TW202029349A - Semiconductor devices and methods forforming the same - Google Patents
Semiconductor devices and methods forforming the same Download PDFInfo
- Publication number
- TW202029349A TW202029349A TW108135427A TW108135427A TW202029349A TW 202029349 A TW202029349 A TW 202029349A TW 108135427 A TW108135427 A TW 108135427A TW 108135427 A TW108135427 A TW 108135427A TW 202029349 A TW202029349 A TW 202029349A
- Authority
- TW
- Taiwan
- Prior art keywords
- fin
- etching process
- region
- recess
- semiconductor device
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 269
- 239000004065 semiconductor Substances 0.000 title claims abstract description 108
- 230000008569 process Effects 0.000 claims abstract description 211
- 239000000463 material Substances 0.000 claims abstract description 118
- 238000005530 etching Methods 0.000 claims abstract description 98
- 238000000059 patterning Methods 0.000 claims abstract description 50
- 238000002955 isolation Methods 0.000 claims abstract description 47
- 239000000758 substrate Substances 0.000 claims abstract description 47
- 239000013078 crystal Substances 0.000 claims description 103
- 125000006850 spacer group Chemical group 0.000 claims description 71
- 238000004519 manufacturing process Methods 0.000 claims description 35
- 239000007789 gas Substances 0.000 claims description 25
- 238000001020 plasma etching Methods 0.000 claims description 18
- 239000001257 hydrogen Substances 0.000 claims description 17
- 229910052739 hydrogen Inorganic materials 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- 229910052786 argon Inorganic materials 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 175
- 230000005669 field effect Effects 0.000 description 60
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 24
- 229910052710 silicon Inorganic materials 0.000 description 24
- 239000010703 silicon Substances 0.000 description 24
- 239000011229 interlayer Substances 0.000 description 23
- 239000012535 impurity Substances 0.000 description 22
- 229920002120 photoresistant polymer Polymers 0.000 description 18
- 239000002019 doping agent Substances 0.000 description 16
- 229910044991 metal oxide Inorganic materials 0.000 description 15
- 150000004706 metal oxides Chemical class 0.000 description 15
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 14
- 238000005229 chemical vapour deposition Methods 0.000 description 14
- 238000005516 engineering process Methods 0.000 description 12
- 238000000206 photolithography Methods 0.000 description 11
- 229910052581 Si3N4 Inorganic materials 0.000 description 9
- 238000002513 implantation Methods 0.000 description 9
- 229910010271 silicon carbide Inorganic materials 0.000 description 9
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 8
- 238000000137 annealing Methods 0.000 description 7
- 239000011810 insulating material Substances 0.000 description 7
- 238000000231 atomic layer deposition Methods 0.000 description 6
- 238000004140 cleaning Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000005498 polishing Methods 0.000 description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 238000004380 ashing Methods 0.000 description 5
- 238000001312 dry etching Methods 0.000 description 5
- 238000000407 epitaxy Methods 0.000 description 5
- 229910052698 phosphorus Inorganic materials 0.000 description 5
- 239000011574 phosphorus Substances 0.000 description 5
- -1 silicon carbide nitride Chemical class 0.000 description 5
- 229910052814 silicon oxide Inorganic materials 0.000 description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 230000009969 flowable effect Effects 0.000 description 4
- 238000011065 in-situ storage Methods 0.000 description 4
- 238000005240 physical vapour deposition Methods 0.000 description 4
- 238000004528 spin coating Methods 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000005108 dry cleaning Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 239000005360 phosphosilicate glass Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 238000000927 vapour-phase epitaxy Methods 0.000 description 3
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 2
- 229910005540 GaP Inorganic materials 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 2
- 229910000673 Indium arsenide Inorganic materials 0.000 description 2
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 2
- 229910020263 SiP Inorganic materials 0.000 description 2
- 239000005388 borosilicate glass Substances 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 238000010849 ion bombardment Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004943 liquid phase epitaxy Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 238000007517 polishing process Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910017115 AlSb Inorganic materials 0.000 description 1
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910005542 GaSb Inorganic materials 0.000 description 1
- 229910005898 GeSn Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 229910052914 metal silicate Inorganic materials 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 238000011417 postcuring Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66787—Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
- H01L29/66795—Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02293—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process formation of epitaxial layers by a deposition process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/308—Chemical or electrical treatment, e.g. electrolytic etching using masks
- H01L21/3083—Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
- H01L21/3086—Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823828—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823878—Complementary field-effect transistors, e.g. CMOS isolation region manufacturing related aspects, e.g. to avoid interaction of isolation region with adjacent structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/092—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
- H01L27/0924—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors including transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/04—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
- H01L29/045—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0642—Isolation within the component, i.e. internal isolation
- H01L29/0649—Dielectric regions, e.g. SiO2 regions, air gaps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/08—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/0843—Source or drain regions of field-effect devices
- H01L29/0847—Source or drain regions of field-effect devices of field-effect transistors with insulated gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/1025—Channel region of field-effect devices
- H01L29/1029—Channel region of field-effect devices of field-effect transistors
- H01L29/1033—Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66234—Bipolar junction transistors [BJT]
- H01L29/66325—Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
- H01L29/66333—Vertical insulated gate bipolar transistors
- H01L29/66348—Vertical insulated gate bipolar transistors with a recessed gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66545—Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7842—Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
- H01L29/7848—Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/785—Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823814—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823821—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
本發明實施例係有關於半導體技術,且特別是有關於半導體裝置及其形成方法。The embodiments of the present invention are related to semiconductor technology, and more particularly to semiconductor devices and methods of forming them.
半導體裝置用於各式各樣的電子應用中,例如個人電腦、手機、數位相機和其他電子設備。半導體裝置一般透過在半導體基底上依序地沉積絕緣層或介電層、導電層和半導體層材料,並使用微影技術將各種材料層圖案化,以形成電路組件和元件於其上。Semiconductor devices are used in various electronic applications, such as personal computers, mobile phones, digital cameras, and other electronic equipment. Semiconductor devices generally deposit insulating or dielectric layers, conductive layers, and semiconductor layer materials on a semiconductor substrate in sequence, and use lithography technology to pattern various material layers to form circuit components and components thereon.
半導體工業透過持續降低最小部件(feature)的尺寸,持續改善各種電子組件(例如電晶體、二極體、電阻、電容等)的集成密度,使得更多的組件集成於既定面積中。然而,當降低最小部件的尺寸,出現了應解決的附加問題。The semiconductor industry continues to reduce the size of the smallest features, and continues to improve the integration density of various electronic components (such as transistors, diodes, resistors, capacitors, etc.), so that more components are integrated into a given area. However, when the size of the smallest part is reduced, additional problems arise that should be solved.
在一些實施例中,提供半導體裝置的形成方法,此方法包含在基底上形成鰭;形成隔離區與鰭相鄰;在鰭上方形成虛設結構;使用第一蝕刻製程將與虛設結構相鄰的鰭凹陷,以形成第一凹口;使用第二蝕刻製程將第一凹口重塑,以形成重塑的第一凹口,其中重塑的第一凹口的底部由第一側壁表面的晶面與第二側壁表面的晶面相交來定義,其中第一側壁表面面向第二側壁表面;以及在重塑的第一凹口中磊晶成長源極/汲極區。In some embodiments, a method for forming a semiconductor device is provided. The method includes forming a fin on a substrate; forming an isolation region adjacent to the fin; forming a dummy structure above the fin; and using a first etching process to remove the fin adjacent to the dummy structure Recess to form a first notch; use a second etching process to reshape the first notch to form a reshaped first notch, wherein the bottom of the reshaped first notch is formed by the crystal plane of the first sidewall surface It is defined by intersecting the crystal plane of the second sidewall surface, wherein the first sidewall surface faces the second sidewall surface; and epitaxially grows the source/drain regions in the reshaped first recess.
在一些其他實施例中,提供半導體裝置的形成方法,此方法包含將基底圖案化以形成條帶,條帶包括第一半導體材料;沿條帶的側壁形成隔離區,條帶的上部延伸於隔離區的頂表面之上;沿條帶的上部的側壁和頂表面形成虛設結構;對條帶的上部的暴露部分進行第一蝕刻製程以形成第一凹口,條帶的暴露部分被虛設結構暴露出來;在進行第一蝕刻製程之後,使用第二蝕刻製程重塑第一凹口以具有V形底表面,其中相對於具有第二晶向的第二晶面,第二蝕刻製程對具有第一晶向的第一晶面有選擇性;以及在重塑的第一凹口中磊晶成長源極/汲極區。In some other embodiments, a method for forming a semiconductor device is provided. The method includes patterning a substrate to form a strip. The strip includes a first semiconductor material; an isolation region is formed along the sidewall of the strip, and the upper portion of the strip extends over the isolation. Above the top surface of the zone; forming a dummy structure along the sidewall and top surface of the upper part of the strip; performing a first etching process on the exposed part of the upper part of the strip to form a first notch, and the exposed part of the strip is exposed by the dummy structure Out; after the first etching process, a second etching process is used to reshape the first notch to have a V-shaped bottom surface, wherein the second etching process pair has a first The first crystal plane of the crystal orientation is selective; and the source/drain regions are epitaxially grown in the reshaped first recess.
在另外一些實施例中,提供半導體裝置,半導體裝置包含鰭,位於基底上方,其中鰭的底部的第一側壁表面沿第一晶向的晶面延伸;隔離區,與鰭相鄰;閘極結構,沿鰭的側壁及鰭的頂表面上方延伸;閘極間隙壁,與閘極結構橫向相鄰;以及磊晶區,與鰭相鄰,其中磊晶區的底部漸縮至一點。In other embodiments, a semiconductor device is provided. The semiconductor device includes a fin located above the substrate, wherein the first sidewall surface at the bottom of the fin extends along the crystal plane of the first crystal orientation; the isolation region is adjacent to the fin; and the gate structure , Extending along the sidewalls of the fin and above the top surface of the fin; the gate spacer, which is laterally adjacent to the gate structure; and the epitaxial region, which is adjacent to the fin, wherein the bottom of the epitaxial region is tapered to a point.
要瞭解的是以下的揭露內容提供許多不同的實施例或範例,以實施提供之主體的不同部件。以下敘述各個構件及其排列方式的特定範例,以求簡化揭露內容的說明。當然,這些僅為範例並非用以限定本發明。例如,以下的揭露內容敘述了將一第一部件形成於一第二部件之上或上方,即表示其包含了所形成的上述第一部件與上述第二部件是直接接觸的實施例,亦包含了尚可將附加的部件形成於上述第一部件與上述第二部件之間,而使上述第一部件與上述第二部件可能未直接接觸的實施例。此外,揭露內容中不同範例可能使用重複的參考符號及/或用字。這些重複符號或用字係為了簡化與清晰的目的,並非用以限定各個實施例及/或所述外觀結構之間的關係。It should be understood that the following disclosure provides many different embodiments or examples to implement different components of the main body provided. The following describes specific examples of each component and its arrangement in order to simplify the description of the disclosure. Of course, these are only examples and are not intended to limit the present invention. For example, the following disclosure describes that a first part is formed on or above a second part, which means that it includes an embodiment in which the formed first part is in direct contact with the second part, and also includes It is still possible to form an additional component between the first component and the second component, and the first component and the second component may not be in direct contact. In addition, different examples in the disclosure may use repeated reference symbols and/or words. These repeated symbols or words are for the purpose of simplification and clarity, and are not used to limit the relationship between the various embodiments and/or the appearance structure.
再者,為了方便描述圖式中一元件或部件與另一(複數)元件或(複數)部件的關係,可使用空間相關用語,例如“在...之下”、“下方”、“下部”、“上方”、“上部”及類似的用語。除了圖式所繪示的方位之外,空間相關用語也涵蓋裝置在使用或操作中的不同方位。所述裝置也可被另外定位(例如,旋轉90度或者位於其他方位),並對應地解讀所使用的空間相關用語的描述。Furthermore, in order to facilitate the description of the relationship between one element or component and another (plural) element or (plural) component in the drawings, space-related terms can be used, such as "under", "below", and "lower" ", "upper", "upper" and similar terms. In addition to the orientation shown in the diagram, space-related terms also cover different orientations of the device in use or operation. The device can also be positioned separately (for example, rotated by 90 degrees or located in another orientation), and correspondingly interpret the description of the used spatially related terms.
