110 and the silicon nitride layer 112 and the silicon oxide layer 114 of the first isolation structure 110 are, for example, removed at the same time. In some embodiments, the second direction D2 is, for example, perpendicular to the third direction D3, and the first direction D1 is, for example, non-orthogonal to the second direction D2 and intersects with an angle. In this embodiment, the second direction D2 is, for example, parallel to the X axis, the third direction D3 is, for example, parallel to the Y axis, and the first direction D1, for example, intersects the second direction D2 by an angle θ, where the angle θ is, for example, It is between 65 degrees and 75 degrees, but the invention is not limited to this. That is, in this embodiment, the plurality of trenches 140 are arranged along the X axis and extend along the Y axis, but the invention is not limited to this. In some embodiments, the material of the patterned mask 122 is, for example, silicon oxide, but the invention is not limited thereto. In this embodiment, after forming a plurality of trenches 140, the subsequent process is directly performed without removing the patterned mask 122. In this embodiment, the plurality of trenches 140 are, for example, predetermined positions for subsequent formation of a character line structure, which will be described in detail later.

接著,請參照圖2A至圖3C,形成氧化矽層124,氧化矽層124共形地覆蓋溝渠140以及圖案化遮罩122的表面。如圖3C所示,在溝渠140a中,氧化矽層124覆蓋基底100a以及第一隔離結構110a(包括氮化矽層112a和氧化矽層114a)的上表面。在一些實施例中,形成氧化矽層124的方法例如是化學氣相沉積法、物理氣相沉積法或旋轉塗佈法,但本發明不限於此。Next, referring to FIGS. 2A to 3C, a silicon oxide layer 124 is formed. The silicon oxide layer 124 conformally covers the trench 140 and the surface of the patterned mask 122. As shown in FIG. 3C, in the trench 140a, the silicon oxide layer 124 covers the upper surface of the substrate 100a and the first isolation structure 110a (including the silicon nitride layer 112a and the silicon oxide layer 114a). In some embodiments, the method of forming the silicon oxide layer 124 is, for example, a chemical vapor deposition method, a physical vapor deposition method, or a spin coating method, but the invention is not limited thereto.

接著,請參照圖3A至圖4C,移除部分氧化矽層124以及部分多個第一隔離結構110a,以在溝渠140a中形成多個第一開口142。在一些實施例中,移除部分氧化矽層124例如是移除位於圖案化遮罩122頂面上以及溝渠140a底面上的氧化矽層124,殘留的氧化矽層124a位於溝渠140b的側壁上。在本實施例中,在此步驟中,更包括移除位於溝渠140a底面下的部分第一隔離結構110a。因此,剩餘的第一隔離結構110b(包括氮化矽層112b和氧化矽層114b)的頂面低於基底100a的頂面,此時,溝渠140b底面形成馬鞍鰭(saddle fin)狀,可供後續形成的單元電晶體(cell transistor)的配置。在一些實施例中,移除部分氧化矽層124以及部分多個第一隔離結構110a的方法例如是回蝕刻法,但本發明不限於此。Next, referring to FIGS. 3A to 4C, a portion of the silicon oxide layer 124 and a portion of the plurality of first isolation structures 110a are removed to form a plurality of first openings 142 in the trench 140a. In some embodiments, removing part of the silicon oxide layer 124 is, for example, removing the silicon oxide layer 124 on the top surface of the patterned mask 122 and the bottom surface of the trench 140a, and the remaining silicon oxide layer 124a is located on the sidewall of the trench 140b. In this embodiment, this step further includes removing part of the first isolation structure 110a under the bottom surface of the trench 140a. Therefore, the top surface of the remaining first isolation structure 110b (including the silicon nitride layer 112b and the silicon oxide layer 114b) is lower than the top surface of the substrate 100a. At this time, the bottom surface of the trench 140b forms a saddle fin shape for Configuration of cell transistors to be formed later. In some embodiments, the method of removing part of the silicon oxide layer 124 and part of the plurality of first isolation structures 110a is, for example, an etch-back method, but the invention is not limited thereto.

接著,請參照圖4A至圖8C,移除多個主動區120與多個溝渠140交錯的部分基底100a,以形成多個第二開口160b,其中第二開口160b位於兩個相鄰的第一隔離結構110c之間,且多個第二開口160b的底面低於多個第一開口142的底面。詳細步驟如下所述。Next, referring to FIGS. 4A to 8C, a portion of the substrate 100a where the active regions 120 and the trenches 140 are intersected is removed to form a plurality of second openings 160b, wherein the second openings 160b are located in two adjacent first Between the isolation structures 110c, the bottom surface of the plurality of second openings 160b is lower than the bottom surface of the plurality of first openings 142. The detailed steps are as follows.

首先,請參照圖4A和圖5C,形成底部抗反射塗層(bottom anti-reflective coating,BARC)126,底部抗反射塗層126填滿溝渠140b且覆蓋圖案化遮罩122的頂面。如圖5C所示,在溝渠140b中,底部抗反射塗層126覆蓋基底100a以及第一隔離結構110b的表面。在一些實施例中,形成底部抗反射塗層126的方法例如是化學氣相沉積法、物理氣相沉積法或旋轉塗佈法,但本發明不限於此。在一些實施例中,底部抗反射塗層126的材料例如包括氮化矽、氮氧化矽或其組合,但本發明不限於此。First, referring to FIGS. 4A and 5C, a bottom anti-reflective coating (BARC) 126 is formed. The bottom anti-reflective coating 126 fills the trench 140b and covers the top surface of the patterned mask 122. As shown in FIG. 5C, in the trench 140b, the bottom anti-reflection coating 126 covers the surface of the substrate 100a and the first isolation structure 110b. In some embodiments, the method of forming the bottom anti-reflective coating 126 is, for example, a chemical vapor deposition method, a physical vapor deposition method, or a spin coating method, but the present invention is not limited thereto. In some embodiments, the material of the bottom anti-reflective coating 126 includes, for example, silicon nitride, silicon oxynitride, or a combination thereof, but the invention is not limited thereto.

