TW202029518A - Semiconductor device and manufacturing method thereof - Google Patents
Semiconductor device and manufacturing method thereof Download PDFInfo
- Publication number
- TW202029518A TW202029518A TW108103147A TW108103147A TW202029518A TW 202029518 A TW202029518 A TW 202029518A TW 108103147 A TW108103147 A TW 108103147A TW 108103147 A TW108103147 A TW 108103147A TW 202029518 A TW202029518 A TW 202029518A
- Authority
- TW
- Taiwan
- Prior art keywords
- doped region
- doped
- region
- epitaxial layer
- regions
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 134
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 239000000758 substrate Substances 0.000 claims abstract description 79
- 238000002955 isolation Methods 0.000 claims description 56
- 125000006850 spacer group Chemical group 0.000 claims description 49
- 238000000034 method Methods 0.000 claims description 18
- 230000005540 biological transmission Effects 0.000 claims description 12
- 238000002834 transmittance Methods 0.000 abstract 1
- 238000010521 absorption reaction Methods 0.000 description 22
- 239000000463 material Substances 0.000 description 5
- 239000000969 carrier Substances 0.000 description 4
- 238000005468 ion implantation Methods 0.000 description 4
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 240000005523 Peganum harmala Species 0.000 description 1
- 229910003811 SiGeC Inorganic materials 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/1463—Pixel isolation structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14632—Wafer-level processed structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14683—Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
- H01L27/14687—Wafer level processing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Light Receiving Elements (AREA)
Abstract
Description
本發明是有關於一種半導體元件及其製造方法,且特別是有關於一種影像感測器(image sensor)及其製造方法。The present invention relates to a semiconductor device and its manufacturing method, and more particularly to an image sensor and its manufacturing method.
利用半導體製程製作的影像感測器(image sensor)可用來感測入射至基底的光線。影像感測器利用感測單元陣列來接收光能量並轉換為數位訊號。然而,因基底對不同波長光的吸收深度不同,各感測單元之間會存在不同程度的串擾(crosstalk)問題。具體而言,基底對於波長較長的入射光需具有較大的吸收深度,來增加對光子的吸收效率。在基底深處因入射光產生的載子已遠離感測單元的電場範圍,而可擴散至鄰近其他顏色的感測單元。如此一來,造成各種顏色的感測單元無法吸收僅由對應的色光所產生的載子,而產生感測誤差。An image sensor made by a semiconductor process can be used to sense light incident on the substrate. The image sensor uses an array of sensing units to receive light energy and convert it into a digital signal. However, because the substrate has different absorption depths for light of different wavelengths, there will be different degrees of crosstalk between the sensing units. Specifically, the substrate needs to have a larger absorption depth for incident light with a longer wavelength to increase the absorption efficiency of photons. The carriers generated by incident light deep in the substrate are far away from the electric field range of the sensing unit, and can diffuse to the neighboring sensing units of other colors. As a result, the sensing units of various colors cannot absorb the carriers generated only by the corresponding colored light, resulting in sensing errors.
本發明提供一種半導體元件及其製造方法。半導體元件可作為影像感測器,且可降低相鄰感測單元之間的串擾。The invention provides a semiconductor element and a manufacturing method thereof. The semiconductor device can be used as an image sensor, and can reduce crosstalk between adjacent sensing units.
本發明的半導體元件包括基底、多個光電二極體、多個彩色濾光圖案、第一摻雜區以及多個第二摻雜區。基底具有第一導電型。多個光電二極體由基底的頂面向基底的內部延伸。多個彩色濾光圖案設置於基底上,且分別縱向地交疊於多個光電二極體。第一摻雜區設置於基底中且具有第二導電型。多個第二摻雜區設置於基底中且具有所述第二導電型。多個第二摻雜區接觸於第一摻雜區並位於多個光電二極體與第一摻雜區之間。兩兩相鄰的第二摻雜區之間具有上間隔區,多個上間隔區縱向地交疊於多個彩色濾光圖案中具有穿透波長在620 nm至1000 nm範圍中的若干者。The semiconductor device of the present invention includes a substrate, a plurality of photodiodes, a plurality of color filter patterns, a first doped region and a plurality of second doped regions. The substrate has a first conductivity type. A plurality of photodiodes extend from the top surface of the substrate to the inside of the substrate. A plurality of color filter patterns are arranged on the substrate, and are respectively longitudinally overlapped on the plurality of photodiodes. The first doped region is disposed in the substrate and has a second conductivity type. A plurality of second doped regions are arranged in the substrate and have the second conductivity type. The plurality of second doped regions are in contact with the first doped region and are located between the plurality of photodiodes and the first doped region. There is an upper spacer region between two adjacent second doped regions, and the plurality of upper spacer regions are longitudinally overlapped with a plurality of color filter patterns having a transmission wavelength in the range of 620 nm to 1000 nm.
在一些實施例中,基底包括半導體基板以及磊晶層。磊晶層設置於半導體基板上。第一摻雜區由半導體基板內延伸至磊晶層的底部中,且多個第二摻雜區位於磊晶層內。In some embodiments, the base includes a semiconductor substrate and an epitaxial layer. The epitaxial layer is arranged on the semiconductor substrate. The first doped region extends from the semiconductor substrate to the bottom of the epitaxial layer, and a plurality of second doped regions are located in the epitaxial layer.
在一些實施例中,第一摻雜區連續地延伸,且垂直地交疊於多個第二摻雜區與多個光電二極體。In some embodiments, the first doped region extends continuously and vertically overlaps the plurality of second doped regions and the plurality of photodiodes.
在一些實施例中,第一摻雜區的頂面定義出多個上間隔區的底面。In some embodiments, the top surface of the first doped region defines the bottom surface of a plurality of upper spacer regions.
在一些實施例中,第一摻雜區的數量為多數。兩兩相鄰第一摻雜區之間具有下間隔區,多個下間隔區分別縱向地連通於多個上間隔區中的若干者。In some embodiments, the number of the first doped regions is a majority. There is a lower spacer between the two adjacent first doped regions, and the plurality of lower spacers are respectively longitudinally connected to some of the plurality of upper spacers.
在一些實施例中,多個下間隔區垂直地交疊於多個彩色濾光圖案中穿透波長在760 nm至1000 nm的範圍內的一者。In some embodiments, the plurality of lower spacers vertically overlap one of the plurality of color filter patterns with a transmission wavelength in the range of 760 nm to 1000 nm.
在一些實施例中,多個第二摻雜區延伸至第一摻雜區中。In some embodiments, the plurality of second doped regions extend into the first doped regions.
在一些實施例中,半導體元件更包括第三摻雜區。第三摻雜區設置於基底中且具有第二導電型。第三摻雜區電性連接於多個第二摻雜區與第一摻雜區。In some embodiments, the semiconductor device further includes a third doped region. The third doped region is disposed in the substrate and has the second conductivity type. The third doped region is electrically connected to the plurality of second doped regions and the first doped region.
在一些實施例中,半導體元件更包括多個隔離結構,由基底的頂面往基底的內部延伸,且分別位於兩相鄰光電二極體之間。In some embodiments, the semiconductor device further includes a plurality of isolation structures, which extend from the top surface of the substrate to the inside of the substrate, and are respectively located between two adjacent photodiodes.
在一些實施例中,多個隔離結構的深度小於多個光電二極體的深度。In some embodiments, the depth of the plurality of isolation structures is less than the depth of the plurality of photodiodes.