以下將針對特定情況討論本發明實施例,即鰭式場效電晶體裝置及其形成方法。本文討論的各種實施例允許控制鰭式場效電晶體裝置的磊晶源極/汲極區的形狀,使得磊晶源極/汲極區的底部具有由晶面定義的尖頭形狀。透過以此種方式控制鰭式場效電晶體的磊晶源極/汲極區的形狀,可改善鰭式場效電晶體裝置的效能。在使用閘極後製製程形成的鰭式場效電晶體的情況下討論本文呈現的各種實施例。在其他實施例中,可使用閘極先製製程。一些實施例考慮了用於平面裝置的方面,例如平面場效電晶體。一些實施例也可用於非場效電晶體的半導體裝置中。The embodiments of the present invention will be discussed below for specific situations, namely, a fin-type field effect transistor device and its forming method. The various embodiments discussed herein allow to control the shape of the epitaxial source/drain region of the fin field effect transistor device so that the bottom of the epitaxial source/drain region has a pointed shape defined by the crystal plane. By controlling the shape of the epitaxial source/drain regions of the fin field effect transistor in this way, the performance of the fin field effect transistor device can be improved. The various embodiments presented herein are discussed in the context of using a fin field effect transistor formed by a post-gate process. In other embodiments, a gate first manufacturing process can be used. Some embodiments consider aspects for planar devices, such as planar field effect transistors. Some embodiments can also be used in non-field effect transistor semiconductor devices.
第1圖顯示依據一些實施例之鰭式場效電晶體(FinFET)30的範例的三維視圖。鰭式場效電晶體30包括在基底32上的鰭36。隔離區34圍繞鰭36設置於基底32上,且鰭36突出於相鄰的隔離區34之上。閘極介電質38係沿鰭36的側壁和頂表面,而閘極電極40在閘極介電質38上方。源極/汲極區42和44設置於鰭36相對於閘極介電質38和閘極電極40的兩側上。第1圖更顯示用於之後圖式的參考剖面。剖面A-A橫跨鰭式場效電晶體30的通道區、閘極介電質38和閘極電極40。剖面C-C在平行於剖面A-A的平面中,並橫跨在通道區之外的鰭36。剖面B-B垂直於剖面A-A且沿鰭36的縱軸,並在例如源極/汲極區42和44之間的電流的方向。為了清楚起見,後續圖式參考這些參考剖面。FIG. 1 shows a three-dimensional view of an example of a FinFET 30 according to some embodiments. The fin
第2A-22圖為依據一些實施例之製造鰭式場效電晶體的中間階段的剖面示意圖。在第2A到11A-11C圖和第16A-16C到21A-21C圖中,以“A”標記結尾的圖式沿著第1圖中的參考剖面A-A顯示,除了上述圖式有多個鰭式場效電晶體且每個鰭式場效電晶體有多個鰭。以“B”標記結尾的圖式沿著第1圖中的參考剖面B-B顯示。以“C”標記結尾的圖式沿著第1圖中的參考剖面C-C顯示。第12-15C和22圖為沿著第1圖中的參考剖面B-B顯示。2A-22 is a schematic cross-sectional view of an intermediate stage of manufacturing a fin-type field effect transistor according to some embodiments. In Figures 2A to 11A-11C and Figures 16A-16C to 21A-21C, the figures ending with "A" are shown along the reference section AA in Figure 1, except that the above figures have multiple fin fields Each fin-type field effect transistor has multiple fins. The drawings ending with the "B" mark are shown along the reference section B-B in Figure 1. The drawings ending with the "C" mark are shown along the reference section C-C in Figure 1. Figures 12-15C and 22 are shown along the reference section B-B in Figure 1.
在第2圖中,提供基底50。基底50可為半導體基底,例如塊狀(bulk)半導體、絕緣層上覆半導體(semiconductor-on-insulator,SOI)基底或類似物,基底50可為摻雜(例如摻雜p型或n型摻雜物)或未摻雜。基底50可為晶圓,例如矽晶圓,且可具有特定晶向,例如(100)、(111)或(110)。一般來說,絕緣層上覆半導體基底包括形成於絕緣層上的半導體材料層。絕緣層可為例如埋置氧化(buried oxide,BOX)層、氧化矽層或類似物。絕緣層提供於基底上,一般為矽基底或玻璃基底。也可使用其他基底,例如多層或梯度(gradient)基底。在一些實施例中,基底50的半導體材料可包含矽、鍺、化合物半導體(包含碳化矽、砷化鎵、磷化鎵、磷化銦、砷化銦及/或銻化銦)、合金半導體(包含SiGe、GaAsP、AlInAs、AlGaAs、GaInAs、GaInP、及/或GaInAsP)或前述之組合。In Figure 2, a
基底50可更包含積體電路元件(未顯示)。本發明所屬技術領域中具通常知識者將理解各式各樣的積體電路元件(例如電晶體、二極體、電容、電阻、類似物或前述之組合)可形成於基底50中及/或基底50上,以產生用於最終鰭式場效電晶體的設計的結構和功能需求。積體電路元件可透過使用任何合適的方法形成。The
在一些實施例中,基底50可包含第一區100A和第二區100B。第一區100A可用於形成n型裝置,例如n型金屬氧化物半導體(n-type metal oxide semiconductor,NMOS)電晶體,例如n型鰭式場效電晶體。第二區100B可用於形成p型裝置,例如p型金屬氧化物半導體(p-type metal oxide semiconductor,PMOS)電晶體,例如p型鰭式場效電晶體。因此,第一區100A也可被稱為N型金屬氧化物半導體區,而第二區100B也可被稱為P型金屬氧化物半導體區。在一些實施例中,第一區100A可與第二區100B物理隔開。第一區100A可透過任何數量的部件與與第二區100B隔開。In some embodiments, the
第2A圖更顯示遮罩53形成於基底50上方。在一些實施例中,遮罩53可用於後續的蝕刻步驟中,以將基底50圖案化(請參照第3A圖)。如第2A圖所示,遮罩53可包含第一遮罩層53A和第二遮罩層53B。第一遮罩層53A可為硬遮罩層,且可包含氮化矽(SiN)、氮氧化矽(SiON)、碳化矽(SiC)、氮碳化矽(SiCN)、前述之組合或類似物,且可透過使用任何合適的製程形成,例如原子層沉積(atomic layer deposition,ALD)、物理氣相沉積(physical vapor deposition,PVD)、化學氣相沉積(chemical vapor deposition,CVD)、前述之組合或類似方法。第一遮罩層53A也可包含多層,且此多層可為不同材料。舉例來說,第一遮罩層53A可包含氮化矽層在氧化矽層上方,但是也可使用其他材料和材料的組合。第二遮罩層53B可包括光阻,且在一些實施例中,第二遮罩層53B可用於上述後續的蝕刻步驟中,以將第一遮罩層53A圖案化。第二遮罩層53B可透過使用旋塗技術形成,且可透過使用合適的光微影技術來圖案化。在一些實施例中,遮罩53可包含三個或更多個遮罩層。FIG. 2A further shows that the
第3A圖顯示半導體條帶52形成於基底50中。首先,可將第一遮罩層53A和第二遮罩層53B圖案化,其中第一遮罩層53A和第二遮罩層53B中的開口暴露出基底50將形成隔離區54(有時被稱為淺溝槽隔離(Shallow Trench Isolation,STI)區)的區域55。接著,可進行蝕刻製程,其中蝕刻製程通過遮罩53中的開口形成基底50中的溝槽55。基底50在圖案化遮罩53下方的剩下部分形成複數個半導體條帶52。蝕刻可為任何合適的蝕刻製程,例如反應性離子蝕刻(reactive ion etch,RIE)、中子束蝕刻(neutral beam etch,NBE)、類似方法或前述之組合。蝕刻製程可為非等向性。在一些實施例中,半導體條帶52可具有高度H1
在約200nm與約400nm之間,且可具有寬度W1
在約10nm與約40nm之間。FIG. 3A shows that the
半導體條帶52可透過任何合適的方法圖案化。舉例來說,半導體條帶52可透過使用一個或多個光微影製程(包含雙重圖案化或多重圖案化製程)來圖案化。一般來說,雙重圖案化或多重圖案化製程結合了光微影和自對準製程,以創造具有較小間距的圖案,舉例來說,此圖案具有比使用單一直接光微影製程可獲得的間距更小的圖案。舉例來說,在一實施例中,犧牲層形成於基底50上方並透過使用光微影製程圖案化。間隔物透過使用自對準製程形成於圖案化犧牲層旁邊。接著,移除犧牲層,且可接著使用剩下的間隔物或心軸(mandrel)作為遮罩來將半導體條帶52圖案化。The
第4A圖顯示絕緣材料形成於相鄰半導體條帶52之間的溝槽55(請參照第3A圖)中,以形成隔離區54。絕緣材料可為氧化物(例如氧化矽)、氮化物、類似物或前述之組合,且可透過高密度電漿化學氣相沉積(high density plasma chemical vapor deposition,HDP-CVD)、可流動化學氣相沉積(flowable CVD,FCVD)(例如在遠端電漿系統中的基於化學氣相沉積的材料沉積,並後固化使其轉變為另一材料,例如氧化物)、類似方法或前述之組合形成。也可使用任何合適的製程形成的其他絕緣材料。FIG. 4A shows that an insulating material is formed in the
再者,在一些實施例中,隔離區54可包含在以隔離區54的絕緣材料填充溝槽55之前,形成於溝槽55(請參照第3A圖)的側壁和底表面上的順應性襯墊(未顯示)。在一些實施例中,襯墊可包括半導體(例如矽)、氮化物、半導體(例如矽)氧化物、熱半導體(例如矽)氧化物、半導體(例如矽)氮氧化物、聚合物介電質、前述之組合或類似物。襯墊的形成可包含任何合適的方法,例如原子層沉積、化學氣相沉積、高密度電漿化學氣相沉積、物理氣相沉積、前述之組合或類似方法。在這些實施例中,襯墊可防止(或至少減少)半導體材料在後續隔離區54的退火期間從半導體條帶52(例如Si及/或Ge)擴散至圍繞的隔離區54中。舉例來說,在沉積隔離區54的絕緣材料之後,可對隔離區54的絕緣材料進行退火製程。Furthermore, in some embodiments, the
在第4A圖中,平坦化製程(例如化學機械研磨(chemical mechanical polishing,CMP))可移除隔離區54的多餘絕緣材料,使得隔離區54的頂表面和半導體條帶52的頂表面共平面。在一些實施例中,化學機械研磨也可移除遮罩53。在其他實施例中,遮罩53可透過使用與化學機械研磨分開的濕蝕刻製程移除。In Figure 4A, a planarization process (such as chemical mechanical polishing (CMP)) can remove excess insulating material in the
第5A圖顯示將隔離區54凹陷,以形成鰭56。將隔離區54凹陷,使得在第一區100A和第二區100B中的鰭56從相鄰的隔離區54之間突出。在一些實施例中,半導體條帶52可被視為鰭56的一部分。再者,隔離區54的頂表面可具有如圖所示的平坦表面、凸面、凹面(例如凹陷)或前述之組合。隔離區54的頂表面可透過合適的製程形成平坦、凸形及/或凹形。隔離區54可透過使用合適的蝕刻製程凹陷,例如對隔離區54的材料有選擇性的蝕刻製程。FIG. 5A shows that the
本發明所屬技術領域中具通常知識者將容易理解關於第2A-5A圖所描述的製程僅為可如何形成鰭56的一範例。在其他實施例中,介電層可形成於基底50的頂表面上方,可蝕刻溝槽通過介電層,同質磊晶結構可磊晶成長於溝槽中,以及可將介電層凹陷,使得同質磊晶結構從介電層突出,以形成鰭56。在其他實施例中,異質磊晶結構可用於鰭。舉例來說,可將第4A圖中的半導體條帶52凹陷,並在凹陷處磊晶成長不同於半導體條帶52的材料。在其他實施例中,介電層可形成於基底50的頂表面上方,可蝕刻溝槽通過介電層,異質磊晶結構可透過使用不同於基底50的材料磊晶成長於溝槽中,以及將介電層凹陷,使得異質磊晶結構從介電層突出,以形成鰭56。在磊晶成長同質磊晶或異質磊晶結構的一些實施例中,成長材料可在成長期間原位(in situ)摻雜。在其他實施例中,同質磊晶或異質磊晶結構可例如在磊晶成長同質磊晶或異質磊晶結構之後,透過使用離子佈植摻雜。再者,在N型金屬氧化物半導體區中磊晶成長的材料不同於在P型金屬氧化物半導體區中磊晶成長的材料可為有利的。在各種實施例中,鰭56可包含矽鍺(Six