接著,請參照圖5A至圖6C,在底部抗反射塗層126上形成光阻層128,光阻層128用於定義隔離區150的預定區域,即光阻層128覆蓋底部抗反射塗層126的頂面,僅暴露圖6A中的實線方框區域代表的隔離區150的預定形成區塊。接著,以光阻層128為罩幕,移除暴露的底部抗反射塗層126,在隔離區150中形成第二開口160。在一些實施例中,第二開口160在第三方向D3的寬度w1例如是大於或等於兩個相鄰的第一隔離結構110b之間的距離d1。如圖6A和圖6C所示,在本實施例中,第二開口160在第三方向D3的寬度w1例如是略大於兩個相鄰的第一隔離結構110b之間的距離d1。因此,以光阻層128為罩幕,移除暴露的底部抗反射塗層126後,第二開口160暴露部分基底100a以及部分第一隔離結構110b(包括氮化矽層112b和氧化矽層114b)的頂面,但本發明不限於此。在其他實施例中,第二開口160在第三方向D3的寬度w1也可以例如是等於兩個相鄰的第一隔離結構110b之間的距離d1。在此情況下,第二開口160僅暴露部分基底100a的頂面。另外,如圖6A和圖6B所示,在本實施例中,第二開口160在第四方向D4的寬度w2例如是略大於溝渠140b在第四方向D4的距離d2,其中第四方向D4例如是與第一方向D1垂直。因此,以光阻層128為罩幕,移除暴露的底部抗反射塗層126後,第二開口160暴露部分基底100a的頂面、部分氧化矽層124a的側壁和頂面以及部分圖案化遮罩122的頂面,但本發明不限於此。Next, referring to FIGS. 5A to 6C, a photoresist layer 128 is formed on the bottom anti-reflective coating 126. The photoresist layer 128 is used to define a predetermined area of the isolation region 150, that is, the photoresist layer 128 covers the bottom anti-reflective coating 126 The top surface of FIG. 6A only exposes the predetermined formation area of the isolation region 150 represented by the solid box area in FIG. 6A. Next, using the photoresist layer 128 as a mask, the exposed bottom anti-reflective coating 126 is removed, and a second opening 160 is formed in the isolation region 150. In some embodiments, the width w1 of the second opening 160 in the third direction D3 is, for example, greater than or equal to the distance d1 between two adjacent first isolation structures 110b. As shown in FIGS. 6A and 6C, in this embodiment, the width w1 of the second opening 160 in the third direction D3 is, for example, slightly larger than the distance d1 between two adjacent first isolation structures 110b. Therefore, using the photoresist layer 128 as a mask, after removing the exposed bottom anti-reflective coating 126, the second opening 160 exposes part of the substrate 100a and part of the first isolation structure 110b (including the silicon nitride layer 112b and the silicon oxide layer 114b). ), but the present invention is not limited to this. In other embodiments, the width w1 of the second opening 160 in the third direction D3 may also be, for example, equal to the distance d1 between two adjacent first isolation structures 110b. In this case, the second opening 160 only exposes a part of the top surface of the substrate 100a. In addition, as shown in FIGS. 6A and 6B, in this embodiment, the width w2 of the second opening 160 in the fourth direction D4 is, for example, slightly larger than the distance d2 of the trench 140b in the fourth direction D4, where the fourth direction D4 is for example It is perpendicular to the first direction D1. Therefore, using the photoresist layer 128 as a mask, after removing the exposed bottom anti-reflective coating 126, the second opening 160 exposes part of the top surface of the substrate 100a, part of the sidewall and top surface of the silicon oxide layer 124a, and part of the patterned mask. The top surface of the cover 122, but the present invention is not limited to this.

接著,請參照圖6A至圖7C,繼續以光阻層128為罩幕,移除暴露的部分基底100a以及部分第一隔離結構110b,以形成第二開口160a。在一些實施例中,第二開口160a的底面例如是與第一隔離結構110c的底面共平面。在其他實施例中,第二開口160a的底面例如是低於第一隔離結構110c的底面。在一些實施例中,形成第二開口160a的方法例如是蝕刻法。舉例來說,蝕刻法例如是非等向性蝕刻、等向性蝕刻或其組合。在本實施例中,蝕刻法例如是非等向性電漿蝕刻與等向性電漿蝕刻的組合,也可以是非等向性電漿蝕刻與濕蝕刻的組合,但本發明不限於此。在本實施例中,第二開口160暴露部分基底100a以及部分第一隔離結構110b的頂面(如圖6C所示),因此,繼續以光阻層128為罩幕,移除暴露的部分基底100a以及部分第一隔離結構110b後,第二開口160a暴露部分基底100b的表面以及部分第一隔離結構110c(包括氮化矽層112c和部分氧化矽層114c)的側壁(如圖7C所示)。值得注意的是,在本實施例中,此步驟可例如包括移除部分基底100a以及第一隔離結構110b的部分氮化矽層112b和部分氧化矽層114b。在其他實施例中,此步驟也可例如包括移除部分基底100a以及第一隔離結構110b的部分氧化矽層114b。抑或是,在其他實施例中,此步驟可例如僅移除部分基底100a。換句話說,此步驟移除的部分取決於第二開口160在第三方向D3的寬度w1與兩個相鄰的第一隔離結構110b之間的距離d1之間的關係。在本實施例中,在第二開口160a中,只要剩餘的兩個相鄰的第一隔離結構110c之間不存在基底即可。也就是說,在後續步驟形成的第二隔離結構與第一隔離結構110c之間不存在基底即可,將於後文詳述。如圖7B所示,在本實施例中,繼續以光阻層128為罩幕,移除暴露的部分基底100a後,第二開口160a暴露部分基底100b的側壁和底面、部分氧化矽層124a的側壁和頂面以及部分圖案化遮罩122的頂面,但本發明不限於此。Next, referring to FIGS. 6A to 7C, continue to use the photoresist layer 128 as a mask to remove the exposed part of the substrate 100a and part of the first isolation structure 110b to form the second opening 160a. In some embodiments, the bottom surface of the second opening 160a is coplanar with the bottom surface of the first isolation structure 110c, for example. In other embodiments, the bottom surface of the second opening 160a is lower than the bottom surface of the first isolation structure 110c, for example. In some embodiments, the method of forming the second opening 160a is, for example, an etching method. For example, the etching method is anisotropic etching, isotropic etching, or a combination thereof. In this embodiment, the etching method is, for example, a combination of anisotropic plasma etching and isotropic plasma etching, or a combination of anisotropic plasma etching and wet etching, but the invention is not limited thereto. In this embodiment, the second opening 160 exposes part of the top surface of the substrate 100a and part of the first isolation structure 110b (as shown in FIG. 6C). Therefore, the photoresist layer 128 is used as a mask to remove the exposed part of the substrate. After 100a and a portion of the first isolation structure 110b, the second opening 160a exposes a portion of the surface of the substrate 100b and a portion of the sidewall of the first isolation structure 110c (including the silicon nitride layer 112c and a portion of the silicon oxide layer 114c) (as shown in FIG. 7C) . It is worth noting that, in this embodiment, this step may include, for example, removing part of the substrate 100a and part of the silicon nitride layer 112b and part of the silicon oxide layer 114b of the first isolation structure 110b. In other embodiments, this step may also include, for example, removing part of the substrate 100a and part of the silicon oxide layer 114b of the first isolation structure 110b. Or, in other embodiments, this step may, for example, only remove part of the substrate 100a. In other words, the part removed in this step depends on the relationship between the width w1 of the second opening 160 in the third direction D3 and the distance d1 between two adjacent first isolation structures 110b. In this embodiment, in the second opening 160a, as long as there is no substrate between the remaining two adjacent first isolation structures 110c. In other words, there is no substrate between the second isolation structure formed in the subsequent step and the first isolation structure 110c, which will be described in detail later. As shown in FIG. 7B, in this embodiment, the photoresist layer 128 is continued to be used as a mask. After removing the exposed part of the substrate 100a, the second opening 160a exposes part of the sidewall and bottom surface of the substrate 100b, and part of the silicon oxide layer 124a. The side walls and the top surface and the top surface of the partially patterned mask 122, but the invention is not limited thereto.