在一些實施例中,多個隔離結構的深度大於多個光電二極體的深度。In some embodiments, the depth of the plurality of isolation structures is greater than the depth of the plurality of photodiodes.
在一些實施例中,半導體元件更包括多個場摻雜區,設置於基底中且具有第一導電型。多個隔離結構位於多個場摻雜區中。In some embodiments, the semiconductor device further includes a plurality of field doped regions, which are disposed in the substrate and have the first conductivity type. Multiple isolation structures are located in multiple field doping regions.
本發明實施例的半導體元件的製造方法包括:在半導體基板內形成第一初始摻雜區,其中半導體基板具有第一導電型,且第一初始摻雜區具有第二導電型;在半導體基板上形成磊晶層,且使第一初始摻雜區向上擴散以延伸至磊晶層中,而形成第一摻雜區,其中磊晶層具有第一導電型;在磊晶層中形成具有第二導電型的多個第二摻雜區,其中多個第二摻雜區接觸於第一摻雜區,且位於磊晶層的頂面與第一摻雜區之間;在磊晶層中形成多個光電二極體,其中多個第二摻雜區位於多個光電二極體與第一摻雜區之間;在磊晶層上形成多個彩色濾光圖案,其中多個彩色濾光圖案分別交疊於多個光電二極體。兩兩相鄰的第二摻雜區之間具有上間隔區,多個上間隔區垂直地交疊於多個彩色濾光圖案中具有穿透波長在620至1000 nm範圍中的若干者。The manufacturing method of the semiconductor element of the embodiment of the present invention includes: forming a first initial doping region in a semiconductor substrate, wherein the semiconductor substrate has a first conductivity type, and the first initial doping region has a second conductivity type; on the semiconductor substrate An epitaxial layer is formed, and the first initial doped region is diffused upward to extend into the epitaxial layer to form a first doped region, wherein the epitaxial layer has a first conductivity type; and the epitaxial layer is formed with a second A plurality of second doped regions of conductivity type, wherein the plurality of second doped regions are in contact with the first doped region and are located between the top surface of the epitaxial layer and the first doped region; formed in the epitaxial layer A plurality of photodiodes, wherein a plurality of second doped regions are located between the plurality of photodiodes and the first doped region; a plurality of color filter patterns are formed on the epitaxial layer, wherein a plurality of color filters The patterns overlap multiple photodiodes respectively. There is an upper spacer region between two adjacent second doped regions, and the plurality of upper spacer regions are vertically overlapped in the plurality of color filter patterns and have a transmission wavelength in the range of 620 to 1000 nm.
在一些實施例中,多個第二摻雜區位於磊晶層與半導體基板中。形成多個第二摻雜區的方法包括:在形成第一初始摻雜區之後在半導體基板中形成多個第二初始摻雜區。多個第二初始摻雜區位於半導體基板的頂面與第一初始摻雜區之間。在形成磊晶層時多個第二初始摻雜區向上擴散以延伸至磊晶層中,而形成多個第二摻雜區。In some embodiments, the plurality of second doped regions are located in the epitaxial layer and the semiconductor substrate. The method of forming a plurality of second doped regions includes forming a plurality of second preliminary doped regions in a semiconductor substrate after forming the first preliminary doped regions. The plurality of second initial doping regions are located between the top surface of the semiconductor substrate and the first initial doping region. When the epitaxial layer is formed, the plurality of second initial doped regions diffuse upward to extend into the epitaxial layer to form a plurality of second doped regions.
在一些實施例中,第一初始摻雜區與第一摻雜區的數量分別為多數。兩兩相鄰的第一摻雜區之間具有下間隔區,多個下間隔區垂直地交疊於多個上間隔區中的若干者,並垂直地交疊於多個彩色濾光圖案中穿透波長在760 nm至1000 nm的範圍內的若干者。In some embodiments, the numbers of the first initial doping region and the first doping region are respectively a majority. There is a lower spacer between two adjacent first doped regions, and a plurality of lower spacers vertically overlaps some of the plurality of upper spacers, and vertically overlaps a plurality of color filter patterns The transmission wavelength is in the range of 760 nm to 1000 nm.
在一些實施例中,半導體元件的製造方法更包括:在磊晶層中形成具有第二導電型的第三摻雜區。第三摻雜區電性連接於多個第二摻雜區與第一摻雜區。In some embodiments, the manufacturing method of the semiconductor device further includes: forming a third doped region having the second conductivity type in the epitaxial layer. The third doped region is electrically connected to the plurality of second doped regions and the first doped region.
基於上述,本發明實施例的半導體元件可作為影像感測器,且包括埋設於基底中且彼此電性相連的第一摻雜區與多個第二摻雜區。藉由使第一摻雜區與第二摻雜區接收偏壓,可引導形成於基底內部的載子經由第一摻雜區與第二摻雜區而離開基底。如此一來,可降低相鄰次像素(或稱感測單元)之間的串擾。此外,位於第一摻雜區上方的多個第二摻雜區彼此分離,且基底的延伸至兩相鄰第二摻雜區之間的部分縱向地交疊於長波長的次像素。如此一來,可提高長波長入射光所通過的吸收區的吸收深度。因此,可提高長波長次像素的量子效率。Based on the above, the semiconductor device of the embodiment of the present invention can be used as an image sensor, and includes a first doped region and a plurality of second doped regions that are embedded in a substrate and electrically connected to each other. By making the first doped region and the second doped region receive a bias voltage, the carriers formed inside the substrate can be guided to leave the substrate through the first doped region and the second doped region. In this way, the crosstalk between adjacent sub-pixels (or sensing units) can be reduced. In addition, the plurality of second doped regions located above the first doped region are separated from each other, and the part of the substrate extending between two adjacent second doped regions longitudinally overlaps the long-wavelength sub-pixels. In this way, the absorption depth of the absorption region through which long-wavelength incident light passes can be increased. Therefore, the quantum efficiency of the long-wavelength sub-pixel can be improved.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings.
圖1是依照本發明一些實施例的半導體元件的製造方法的流程圖。圖2A至圖2F是圖1所示的半導體元件的製造方法中各階段的結構的剖視示意圖。FIG. 1 is a flowchart of a method of manufacturing a semiconductor device according to some embodiments of the present invention. 2A to 2F are schematic cross-sectional views of the structure at each stage in the method of manufacturing the semiconductor device shown in FIG. 1.
請參照圖1與圖2A,進行步驟S100,提供半導體基板W。在一些實施例中,半導體基板W為半導體晶圓。在另一些實施例中,半導體基板W為包括埋入式絕緣層的絕緣體上覆半導體(semiconductor-on-insulator,SOI)晶圓。半導體基板W中的半導體材料可包括元素半導體、合金半導體或化合物半導體。舉例而言,元素半導體可包括Si或Ge。合金半導體可包括SiGe、SiGeC等。化合物半導體可包括SiC、III-V族半導體材料或II-VI族半導體材料。此外,半導體材料可經摻雜為第一導電型。在一些實施例中,第一導電型為P型,但本發明實施例並不以此為限。1 and 2A, step S100 is performed to provide a semiconductor substrate W. In some embodiments, the semiconductor substrate W is a semiconductor wafer. In other embodiments, the semiconductor substrate W is a semiconductor-on-insulator (SOI) wafer including a buried insulating layer. The semiconductor material in the semiconductor substrate W may include elemental semiconductors, alloy semiconductors, or compound semiconductors. For example, the elemental semiconductor may include Si or Ge. The alloy semiconductor may include SiGe, SiGeC, and the like. The compound semiconductor may include SiC, a group III-V semiconductor material, or a group II-VI semiconductor material. In addition, the semiconductor material may be doped into the first conductivity type. In some embodiments, the first conductivity type is P-type, but the embodiments of the present invention are not limited to this.