Ge1-x
,其中x可在約0與1之間)、碳化矽、純鍺或大致純鍺、第III-V族化合物半導體、第II-VI族化合物半導體或類似物。舉例來說,可用於形成第III-V族化合物半導體的材料包含InAs、AlAs、GaAs、InP、GaN、InGaAs、InAlAs、GaSb、AlSb、AlP、GaP和類似物,但不限於此。Those skilled in the art to which the present invention pertains will easily understand that the process described in FIGS. 2A-5A is only an example of how the
在第6A-6B圖中,虛設介電層58形成於鰭56上。虛設介電層58可例如為氧化矽、氮化矽、前述之組合或類似物,且可透過合適的技術(例如化學氣相沉積、物理氣相沉積、前述之組合或類似方法)來沉積或熱成長(例如使用熱氧化或類似方法)。虛設閘極層60形成於虛設介電層58上方,且遮罩62形成於虛設閘極層60上方。在一些實施例中,虛設閘極層60可沉積於虛設介電層58上方,且接著透過使用例如化學機械研磨製成將虛設閘極層60平坦化。遮罩62可沉積於虛設閘極層60上方。虛設閘極層6可例如由多晶矽製成,但是也可使用相對於隔離區54的材料具有高蝕刻選擇性地其他材料。遮罩62可包含一層或多層例如氮化矽、氮氧化矽、碳化矽、氮碳化矽、類似物或前述之組合。In FIGS. 6A-6B, a
請參照第6A-6B圖,在顯示的實施例中,單一虛設介電層58、單一虛設閘極層60、單一遮罩62形成橫跨第一區100A和第二區100B。在其他實施例中,個別的虛設介電層、個別的虛設閘極層、個別的遮罩可形成於第一區100A和第二區100B中。在一些實施例中,虛設介電層58可具有厚度在約0.8nm與約2.0nm之間,虛設閘極層60可具有厚度在約50nm與約100nm之間。Referring to FIGS. 6A-6B, in the embodiment shown, a single
在第7A-7C圖中,遮罩62(請參照第6A和6B圖)可透過使用合適的光微影和蝕刻技術以在第一區100A和第二區100B中形成遮罩72。遮罩72可為硬遮罩,且在第一區100A和第二區100B中的遮罩72的圖案可為不同。接著,第一區100A和第二區100B中的遮罩72的圖案可透過合適的蝕刻技術轉移至虛設閘極層60。為了方便,虛設閘極層60和遮罩72可被合稱為虛設結構70。在一些實施例中,虛設閘極層60和遮罩72在個別的製程形成於第一區100A和第二區100B中,且在第一區100A和第二區100B中可由不同材料形成。選擇性地,可將遮罩72的圖案相似地轉移至虛設介電層58。虛設結構70的圖案覆蓋鰭56的個別通道區,虛設結構70的圖案同時暴露出鰭56的源極/汲極區。虛設結構70也可具有長度方向大致垂直於個別鰭56的長度方向。虛設結構70的尺寸或虛設結構70之間的間距可取決於虛設閘極形成於其上的晶粒的區域。在一些實施例中,相較於位於晶粒的邏輯區(例如設置邏輯電路的區域)中的虛設結構70,位於晶粒的輸入/輸出區(例如設置輸入/輸出電路的區域)中的虛設結構70可具有較大尺寸或較大間距。在一些實施例中,虛設結構70可具有寬度在約15nm與約40nm之間。In FIGS. 7A-7C, the mask 62 (please refer to FIGS. 6A and 6B) can form the
請參照第7A-7C圖,合適的井區(未顯示)可形成於鰭56、半導體條帶52及/或基底50中。舉例來說,P型井可形成於第一區100A中,且N型井可形成於第二區100B中。可透過使用光阻或其他遮罩(未顯示)來達成用於第一區100A和第二區100B的不同佈植步驟。舉例來說,光阻可形成於第一區100A和第二區100B中的鰭56和隔離區54上方。將光阻圖案化以暴露出基底50的第二區100B(例如P型金屬氧化物半導體區),同時保護第一區100A(例如N型金屬氧化物半導體區)。光阻可透過使用旋塗技術形成,且可透過使用合適的光微影技術圖案化。在將光阻圖案化之後,在第二區100B中植入n型雜質,且光阻可作為遮罩來大致防止n型雜質植入第一區100A中。n型雜質可為磷、砷或類似物,且可被植入第二區100B至濃度等於或小於1018
cm-3
,例如在約1017
cm-3
至約1018
cm-3
之間的範圍中。在佈植製程之後,例如透過使用合適的灰化製程然後進行濕清潔製程來移除光阻。Referring to FIGS. 7A-7C, suitable well regions (not shown) can be formed in the
在第二區100B的佈植之後,第二光阻(未顯示)形成於第一區100A和第二區100B中的鰭56和隔離區54上方。將第二光阻圖案化以暴露出基底50的第一區100A,同時保護第二區100B。光阻可透過使用旋塗技術形成,且可透過使用合適的光微影技術圖案化。第二光阻可透過使用旋塗技術形成,且可透過使用合適的光微影技術圖案化。在將第二光阻圖案化之後,在第一區100A中植入p型雜質,且第二光阻可作為遮罩來大致防止p型雜質植入第二區100B中。p型雜質可為硼、BF2
或類似物,且可被植入第一區100A至濃度等於或小於1018
cm-3
,例如在約1017
cm-3
至約1018
cm-3
之間的範圍中。在佈植製程之後,例如透過使用合適的灰化製程然後進行濕清潔製程來移除光阻。After the implantation of the
在第一區100A和第二區100B的佈植之後,可進行退火來活化被植入的p型及/或n型雜質。佈植製程可形成第一區100A中的P型井和第二區100B中的N型井。在磊晶成長鰭的一些實施例中,鰭56的成長材料可在成長製程期間原位摻雜。After the implantation of the
在第8A-8C圖中,第一間隔層80A形成於虛設結構70(請參照第8A和8B圖)及/或鰭56上方的虛設介電層58(請參照第8C圖)的暴露表面上。可使用任何合適的方法來形成第一間隔層80A。在一些實施例中,可使用沉積(例如化學氣相沉積、原子層沉積或類似方法)來形成第一間隔層80A。在一些實施例中,第一間隔層80A可包含一層或多層例如氮化矽(SiN)、氮氧化矽、氮碳化矽、氮碳氧化矽(SiOCN)、前述之組合或類似物。In Figures 8A-8C, the
請參照第8A-8C圖,輕摻雜源極/汲極(lightly doped source/drain,LDD)區75和79可分別形成於第一區100A和第二區100B中的基底50中。與以上參考第7A-7C圖討論的佈植製程相似,遮罩(未顯示)(例如光阻)可形成於第一區100A(例如N型金屬氧化物半導體區)上方,同時暴露出第二區100B(例如P型金屬氧化物半導體區),且可將p型雜質植入第二區100B中暴露的鰭56中,以形成輕摻雜源極/汲極區79。在佈植輕摻雜源極/汲極區79期間,虛設結構70可作為遮罩來防止(或至少減少)摻雜物植入暴露的鰭56的通道區。因此,輕摻雜源極/汲極區79可大致形成於暴露的鰭56的源極/汲極區中。接著,可移除遮罩。之後,第二遮罩(未顯示)(例如光阻)可形成於第二區100B上方,同時暴露出第一區100A,且可將n型雜質植入第一區100A中暴露的鰭56中,以形成輕摻雜源極/汲極區75。在佈植輕摻雜源極/汲極區75期間,虛設結構70可作為遮罩來防止(或至少減少)摻雜物植入暴露的鰭56的通道區。因此,輕摻雜源極/汲極區75可大致形成於暴露的鰭56的源極/汲極區中。接著,可移除第二遮罩。n型雜質可為任何前述的n型雜質,且p型雜質可為任何前述的p型雜質。輕摻雜源極/汲極區75和79各具有雜質濃度在約1015
cm-3
至約1016
cm-3
。可進行退火製程來活化植入的雜質。Referring to FIGS. 8A-8C, lightly doped source/drain (LDD)
請參照第9A-9C圖,對第一間隔層80A的一部分進行蝕刻製程。蝕刻製程可為乾蝕刻製程,且可為非等向性。在進行蝕刻製程之後,可移除第一間隔層80A在輕摻雜源極/汲極區75/79和隔離區54上方的橫向部分,以暴露出鰭56和虛設結構70的遮罩72的頂表面。可保留第一間隔層80A沿虛設結構70和鰭56的側壁的部分,並形成偏移間隙壁120。在其他實施例中,也可從鰭56的側壁移除第一間隔層80A。在一些實施例中,第一區100A中的偏移間隙壁120和第二區100B中的偏移間隙壁120同時形成,而在其他實施例中,第一區100A和第二區100B中的偏移間隙壁120在個別的製程中形成。在一些實施例中,也可移除虛設介電層58在輕摻雜源極/汲極區75/79和隔離區54上方的橫向部分。Please refer to FIGS. 9A-9C to perform an etching process on a part of the
在第10A-10C圖中,第二間隔層80B和第三間隔層80C形成於第一區100A和第二區100B上方。可使用形成第一間隔層80A的任何合適的方法。在一些實施例中,可使用沉積(例如化學氣相沉積、原子層沉積或類似方法)來形成第二間隔層80B和第三間隔層80C。在一些實施例中,第二間隔層80B和第三間隔層80C可包含一層或多層例如氧化物材料、氮化矽、氮氧化矽、氮碳化矽、氮碳氧化矽、前述之組合或類似物。在一些實施例中,可省略第二間隔層80B或第三間隔層80C的其中一者。In Figures 10A-10C, the
請參照第11A-11C圖,進行圖案化製程以移除第一區100A中的第二間隔層80B和第三間隔層80C。可使用任何可接受的圖案化製程。在一些實施例中,遮罩118形成於第一區100A和第二區100B上方。遮罩118可為單一層或可包含多層,例如三層遮罩結構或其他類型的遮罩結構。在一些情況中,遮罩118可包含光阻,但是遮罩118可包含其他材料。將遮罩118圖案化以暴露出第一區100A。遮罩118可透過使用合適的光微影技術來圖案化。Please refer to FIGS. 11A-11C to perform a patterning process to remove the
請參照第11A-11C圖,使用遮罩118作為遮罩,對第二間隔層80B和第三間隔層80C的一部分進行蝕刻製程。蝕刻製程可為乾蝕刻製程,且可為非等向性。在進行蝕刻製程之後,可移除第二間隔層80B和第三間隔層80C在輕摻雜源極/汲極區75/79和隔離區54上方的橫向部分,以暴露出鰭56和遮罩72的頂表面。可保留第二間隔層80B和第三間隔層80C沿虛設結構70和鰭56的側壁的部分,並形成閘極間隙壁122和鰭間隙壁130。在一些實施例中,第一區100A中的閘極間隙壁122和鰭間隙壁130和第二區100B中的閘極間隙壁122和鰭間隙壁130同時形成,而在其他實施例中,在形成第一區100A中的閘極間隙壁122和鰭間隙壁130之前,形成第二區100B中的閘極間隙壁122和鰭間隙壁130。在一些實施例中,在形成第三間隔層80C之前,可如上述蝕刻第二間隔層80B,且接著可蝕刻第三間隔層80C以形成閘極間隙壁122和鰭間隙壁130。Please refer to FIGS. 11A-11C, using the
第12-16C圖顯示在第一區100A中的相鄰鰭56之間形成磊晶源極/汲極區82。第12-15C圖係皆沿第1圖的參考剖面B-B顯示。在第一區100A中形成磊晶源極/汲極區82期間,可遮蔽(例如透過遮罩118)第二區100B。在一些實施例中,在第二區100B中形成磊晶源極/汲極區84之前,可在第一區100A中形成磊晶源極/汲極區82。在其他實施例中,在第一區100A中形成磊晶源極/汲極區82之前,可在第二區100B中形成磊晶源極/汲極區84。Figures 12-16C show that epitaxial source/
請參照第12圖,對鰭56進行第一圖案化製程,以在鰭56的源極/汲極區中形成凹口124。可以在相鄰虛設結構70之間(在鰭56的內部區域中)或隔離區54與相鄰的虛設結構70之間(在鰭56的末端區域中)形成凹口124的方式進行第一圖案化製程。在一些實施例中,第一圖案化製程可包含合適的非等向性乾蝕刻製程,同時使用虛設結構70、閘極間隙壁122、鰭間隙壁130及/或隔離區54作為合併遮罩。合適的非等向性乾蝕刻製程可包含反應性離子蝕刻、中子束蝕刻、類似方法或前述之組合。在第一圖案化製程使用反應性離子蝕刻的一些實施例中,可選擇例如製程氣體混合物、電壓偏壓和射頻功率的製程參數,使得蝕刻主要透過使用物理蝕刻來進行,例如離子轟擊。在一些實施例中,可增加電壓偏壓來增加在離子轟擊製程中使用的離子的能量,且因此增加物理蝕刻的速率。由於物理蝕刻在本質上為非等向性而化學蝕刻在本質上為等向性,因此這種蝕刻製程在垂直方向的蝕刻速率大於在橫向方向的蝕刻速率。在一些實施例中,非等向性蝕刻製程可透過使用包含BF2
、Cl2
、CH3
F、CH4
、HBr、O2
、Ar、其他蝕刻劑氣體、前述之組合或類似物的製程氣體混合物來進行。在一些實施例中,第一圖案化製程形成具有U形底表面的凹口124。凹口124也可被稱為U形的凹口,例如第12圖顯示的例示性凹口124。第12圖也顯示凹口124具有頂部接近距離TP0、中間接近距離MP0和底部接近距離BP0,頂部接近距離TP0、中間接近距離MP0和底部接近距離BP0的每一者從鄰近的虛設閘極層的邊緣到凹口124的側壁橫向測量。在鰭56的頂部測量頂部接近距離TP0,且頂部接近距離TP0可在約1nm與約30nm之間。在凹口124的底部測量底部接近距離BP0,且底部接近距離BP0可在約1nm與約30nm之間。在鰭56的頂部與凹口124的底部之間的大約一半處測量中間接近距離MP0,且中間接近距離MP0可在約1nm與約30nm之間。如第12圖所示,凹口124具有從鰭56的頂表面到凹口124的底部測量的凹口深度D0,深度D0可在約40nm與約100nm之間。在一些實施例中,形成凹口124的蝕刻製程也可蝕刻隔離區54。在一些情況中,蝕刻製程之後,可進行清潔製程,例如乾清潔製程(例如灰化製程)、濕清潔製程、類似方法或前述之組合。在一些情況中,原生氧化物(未顯示)可形成於U形的凹口124的暴露表面上。Referring to FIG. 12, a first patterning process is performed on the