接著,請參照圖7A至圖8C,移除光阻層128以及剩餘的底部抗反射塗層126a,以繼續進行後續形成隔離區150的製程。請參照圖8C,第二開口160b的底面低於第一隔離結構110c的頂面。Next, referring to FIGS. 7A to 8C, the photoresist layer 128 and the remaining bottom anti-reflective coating 126a are removed to continue the subsequent process of forming the isolation region 150. Referring to FIG. 8C, the bottom surface of the second opening 160b is lower than the top surface of the first isolation structure 110c.

接著,請參照圖8A至圖10C,在多個第二開口160b中形成多個第二隔離結構170,以填滿多個第二開口160b。在一些實施例中,當第二開口160b的底面例如是與第一隔離結構110c的底面共平面時,形成的多個第二隔離結構170的底部則與多個第一隔離結構110c的底部共平面。在其他實施例中,當第二開口160b的底面例如是低於第一隔離結構110c的底面時,形成的多個第二隔離結構170的底部則低於多個第一隔離結構110c的底部。在上述兩種情況下,隔離區150中的第二隔離結構132a可避免寄生金氧半場效電晶體(MOSFET)以及列撞擊(row hammer)的疑慮,且第二隔離結構170的底部愈低,隔離效果愈佳。詳細步驟如下所述。Next, referring to FIGS. 8A to 10C, a plurality of second isolation structures 170 are formed in the plurality of second openings 160b to fill the plurality of second openings 160b. In some embodiments, when the bottom surface of the second opening 160b is coplanar with the bottom surface of the first isolation structure 110c, the bottoms of the plurality of second isolation structures 170 formed are the same as the bottoms of the plurality of first isolation structures 110c. flat. In other embodiments, when the bottom surface of the second opening 160b is lower than the bottom surface of the first isolation structure 110c, the bottom of the plurality of second isolation structures 170 formed is lower than the bottom of the plurality of first isolation structures 110c. In the above two cases, the second isolation structure 132a in the isolation region 150 can avoid the parasitic MOSFET and row hammer, and the bottom of the second isolation structure 170 is lower, The better the isolation effect. The detailed steps are as follows.

首先,請參照圖8A至圖9C,先形成氧化矽層130,其中氧化矽層130例如是共形地形成在溝渠140b中,以覆蓋溝渠140b的部分側壁與底面。詳細來說,如圖8B所示,在前述步驟中,溝渠140b的部分側壁已被氧化矽層124a覆蓋。因此,在此步驟中,如圖9B所示,氧化矽層130例如是形成在溝渠140b中暴露的側壁以及底面上。也就是說,此時,溝渠140b的側壁例如是被氧化矽層130以及氧化矽層124a所覆蓋,而在溝渠140b底面暴露的基底100b以及暴露的第一隔離結構110c表面則被氧化矽層130所覆蓋。在本實施例中,氧化矽層130的形成方法例如是內部氧化法(inner oxidation),但本發明不限於此。接著,形成氮化矽層132,其中氮化矽層132例如是填滿溝渠140b且覆蓋圖案化遮罩122的頂面。在一些實施例中,氮化矽層132的形成方法例如是化學氣相沉積法,但本發明不限於此。First, referring to FIGS. 8A to 9C, a silicon oxide layer 130 is formed first. The silicon oxide layer 130 is formed conformally in the trench 140b, for example, to cover part of the sidewall and bottom surface of the trench 140b. In detail, as shown in FIG. 8B, in the foregoing step, part of the sidewall of the trench 140b has been covered by the silicon oxide layer 124a. Therefore, in this step, as shown in FIG. 9B, the silicon oxide layer 130 is formed on the exposed sidewalls and bottom surface of the trench 140b, for example. That is, at this time, the sidewalls of the trench 140b are covered by the silicon oxide layer 130 and the silicon oxide layer 124a, and the exposed substrate 100b and the exposed surface of the first isolation structure 110c at the bottom of the trench 140b are covered by the silicon oxide layer 130. Covered. In this embodiment, the formation method of the silicon oxide layer 130 is, for example, inner oxidation, but the invention is not limited to this. Next, a silicon nitride layer 132 is formed, where the silicon nitride layer 132 fills the trench 140b and covers the top surface of the patterned mask 122, for example. In some embodiments, the formation method of the silicon nitride layer 132 is, for example, a chemical vapor deposition method, but the invention is not limited thereto.