在一些實施例中,最終形成的半導體元件(如圖2F所示的半導體元件10)具有中央區CR與圍繞中央區CR的邊緣區PR。中央區CR內設置有多個光電二極體(如圖2F所示的光電二極體PD),而邊緣區PR內則未設置有光電二極體。在此些實施例中,半導體基板W以及後續形成於其上的材料層也可劃分為中央區CR與邊緣區PR。In some embodiments, the final semiconductor element (the
進行步驟S102,在半導體基板W中形成第一初始摻雜區102。第一初始摻雜區102具有與第一導電型互補的第二導電型,例如是N型。舉例而言,第一初始摻雜區102的摻雜濃度可在1013
cm-2
至1016
cm-2
的範圍內。在一些實施例中,第一初始摻雜區102連續地延伸於中央區CR內,而並未延伸至邊緣區PR中。此外,第一初始摻雜區102為淺層的摻雜區。在一些實施例中,自半導體基板W的頂面至第一初始摻雜區102的頂面之深度D1在0 μm至1 μm的範圍內。另一方面,第一初始摻雜區102的厚度T1可在10 nm至1 μm的範圍內。Step S102 is performed to form a first initial
請參照圖1與圖2B,進行步驟S104,在半導體基板W上形成磊晶層EP。半導體基板W與磊晶層EP可一併地標示為基底SB。在一些實施例中,磊晶層EP實質上全面地覆蓋於半導體基板W上,而延伸於中央區CR與邊緣區PR中。在一些實施例中,磊晶層EP的厚度T2範圍為4 μm至8 μm。此外,磊晶層EP與半導體基板W均具有第一導電型,例如是P型。在一些實施例中,可在用於形成磊晶層EP的磊晶製程中同步進行摻雜。在其他實施例中,也可在磊晶製程之後藉由例如是離子植入(ion implantation)的方式進行摻雜。另一方面,由於磊晶製程是在高溫下進行(例如是1000 ℃至1200 ℃),故鄰近於磊晶層EP的半導體基板W也會受熱。如此一來,位於半導體基板W內的第一初始摻雜區102會向上擴散以延伸至磊晶層EP中,而形成第一摻雜區102a。換言之,第一摻雜區102a縱向地跨越半導體基板W與磊晶層EP的介面。藉由此方法所形成的第一摻雜區102a可位於磊晶層EP的底部。換言之,相較於直接在磊晶層中以離子植入的方式形成摻雜區的方式,本發明實施例的第一摻雜區102a可具有相當大的深度D2。在一些實施例中,第一摻雜區102a的深度D2在3 μm至6 μm的範圍內。此外,在一些實施例中,第一初始摻雜區102也會些微地朝其他方向擴散。在一些實施例中,所形成的第一摻雜區102a的厚度T3可為0.5 μm至4 μm。1 and FIG. 2B, step S104 is performed to form an epitaxial layer EP on the semiconductor substrate W. The semiconductor substrate W and the epitaxial layer EP may be collectively labeled as the base SB. In some embodiments, the epitaxial layer EP substantially completely covers the semiconductor substrate W, and extends in the central region CR and the edge region PR. In some embodiments, the thickness T2 of the epitaxial layer EP ranges from 4 μm to 8 μm. In addition, both the epitaxial layer EP and the semiconductor substrate W have the first conductivity type, for example, the P type. In some embodiments, the doping can be performed simultaneously during the epitaxial process for forming the epitaxial layer EP. In other embodiments, the doping may be performed after the epitaxial process, for example, by ion implantation. On the other hand, since the epitaxial process is performed at a high temperature (for example, 1000° C. to 1200° C.), the semiconductor substrate W adjacent to the epitaxial layer EP will also be heated. In this way, the first initial
請參照圖1與圖2C,進行步驟S106,在磊晶層EP中形成多個第二摻雜區104。第二摻雜區104與第一摻雜區102a均具有第二導電型,例如是N型。在一些實施例中,第二摻雜區104的摻雜濃度在1012
cm-2
至1014
cm-2
的範圍內。此外,第二摻雜區104的位置靠近磊晶層EP的底部,且位於第一摻雜區102a的上方。舉例而言,自磊晶層EP的頂面至第二摻雜區104的頂面的深度D3可在1.5 μm至3 μm的範圍內,且第二摻雜區104的厚度T4可在0.5 μm至3 μm的範圍內。1 and 2C, step S106 is performed to form a plurality of second
多個第二摻雜區104位於中央區CR與邊緣區PR內。位於中央區CR內的多個第二摻雜區104位於磊晶層EP的頂面與第一摻雜區102a之間。再者,位於中央區CR內的第二摻雜區104的底面可接觸於第一摻雜區102a的頂面。在一些實施例中,位於中央區CR內的第二摻雜區104更可縱向地延伸至第一摻雜區102a中。在此些實施例中,位於中央區CR內的第二摻雜區104的底面低於第一摻雜區102a的頂面。此外,中央區CR內的多個第二摻雜區104彼此分離。磊晶層EP的位於相鄰第二摻雜區104之間的部分可稱為上間隔區UI。相鄰第二摻雜區104的彼此面對的側壁定義出上間隔區UI的側面,而下伏的第一摻雜區102a的頂面定義出上間隔區UI的底面。在一些實施例中,上間隔區UI的寬度約為最終形成的影像感測器(例如是圖2F的半導體元件10)中單一次像素(sub-pixel)或單一感測單元的寬度。舉例而言,上間隔區UI的寬度W1可在1 μm至6 μm的範圍中。以另一角度觀之,上間隔區UI也可視為磊晶層EP的延伸至兩相鄰第二摻雜區104之間的延伸部。此外,上間隔區UI垂直地交疊於後續形成在磊晶層EP上的某些彩色濾光圖案。舉例而言,上間隔區UI垂直地交疊於吸收波長在620 nm至1000 nm範圍內的一些彩色濾光圖案(例如是圖2F所示的紅光彩色濾光圖案CFR或圖4所示的紅外光彩色濾光圖案CFI)。另一方面,邊緣區PR可具有一或多個第二摻雜區104。The plurality of second
在一些實施例中,可藉由離子植入製程形成位於中央區CR與邊緣區PR內的多個第二摻雜區104。此外,進行離子植入製程時可藉由在磊晶層EP上形成的光阻圖案(未繪示)定義出中央區CR內多個第二摻雜區104的位置。In some embodiments, a plurality of second
請參照圖1與圖2D,進行步驟S108,在磊晶層EP中形成多個場摻雜區FI。場摻雜區FI與磊晶層EP均具有第一導電型(例如是P型),且場摻雜區FI的摻雜濃度高於磊晶層EP的摻雜濃度。舉例而言,場摻雜區FI的摻雜濃度在1012 cm-2 至1014 cm-2 的範圍內。在一些實施例中,多個場摻雜區FI設置於中央區CR內,且彼此分離。磊晶層EP的位於兩兩相鄰的場摻雜區FI之間的部分可用以在後續步驟中形成多個光電二極體(例如是圖2F所示的光電二極體PD)。在一些實施例中,場摻雜層FI自磊晶層EP的表面向下延伸。在一些實施例中,場摻雜層FI的深度D4在0 μm至3 μm的範圍內。1 and 2D, step S108 is performed to form a plurality of field doped regions FI in the epitaxial layer EP. Both the field doping region FI and the epitaxial layer EP have the first conductivity type (for example, P type), and the doping concentration of the field doping region FI is higher than the doping concentration of the epitaxial layer EP. For example, the doping concentration of the field doping region FI is in the range of 10 12 cm -2 to 10 14 cm -2 . In some embodiments, a plurality of field doping regions FI are disposed in the central region CR and separated from each other. The part of the epitaxial layer EP located between the two adjacent field doped regions FI can be used to form a plurality of photodiodes (for example, the photodiode PD shown in FIG. 2F) in a subsequent step. In some embodiments, the field doping layer FI extends downward from the surface of the epitaxial layer EP. In some embodiments, the depth D4 of the field doping layer FI is in the range of 0 μm to 3 μm.