請參照第13圖,對鰭56進行第二圖案化製程,以將U形的凹口124重塑並形成重塑的凹口126。如第13圖所示,第二圖案化製程擴展U形的凹口124(為比較起見,以虛線顯示於第13圖中)以形成重塑的凹口126。在第13-15C圖中,將位於或靠近凹口126的底部之凹口126的側壁區域標註為下側壁125,且將位於或靠近凹口126的頂部之凹口126的側壁區域標註為上側壁127。第13圖中標註為下側壁125和上側壁127的側壁區域為範例,且可不同於圖中所示。下側壁125可透過其他側壁區域與上側壁127隔開,或下側壁125可與上側壁127鄰接。在一些實施例中,上側壁127可從鰭56的頂表面延伸約10nm與約90nm之間。在一些實施例中,下側壁125可從凹口126的底表面延伸約10nm與約90nm之間。在一些實施例中,上側壁127可在凹口126的側壁深度的約10%與約90%之間延伸,例如約50%。在一些實施例中,下側壁125可在凹口126的側壁深度的約10%與約90%之間延伸,例如約50%。在一些情況中,將下側壁125定義為具有沿晶面的表面的凹口126的側壁區域,以下更詳細描述。在一些實施例中,第二圖案化製程導致重塑的凹口126的底部接近距離BP1大於凹口124的底部接近距離BP0。在一些實施例中,第二圖案化製程可包含非等向性乾蝕刻製程,同時使用虛設結構70、閘極間隙壁122及/或隔離區54作為合併遮罩。在一些情況中,第二圖案化製程可具有比第一圖案化製程更慢的蝕刻速率。Please refer to FIG. 13, a second patterning process is performed on the
在一些實施例中,第二圖案化製程包含在製程腔體中進行的電漿蝕刻製程,其中將製程氣體供應至製程腔體。在一些實施例中,電漿為直接電漿。在其他實施例中,電漿為產生於連接至製程腔體的另外的電漿產生腔體中的遠端電漿。製程氣體可透過產生電漿的任何合適方法活化為電漿,例如變壓器耦合電漿(transformer coupled plasma,TCP)系統、感應耦合電漿(inductively coupled plasma,ICP)系統、磁性輔助反應性離子技術、電子迴旋共振技術或類似方法。In some embodiments, the second patterning process includes a plasma etching process performed in a process chamber, wherein a process gas is supplied to the process chamber. In some embodiments, the plasma is direct plasma. In other embodiments, the plasma is a remote plasma generated in another plasma generating chamber connected to the process chamber. The process gas can be activated into plasma by any suitable method for generating plasma, such as transformer coupled plasma (TCP) system, inductively coupled plasma (ICP) system, magnetic assisted reactive ion technology, Electron cyclotron resonance technology or similar methods.
在一些實施例中,用於電漿蝕刻製程的製程氣體包含蝕刻劑氣體,例如H2
、Ar、其他氣體或氣體的組合。在一些實施例中,可使用載氣來將製程氣體載送至製程腔體,載氣例如N2
、Ar、He、Xe或類似物。製程氣體可以速率在約10sccm與約3000sccm之間流入製程腔體。舉例來說,蝕刻劑氣體可以速率在約10sccm與約1000sccm之間流入製程腔體或電漿產生腔體,例如約70sccm。載氣可以速率在約10sccm與約3000sccm之間流入製程腔體,例如約130sccm。在一些情況中,製程氣體的較低流量可降低第二圖案化製程的蝕刻速率,並降低在第二圖案化製程期間對鰭56的損壞。在一些實施例中,電漿蝕刻製程在溫度約200ºC與約400ºC之間進行,例如約330ºC。在一些情況中,較高的製程溫度可降低第二圖案化製程的蝕刻速率,並降低在第二圖案化製程期間對鰭56的損壞。製程腔體中的壓力可在約60mTorr與約120mTorr之間,例如約100mTorr。在一些情況中,較高的製程壓力可使電漿較穩定或較可再生。較高的製程壓力也可降低在第二圖案化製程期間對鰭56的損壞。在一些實施例中,進行電漿蝕刻製程的時間在約10秒與約1000秒之間。在一些實施例中,電漿蝕刻製程包含多個步驟。In some embodiments, the process gas used in the plasma etching process includes an etchant gas, such as H 2 , Ar, other gases, or a combination of gases. In some embodiments, a carrier gas, such as N 2 , Ar, He, Xe, or the like, can be used to carry the process gas to the process chamber. The process gas can flow into the process chamber at a rate between about 10 sccm and about 3000 sccm. For example, the etchant gas may flow into the process chamber or the plasma generation chamber at a rate between about 10 sccm and about 1000 sccm, for example, about 70 sccm. The carrier gas may flow into the process chamber at a rate between about 10 sccm and about 3000 sccm, for example, about 130 sccm. In some cases, the lower flow rate of the process gas can reduce the etching rate of the second patterning process and reduce damage to the
在一些實施例中,第二圖案化製程包含使用氫(H)自由基的電漿蝕刻製程。氫自由基可透過將H2
氣體流入電漿產生腔體,並點燃電漿產生腔體中的電漿來形成。在一些實施例中,可在電漿產生腔體中將額外的氣體點燃為電漿,例如Ar。鰭56暴露於氫自由基,且氫自由基橫向且垂直地蝕刻U形的凹口124的側壁,形成重塑的凹口126。在一些情況中,氫自由基可優先蝕刻鰭56的半導體材料的某些晶面。舉例來說,對於鰭56的材料為矽的實施例,相較於晶面(111)或晶面(110),氫自由基可選擇性蝕刻晶面(100)。雖然晶面(100)和晶面(111)的範例標示於第13圖中,但是也可能有未顯示的晶面(100)、(111)或(110)。在一些情況中,晶面(100)的蝕刻速率可大於晶面(111)的蝕刻速率約3倍。由於選擇性的緣故,因此在第二圖案化製程期間,氫自由基沿矽的晶面(111)或(110)的蝕刻可傾向較慢或停止。In some embodiments, the second patterning process includes a plasma etching process using hydrogen (H) radicals. Hydrogen radicals can be formed by flowing H 2 gas into the plasma generating cavity and igniting the plasma in the plasma generating cavity. In some embodiments, additional gas may be ignited into plasma, such as Ar, in the plasma generating cavity. The
在一些實施例中,氫自由基的選擇性蝕刻可導致重塑的凹口126的一些側壁在第二圖案化製程之後具有維持晶面(111)或晶面(110)的表面。如第13圖所示,凹口126的一些或所有的下側壁125具有沿晶面的表面。下側壁125可具有包含晶面(111)、晶面(110)、或晶面(111)或晶面(110)的組合的表面。在一些情況中,下側壁125中的晶面(111)與晶面(110)比例可取決於鰭56或基底50的材料的晶向。在一些情況中,具有沿晶面的表面的下側壁125可導致重塑的凹口126在底部具有如第13圖所示的錐形、尖頭形狀或V形。舉例來說,在重塑的凹口126的底部處,兩側的下側壁125可具有沿晶面的表面,這些晶面由表面的晶面相交所定義的角度交會。舉例來說,在一些情況中,重塑的凹口126的底部可由第一側壁表面的晶面和第二側壁表面的晶面相交來定義。第13圖顯示重塑的凹口126具有底部的尖頭形狀橫向地位於兩側的閘極間隙壁122之間的中心,但是在其他情況中,凹口126的底部可具有橫向偏移的尖頭形狀。在一些情況中,一些、沒有或全部的重塑的凹口126的上側壁127具有平坦表面(例如晶面(111)或(110))。在一些情況中,重塑的凹口126可具有平坦或筆直但是不沿晶面的平面。舉例來說,重塑的凹口可具有不沿晶面的垂直、橫向或斜的表面。在一些情況中,如第13圖所示,上側壁127可具有曲面或凸面。In some embodiments, the selective etching of hydrogen radicals may cause some sidewalls of the reshaped
在一些情況中,透過具有由所描述的晶面相交所定義的重塑的凹口126的底部,可增加底部接近距離(例如第13圖所示的底部接近距離BP1)。舉例來說,具有V形底部的重塑的凹口126可比具有U形底部或更水平的底表面的凹口(例如第12圖所示的凹口124)更遠離相鄰的鰭。在一些情況中,較大的底部接近距離降低了在磊晶源極/汲極區中的摻雜物擴散至鰭式場效電晶體的通道中或通道下方的量。減少擴散的摻雜物可改善裝置效能。舉例來說,減少摻雜物的擴散可降低不想要的汲極引發能障降低(Drain-Induced Barrier Lowering,DIBL)效應或可減少鰭式場效電晶體的關態漏電流。In some cases, the bottom proximity distance can be increased by having the bottom of the reshaped
第14圖顯示在已進行第二圖案化製程之後的重塑的凹口126的另一實施例。第14圖顯示的重塑的凹口126相似於第13圖顯示的重塑的凹口126,除了在第二圖案化製程之後,鰭56的一部分128保留在閘極間隙壁122下方。在一些實施例中,相較於沒有保留部分128的第二圖案化製程(如第13圖所示),保留部分128的第二圖案化製程可具有較短的持續時間。舉例來說,在一些實施例中,可以第一持續時間進行保留部分128的第二圖案化製程,第一持續時間小於移除部分128的第二圖案化製程的第二持續時間的一半,但是在其他實施例中,第一持續時間可為第二持續時間的另一分率。在一些實施例中,部分128可從閘極間隙壁122朝向鰭56延伸距離在約0.1nm與約10nm之間,且可從閘極間隙壁122向下延伸距離在約0.1nm與約10nm之間。在一些實施例中,部分128具有遠離凹口126的中心(即朝向鰭56)的側壁表面,以符號“S”標註於第14圖的範例中。在一些實施例中,表面S包含一個或多個結晶平坦表面。舉例來說,由於上述的氫自由基的選擇性蝕刻,因此表面S可具有晶面(111)或(110)。在一些實施例中,凹口126的側壁與表面S之間的角度A2可在約35°與約125°之間。在一些情況中,鰭56保留在閘極間隙壁122下方的部分128作為額外的高摻雜區,高摻雜區可有效地將輕摻雜源極/汲極區75/79延伸至閘極間隙壁122下方。在此方式中,部分128可提供類似於由輕摻雜源極/汲極區75/79所提供的額外裝置效能改善。在一些情況中,在第二圖案化製程之後,保留鰭56在閘極間隙壁122下方的部分128可保護取代閘極(請參照第20A-20C圖)免於摻雜物從磊晶源極/汲極區(請參照第16A-16C圖)擴散至取代閘極中,且因此可改善裝置效能。在一些實施例中,部分128的形狀(例如角度A2)或尺寸可透過控制第二圖案化製程的參數來控制,例如製程持續時間、製程溫度、製程壓力、製程氣體流量(例如H2
流量)或其他參數。Figure 14 shows another embodiment of the reshaped
第15A-15C圖顯示可透過使用本文描述的第二圖案化製程形成具有不同形狀的重塑的凹口126的其他實施例。第15A-15C圖顯示的重塑的凹口126相似於第13-14圖顯示的重塑的凹口126。舉例來說,可使用有著用於電漿蝕刻製程中的氫自由基的第二圖案化製程來形成第15A-15C圖顯示的凹口126。此外,第13-15C圖顯示的重塑的凹口126為顯示目的,且重塑的凹口126可具有不同於顯示的重塑的凹口126的形狀或尺寸,或可具有顯示的重塑的凹口126的形狀或尺寸的組合。在一些實施例中,重塑的凹口126的形狀或尺寸可透過控制第二圖案化製程的參數來控制,例如製程持續時間、製程溫度、製程壓力、製程氣體流量或其他參數。在一些實施例中,可控制第二圖案化製程的參數以形成具有所期望的形狀或具有所期望的尺寸的重塑的凹口126。在一些情況中,透過控制重塑的凹口126的形狀,也控制了相鄰鰭式場效電晶體的通道區的形狀。在此方式中,可形成具有所期望特徵的通道區,例如特定的頂部接近距離、中間接近距離和底部接近距離。也可控制通道區的側壁輪廓有著特定特徵,例如一致的側壁、垂直的側壁、錐形的側壁等。在一些情況中,重塑的凹口126的特定形狀(例如具有V形底部或具有垂直側壁等)可能更適用於特定的源極/汲極磊晶材料或用以在重塑的凹口126中形成磊晶源極/汲極區的磊晶材料形成製程。在此方式中,本文顯示的實施例呈現可控制如本文所述的第二圖案化製程以產生的重塑的凹口126的一些形狀的顯示性範例。如此一來,本文描述的第二圖案化製程可使得在控制凹口的形狀或鰭式場效電晶體的通道區的形狀上有著更大的靈活性。Figures 15A-15C show other embodiments in which the reshaped