接著,請參照圖9A至圖10C,移除部分氮化矽層132,形成溝渠140c,剩餘的氮化矽層132a的頂面與覆蓋第一隔離結構110c的氧化矽層130的頂面實質上共平面。詳細來說,溝渠140c的底面具有多個凹部R1和多個凸部R2交替排列,其中剩餘的氮化矽層132a以及與其相鄰的兩個第一隔離結構110c位於凹部R1,其餘的基底100b位於凸部R2。在一些實施例中,移除部分氮化矽層132的方法例如是回蝕刻法,例如濕蝕刻法,但本發明不限於此。值得一提的是,在隔離區150中剩餘的氮化矽層132a構成第二隔離結構170。Next, referring to FIGS. 9A to 10C, a portion of the silicon nitride layer 132 is removed to form a trench 140c. The top surface of the remaining silicon nitride layer 132a and the top surface of the silicon oxide layer 130 covering the first isolation structure 110c are substantially Coplanar. In detail, the bottom surface of the trench 140c has a plurality of concave portions R1 and a plurality of convex portions R2 alternately arranged, wherein the remaining silicon nitride layer 132a and two adjacent first isolation structures 110c are located in the concave portion R1, and the rest of the substrate 100b Located at the convex part R2. In some embodiments, the method for removing part of the silicon nitride layer 132 is, for example, an etch-back method, such as a wet etching method, but the invention is not limited thereto. It is worth mentioning that the remaining silicon nitride layer 132a in the isolation region 150 constitutes the second isolation structure 170.

接著,請參照圖10A至圖12C,在溝渠140c中形成字元線結構137。接著,形成第三隔離結構138覆蓋字元線結構137並填滿溝渠140c。詳細步驟如下所述。Next, referring to FIGS. 10A to 12C, a word line structure 137 is formed in the trench 140c. Next, a third isolation structure 138 is formed to cover the word line structure 137 and fill the trench 140c. The detailed steps are as follows.

首先,請參照圖10A至圖11C,先對溝渠140c進行預清潔(pre-clean),以去除溝渠140c表面上的雜質。在一些實施例中,例如是使用稀釋氫氟酸(DHF)對溝渠140c進行預清潔,但本發明不限於此。接著,形成閘氧化層133。如圖11B所示,在本實施例中,閘氧化層133例如是共形地形成在溝渠140c的底面和側壁上。也就是說,如圖11C所示,在溝渠140c的底面凹部R1處,閘氧化層133覆蓋第二隔離結構170頂面以及覆蓋兩個相鄰的第一隔離結構110c上的氧化矽層130,但本發明不限於此。接著,形成襯層134。在本實施例中,襯層134例如是共形地覆蓋閘氧化層133,以作為一緩衝層。在一些實施例中,襯層134的材料例如包括氮化鈦、氮化鎢、氮化鉭或其組合。接著,形成導體材料層136以填滿溝渠140c。在一些實施例中,導體材料層136例如是金屬材料、阻障金屬材料或其組合。在本實施例中,導體材料層136的材料例如是鎢,但本發明不限於此。在一些實施例中,襯層134和導體材料層136的形成方法例如包括濺鍍法、電鍍法或電子束蒸鍍法,但本發明不限於此。First, referring to FIGS. 10A to 11C, the trench 140c is pre-cleaned to remove impurities on the surface of the trench 140c. In some embodiments, for example, diluted hydrofluoric acid (DHF) is used to pre-clean the trench 140c, but the present invention is not limited thereto. Next, a gate oxide layer 133 is formed. As shown in FIG. 11B, in this embodiment, the gate oxide layer 133 is, for example, conformally formed on the bottom surface and sidewalls of the trench 140c. That is, as shown in FIG. 11C, at the bottom recess R1 of the trench 140c, the gate oxide layer 133 covers the top surface of the second isolation structure 170 and covers the silicon oxide layer 130 on two adjacent first isolation structures 110c. But the present invention is not limited to this. Next, the liner 134 is formed. In this embodiment, the liner layer 134 covers the gate oxide layer 133 conformally, for example, as a buffer layer. In some embodiments, the material of the liner layer 134 includes, for example, titanium nitride, tungsten nitride, tantalum nitride, or a combination thereof. Next, a conductive material layer 136 is formed to fill the trench 140c. In some embodiments, the conductive material layer 136 is, for example, a metal material, a barrier metal material, or a combination thereof. In this embodiment, the material of the conductive material layer 136 is, for example, tungsten, but the invention is not limited to this. In some embodiments, the method for forming the liner layer 134 and the conductive material layer 136 includes, for example, sputtering, electroplating, or electron beam evaporation, but the present invention is not limited thereto.

接著,請參照圖11A至圖12C,移除部分導體材料層136以及部份襯層134,以形成字元線結構137。也就是說,剩餘的導體材料層136a以及襯層134a構成字元線結構137。在一些實施例中,移除部分導體材料層136以及部份襯層134的方法例如是回蝕刻法。在一些實施例中,字元線結構137的頂面例如是低於基底100b的頂面。接著,形成第三隔離結構138,以覆蓋字元線結構137並填滿溝渠。在一些實施例中,形成第三隔離結構138的方法例如是先形成介電材料層填滿溝渠,並覆蓋字元線結構137以及圖案化遮罩122的頂面上。最後,移除部分介電材料層以及部分圖案化遮罩122,剩餘的介電材料層即為第三隔離結構138。至此,可繼續進行後續半導體元件製程,例如電容器接觸窗、位元線等製程。舉例來說,如圖12A所示,圖中實線方框例如可為形成電容器接觸窗180的預定區域,圖中沿第二方向D2延伸且沿第三方向D3排列的多個條狀圖形例如可為形成位元線結構190的預定區域,但本發明不限於此。Next, referring to FIGS. 11A to 12C, part of the conductive material layer 136 and part of the liner layer 134 are removed to form a word line structure 137. In other words, the remaining conductive material layer 136a and the liner layer 134a constitute the word line structure 137. In some embodiments, the method of removing part of the conductive material layer 136 and part of the liner layer 134 is, for example, an etch-back method. In some embodiments, the top surface of the word line structure 137 is lower than the top surface of the substrate 100b, for example. Next, a third isolation structure 138 is formed to cover the word line structure 137 and fill the trench. In some embodiments, the method of forming the third isolation structure 138 is, for example, to first form a dielectric material layer to fill the trench and cover the top surface of the word line structure 137 and the patterned mask 122. Finally, part of the dielectric material layer and part of the patterned mask 122 are removed, and the remaining dielectric material layer is the third isolation structure 138. At this point, the subsequent semiconductor device manufacturing processes, such as capacitor contact windows, bit lines, etc., can be continued. For example, as shown in FIG. 12A, the solid-line box in the figure may be, for example, a predetermined area where the capacitor contact window 180 is formed. In the figure, a plurality of strip patterns extending along the second direction D2 and arranged along the third direction D3, such as It may be a predetermined area forming the bit line structure 190, but the present invention is not limited thereto.