在一些實施例中,於步驟S108之前或之後,更可在磊晶層EP中形成第三摻雜區106。第一摻雜區102a、第二摻雜區104與第三摻雜區106皆具有第二導電型,例如是N型。在一些實施例中,第三摻雜區106的摻雜濃度在1012
cm-2
至1014
cm-2
的範圍內。第三摻雜區106可位於中央區CR內,且可位於多個場摻雜區FI的外側。在一些實施例中,第三摻雜區106可包括第三摻雜區106a與第三摻雜區106b。第三摻雜區106a由磊晶層EP的頂面向下延伸,而第三摻雜區106b連接於第三摻雜區106a與第二摻雜區104之間。另外,第二摻雜區104電性連接於第一摻雜區102a。如此一來,第三摻雜區106a、第三摻雜區106b、第二摻雜區104以及第一摻雜區102a彼此電性連接,且可經配置以接收一偏壓,例如是正偏壓。在一些實施例中,第三摻雜區106b的頂部可朝上延伸至第三摻雜區106a中,而第三摻雜區106b的底部可朝下延伸至第二摻雜區104中。In some embodiments, before or after step S108, a third
在一些實施例中,於步驟S108之前或之後,更可在磊晶層EP中形成第四摻雜區108。磊晶層EP與第四摻雜區108均具有第一導電型,例如是P型。舉例而言,第四摻雜區108的摻雜濃度在1012
cm-2
至1014
cm-2
的範圍內。在一些實施例中,第四摻雜區108可包括第四摻雜區108a與第四摻雜區108b。第四摻雜區108a位於中央區CR內,且可位於第三摻雜區106a與多個場摻雜區FI之間。在一些實施例中,第四摻雜區108a更可橫向地延伸至最外側的場摻雜區FI中。由於磊晶層EP與第四摻雜區108具有相同的導電型,故可彼此電性相連,且可經配置以接收一參考電壓或負偏壓。另一方面,第四摻雜區108b位於邊緣區PR內。在一些實施例中,第四摻雜區108b可橫向地延伸於磊晶層EP的位於邊緣區PR內的部分中,而可作為後續形成在邊緣區PR內的主動元件(例如是圖2F的主動元件AD)的井區。In some embodiments, before or after step S108, a fourth
進行步驟S110,以在磊晶層EP中形成隔離結構IS。在一些實施例中,隔離結構IS可包括多個隔離結構ISa以及多個隔離結構ISb。多個隔離結構ISa設置於中央區CR內,且分別位於多個場摻雜區FI中。隔離結構ISa可由磊晶層EP的頂面往磊晶層EP的內部延伸。此外,隔離結構ISa的底面高於場摻雜區FI的底面。換言之,隔離結構ISa的深度D5可小於場摻雜區FI的深度D4。舉例而言,隔離結構ISa的深度D5可在250 nm至400 nm的範圍內。隔離結構ISa與場摻雜區FI可合併地降低後續形成於隔離結構ISa相對兩側的光電二極體(例如是圖2F所示的光電二極體PD)之間的串擾(crosstalk)。另一方面,一些隔離結構ISb位於中央區CR內,而另一些隔離結構ISb位於邊緣區PR內。在一些實施例中,位於中央區CR內的隔離結構ISb可設置於第三摻雜區106a與第四摻雜區108a之間的介面附近。在此些實施例中,位於中央區CR內的隔離結構ISb更可橫向地延伸至第三摻雜區106a與第四摻雜區108a中。此外,位於邊緣區PR內的隔離結構ISb可彼此分離地設置於第四摻雜區108b中。在後續的製程中,可在相鄰的隔離結構ISb之間形成主動元件(例如是圖2F所示的主動元件AD)。在一些實施例中,隔離結構IS(例如是包括隔離結構ISa與隔離結構ISb)為淺溝渠隔離(shallow trench isolation,STI)結構。此外,在一些實施例中,隔離結構ISb的深度可實質上等於隔離結構ISa的深度。Step S110 is performed to form an isolation structure IS in the epitaxial layer EP. In some embodiments, the isolation structure IS may include a plurality of isolation structures ISa and a plurality of isolation structures ISb. The plurality of isolation structures ISa are disposed in the central region CR, and are respectively located in the plurality of field doping regions FI. The isolation structure ISa may extend from the top surface of the epitaxial layer EP to the inside of the epitaxial layer EP. In addition, the bottom surface of the isolation structure ISa is higher than the bottom surface of the field doping region FI. In other words, the depth D5 of the isolation structure ISa may be smaller than the depth D4 of the field doping region FI. For example, the depth D5 of the isolation structure ISa may be in the range of 250 nm to 400 nm. The isolation structure ISa and the field doped region FI can jointly reduce crosstalk between photodiodes (for example, the photodiodes PD shown in FIG. 2F) formed on opposite sides of the isolation structure ISa. On the other hand, some isolation structures ISb are located in the central region CR, while other isolation structures ISb are located in the edge region PR. In some embodiments, the isolation structure ISb located in the central region CR may be disposed near the interface between the third
在一些實施例中,隔離結構IS的形成方法可包括在磊晶層EP的表面形成溝渠(未繪示)。接著,藉由例如是化學氣相沈積製程的方法在溝渠中形成絕緣材料,以形成隔離結構IS。In some embodiments, the method for forming the isolation structure IS may include forming a trench (not shown) on the surface of the epitaxial layer EP. Then, an insulating material is formed in the trench by a method such as a chemical vapor deposition process to form the isolation structure IS.