第15A圖顯示重塑的凹口126的形狀的另一實施例,此形狀相似於第13圖顯示的重塑的凹口126的形狀。凹口126的下側壁125可包含沿晶面(例如晶面(111)或(110))的表面,且上側壁127可包含不沿晶面(例如曲面)的表面。重塑的凹口126可具有從鰭56的頂表面至凹口126的底部垂直地測量的凹口深度D1在約40nm與約100nm之間。重塑的凹口126可具有從一鰭56的頂部至相對鰭56的頂部橫跨凹口126測量的頂部寬度W1在約15nm與約60nm之間。重塑的凹口126可具有在凹口深度D1的約一半處從一鰭56至相對鰭56橫跨凹口126測量的中間寬度W2在約15nm與約80nm之間。寬度W1:W2的比例可在約0.5:1與約1:1之間。重塑的凹口126可具有在中間寬度W2與凹口126的底部之間的約一半處從一鰭56至相對鰭56橫跨凹口126測量的寬度W3在約5nm與約50nm之間。寬度W3:W2的比例可在約0.5:1與約1:1之間。重塑的凹口可具有頂部接近距離TP1在約1nm與約15nm之間、中間接近距離MP1在約1nm與約10nm之間和底部接近距離BP1在約1nm與約25nm之間。本文描述的第二圖案化製程可允許較小的中間接近距離MP1,在一些情況中,較小的中間接近距離MP1可導致降低鰭式場效電晶體中的汲極引發能障降低效應。在一些情況中,相較於其他技術,第二圖案化製程可能夠在有著較少增加深度D1或有著較少降低頂部接近距離TP1的情況下降低中間接近距離MP1。凹口126的下側壁125可具有由晶面(例如晶面(111)或(110))定義之與水平面夾的角度A1。角度A1可在約20°與約80°之間。FIG. 15A shows another embodiment of the shape of the reshaped
第15B圖顯示具有筆直上側壁127的重塑的凹口126的另一實施例。在一些情況中,上側壁127可為大致垂直(如第15B圖所示)或可具有角度。下側壁125可包含沿晶面(例如晶面(111)或(110))的表面。重塑的凹口126可具有從鰭56的頂表面至凹口126的底部垂直地測量的凹口深度D1在約40nm與約100nm之間。重塑的凹口126可具有從鰭56的頂表面至下側壁125垂直地測量的深度D2在約30nm與約100nm之間。重塑的凹口126可具有從一鰭56的頂部至相對鰭56的頂部橫跨凹口126測量的頂部寬度W1在約10nm與約60nm之間。重塑的凹口126可具有在凹口深度D1的約一半處從一鰭56至相對鰭56橫跨凹口126測量的中間寬度W2在約10nm與約80nm之間。寬度W1:W2的比例可在約0.5:1與約1:1之間。重塑的凹口126可具有在中間寬度W2與凹口126的底部之間的約一半處從一鰭56至相對鰭56橫跨凹口126測量的寬度W3在約5nm與約60nm之間。寬度W3:W2的比例可在約0.5:1與約1:1之間。重塑的凹口可具有頂部接近距離TP1在約1nm與約15nm之間、中間接近距離MP1在約1nm與約15nm之間和底部接近距離BP1在約1nm與約30nm之間。凹口126的下側壁125可具有由晶面(例如晶面(111)或(110))定義之與水平面夾的角度A1。角度A1可在約20°與約80°之間。在一些情況中,形成有著較垂直側壁的重塑的凹口126可允許鰭式場效電晶體的閘極堆疊物下方的通道區具有更均勻的輪廓。透過改善通道區輪廓的均勻性,鰭式場效電晶體可橫跨通道區更統一地開啟和關閉,其可改善裝置速度、電流均勻度和效率。Figure 15B shows another embodiment of a reshaped
第15C圖顯示具有上側壁127、中間側壁129和下側壁125的重塑的凹口126的另一實施例。在第15C圖顯示的範例凹口126中,上側壁127和下側壁125包含沿晶面(例如晶面(111)或(110))的表面。中間側壁129可為垂直的(如第15C圖所示)或可具有彎曲或傾斜的輪廓。重塑的凹口126可具有從鰭56的頂表面至凹口126的底部垂直地測量的凹口深度D1在約40nm與約100nm之間。重塑的凹口126可具有從鰭56的頂表面至中間側壁129垂直地測量的深度D3在約1nm與約30nm之間。中間側壁129可延伸垂直深度D4在約10nm與約50nm之間。重塑的凹口126可具有從一鰭56的頂部至相對鰭56的頂部橫跨凹口126測量的頂部寬度W1在約10nm與約60nm之間。重塑的凹口126可具有在中間側壁129的頂部處從一鰭56至相對鰭56橫跨凹口126測量的寬度W4在約10nm與約70nm之間。重塑的凹口126可具有在中間側壁129的底部處從一鰭56至相對鰭56橫跨凹口126測量的寬度W5在約10nm與約80nm之間。寬度W5:W4的比例可在約0.5:1與約1:1之間。重塑的凹口126可具有在寬度W5與凹口126的底部之間的約一半處從一鰭56至相對鰭56橫跨凹口126測量的寬度W3在約1nm與約40nm之間。重塑的凹口可具有頂部接近距離TP1在約1nm與約20nm之間、中間接近距離MP1在約1nm與約15nm之間和底部接近距離BP1在約2nm與約30nm之間。凹口126的下側壁125可具有由下側壁125的晶面(例如晶面(111)或(110))定義之與水平面夾的角度A1。角度A1可在約20°與約80°之間。凹口126的上側壁127可具有由晶面(例如晶面(111)或(110))定義之與水平面夾的角度A3。角度A3可在約45°與約90°之間。在一些情況中,形成有著較垂直側壁(例如中間側壁129)的重塑的凹口126可允許鰭式場效電晶體的閘極堆疊物下方的通道區具有更均勻的輪廓。透過改善通道區輪廓的均勻性,鰭式場效電晶體可橫跨通道區更統一地開啟和關閉,其可改善裝置速度、電流均勻度和效率。FIG. 15C shows another embodiment of the reshaped
第16A-16C圖顯示在第一區100A中形成磊晶源極/汲極區82。磊晶源極/汲極區82可為單一層或包含兩層或更多層材料。舉例來說,第16B圖顯示的磊晶源極/汲極區82包含多個磊晶層82A-82C。為清楚起見,其他圖式不顯示多個磊晶層。在一些實施例中,磊晶源極/汲極區82透過使用金屬有機化學氣相沉積(metal-organic CVD,MOCVD)、分子束磊晶(molecular beam epitaxy,MBE)、液相磊晶(liquid phase epitaxy,LPE)、氣相磊晶(vapor phase epitaxy,VPE)、選擇性磊晶成長(selective epitaxial growth,SEG)、前述之組合或類似方法磊晶成長於凹口126中。在一些實施例中,磊晶源極/汲極區82在與進行第二圖案化製程的相同製程腔體中成長。在一些情況中,在形成磊晶源極/汲極區82之前,可對鰭56進行清潔製程,例如乾清潔製程(例如灰化製程)、濕清潔製程(例如使用Caro’s Strip或HF)、類似方法或前述之組合。磊晶源極/汲極區82可具有從鰭56的對應表面凸起的表面,且可具有刻面(facet)。磊晶源極/汲極區82形成於鰭56中,使得每個虛設結構70設置於對應相鄰對的磊晶源極/汲極區82之間。磊晶源極/汲極區82可包含任何合適的材料,例如適用於n型鰭式場效電晶體的任何材料。舉例來說,假如鰭56為矽,磊晶源極/汲極區82可包含矽、SiC、SiCP、SiP、SiGeB、類似物或前述之組合。磊晶源極/汲極區82的不同層可為不同材料或可為相同材料,且可在個別的步驟中成長。舉例來說,磊晶層82A(有時被稱為第一磊晶層)可先沉積於凹口126中,接著磊晶層82B(有時被稱為第二磊晶層)可沉積於磊晶層82A上方,接著磊晶層82C(有時被稱為第三磊晶層)可沉積於磊晶層82B上方。在一些實施例中,磊晶層82A可包含例如矽、SiC、SiP、類似物或前述之組合的材料。磊晶層82A可為未摻雜或摻雜。舉例來說,在一些實施例中,磊晶層82A可摻雜磷濃度在約5x1019
cm-3
與約5x1020
cm-3
之間,但是可使用其他摻雜物或濃度。在一些實施例中,可形成磊晶層82A具有厚度在約5nm與約20nm之間。在一些實施例中,磊晶層82A可包含對鰭56的通道區上施加應力的應力源材料。舉例來說,應力可為用於n型鰭式場效電晶體的拉伸應力。在一些實施例中,磊晶層82B可包含例如矽、SiP、類似物或前述之組合的材料。磊晶層82B可為未摻雜或摻雜。舉例來說,在一些實施例中,磊晶層82B可摻雜磷濃度在約5x1020
cm-3
與約4x1021
cm-3
之間,但是可使用其他摻雜物或濃度。在一些實施例中,可形成磊晶層82B具有厚度在約15nm與約60nm之間。在一些實施例中,磊晶層82C可包含例如矽、SiP、SiGe、SiGe:P、類似物或前述之組合的材料。磊晶層82C可為未摻雜或摻雜。舉例來說,在一些實施例中,磊晶層82C可摻雜磷濃度在約1x1021
cm-3
與約3x1021
cm-3
之間,但是可使用其他摻雜物或濃度。在一些實施例中,可形成磊晶層82C具有厚度在約5nm與約20nm之間。在一些情況中,重塑的凹口126的錐形形狀可允許形成磊晶源極/汲極區82期間改善的磊晶源極/汲極區82的填充效率。Figures 16A-16C show that epitaxial source/
在一些實施例中,第一區100A中的磊晶源極/汲極區82可植入摻雜物,相似於前述用於形成輕摻雜源極/汲極區75/79的製程,接著進行退火(請參照第8A、8B和8C圖)。磊晶源極/汲極區82可具有雜質濃度在約1019
cm-3
與約1021
cm-3
之間的範圍中。用於第一區100A(例如n型金屬氧化物半導體區)中的源極/汲極區的n型雜質可為前述的任何n型雜質。在其他實施例中,磊晶源極/汲極區82的材料可在成長期間原位摻雜。在顯示的實施例中,每個磊晶源極/汲極區82與其他的磊晶源極/汲極區82物理隔開。在其他實施例中,可合併兩個或更多相鄰的磊晶源極/汲極區82。此一實施例顯示於第22圖,合併兩個相鄰的磊晶源極/汲極區82,以形成共用的源極/汲極區。在一些實施例中,可合併多於兩個相鄰的磊晶源極/汲極區82。In some embodiments, the epitaxial source/
請參照第17A-17C圖,在形成第一區100A中的磊晶源極/汲極區82之後,磊晶源極/汲極區84形成於第二區100B中。在一些實施例中,磊晶源極/汲極區84透過使用以上參考第12-15C圖所述之磊晶源極/汲極區82的類似形成方法形成於第二區100B中,且為了簡潔起見,不重複詳細描述。在一些實施例中,在第二區100(例如p型金屬氧化物半導體區)中形成磊晶源極/汲極區84期間,可遮蔽(未顯示)第一區100A(例如n型金屬氧化物半導體區)。之後,蝕刻第二區100B中的鰭56的源極/汲極區以形成相似於重塑的凹口126(請參照第13-15C圖)的凹口(如第17B-17C圖顯示填充磊晶源極/汲極區84)。舉例來說,可使用第一圖案化製程以形成相似於U形的凹口124(請參照第12圖)的U形的凹口,接著可進行第二圖案化製程以重塑凹口。第二圖案化製程可例如包含使用氫自由基的電漿蝕刻製程或可包含前述的其他技術。第二區100B中的重塑的凹口可透過使用相似於以上參照第12-15C圖之第一區100A中的重塑的凹口126的形成方法來形成。為了簡潔起見,不贅述於此。Referring to FIGS. 17A-17C, after forming the epitaxial source/
接著,第二區100B中的磊晶源極/汲極區84透過使用金屬有機化學氣相沉積、分子束磊晶、液相磊晶、氣相磊晶、選擇性磊晶成長、前述之組合或類似方法磊晶成長於凹口中。在一些實施例中,磊晶源極/汲極區84在與進行第二圖案化製程的相同製程腔體中成長。在一些情況中,在形成磊晶源極/汲極區84之前,可對鰭56進行清潔製程,例如乾清潔製程(例如灰化製程)、濕清潔製程(例如使用Caro’s Strip或HF)、類似方法或前述之組合。磊晶源極/汲極區84可為單一層或包含兩層或更多層材料。磊晶源極/汲極區84可包含任何合適的材料,例如適用於p型鰭式場效電晶體的任何材料。舉例來說,假如鰭56為矽,磊晶源極/汲極區84可包含SiGe、SiGeB、Ge、GeSn、類似物或前述之組合。磊晶源極/汲極區84的不同層可為不同材料或可為相同材料,且可在個別的步驟中成長。舉例來說,第一磊晶層可先沉積於凹口中,接著第二磊晶層可沉積於第一磊晶層上方,接著第三磊晶層可沉積於第二磊晶層上方。在一些實施例中,第一磊晶層可包含例如矽、SiGe、SiGe:B、類似物或前述之組合的材料。第一磊晶層可為未摻雜或摻雜。舉例來說,在一些實施例中,第一磊晶層可為具有Ge原子百分比在約1%與約25%之間的SiGe,或可為摻雜硼濃度在約5x1019
cm-3
與約1x1020
cm-3
之間的材料,但是可使用其他摻雜物或濃度。在一些實施例中,可形成第一磊晶層具有厚度在約5nm與約20nm之間。在一些實施例中,第一磊晶層可包含對鰭56的通道區上施加應力的應力源材料。舉例來說,應力可為用於p型鰭式場效電晶體的壓縮應力。在一些實施例中,第二磊晶層可包含例如矽、SiGe、SiGe:B、類似物或前述之組合的材料。第二磊晶層可為未摻雜或摻雜。舉例來說,在一些實施例中,第二磊晶層可為具有Ge原子百分比在約25%與約55%之間的SiGe,或可為摻雜硼濃度在約1x1020
cm-3
與約2x1021
cm-3
之間的材料,但是可使用其他摻雜物或濃度。在一些實施例中,可形成第二磊晶層具有厚度在約20nm與約60nm之間。在一些實施例中,第三磊晶層可包含例如矽、SiGe、SiGe:B、類似物或前述之組合的材料。第三磊晶層可為未摻雜或摻雜。舉例來說,在一些實施例中,第三磊晶層可為具有Ge原子百分比在約45%與約60%之間的SiGe,或可為摻雜硼濃度在約5x1020
cm-3
與約2x1021
cm-3
之間的材料,但是可使用其他摻雜物或濃度。在一些實施例中,可形成第三磊晶層具有厚度在約10nm與約20nm之間。磊晶源極/汲極區84可具有從鰭56的對應表面凸起的表面,且可具有刻面。在第二區100B中,磊晶源極/汲極區84形成於鰭56中,使得每個虛設結構70設置於對應相鄰對的磊晶源極/汲極區84之間。在一些實施例中,磊晶源極/汲極區84可延伸通過鰭56並進入半導體條帶52中。Then, the epitaxial source/
在一些實施例中,第二區100B中的磊晶源極/汲極區84可植入摻雜物,相似於前述用於形成輕摻雜源極/汲極區75/79的製程,接著進行退火(請參照第8A、8B和8C圖)。磊晶源極/汲極區84可具有雜質濃度在約1019
cm-3
與約1021
cm-3