值得一提的是,在本發明的實施例中,隔離區150由下而上可包括第二隔離結構170、字元線結構137以及第三隔離結構138三層結構。由於在定義字元線結構137的過程中,可同時定義第二隔離結構170以及第三隔離結構138的位置,其中隔離區150中的第三隔離結構138的頂邊即是由字元線結構137定義。進一步來說,在本發明的實施例中,僅需針對定義字元線結構137而開一次光罩,因此,相較於傳統的製程,本實施例不需分別定義字元線結構137以及定義第二隔離結構170以及第三隔離結構138的位置,故可避免隔離區150中第二隔離結構170以及第三隔離結構138與字元線結構137之間重疊位移的問題,進而可避免動態隨機存取記憶體不正常刷新(refresh)的問題。另外,依照本發明的實施例所製成的動態隨機存取記憶體,其可同時具有較窄的隔離區150並保持較寬的電容器接觸窗180,故可達到較低的電容器接觸窗阻抗以及較高的記憶胞Tr通道啟動電流,進而使動態隨機存取記憶體具有較佳的資料讀寫表現。It is worth mentioning that, in the embodiment of the present invention, the isolation region 150 may include a three-layer structure of the second isolation structure 170, the word line structure 137, and the third isolation structure 138 from bottom to top. Since in the process of defining the word line structure 137, the positions of the second isolation structure 170 and the third isolation structure 138 can be defined at the same time, wherein the top side of the third isolation structure 138 in the isolation region 150 is formed by the word line structure 137 definition. Furthermore, in the embodiment of the present invention, only one mask is required to define the character line structure 137. Therefore, compared with the traditional manufacturing process, the present embodiment does not need to separately define the character line structure 137 and the definition The positions of the second isolation structure 170 and the third isolation structure 138 can avoid the problem of overlapping displacement between the second isolation structure 170 and the third isolation structure 138 and the character line structure 137 in the isolation region 150, thereby avoiding dynamic randomness Access memory is not refreshed normally (refresh). In addition, the dynamic random access memory made according to the embodiment of the present invention can simultaneously have a narrower isolation area 150 and maintain a wider capacitor contact window 180, so it can achieve lower capacitor contact window impedance and The higher starting current of the Tr channel of the memory cell enables the dynamic random access memory to have better data reading and writing performance.

另外,本發明的實施例提供一種動態隨機存取記憶體,請參照圖12A至圖12C,動態隨機存取記憶體例如包括:基底100b、多個第一隔離結構110c、多個字元線結構137、多個第二隔離結構170以及多個第三隔離結構138。多個第一隔離結構110c位於基底100b中,以定義出沿第一方向D1排列的多個主動區120,其中多個主動區120與多個第一隔離結構100c沿第一方向D1交替排列。多個字元線結構137穿過多個主動區120與多個第一隔離結構110c,多個字元線結構137沿第二方向D2排列延伸且沿第三方向D3延伸,其中第二方向D2與第三方向D3垂直,且第一方向D1與第二方向D2非正交且相交一角度。多個第二隔離結構138位於多個字元線結構137與多個主動區120交錯的基底100b中且位於兩個相鄰的第一隔離結構110c之間。多個第三隔離結構138覆蓋多個字元線結構137。In addition, an embodiment of the present invention provides a dynamic random access memory. Please refer to FIGS. 12A to 12C. The dynamic random access memory includes, for example, a substrate 100b, a plurality of first isolation structures 110c, and a plurality of word line structures. 137. A plurality of second isolation structures 170 and a plurality of third isolation structures 138. The plurality of first isolation structures 110c are located in the substrate 100b to define a plurality of active regions 120 arranged along the first direction D1, wherein the plurality of active regions 120 and the plurality of first isolation structures 100c are alternately arranged along the first direction D1. The plurality of character line structures 137 pass through the plurality of active regions 120 and the plurality of first isolation structures 110c, and the plurality of character line structures 137 are arranged and extend along the second direction D2 and extend along the third direction D3, wherein the second direction D2 and The third direction D3 is vertical, and the first direction D1 and the second direction D2 are non-orthogonal and intersect at an angle. The plurality of second isolation structures 138 are located in the substrate 100b where the plurality of word line structures 137 and the plurality of active regions 120 intersect and are located between two adjacent first isolation structures 110c. The plurality of third isolation structures 138 cover the plurality of word line structures 137.