請參照圖1與圖2E,進行步驟S112,以在磊晶層EP中形成多個光電二極體PD。多個光電二極體PD設置於中央區CR內。在一些實施例中,光電二極體PD設置於磊晶層EP的頂部。換言之,第二摻雜區104可位於光電二極體PD與第一摻雜區102a之間。此外,光電二極體PD縱向地交疊於第二摻雜區104與第一摻雜區102a。在一些實施例中,多個光電二極體PD可分別設置於兩相鄰場摻雜區FI之間(亦即兩隔離結構ISa之間)。光電二極體PD可包括第一電極E1與第二電極E2。在一些實施例中,第一電極E1與第二電極E2均為形成於磊晶層EP中的摻雜區。第一電極E1具有第一導電型(例如是P型),而第二電極E2具有第二導電型(例如是N型)。在一些實施例中,第一電極E1的摻雜濃度在1012
cm-2
至1015
cm-2
的範圍內,而第二電極E2的摻雜濃度在1012
cm-2
至1014
cm-2
的範圍內。在一些實施例中,第一電極E1設置於第二電極E2上方。在此些實施例中,第一電極E1可由磊晶層EP的頂面往磊晶層EP的內部延伸,且第二電極E2由第一電極E1的底面往下延伸。在一些實施例中,第一電極E1的底面高於隔離結構ISa的底面。另外,第二電極E2的底面可高於場摻雜區FI的底面,而可低於隔離結構ISa的底面。1 and 2E, step S112 is performed to form a plurality of photodiodes PD in the epitaxial layer EP. A plurality of photodiodes PD are arranged in the central region CR. In some embodiments, the photodiode PD is disposed on top of the epitaxial layer EP. In other words, the second
在一些實施例中,於步驟S112之前或之後,可在第三摻雜區106a的頂部形成接觸區110a。在一些實施例中,接觸區110a為摻雜區,且由磊晶層EP的頂面朝下延伸。在一些實施例中,接觸區110a的底面高於隔離結構ISb的底面,且高於第三摻雜區106a的底面。此外,接觸區110a具有第二導電型(例如是N型),且可電性連接於第三摻雜區106、第二摻雜區104以及第一摻雜區102a。在一些實施例中,接觸區110a為重摻雜區。在此些實施例中,接觸區110a的摻雜濃度高於第三摻雜區106的摻雜濃度。如此一來,藉由設置接觸區110a,可降低第三摻雜區106與後續形成於磊晶層EP上的內連線結構(例如是圖2F所示的內連線結構M)之間的接觸電阻。另一方面,可在第四摻雜區108a的頂部形成接觸區110b。相似於接觸區110a,接觸區110b也可為摻雜區,且由磊晶層EP的頂面朝下延伸。在一些實施例中,接觸區110b的底面高於隔離結構ISb(或隔離結構ISa)的底面,且高於第四摻雜區108a的底面。接觸區110b具有第一導電型(例如是P型),且可電性連接於第四摻雜區108a與磊晶層EP。在一些實施例中,接觸區110b為重摻雜區。在此些實施例中,接觸區110b的摻雜濃度高於第四摻雜區108a的摻雜濃度。如此一來,藉由設置接觸區110b,可降低第四摻雜區108a與後續形成於磊晶層EP上的內連線結構(例如是圖2F所示的內連線結構M)之間的接觸電阻。In some embodiments, before or after step S112, a
在一些實施例中,於步驟S112之前或之後,可在邊緣區PR內形成主動元件AD。各主動元件AD可位於相鄰的隔離結構ISb之間。舉例而言,主動元件AD可為場效電晶體。在一些實施例中,主動元件AD可包括閘極結構GS、汲極DE以及源極SE。閘極結構GS可位於磊晶層EP上,且包括閘極GE、閘介電層GD以及間隙壁(spacer)SP。閘介電層GD位於閘極GE與磊晶層EP的頂面之間,且間隙壁SP圍繞閘極GE與閘介電層GD。另一方面,汲極DE與源極SE可設置於磊晶層EP中且位於閘極結構GS的相對兩側。在一些實施例中,汲極DE與源極SE設置於第四摻雜區108b中。汲極DE與源極SE具有相同的導電型,且此導電型可互補於第四摻雜區108b的導電型。舉例而言,汲極DE與源極SE具有第二導電型(例如是N型),而第四摻雜區108b則具有第一導電型(例如是P型)。在其他實施例中,主動元件AD更可包括二極體、雙極接面電晶體(bipolar junction transistor, BJT)、其類似者或其組合。所屬領域中具有通常知識者可依據設計需求選擇主動元件AD的種類及配置方式,本發明實施例並不以此為限。In some embodiments, before or after step S112, active devices AD may be formed in the edge region PR. Each active device AD can be located between adjacent isolation structures ISb. For example, the active device AD can be a field effect transistor. In some embodiments, the active device AD may include a gate structure GS, a drain DE, and a source SE. The gate structure GS may be located on the epitaxial layer EP, and includes a gate GE, a gate dielectric layer GD, and a spacer SP. The gate dielectric layer GD is located between the top surface of the gate electrode GE and the epitaxial layer EP, and the spacer SP surrounds the gate electrode GE and the gate dielectric layer GD. On the other hand, the drain electrode DE and the source electrode SE may be disposed in the epitaxial layer EP and located on opposite sides of the gate structure GS. In some embodiments, the drain electrode DE and the source electrode SE are disposed in the fourth
請參照圖1與圖2F,進行步驟S114,在磊晶層EP上形成多個介電層DL以及內連線結構M。圖2F僅以簡圖繪示多個介電層DL以及內連線結構M。介電層DL以及內連線結構M形成於中央區CR與邊緣區PR內。多個介電層DL可堆疊於磊晶層EP上,且內連線結構M可形成於多個介電層DL中。多個光電二極體PD可經由內連線結構M而電性連接於邏輯電路(未繪示)。此外,此外內連線結構M可分別電性連接於接觸區110a、接觸區110b以及主動元件AD。在一些實施例中,介電層DL的縱向交疊於多個光電二極體PD的部分(例如是圖2F所示的區域R)內可不具有內連線結構。如此一來,由外界入射的光線可順利地通過此些區域R而進入光電二極體PD,而減少被內連線結構M反射的機會。1 and 2F, step S114 is performed to form a plurality of dielectric layers DL and interconnection structures M on the epitaxial layer EP. FIG. 2F only schematically illustrates the multiple dielectric layers DL and the interconnection structure M. The dielectric layer DL and the interconnect structure M are formed in the central region CR and the edge region PR. A plurality of dielectric layers DL may be stacked on the epitaxial layer EP, and the interconnect structure M may be formed in the plurality of dielectric layers DL. A plurality of photodiodes PD can be electrically connected to a logic circuit (not shown) through the interconnection structure M. In addition, the interconnect structure M can be electrically connected to the
進行步驟S116,在最上層的介電層DL上形成彩色濾光層CF。彩色濾光層CF形成於中央區CR內,且交疊於多個光電二極體PD。在一些實施例中,彩色濾光層CF可包括多個彩色濾光圖案,例如包括藍光彩色濾光圖案CFB、綠光彩色濾光圖案CFG以及紅光彩色濾光圖案CFR。在一些實施例中,藍光彩色濾光圖案CFB的穿透波段為476 nm至495 nm。綠光彩色濾光圖案CFG的穿透波段可為495 nm至570 nm。紅光彩色濾光圖案CFR的穿透波段可為620 nm至750 nm。多個彩色濾光圖案分別縱向地交疊於多個光電二極體PD。僅有特定波段的入射光能穿透特定顏色的彩色濾光圖案,接著經過介電層DL的區域R且進入光電二極體PD。如此一來,各光電二極體PD經配置以接收特定波段的光並將其轉換為電訊號。各光電二極體PD以及與其縱向交疊的結構可視為一次像素(sub-pixel)或一感測單元。Step S116 is performed to form a color filter layer CF on the uppermost dielectric layer DL. The color filter layer CF is formed in the central region CR, and overlaps a plurality of photodiodes PD. In some embodiments, the color filter layer CF may include a plurality of color filter patterns, such as a blue color filter pattern CFB, a green color filter pattern CFG, and a red color filter pattern CFR. In some embodiments, the transmission band of the blue color filter pattern CFB is 476 nm to 495 nm. The penetration wavelength of the green color filter pattern CFG can be 495 nm to 570 nm. The transmission band of the red color filter pattern CFR may be 620 nm to 750 nm. The multiple color filter patterns are longitudinally overlapped on the multiple photodiodes PD, respectively. Only incident light of a specific wavelength band can penetrate the color filter pattern of a specific color, and then pass through the region R of the dielectric layer DL and enter the photodiode PD. In this way, each photodiode PD is configured to receive light of a specific wavelength band and convert it into an electrical signal. Each photodiode PD and its longitudinally overlapping structure can be regarded as a sub-pixel or a sensing unit.