之間的範圍中。用於第二區100B(例如p型金屬氧化物半導體區)中的磊晶源極/汲極區84的p型雜質可為前述的任何p型雜質。在其他實施例中,磊晶源極/汲極區84的材料可在成長期間原位摻雜。依據對應之重塑的凹口的形狀,磊晶源極/汲極區82和84的一部分可具有彎曲的側壁或大致筆直的側壁。在顯示的實施例中,每個磊晶源極/汲極區84與其他的磊晶源極/汲極區84物理隔開。在其他實施例中,可合併兩個或更多相鄰的磊晶源極/汲極區84。此一實施例顯示於第22圖,合併兩個相鄰的磊晶源極/汲極區84,以形成共用的源極/汲極區。在一些實施例中,可合併多於兩個相鄰的磊晶源極/汲極區84。In some embodiments, the epitaxial source/
請參照第17A-17C圖,蝕刻停止層87和層間介電質(interlayer dielectric,ILD)88沉積於虛設結構70上方以及磊晶源極/汲極區82和84上方。在一些實施例中,層間介電質88為透過可流動化學氣相沉積形成的可流動膜。在一些實施例中,層間介電質88由介電材料形成,例如磷矽酸鹽玻璃(Phospho-Silicate Glass,PSG)、硼矽酸鹽玻璃(Boro-Silicate Glass,BSG)、硼摻雜磷矽酸鹽玻璃(Boron-Doped Phospho-Silicate Glass,BPSG)、未摻雜矽酸鹽玻璃(undoped Silicate Glass,USG)或類似物,且可透過任何合適的方法沉積,例如化學氣相沉積、電漿輔助化學氣相沉積、前述之組合或類似方法。在一些實施例中,當將層間介電質88圖案化以形成用於形成接點的開口時,使用蝕刻停止層87作為停止層。因此,可選擇蝕刻停止層87的材料,使得蝕刻停止層87的材料具有比層間介電質88的材料更低的蝕刻速率。Referring to FIGS. 17A-17C, an
請參照第18A-18C圖,可進行平坦化製程(例如化學機械研磨製程),使層間介電質88的頂表面與虛設結構70的頂表面齊平。在平坦化製程之後,虛設結構70的頂表面從層間介電質88暴露出來。在一些實施例中,化學機械研磨也可移除虛設結構70上的遮罩72或遮罩72的一部分。Referring to FIGS. 18A-18C, a planarization process (such as a chemical mechanical polishing process) may be performed to make the top surface of the
請參照第19A-19C圖,在蝕刻步驟中移除遮罩72和虛設結構70的一部分,使得形成凹口90。每個凹口90暴露出對應鰭56的通道區。每個通道區設置於第一區100A中的各對相鄰的磊晶源極/汲極區82之間或第二區100B中的各對相鄰的磊晶源極/汲極區84之間。在移除製程期間,虛設介電層58可用作當虛設結構70被蝕刻時的蝕刻停止層。在移除虛設結構70之後,可接著移除虛設介電層58。Referring to FIGS. 19A-19C, the
請參照第20A-20C圖,分別在第一區100A和第二區100B中形成用於取代閘極的閘極介電層92和96以及閘極電極94和98。閘極介電層92和96順應性沉積於凹口90中,例如分別沉積於鰭56的頂表面和側壁上、閘極間隙壁122和鰭間隙壁130的側壁上以及層間介電質88的頂表面上。在一些實施例中,閘極介電層92和96包含氧化矽、氮化矽或前述之多層。在其他實施例中,閘極介電層92和96包含高介電常數(high-k)介電材料,且在這些實施例中,閘極介電層92和96可具有介電常數值大於約7.0,且可包含Hf、Al、Zr、La、Mg、Ba、Ti、Pb的金屬氧化物或矽酸鹽和前述之組合。閘極介電層92和96的形成方法可包含分子束沉積(Molecular-Beam Deposition,MBD)、原子層沉積、電漿輔助化學氣相沉積、前述之組合或類似方法。Referring to FIGS. 20A-20C, gate dielectric layers 92 and 96 and
接著,閘極電極94和98分別沉積於閘極介電層92和96上方,並填充凹口90的剩下部分。閘極電極94和98可由含金屬材料製成,例如TiN、TaN、TaC、Co、Ru、Al、Ag、Au、W、Ni、Ti、Cu、前述之組合或前述之多層。在填充閘極電極94和98之後,可進行平坦化製程(例如化學機械研磨製程)來移除閘極介電層92和96以及閘極電極94和98的多餘部分,其中多餘部分在層間介電質88的頂表面上方。閘極電極94和98以及閘極介電層92和96的材料的最終剩下部分因此形成最終鰭式場效電晶體的取代閘極。Next,
在一些實施例中,閘極介電層92和96的形成可同時發生,使得閘極介電層92和96由相同材料製成,且閘極電極94和98的形成可同時發生,使得閘極電極94和98由相同材料製成。然而,閘極介電層92和96可由不同的製程形成,使得閘極介電層92和96由不同材料製成,且閘極電極94和98可由不同的製程形成,使得閘極電極94和98由不同材料製成。當使用不同的製程時,可使用各種遮罩步驟來遮蔽並暴露合適的區域。In some embodiments, the formation of gate dielectric layers 92 and 96 can occur simultaneously, so that the gate dielectric layers 92 and 96 are made of the same material, and the formation of
請參照第21A-21C圖,層間介電質102沉積於層間介電質88上方,接點104形成通過層間介電質102和層間介電質88,且接點110形成通過層間介電質102。在一實施例中,層間介電質102透過使用相似於以上參照第17A-17C圖的層間介電質88的材料和形成方法來形成。為了簡潔起見,不贅述於此。在一些實施例中,層間介電質102和層間介電質88由相同材料形成。在其他實施例中,層間介電質102和層間介電質88由不同材料形成。Please refer to Figures 21A-21C, the
用於接點104的開口形成通過層間介電質88和102以及蝕刻停止層87。用於接點110的開口形成通過層間介電質102以及蝕刻停止層87。這些開口可皆於相同製程中同時形成,或在個別製程中形成。開口可透過使用合適的光微影和蝕刻技術形成。襯墊(例如擴散阻障層、黏著層或類似物)和導電材料形成於開口中。襯墊可包含鈦、氮化鈦、鉭、氮化鉭或類似物。導電材料可為銅、銅合金、銀、金、鎢、鈷、鋁、鎳或類似物。可進行平坦化製程(例如化學機械研磨)以從層間介電質102的頂表面移除多餘的材料。剩下的襯墊和導電材料在開口中形成接點104和110。可進行退火以分別在磊晶源極/汲極區82和84與接點104之間的界面處形成矽化物。接點104物理及電性耦接至磊晶源極/汲極區82和84,且接點110物理及電性耦接至閘極電極94和98。雖然第21B圖顯示接點104和接點110在相同的剖面中,此圖式為顯示目的,且在一些實施例中,接點104和接點110設置於不同的剖面中。The opening for the
第22圖顯示鰭式場效電晶體裝置的剖面示意圖,其相似於第21A-21C圖顯示的鰭式場效電晶體裝置,其中以相同的參考符號標註相同的元件。第22圖沿第1圖的參考剖面B-B顯示。在一些實施例中,第22圖的鰭式場效電晶體裝置可透過使用相似於以上參照第21A-21C圖的鰭式場效電晶體裝置的材料和形成方法來形成。為了簡潔起見,不贅述於此。在顯示的實施例中,合併兩個相鄰的磊晶源極/汲極區82和兩個相鄰的磊晶源極/汲極區84,以形成個別共用的源極/汲極區。在其他實施例中,可合併多於兩個相鄰的磊晶源極/汲極區82或多於兩個相鄰的磊晶源極/汲極區84。Fig. 22 shows a schematic cross-sectional view of the fin-type field effect transistor device, which is similar to the fin-type field effect transistor device shown in Figs. 21A-21C, wherein the same components are marked with the same reference symbols. Figure 22 is shown along the reference section B-B of Figure 1. In some embodiments, the fin field effect transistor device of FIG. 22 can be formed by using materials and forming methods similar to those of the fin field effect transistor device described above with reference to FIGS. 21A-21C. For the sake of brevity, I will not repeat them here. In the embodiment shown, two adjacent epitaxial source/
第23圖顯示依據一些實施例之形成鰭式場效電晶體裝置的方法的流程圖。方法2000開始於步驟2001,其中將基底(例如第2A圖顯示的基底50)圖案化以形成條帶(例如第3A圖顯示的半導體條帶52),如以上參照第2A和3A圖所述。在步驟2003中,在相鄰的條帶之間形成隔離區(例如第5A圖顯示的隔離區54),如以上參照第4A和5A圖所述。在步驟2005中,在條帶上方形成虛設結構(例如第7A-7B圖顯示的虛設結構70),如以上參照第6A-6B和7A-7C圖所述。在步驟2007中,對條帶進行第一蝕刻製程以形成凹口(例如以上參照第12圖所述的條帶中的凹口124)。在步驟2009中,對條帶進行第二蝕刻製程以形成重塑的凹口(例如以上參照第13-15C圖所述的凹口126)。在步驟2011中,在重塑的凹口中磊晶成長源極/汲極區(例如第16B-16C圖顯示的磊晶源極/汲極區82)。在一些實施例中,步驟2007、2009和2011為對形成n型裝置的基底的第一區中設置的條帶上進行。在這些實施例中,可重複步驟2007、2009和2011以對形成p型裝置的基底的第二區中設置的條帶上進行這些步驟,如以上參照第17A-17C圖所述。在步驟2013中,在條帶上方形成取代閘極堆疊物(例如顯示於第20A-20C圖中的閘極介電層92/閘極電極94以及閘極介電層96/閘極電極98)。FIG. 23 shows a flowchart of a method of forming a fin-type field effect transistor device according to some embodiments. The
本文討論的各種實施例使得鰭式場效電晶體效能改善。舉例來說,在蝕刻製程期間使用氫自由基以重塑鰭之間的凹口可具有優點。透過在蝕刻製程期間使用氫自由基,重塑的凹口的底部可形成具有錐形形狀或具有尖頭底部。在此方式中,由於重塑的凹口的尖頭底部可更遠離相鄰的鰭,因此可增加重塑的凹口的底部接近距離。在此方式中,如本文所述之有著尖頭底部的凹口的底部接近距離可大於具有U形或更平坦底表面的凹口。在一些情況中,較大的底部接近距離降低了在磊晶源極/汲極區中的摻雜物擴散至鰭式場效電晶體的通道中或通道下方的量。摻雜物擴散至通道中或通道下方可降低裝置效能。在一些情況中,使用本文描述的技術也可降低汲極引發能障降低(DIBL)效應或減少關態漏電流。透過控制蝕刻參數,可控制重塑的凹口的蝕刻,以產生所期望形狀的重塑的凹口(一些範例顯示於第13-15C圖)。在此方式中,也可控制重塑的凹口的頂部接近距離、中間接近距離和底部接近距離。本文描述的技術為參照鰭式場效電晶體描述,但是可用於形成其他裝置,例如平面場效電晶體、半導體雷射或其他光學裝置或其他類型的裝置。The various embodiments discussed herein lead to improved fin-type field effect transistor performance. For example, the use of hydrogen radicals during the etching process to reshape the notches between the fins can have advantages. By using hydrogen radicals during the etching process, the bottom of the reshaped recess can be formed to have a tapered shape or a pointed bottom. In this manner, since the pointed bottom of the reshaped recess can be farther away from the adjacent fin, the proximity distance of the bottom of the reshaped recess can be increased. In this manner, the bottom approach distance of the notch with a pointed bottom as described herein may be greater than that of the notch with a U-shaped or flatter bottom surface. In some cases, a larger bottom proximity distance reduces the amount of dopants in the epitaxial source/drain region that diffuse into or under the channel of the fin field effect transistor. The diffusion of dopants into or below the channel can reduce device performance. In some cases, using the techniques described herein can also reduce the Drain Induced Barrier Reduction (DIBL) effect or reduce off-state leakage current. By controlling the etching parameters, the etching of the reshaped notch can be controlled to produce the reshaped notch of the desired shape (some examples are shown in Figures 13-15C). In this way, the top approach distance, the middle approach distance, and the bottom approach distance of the reshaped notch can also be controlled. The technology described herein is described with reference to fin field effect transistors, but can be used to form other devices, such as planar field effect transistors, semiconductor lasers, or other optical devices or other types of devices.