在一些實施例中,第一隔離結構110c與第二隔離結構170之間具有至少一層氧化層。在一些實施例中,氧化層的材料例如包括氧化矽,但本發明不限於此。請參照圖12C,在本實施例中,第一隔離結構110c與第二隔離結構170之間的氧化層的上半部具有氧化矽層130,第一隔離結構110c與第二隔離結構170之間的氧化層的下半部則具有氧化矽層130以及氧化矽層114c,但本發明不限於此。在其他實施例中,第一隔離結構110c與第二隔離結構170之間的氧化層可例如僅具有氧化矽層130。在其他實施例中,第一隔離結構110c與第二隔離結構170之間的氧化層也可同時具有氧化矽層130以及氧化矽層114c。只要第一隔離結構110c與第二隔離結構170之間具有至少一層氧化層即可。In some embodiments, there is at least one oxide layer between the first isolation structure 110c and the second isolation structure 170. In some embodiments, the material of the oxide layer includes silicon oxide, but the invention is not limited thereto. 12C, in this embodiment, the upper half of the oxide layer between the first isolation structure 110c and the second isolation structure 170 has a silicon oxide layer 130, between the first isolation structure 110c and the second isolation structure 170 The lower half of the oxide layer has a silicon oxide layer 130 and a silicon oxide layer 114c, but the invention is not limited to this. In other embodiments, the oxide layer between the first isolation structure 110c and the second isolation structure 170 may only have the silicon oxide layer 130, for example. In other embodiments, the oxide layer between the first isolation structure 110c and the second isolation structure 170 may also have the silicon oxide layer 130 and the silicon oxide layer 114c at the same time. As long as there is at least one oxide layer between the first isolation structure 110c and the second isolation structure 170.

在一些實施例中,字元線結構137側壁上的氧化層包括氧化矽層124a以及氧化矽層130,其中在溝渠140c底面的凸部R2頂面上的部分為氧化矽層124a,在溝渠140c底面的凸部R2頂面下的部分為氧化矽層130。另外,在第二隔離結構170的側壁和底面上的氧化層為氧化矽層130。在一些實施例中,氧化矽層130的厚度例如大於閘氧化層133a的厚度,但本發明不限於此。In some embodiments, the oxide layer on the sidewall of the word line structure 137 includes a silicon oxide layer 124a and a silicon oxide layer 130. The portion on the top surface of the protrusion R2 on the bottom surface of the trench 140c is the silicon oxide layer 124a. The portion below the top surface of the convex portion R2 on the bottom surface is the silicon oxide layer 130. In addition, the oxide layer on the sidewall and bottom surface of the second isolation structure 170 is a silicon oxide layer 130. In some embodiments, the thickness of the silicon oxide layer 130 is greater than the thickness of the gate oxide layer 133a, but the invention is not limited thereto.

綜上所述,在本發明的動態隨機存取記憶體中,藉由定義字元線結構的製程中,同時定義隔離區中的第二隔離結構以及第三隔離結構的位置,故可避免隔離區中第二隔離結構以及第三隔離結構與字元線結構之間重疊位移的問題,進而避免動態隨機存取記憶體不正常刷新的問題。同時,藉此製程製備的動態隨機存取記憶體可具有較窄的隔離區並同時保持較寬的電容器接觸窗,故可達到較低的電容器接觸窗阻抗以及較高的記憶胞Tr通道啟動電流,進而使動態隨機存取記憶體具有較佳的資料讀寫表現。另一方面,由於製程所需的光罩數量減少,亦可降低整體製程的成本。In summary, in the dynamic random access memory of the present invention, by defining the character line structure in the process, the positions of the second isolation structure and the third isolation structure in the isolation region are defined at the same time, so that isolation can be avoided. The problem of overlap and displacement between the second isolation structure and the third isolation structure and the word line structure in the area, thereby avoiding the problem of abnormal refresh of the dynamic random access memory. At the same time, the dynamic random access memory prepared by this process can have a narrower isolation area while maintaining a wider capacitor contact window, so it can achieve a lower capacitor contact window impedance and a higher memory cell Tr channel startup current , So that the dynamic random access memory has better data read and write performance. On the other hand, since the number of masks required for the manufacturing process is reduced, the overall manufacturing process cost can also be reduced.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be determined by the scope of the attached patent application.

100、100a、100b:基底 110、110a、110b、110c:第一隔離結構 112、112a、112b、112c、132、132a:氮化矽層 114、114a、114b、114c、124、124a、130:氧化矽層 120:主動區 122:圖案化遮罩 126、126a:底部抗反射塗層 128:光阻層 133、133a:閘氧化層 134、134a:襯層 136、136a:導體材料層 137:字元線結構 138:第三隔離結構 140、140a、140b、140c:溝渠 142:第一開口 150:隔離區 160、160a、160b:第二開口 170:第二隔離結構 180:電容器接觸窗 190:位元線結構 A-A’、B-B’:線段 D1、D2、D3、D4:方向 d1、d2:距離 R1:凹部 R2:凸部 w1、w2:寬度 θ:角度100, 100a, 100b: base 110, 110a, 110b, 110c: first isolation structure 112, 112a, 112b, 112c, 132, 132a: silicon nitride layer 114, 114a, 114b, 114c, 124, 124a, 130: silicon oxide layer 120: active area 122: Patterned mask 126, 126a: bottom anti-reflective coating 128: photoresist layer 133, 133a: gate oxide layer 134, 134a: Lining 136, 136a: Conductor material layer 137: Character line structure 138: The third isolation structure 140, 140a, 140b, 140c: trench 142: The first opening 150: Quarantine 160, 160a, 160b: second opening 170: second isolation structure 180: capacitor contact window 190: bit line structure A-A’, B-B’: Line segment D1, D2, D3, D4: direction d1, d2: distance R1: recess R2: Convex w1, w2: width θ: Angle

圖1A至圖12A是本發明一實施例的動態隨機存取記憶體之製造流程的上視示意圖。 圖1B至圖12B是分別沿圖1A至圖12A之線段A-A’的剖面示意圖。 圖1C至圖12C是分別沿圖1A至圖12A之線段B-B’的剖面示意圖。1A to 12A are schematic top views of a manufacturing process of a dynamic random access memory according to an embodiment of the invention. Figures 1B to 12B are schematic cross-sectional views taken along the line A-A' of Figures 1A to 12A, respectively. Figures 1C to 12C are schematic cross-sectional views taken along the line B-B' of Figures 1A to 12A, respectively.