進行步驟S118,在彩色濾光層CF上形成多個微透鏡ML。多個微透鏡ML可縱向地交疊於多個彩色濾光圖案,且縱向地交疊於多個光電二極體PD。Step S118 is performed to form a plurality of microlenses ML on the color filter layer CF. The plurality of microlenses ML may longitudinally overlap the plurality of color filter patterns, and longitudinally overlap the plurality of photodiodes PD.
至此,已完成本發明一些實施例的半導體元件10。半導體元件10可作為影像感測器。半導體元件10包括設置於磊晶層EP中的第一摻雜區102a與第二摻雜區104。藉由使第一摻雜區102a與第二摻雜區104接收正偏壓,可引導由長波長的入射光在磊晶層EP的深處產生的電子,而使此些電子離開磊晶層EP。如此一來,可進一步地減少相鄰次像素之間的串擾。另一方面,藉由使設置於磊晶層EP中的第四摻雜區108a接收參考電壓或負電壓,可引導由長波長入射光在磊晶層EP深處產生的電洞離開磊晶層EP。此外,對於長波長的入射光(例如是通過紅色彩色濾光圖案CFR的紅光),需要較大的吸收深度方可使對應的光電二極體PD達到足夠的量子效率(quantum efficiency)。本文所述的吸收深度是指磊晶層EP縱向交疊於光電二極體PD的部分之厚度,且此部分不包含第一摻雜區102a與第二摻雜區104。本發明實施例的第二摻雜區104分離設置於磊晶層EP中,且相鄰第二摻雜區104之間的間隙縱向交疊於可穿透長波長光的彩色濾光圖案。如此一來,可使長波長的入射光進入具有較大吸收深度的吸收區。舉例而言,磊晶層EP的位於相鄰第二摻雜區104之間的上間隔區UI縱向地交疊於紅光彩色濾光圖案CFR,以使紅光進入至具有較大吸收深度DA的吸收區AR。因此,可提高對應光電二極體PD的量子效率。So far, the
圖3是依照本發明一些實施例的半導體元件10a的中央區CR的剖視示意圖。圖3所示的半導體元件10a相似於圖2F所示的半導體元件10,以下僅描述兩者的差異處,相同或相似處則不再贅述。此外,相同或相似的元件符號代表相同或相似的構件。3 is a schematic cross-sectional view of the central region CR of the
請參照圖3,半導體元件10a的隔離結構ISa-1為深溝渠隔離結構(deep trench isolation,DTI)。隔離結構ISa-1的深度D6可大於光電二極體PD的深度。在一些實施例中,隔離結構ISa-1可縱向地延伸以接觸第二摻雜區104的頂面。在另一些實施例中,隔離結構ISa-1的底面高於第二摻雜區104的頂面。在其他實施例中,隔離結構ISa-1更可延伸至第二摻雜區104中,或更可延伸至第一摻雜區102a中。舉例而言,隔離結構ISa-1的深度D6可在1 μm至8 μm的範圍內。在圖3所示的實施例中,場摻雜區FI-1也具有較大的深度。在一些實施例中,場摻雜區FI-1可延伸至第二摻雜區104中,或更可延伸至第一摻雜區102a中。在其他實施例中,場摻雜區FI-1的底面也可高於或接觸第二摻雜區104的頂面,或可高於或接觸於第一摻雜區102a的頂面。舉例而言,場摻雜區FI-1的深度D7可在1.2 μm至8.5 μm的範圍內。3, the isolation structure ISa-1 of the
藉由增加相鄰光電二極體PD之間的隔離結構與場摻雜區的深度,可進一步地減少相鄰光電二極體PD或相鄰次像素之間的串擾。By increasing the depth of the isolation structure and the field doping region between adjacent photodiodes PD, the crosstalk between adjacent photodiodes PD or adjacent sub-pixels can be further reduced.
圖4是依照本發明一些實施例的半導體元件10b的中央區CR的剖視示意圖。圖4所示的半導體元件10b相似於圖2F所示的半導體元件10,以下僅描述兩者的差異處,相同或相似處則不再贅述。此外,相同或相似的元件符號代表相同或相似的構件。4 is a schematic cross-sectional view of the central region CR of the
請參照圖4,半導體元件10b的彩色濾光層CF-1更包括紅外光彩色濾光圖案CFI。在一些實施例中,紅外光彩色濾光圖案CFI的穿透波段為760 nm至1000 nm。此外,半導體元件10b包括多個第一摻雜區102a。多個第一摻雜區102a彼此分離。磊晶層EP與半導體基板W的位於相鄰第一摻雜區102a之間的部分可稱為下間隔區LI。分別位於兩相鄰第二摻雜區104之間的一些上間隔區UI縱向地連通於下間隔區LI,而另一些上間隔區UI則並未縱向地交疊於下間隔區LI。在一些實施例中,彼此縱向交疊的上間隔區UI與下間隔區LI縱向地交疊於紅外光彩色濾光圖案CFI。另一方面,並未縱向交疊於下間隔區LI的一些上間隔區UI則縱向交疊於紅光彩色濾光圖案CFR。Referring to FIG. 4, the color filter layer CF-1 of the
在圖4所示的實施例中,紅外光進入至具有更大吸收深度DA-1的吸收區AR-1。如此一來,可進一步地提高縱向交疊於紅外光彩色濾光圖案CFI的光電二極體PD的量子效率。In the embodiment shown in FIG. 4, infrared light enters the absorption area AR-1 having a greater absorption depth DA-1. In this way, the quantum efficiency of the photodiode PD vertically overlapping the infrared color filter pattern CFI can be further improved.