依據一實施例,一方法包含在基底上形成鰭,形成隔離區與鰭相鄰,在鰭上方形成虛設結構,使用第一蝕刻製程將與虛設結構相鄰的鰭凹陷,以形成第一凹口,使用第二蝕刻製程將第一凹口重塑,以形成重塑的第一凹口,其中重塑的第一凹口的底部由第一側壁表面的晶面與第二側壁表面的晶面相交來定義,其中第一側壁表面面向第二側壁表面,以及在重塑的第一凹口中磊晶成長源極/汲極區。在一實施例中,相對於具有第二晶向的第二晶面,第二蝕刻製程選擇性蝕刻具有第一晶向的晶面,其中第一側壁表面的晶面具有第一晶向,且其中第一側壁表面包含具有第二晶向的第二晶面。在一實施例中,第二晶面具有(111)晶向。在一實施例中,第二蝕刻製程包含使用氫自由基的電漿蝕刻製程。在一實施例中,第二蝕刻製程更包含形成氬電漿。在一實施例中,第一凹口的底部與相鄰的虛設結構之間的第一橫向距離小於重塑的第一凹口的底部與相鄰的虛設結構之間的第二橫向距離。在一實施例中,在重塑的第一凹口中磊晶成長源極/汲極區的步驟包含在重塑的第一凹口中磊晶成長第一半導體材料,其中第一半導體材料覆蓋重塑的第一凹口的底部,在第一半導體材料上方磊晶成長第二半導體材料,第二半導體材料具有與第一半導體材料不同的組成,以及在第二半導體材料上方磊晶成長第三半導體材料,第三半導體材料具有與第二半導體材料不同的組成。According to an embodiment, a method includes forming a fin on a substrate, forming an isolation region adjacent to the fin, forming a dummy structure above the fin, and recessing the fin adjacent to the dummy structure using a first etching process to form a first recess , Using a second etching process to reshape the first notch to form a reshaped first notch, wherein the bottom of the reshaped first notch consists of the crystal plane of the first sidewall surface and the crystal plane of the second sidewall surface It is defined by intersection, where the first sidewall surface faces the second sidewall surface, and the source/drain regions are epitaxially grown in the reshaped first recess. In one embodiment, the second etching process selectively etches the crystal plane with the first crystal orientation relative to the second crystal plane with the second crystal orientation, wherein the crystal plane on the first sidewall surface has the first crystal orientation, and The first sidewall surface includes a second crystal plane with a second crystal orientation. In one embodiment, the second crystal plane has a (111) crystal orientation. In one embodiment, the second etching process includes a plasma etching process using hydrogen radicals. In one embodiment, the second etching process further includes forming argon plasma. In an embodiment, the first lateral distance between the bottom of the first recess and the adjacent dummy structure is smaller than the second lateral distance between the bottom of the reshaped first recess and the adjacent dummy structure. In one embodiment, the step of epitaxially growing the source/drain regions in the reshaped first recess includes epitaxially growing a first semiconductor material in the reshaped first recess, wherein the first semiconductor material covers the reshaped At the bottom of the first recess, a second semiconductor material is epitaxially grown above the first semiconductor material, the second semiconductor material has a different composition from the first semiconductor material, and a third semiconductor material is epitaxially grown above the second semiconductor material , The third semiconductor material has a different composition from the second semiconductor material.
依據另一實施例,一方法包含將基底圖案化以形成條帶,條帶包含第一半導體材料,沿條帶的側壁形成隔離區,條帶的上部延伸於隔離區的頂表面之上,沿條帶的上部的側壁和頂表面形成虛設結構,對條帶的上部的暴露部分進行第一蝕刻製程以形成第一凹口,條帶的暴露部分被虛設結構暴露出來,在進行第一蝕刻製程之後,使用第二蝕刻製程重塑第一凹口以具有V形底表面,其中相對於具有第二晶向的第二晶面,第二蝕刻製程對具有第一晶向的第一晶面有選擇性,以及在重塑的第一凹口中磊晶成長源極/汲極區。在一實施例中,第二蝕刻製程具有比第一蝕刻製程更小的蝕刻速率。在一實施例中,V形底表面包含相交的(111)晶面。在一實施例中,第一蝕刻製程包含使用第一蝕刻氣體的第一電漿蝕刻製程,且第二蝕刻製程包含使用不同於第一蝕刻氣體的第二蝕刻氣體的第二電漿蝕刻製程。在一實施例中,第二蝕刻氣體包含H2 。在一實施例中,第二電漿蝕刻製程形成包含氫自由基的電漿。在一實施例中,在進行第二蝕刻製程之後,第一凹口的最上表面沿具有第二晶向的第三晶面延伸。在一實施例中,磊晶成長源極/汲極區的步驟包含磊晶成長第一材料,磊晶成長第二材料以及磊晶成長第三材料,其中第一材料、第二材料和第三材料皆為不同的材料。在一實施例中,此方法更包含沿虛設結構的側壁形成間隙壁,其中在進行第二蝕刻製程之後,第二蝕刻製程並未移除第一半導體材料與間隙壁的底表面相鄰的部分。According to another embodiment, a method includes patterning a substrate to form a strip, the strip including a first semiconductor material, and an isolation region is formed along the sidewall of the strip, and the upper part of the strip extends above the top surface of the isolation region along The sidewalls and top surface of the upper part of the strip form a dummy structure, the exposed part of the upper part of the strip is subjected to a first etching process to form a first notch, the exposed part of the strip is exposed by the dummy structure, and the first etching process is performed Afterwards, a second etching process is used to reshape the first notch to have a V-shaped bottom surface, wherein, relative to the second crystal plane with the second crystal orientation, the second etching process has the first crystal plane with the first crystal orientation. Selectivity, and epitaxial growth of the source/drain regions in the reshaped first recess. In one embodiment, the second etching process has a lower etching rate than the first etching process. In one embodiment, the V-shaped bottom surface includes intersecting (111) crystal planes. In one embodiment, the first etching process includes a first plasma etching process using a first etching gas, and the second etching process includes a second plasma etching process using a second etching gas different from the first etching gas. In one embodiment, the second etching gas includes H 2 . In one embodiment, the second plasma etching process forms a plasma containing hydrogen radicals. In one embodiment, after the second etching process is performed, the uppermost surface of the first recess extends along the third crystal plane having the second crystal orientation. In one embodiment, the step of epitaxially growing the source/drain regions includes epitaxially growing a first material, epitaxially growing a second material, and epitaxially growing a third material, wherein the first material, the second material, and the third material The materials are all different materials. In one embodiment, the method further includes forming spacers along the sidewalls of the dummy structure, wherein after the second etching process, the second etching process does not remove the portion of the first semiconductor material adjacent to the bottom surface of the spacers .