100b:基底 100b: base

110c:第一隔離結構 110c: the first isolation structure

112c:氮化矽層 112c: silicon nitride layer

114c、130:氧化矽層 114c, 130: silicon oxide layer

133a:閘氧化層 133a: gate oxide layer

134a:襯層 134a: Lining

136a:導體材料層 136a: Conductor material layer

137:字元線結構 137: Character line structure

138:第三隔離結構 138: The third isolation structure

170:第二隔離結構 170: second isolation structure

Claims (15)

一種動態隨機存取記憶體,包括: 基底; 多個第一隔離結構,位於所述基底中,以定義出沿第一方向排列的多個主動區,其中所述多個主動區與所述多個第一隔離結構沿所述第一方向交替排列; 多個字元線結構,穿過所述多個主動區與所述多個第一隔離結構,所述多個字元線結構沿第二方向排列且沿第三方向延伸,其中所述第二方向與所述第三方向垂直,且所述第一方向與所述第二方向相交一角度; 多個第二隔離結構,位於所述多個字元線結構與所述多個主動區交錯的所述基底中且位於兩個相鄰的所述第一隔離結構之間;以及 多個第三隔離結構,覆蓋所述多個字元線結構。A dynamic random access memory, including: Base A plurality of first isolation structures are located in the substrate to define a plurality of active regions arranged along a first direction, wherein the plurality of active regions and the plurality of first isolation structures alternate along the first direction arrangement; A plurality of character line structures pass through the plurality of active regions and the plurality of first isolation structures, the plurality of character line structures are arranged in a second direction and extend in a third direction, wherein the second A direction is perpendicular to the third direction, and the first direction and the second direction intersect at an angle; A plurality of second isolation structures located in the substrate where the plurality of character line structures and the plurality of active regions are intersected and between two adjacent first isolation structures; and A plurality of third isolation structures cover the plurality of character line structures. 如申請專利範圍第1項所述的動態隨機存取記憶體,其中所述多個第一隔離結構與所述多個第二隔離結構之間具有至少一層氧化層。The dynamic random access memory according to the first item of the scope of patent application, wherein there is at least one oxide layer between the plurality of first isolation structures and the plurality of second isolation structures. 如申請專利範圍第2項所述的動態隨機存取記憶體,其中所述至少一層氧化層的材料包括氧化矽。According to the dynamic random access memory described in the scope of patent application, the material of the at least one oxide layer includes silicon oxide. 如申請專利範圍第1項所述的動態隨機存取記憶體,其中所述多個第二隔離結構的底部與所述多個第一隔離結構的底部共平面。The dynamic random access memory according to claim 1, wherein the bottoms of the second isolation structures are coplanar with the bottoms of the first isolation structures. 如申請專利範圍第1項所述的動態隨機存取記憶體,其中所述多個第二隔離結構的底部低於所述多個第一隔離結構的底部。The dynamic random access memory according to claim 1, wherein the bottom of the plurality of second isolation structures is lower than the bottom of the plurality of first isolation structures. 如申請專利範圍第1項所述的動態隨機存取記憶體,其中所述第二隔離結構在所述第三方向上的寬度大於或等於兩個相鄰的所述第一隔離結構之間的距離。The dynamic random access memory according to claim 1, wherein the width of the second isolation structure in the third direction is greater than or equal to the distance between two adjacent first isolation structures . 如申請專利範圍第1項所述的動態隨機存取記憶體,其中所述多個字元線結構更包括閘氧化層,所述閘氧化層位於所述多個字元線結構與所述基底、所述多個第一隔離結構以及所述多個第二隔離結構之間。The dynamic random access memory according to claim 1, wherein the plurality of word line structures further includes a gate oxide layer, and the gate oxide layer is located between the plurality of word line structures and the substrate , Between the plurality of first isolation structures and the plurality of second isolation structures. 如申請專利範圍第7項所述的動態隨機存取記憶體,更包括氧化層,位於所述多個第二隔離結構與所述基底之間,其中所述氧化層的厚度大於所述閘氧化層的厚度。The dynamic random access memory described in item 7 of the scope of patent application further includes an oxide layer located between the plurality of second isolation structures and the substrate, wherein the thickness of the oxide layer is greater than that of the gate oxide The thickness of the layer. 一種動態隨機存取記憶體的製造方法,包括: 在基底中形成多個第一隔離結構,以定義出沿第一方向排列的多個主動區,其中所述多個主動區與所述多個第一隔離結構沿所述第一方向交替排列; 移除部分所述多個第一隔離結構以及所述多個主動區的部分所述基底,以形成沿第二方向排列且沿第三方向延伸的多個溝渠,其中所述第二方向與所述第三方向垂直,且所述第一方向與所述第二方向相交一角度; 移除部分所述多個第一隔離結構,以在所述多個溝渠中形成多個第一開口; 移除所述多個主動區與所述多個溝渠交錯的部分所述基底,以形成多個第二開口,其中所述第二開口位於兩個相鄰的所述第一隔離結構之間,且所述多個第二開口的底面低於所述多個第一開口的底面; 在所述多個第二開口中形成多個第二隔離結構,以填滿所述多個第二開口; 在所述多個溝渠中形成多個字元線結構;以及 形成多個第三隔離結構,以覆蓋所述多個字元線結構並填滿所述多個溝渠。A method for manufacturing dynamic random access memory includes: Forming a plurality of first isolation structures in the substrate to define a plurality of active regions arranged along a first direction, wherein the plurality of active regions and the plurality of first isolation structures are alternately arranged along the first direction; Remove a portion of the plurality of first isolation structures and a portion of the substrate of the plurality of active regions to form a plurality of trenches arranged in a second direction and extending in a third direction, wherein the second direction and the substrate The third direction is perpendicular, and the first direction and the second direction intersect at an angle; Removing part of the plurality of first isolation structures to form a plurality of first openings in the plurality of trenches; Removing a portion of the substrate where the active regions and the plurality of trenches intersect to form a plurality of second openings, wherein the second openings are located between two adjacent first isolation structures, And the bottom surface of the plurality of second openings is lower than the bottom surface of the plurality of first openings; Forming a plurality of second isolation structures in the plurality of second openings to fill the plurality of second openings; Forming a plurality of character line structures in the plurality of trenches; and A plurality of third isolation structures are formed to cover the plurality of character line structures and fill the plurality of trenches. 如申請專利範圍第9項所述的動態隨機存取記憶體的製造方法,其中所述多個第一隔離結構與所述多個第二隔離結構之間具有至少一層氧化層。According to the method for manufacturing a dynamic random access memory according to the scope of patent application, there is at least one oxide layer between the plurality of first isolation structures and the plurality of second isolation structures. 如申請專利範圍第9項所述的動態隨機存取記憶體的製造方法,其中所述至少一層氧化層的材料包括氧化矽。According to the method for manufacturing a dynamic random access memory described in the scope of patent application, the material of the at least one oxide layer includes silicon oxide. 如申請專利範圍第9項所述的動態隨機存取記憶體的製造方法,其中所述多個第二隔離結構的底部與所述多個第一隔離結構的底部共平面。According to the method for manufacturing a dynamic random access memory described in the scope of patent application, the bottoms of the plurality of second isolation structures are coplanar with the bottoms of the plurality of first isolation structures. 如申請專利範圍第9項所述的動態隨機存取記憶體的製造方法,其中所述多個第二隔離結構的底部低於所述多個第一隔離結構的底部。According to the method for manufacturing a dynamic random access memory described in the scope of patent application, the bottom of the plurality of second isolation structures is lower than the bottom of the plurality of first isolation structures. 如申請專利範圍第9項所述的動態隨機存取記憶體的製造方法,其中所述第二隔離結構在所述第三方向上的寬度大於或等於兩個相鄰的所述第一隔離結構之間的距離。The method for manufacturing a dynamic random access memory as described in the scope of patent application, wherein the width of the second isolation structure in the third direction is greater than or equal to that of two adjacent first isolation structures The distance between. 如申請專利範圍第9項所述的動態隨機存取記憶體的製造方法,其中形成所述多個第二開口的方法更包括: 形成底部抗反射塗層,以填滿所述溝渠;以及 移除部分所述底部抗反射塗層以及部分所述基底以形成所述多個第二開口。According to the method for manufacturing a dynamic random access memory described in claim 9, wherein the method for forming the plurality of second openings further includes: Forming a bottom anti-reflective coating to fill the trench; and Removing part of the bottom anti-reflective coating and part of the substrate to form the plurality of second openings.
TW108103976A 2019-02-01 2019-02-01 Dynamic random access memory and method of fabricating the same TWI678794B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108103976A TWI678794B (en) 2019-02-01 2019-02-01 Dynamic random access memory and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108103976A TWI678794B (en) 2019-02-01 2019-02-01 Dynamic random access memory and method of fabricating the same