圖5是依照本發明一些實施例的半導體元件10c的中央區CR的剖視示意圖。圖5所示的半導體元件10c相似於圖4所示的半導體元件10b。具體而言,圖5所示的半導體元件10c可視為以圖3所示的深溝渠隔離結構ISa-1以及場摻雜區FI-1分別代換圖4所示的半導體元件10b之淺溝渠隔離結構ISa以及場摻雜區FI。5 is a schematic cross-sectional view of the central region CR of the
圖6是依照本發明一些實施例的半導體元件20的製造方法的流程圖。圖7A至圖7C是圖6所示的半導體元件20的製造方法中各階段的結構的剖視示意圖。圖6與圖7A至圖7C所示的半導體元件20及其製造方法相似於圖1與圖2A至圖2F所示的半導體元件10及其製造方法,以下僅描述兩者的差異處,相同或相似處則不再贅述。此外,相同或相似的元件符號代表相同或相似的構件。FIG. 6 is a flowchart of a method of manufacturing a
請參照圖6與圖7A,在步驟S100之後進行步驟S102a,在半導體基板W中形成第一初始摻雜區102與多個第二初始摻雜區204。第一初始摻雜區102與多個第二初始摻雜區204均具有第二導電型,例如是N型。在一些實施例中,第一初始摻雜區102與多個第二初始摻雜區204均位於中央區CR內。多個第二初始摻雜區204位於半導體基板W的頂面與第一初始摻雜區102之間。此外,在一些實施例中,多個第二初始摻雜區204可接觸於第一初始摻雜區102。在其他實施例中,多個第二初始摻雜區204也可高於第一初始摻雜區102,且不接觸於第一初始摻雜區102。6 and 7A, after step S100, step S102a is performed to form a first initial
請參照圖6與圖7B,接著進行步驟S104,以在半導體基板W上形成磊晶層EP。在形成磊晶層EP的過程中,半導體基板W會受熱而使第一初始摻雜區102與多個第二初始摻雜區204向上擴散以延伸至磊晶層EP中。如此一來,可形成第一摻雜區102a與多個第二摻雜區204a。多個第二摻雜區204a的頂面高於第一摻雜區102a的頂面,而多個第二摻雜區204a的底面位於第一摻雜區102a中。在一些實施例中,多個第二摻雜區204a可視為縱向地延伸至第一摻雜區102a中。在一些實施例中,第二摻雜區204a的深度D8在2 μm至4 μm的範圍內。此外,在一些實施例中,第二摻雜區204a的厚度T5可為1 μm至4 μm。Please refer to FIG. 6 and FIG. 7B, and then proceed to step S104 to form an epitaxial layer EP on the semiconductor substrate W. In the process of forming the epitaxial layer EP, the semiconductor substrate W is heated to cause the first initial
請參照圖6與圖7C,隨後依序進行步驟S106至步驟S118,以完成半導體元件20的製造。半導體元件20與圖2F所示的半導體元件10之間的差異主要在於第二摻雜區的位置以及形成方法。半導體元件20亦可減少相鄰次像素之間的串擾。此外,長波長的入射光亦可進入具有較大吸收深度DA的吸收區AR,且提高長波長的次像素的量子效率。在圖7C所示的實施例中,磊晶層EP的位於兩相鄰第二摻雜區204a之間的上間隔區UI可交疊於能穿透波長在620 nm至1000 nm的範圍內的彩色濾光圖案,例如是紅光彩色濾光圖案CFR以及紅外光彩色濾光圖案CFI。Please refer to FIG. 6 and FIG. 7C, and then step S106 to step S118 are sequentially performed to complete the manufacturing of the
圖8是依照本發明一些實施例的半導體元件20a的中央區CR的剖視示意圖。圖8所示的半導體元件20a相似於圖7C所示的半導體元件20。具體而言,圖8所示的半導體元件20a可視為以圖3所示的深溝渠隔離結構ISa-1以及場摻雜區FI-1分別代換圖7C所示的半導體元件20之淺溝渠隔離結構ISa以及場摻雜區FI。FIG. 8 is a schematic cross-sectional view of the central region CR of the
圖9是依照本發明一些實施例的半導體元件20b的中央區CR的剖視示意圖。圖9所示的半導體元件20b相似於圖7C所示的半導體元件20。具體而言,圖9所示的半導體元件20b可視為以圖4所示的多個彼此分離的第一摻雜區102a代換圖7C所示的半導體元件20的單一第一摻雜區102a。此外,磊晶層EP的彼此連通的上間隔區UI與下間隔區LI縱向交疊於紅外光彩色濾光圖案CFI,而未向下連通於下間隔區LI的上間隔區UI則縱向交疊於紅光彩色濾光圖案CFR。9 is a schematic cross-sectional view of the central area CR of the
圖10是依照本發明一些實施例的半導體元件20c的中央區CR的剖視示意圖。圖10所示的半導體元件20c相似於圖7C所示的半導體元件20。具體而言,圖10所示的半導體元件20c可視為以圖3所示的深溝渠隔離結構ISa-1以及場摻雜區FI-1分別代換圖7C所示的半導體元件20之淺溝渠隔離結構ISa以及場摻雜區FI。FIG. 10 is a schematic cross-sectional view of the central region CR of the
綜上所述,本發明實施例的半導體元件可作為影像感測器,且包括埋設於基底中且彼此電性相連的第一摻雜區與多個第二摻雜區。藉由使第一摻雜區與第二摻雜區接收偏壓,可引導形成於基底內部的載子經由第一摻雜區與第二摻雜區而離開基底。如此一來,可降低相鄰次像素之間的串擾。此外,位於第一摻雜區上方的多個第二摻雜區彼此分離,且基底的延伸至兩相鄰第二摻雜區之間的部分縱向地交疊於長波長的次像素。如此一來,可提高長波長入射光所通過的吸收區的吸收深度。因此,可提高長波長次像素的量子效率。To sum up, the semiconductor device of the embodiment of the present invention can be used as an image sensor, and includes a first doped region and a plurality of second doped regions that are embedded in a substrate and electrically connected to each other. By making the first doped region and the second doped region receive a bias voltage, the carriers formed inside the substrate can be guided to leave the substrate through the first doped region and the second doped region. In this way, the crosstalk between adjacent sub-pixels can be reduced. In addition, the plurality of second doped regions located above the first doped region are separated from each other, and the part of the substrate extending between two adjacent second doped regions longitudinally overlaps the long-wavelength sub-pixels. In this way, the absorption depth of the absorption region through which long-wavelength incident light passes can be increased. Therefore, the quantum efficiency of the long-wavelength sub-pixel can be improved.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be determined by the scope of the attached patent application.
10、10a、10b、10c、20、20a、20b、20c:半導體元件 102:第一初始摻雜區 102a:第一摻雜區 104、204a:第二摻雜區 106、106a、106b:第三摻雜區 108、108a、108b:第四摻雜區 110a、110b:接觸區 204:第二初始摻雜區 AD:主動元件 AR、AR-1:吸收區 CF:彩色濾光層 CFB:藍光彩色濾光圖案 CFG:綠光彩色濾光圖案 CFI:紅外光彩色濾光圖案 CFR:紅光彩色濾光圖案 CR:中央區 D1、D2、D3、D4、D5、D6、D7、D8:深度 DA、DA-1:吸收深度 DE:汲極 DL:介電層 E1:第一電極 E2:第二電極 EP:磊晶層 FI、FI-1:場摻雜區 GD:閘介電層 GE:閘極 GS:閘極結構 IS、ISa、ISa-1、ISb:隔離結構 LI:下間隔區 M:內連線結構 ML:微透鏡 PD:光電二極體 PR:邊緣區 R:區域 S100、S102、S102a、S104、S106、S108、S110、S112、S114、S116、S118:步驟 SB:基底 SE:源極 SP:間隙壁 T1、T2、T3、T4、T5:厚度 UI:上間隔區 W:半導體基板 W1:寬度10, 10a, 10b, 10c, 20, 20a, 20b, 20c: semiconductor components 102: The first initial doping zone 102a: the first doped region 104, 204a: second doped region 106, 106a, 106b: third doped region 108, 108a, 108b: fourth doped region 110a, 110b: contact area 204: second initial doping zone AD: Active component AR, AR-1: absorption zone CF: Color filter layer CFB: Blue light color filter pattern CFG: Green color filter pattern CFI: Infrared color filter pattern CFR: Red light color filter pattern CR: Central District D1, D2, D3, D4, D5, D6, D7, D8: depth DA, DA-1: Absorption depth DE: Dip pole DL: Dielectric layer E1: first electrode E2: second electrode EP: epitaxial layer FI, FI-1: Field doped area GD: gate dielectric layer GE: Gate GS: Gate structure IS, ISa, ISa-1, ISb: isolation structure LI: Lower compartment M: Internal connection structure ML: Micro lens PD: photodiode PR: marginal zone R: area S100, S102, S102a, S104, S106, S108, S110, S112, S114, S116, S118: steps SB: Base SE: Source SP: Spacer T1, T2, T3, T4, T5: thickness UI: Upper compartment W: Semiconductor substrate W1: width
圖1是依照本發明一些實施例的半導體元件的製造方法的流程圖。 圖2A至圖2F是圖1所示的半導體元件的製造方法中各階段的結構的剖視示意圖。 圖3至圖5是依照本發明一些實施例的半導體元件的中央區的剖視示意圖。 圖6是依照本發明一些實施例的半導體元件的製造方法的流程圖。 圖7A至圖7C是圖6所示的半導體元件的製造方法中各階段的結構的剖視示意圖。 圖8至圖10是依照本發明一些實施例的半導體元件的中央區的剖視示意圖。FIG. 1 is a flowchart of a method of manufacturing a semiconductor device according to some embodiments of the present invention. 2A to 2F are schematic cross-sectional views of the structure at each stage in the method of manufacturing the semiconductor device shown in FIG. 1. 3 to 5 are schematic cross-sectional views of the central area of a semiconductor device according to some embodiments of the invention. FIG. 6 is a flowchart of a method of manufacturing a semiconductor device according to some embodiments of the present invention. 7A to 7C are schematic cross-sectional views of the structure at each stage in the method of manufacturing the semiconductor device shown in FIG. 6. 8 to 10 are schematic cross-sectional views of the central area of a semiconductor device according to some embodiments of the invention.
10:半導體元件 10: Semiconductor components
102a:第一摻雜區 102a: the first doped region
104:第二摻雜區 104: second doped region
106、106a、106b:第三摻雜區 106, 106a, 106b: third doped region
108、108a、108b:第四摻雜區 108, 108a, 108b: fourth doped region
AD:主動元件 AD: Active component
AR:吸收區 AR: absorption zone
CF:彩色濾光層 CF: Color filter layer
CFB:藍光彩色濾光圖案 CFB: Blue light color filter pattern
CFG:綠光彩色濾光圖案 CFG: Green color filter pattern
CFR:紅光彩色濾光圖案 CFR: Red light color filter pattern
CR:中央區 CR: Central District
DA:吸收深度 DA: Absorption depth
DL:介電層 DL: Dielectric layer
EP:磊晶層 EP: epitaxial layer
FI:場摻雜區 FI: Field doped region
IS、ISa、ISb:隔離結構 IS, ISa, ISb: isolation structure
M:內連線結構 M: Internal connection structure
ML:微透鏡 ML: Micro lens
PD:光電二極體 PD: photodiode
PR:邊緣區 PR: marginal zone
R:區域 R: area
SB:基底 SB: Base
UI:上間隔區 UI: Upper compartment
W:半導體基板 W: Semiconductor substrate
Claims (16)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108103147A TWI691096B (en) | 2019-01-28 | 2019-01-28 | Semiconductor device and manufacturing method thereof |
CN201910110960.6A CN111490058B (en) | 2019-01-28 | 2019-02-12 | Semiconductor assembly and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108103147A TWI691096B (en) | 2019-01-28 | 2019-01-28 | Semiconductor device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI691096B TWI691096B (en) | 2020-04-11 |
TW202029518A true TW202029518A (en) | 2020-08-01 |
Family
ID=71134404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108103147A TWI691096B (en) | 2019-01-28 | 2019-01-28 | Semiconductor device and manufacturing method thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111490058B (en) |
TW (1) | TWI691096B (en) |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW494574B (en) * | 1999-12-01 | 2002-07-11 | Innotech Corp | Solid state imaging device, method of manufacturing the same, and solid state imaging system |
KR100719361B1 (en) * | 2005-11-22 | 2007-05-17 | 삼성전자주식회사 | Cmos image sensor and method of forming the same |
JP4960058B2 (en) * | 2006-10-04 | 2012-06-27 | 株式会社東芝 | Amplification type solid-state image sensor |
US7910961B2 (en) * | 2008-10-08 | 2011-03-22 | Omnivision Technologies, Inc. | Image sensor with low crosstalk and high red sensitivity |
KR20120002331A (en) * | 2010-06-30 | 2012-01-05 | 삼성전자주식회사 | Cmos image sensor comprising pnp triple layers, and method for fabricating the same image sensor |
US8368160B2 (en) * | 2010-10-05 | 2013-02-05 | Himax Imaging, Inc. | Image sensing device and fabrication thereof |
TW201614817A (en) * | 2014-10-03 | 2016-04-16 | Powerchip Technology Corp | Image sensor with deep well structure and fabrication method thereof |
CN105161462A (en) * | 2015-07-22 | 2015-12-16 | 格科微电子(上海)有限公司 | Method for improving carrier transmission efficiency of backside illumination image sensor |
CN107146814B (en) * | 2016-03-01 | 2020-09-11 | 世界先进积体电路股份有限公司 | High voltage semiconductor device and method for manufacturing the same |
-
2019
- 2019-01-28 TW TW108103147A patent/TWI691096B/en active
- 2019-02-12 CN CN201910110960.6A patent/CN111490058B/en active Active
Also Published As
Publication number | Publication date |
---|---|
TWI691096B (en) | 2020-04-11 |
CN111490058B (en) | 2023-06-20 |
CN111490058A (en) | 2020-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI690070B (en) | Complementary metal-oxide-semiconductor image sensor and image sensor | |
US5410175A (en) | Monolithic IC having pin photodiode and an electrically active element accommodated on the same semi-conductor substrate | |
JP5058488B2 (en) | Image sensor having buried barrier layer with different thickness according to light wavelength and method for forming the same | |
TWI517368B (en) | Backside illuminated cmos image sensor and method for fabricating the same | |
JP5427928B2 (en) | Multijunction photodiode applied to molecular detection and identification, and manufacturing method thereof | |
JP2000031525A (en) | Pinned photodiode of image sensor, and its manufacture | |
KR101146590B1 (en) | Multi-well CMOS image sensor and method of fabricating the same | |
US8415190B2 (en) | Photodiode semiconductor device and manufacturing method | |
JP2017224741A (en) | Semiconductor device and manufacturing method thereof | |
US9029973B2 (en) | Image sensor and method for fabricating the same | |
KR100791337B1 (en) | Image sensor and method for fabricating the same | |
JP2008166725A (en) | Cmos device and method of manufacturing the same | |
US7655545B2 (en) | Image sensor and method of fabricating the same | |
KR100698082B1 (en) | CMOS image sensor and method for manufacturing the same | |
JP4342142B2 (en) | Semiconductor photo detector | |
US20080135899A1 (en) | Image sensor and method for manufacturing the same | |
KR100719361B1 (en) | Cmos image sensor and method of forming the same | |
TWI691096B (en) | Semiconductor device and manufacturing method thereof | |
JP5215887B2 (en) | Manufacturing method of semiconductor device | |
KR100303323B1 (en) | Pinned photodiode of image sensor and method for fabricating the same | |
US20140124843A1 (en) | Photo Sensor | |
KR20050122746A (en) | Image sensor with improved blue light sensitivity | |
KR20070071074A (en) | Image sensor structored by bipolar junction transiator | |
KR100909855B1 (en) | Image sensor and its manufacturing method that can prevent crosstalk | |
KR20240047587A (en) | Backside illumiated image sensor and method of manufacturing the same |