Publications (2)

Publication Number Publication Date
TWI678794B TWI678794B (en) 2019-12-01
TW202030862A true TW202030862A (en) 2020-08-16

Family

ID=69582576

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108103976A TWI678794B (en) 2019-02-01 2019-02-01 Dynamic random access memory and method of fabricating the same

Country Status (1)

Country Link
TW (1) TWI678794B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI770756B (en) * 2021-01-06 2022-07-11 華邦電子股份有限公司 Buried word line structure and manufacturing method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9653614B2 (en) * 2012-01-23 2017-05-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10192995B2 (en) * 2015-04-28 2019-01-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10128251B2 (en) * 2016-09-09 2018-11-13 United Microelectronics Corp. Semiconductor integrated circuit structure and method for forming the same
US9947669B1 (en) * 2017-05-09 2018-04-17 Winbond Electronics Corp. Dynamic random access memory and method of manufacturing the same
US10147651B1 (en) * 2017-05-12 2018-12-04 International Business Machines Corporation Fabrication of fin field effect transistor complementary metal-oxide-semiconductor devices with uniform hybrid channels
TWI617007B (en) * 2017-06-09 2018-03-01 華邦電子股份有限公司 Memory device
US9972626B1 (en) * 2017-06-22 2018-05-15 Winbond Electronics Corp. Dynamic random access memory and method of fabricating the same
CN109273442B (en) * 2017-07-18 2021-05-04 联华电子股份有限公司 Semiconductor element and manufacturing method thereof
KR102279732B1 (en) * 2017-07-21 2021-07-22 삼성전자주식회사 Semiconductor memory device and method of forming the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI770756B (en) * 2021-01-06 2022-07-11 華邦電子股份有限公司 Buried word line structure and manufacturing method thereof

Also Published As

Publication number Publication date
TWI678794B (en) 2019-12-01

Similar Documents

Publication Publication Date Title
JP6684294B2 (en) Dynamic random access memory and manufacturing method thereof
US9305924B2 (en) Semiconductor device having gate electrode embedded in gate trench
TWI735860B (en) Method of manufacturing memory device
TWI640064B (en) Dynamic random access memory and method of manufacturing the same
KR100693879B1 (en) Semiconductor device having asymmetric bit lines and method of manufacturing the same
US7875540B2 (en) Method for manufacturing recess gate in a semiconductor device
TWI689050B (en) Memory devices and methods of fabricating the same
JP2009164535A (en) Semiconductor device and method of manufacturing the same
US10957576B2 (en) Dynamic random access memory and method of fabricating the same
JP2005079576A (en) Semiconductor device and manufacturing method therefor
US20220344348A1 (en) Dynamic random access memory
JP5529365B2 (en) Semiconductor memory device and manufacturing method thereof
CN111599810B (en) Dynamic random access memory and manufacturing method thereof
US20080150014A1 (en) Semiconductor Device and Method for Fabricating the Same
US6188115B1 (en) Semiconductor device with a conductive layer of small conductive resistance
TWI678794B (en) Dynamic random access memory and method of fabricating the same
US6967150B2 (en) Method of forming self-aligned contact in fabricating semiconductor device
JP6814839B2 (en) Dynamic random access memory and its manufacturing method
TW202243139A (en) Dynamic random access memory and method of fabricating the same
US10892323B2 (en) Semiconductor structure and manufacturing method thereof
US20080211018A1 (en) Semiconductor device and method of manufacturing the same
KR20070019134A (en) Semiconductor device and method of manufacturing the same
TW202034495A (en) Buried word line structure
CN112309983A (en) Dynamic random access memory and manufacturing method thereof
TWI833423B (en) Semiconductor device and manufacturing method thereof