依據另一實施例,裝置包含鰭位於基底上方,其中鰭的底部的第一側壁表面沿第一晶向的晶面延伸,隔離區與鰭相鄰,閘極結構沿鰭的側壁及鰭的頂表面上方延伸,閘極間隙壁與閘極結構橫向相鄰,以及磊晶區與鰭相鄰,其中磊晶區的底部漸縮至一點。在一實施例中,磊晶區的底部沿第一晶向的晶面漸縮。在一實施例中,磊晶區的最寬部分具有曲面輪廓。在一實施例中,磊晶區的最寬部分在磊晶區的頂表面與磊晶區的底部之間。在一實施例中,磊晶區包含第一材料、第一材料上方的第二材料和第二材料上方的第三材料,其中第一材料、第二材料和第三材料皆為不同的材料組成。According to another embodiment, the device includes a fin located above the substrate, wherein the first sidewall surface of the bottom of the fin extends along the crystal plane of the first crystal orientation, the isolation region is adjacent to the fin, and the gate structure is along the sidewalls of the fin and the top of the fin. Extending above the surface, the gate spacer is laterally adjacent to the gate structure, and the epitaxial region is adjacent to the fin, wherein the bottom of the epitaxial region is tapered to a point. In one embodiment, the bottom of the epitaxial region is tapered along the crystal plane of the first crystal direction. In one embodiment, the widest part of the epitaxial region has a curved profile. In one embodiment, the widest part of the epitaxial region is between the top surface of the epitaxial region and the bottom of the epitaxial region. In an embodiment, the epitaxial region includes a first material, a second material above the first material, and a third material above the second material, wherein the first material, the second material, and the third material are all composed of different materials .
前述內文概述了許多實施例的特徵,使本技術領域中具有通常知識者可以從各個方面更加了解本發明實施例。本技術領域中具有通常知識者應可理解,且可輕易地以本發明實施例為基礎來設計或修飾其他製程及結構,並以此達到相同的目的及/或達到與在此介紹的實施例等相同之優點。本技術領域中具有通常知識者也應了解這些相等的結構並未背離本發明的發明精神與範圍。在不背離本發明的發明精神與範圍之前提下,可對本發明實施例進行各種改變、置換或修改。The foregoing text summarizes the features of many embodiments, so that those skilled in the art can better understand the embodiments of the present invention from various aspects. Those skilled in the art should understand, and can easily design or modify other processes and structures based on the embodiments of the present invention, so as to achieve the same purpose and/or achieve the same purpose as the embodiments described herein. The same advantages. Those skilled in the art should also understand that these equivalent structures do not depart from the spirit and scope of the present invention. Without departing from the spirit and scope of the invention, various changes, substitutions or modifications can be made to the embodiments of the invention.
30:鰭式場效電晶體 32、50:基底 34、54:隔離區 36、56:鰭 38:閘極介電質 40、94、98:閘極電極 42、44:源極/汲極區 52:半導體條帶 53、62、72、118:遮罩 53A:第一遮罩層 53B:第二遮罩層 55:溝槽 58:虛設介電層 60:虛設閘極層 70:虛設結構 75、79:輕摻雜源極/汲極區 80A:第一間隔層 80B:第二間隔層 80C:第三間隔層 82、84:磊晶源極/汲極區 82A、82B、82C:磊晶層 87:蝕刻停止層 88、102:層間介電質 90、124、126:凹口 92、96:閘極介電層 100A:第一區 100B:第二區 (100)、(111):晶面/晶向 104、110:接點 120:偏移間隙壁 122:閘極間隙壁 125:下側壁 127:上側壁 128:部分 130:鰭間隙壁 2000:方法 2001、2003、2005、2007、2009、2011、2013:步驟 S:表面 A1、A2、A3:角度 D0、D1、D2、D3、D4:深度 H1:高度 W1、W1、W2、W3、W4、W5:寬度 BP0:底部接近距離 MP0:中間接近距離 TP0:頂部接近距離30: fin field effect transistor 32, 50: substrate 34, 54: isolation region 36, 56: fin 38: gate dielectric 40, 94, 98: gate electrode 42, 44: source/drain region 52 : Semiconductor strips 53, 62, 72, 118: mask 53A: first mask layer 53B: second mask layer 55: trench 58: dummy dielectric layer 60: dummy gate layer 70: dummy structure 75, 79: Lightly doped source/drain regions 80A: first spacer layer 80B: second spacer layer 80C: third spacer layer 82, 84: epitaxial source/drain regions 82A, 82B, 82C: epitaxial layer 87: etch stop layer 88, 102: interlayer dielectric 90, 124, 126: notch 92, 96: gate dielectric layer 100A: first region 100B: second region (100), (111): crystal plane / Crystal orientation 104, 110: contact 120: offset spacer 122: gate spacer 125: lower side wall 127: upper side wall 128: part 130: fin spacer 2000: methods 2001, 2003, 2005, 2007, 2009, 2011, 2013: Step S: Surface A1, A2, A3: Angle D0, D1, D2, D3, D4: Depth H 1 : Height W 1 , W1, W2, W3, W4, W5: Width BP0: Bottom Approaching Distance MP0 : Middle approach distance TP0: Top approach distance
根據以下的詳細說明並配合所附圖式可以更加理解本發明實施例。應注意的是,根據本產業的標準慣例,圖示中的各種部件(feature)並未必按照比例繪製。事實上,可能任意的放大或縮小各種部件的尺寸,以做清楚的說明。 第1圖為依據一些實施例之鰭式場效電晶體(fin field-effect transistor,FinFET)裝置的三維視圖。 第2A圖為依據一些實施例之製造鰭式場效電晶體裝置的中間階段的剖面示意圖。 第3A圖為依據一些實施例之製造鰭式場效電晶體裝置的中間階段的剖面示意圖。 第4A圖為依據一些實施例之製造鰭式場效電晶體裝置的中間階段的剖面示意圖。 第5A圖為依據一些實施例之製造鰭式場效電晶體裝置的中間階段的剖面示意圖。 第6A-6B圖為依據一些實施例之製造鰭式場效電晶體裝置的中間階段的剖面示意圖。 第7A-7C圖為依據一些實施例之製造鰭式場效電晶體裝置的中間階段的剖面示意圖。 第8A-8C圖為依據一些實施例之製造鰭式場效電晶體裝置的中間階段的剖面示意圖。 第9A-9C圖為依據一些實施例之製造鰭式場效電晶體裝置的中間階段的剖面示意圖。 第10A-10C圖為依據一些實施例之製造鰭式場效電晶體裝置的中間階段的剖面示意圖。 第11A-11C圖為依據一些實施例之製造鰭式場效電晶體裝置的中間階段的剖面示意圖。 第12圖為依據一些實施例之製造鰭式場效電晶體裝置中的第一凹口的形成的剖面示意圖。 第13圖為依據一實施例之製造鰭式場效電晶體裝置中重塑凹口的形成的剖面示意圖。 第14圖為依據另一實施例之製造鰭式場效電晶體裝置中重塑凹口的形成的剖面示意圖。 第15A-15C圖為依據其他實施例之製造鰭式場效電晶體裝置的中重塑凹口的形成的剖面示意圖。 第16A-16C圖為依據一些實施例之製造鰭式場效電晶體裝置的中間階段的剖面示意圖。 第17A-17C圖為依據一些實施例之製造鰭式場效電晶體裝置的中間階段的剖面示意圖。 第18A-18C圖為依據一些實施例之製造鰭式場效電晶體裝置的中間階段的剖面示意圖。 第19A-19C圖為依據一些實施例之製造鰭式場效電晶體裝置的中間階段的剖面示意圖。 第20A-20C圖為依據一些實施例之製造鰭式場效電晶體裝置的中間階段的剖面示意圖。 第21A-21C圖為依據一些實施例之製造鰭式場效電晶體裝置的中間階段的剖面示意圖。 第22圖為依據一些實施例之製造具有合併磊晶區的鰭式場效電晶體裝置的中間階段的剖面示意圖。 第23圖為依據一些實施例之使用重塑凹口形成鰭式場效電晶體裝置的方法的流程圖。The embodiments of the present invention can be better understood according to the following detailed description and the accompanying drawings. It should be noted that, according to the standard practice of this industry, the various features in the illustration are not necessarily drawn to scale. In fact, it is possible to arbitrarily enlarge or reduce the size of various components to make a clear description. Figure 1 is a three-dimensional view of a fin field-effect transistor (FinFET) device according to some embodiments. 2A is a schematic cross-sectional view of an intermediate stage of manufacturing a fin-type field effect transistor device according to some embodiments. 3A is a schematic cross-sectional view of an intermediate stage of manufacturing a fin-type field effect transistor device according to some embodiments. 4A is a schematic cross-sectional view of an intermediate stage of manufacturing a fin-type field effect transistor device according to some embodiments. FIG. 5A is a schematic cross-sectional view of an intermediate stage of manufacturing a fin-type field effect transistor device according to some embodiments. 6A-6B are schematic cross-sectional diagrams of an intermediate stage of manufacturing a fin-type field effect transistor device according to some embodiments. FIGS. 7A-7C are schematic cross-sectional views of an intermediate stage of manufacturing a fin-type field effect transistor device according to some embodiments. 8A-8C are schematic cross-sectional diagrams of an intermediate stage of manufacturing a fin-type field effect transistor device according to some embodiments. 9A-9C are schematic cross-sectional diagrams of intermediate stages of manufacturing a fin-type field effect transistor device according to some embodiments. FIGS. 10A-10C are schematic cross-sectional views of an intermediate stage of manufacturing a fin-type field effect transistor device according to some embodiments. FIGS. 11A-11C are schematic cross-sectional views of an intermediate stage of manufacturing a fin-type field effect transistor device according to some embodiments. FIG. 12 is a schematic cross-sectional view of the formation of the first recess in the fabrication of fin-type field effect transistor devices according to some embodiments. FIG. 13 is a schematic cross-sectional view of the formation of a reshaping recess in a fin-type field effect transistor device according to an embodiment. FIG. 14 is a schematic cross-sectional view of the formation of the reshaping notch in the fin-type field effect transistor device according to another embodiment. FIGS. 15A-15C are schematic cross-sectional views showing the formation of the reshaping notch in the fabrication of fin-type field effect transistor devices according to other embodiments. 16A-16C are schematic cross-sectional diagrams of an intermediate stage of manufacturing a fin-type field effect transistor device according to some embodiments. FIGS. 17A-17C are schematic cross-sectional views of an intermediate stage of manufacturing a fin-type field effect transistor device according to some embodiments. FIGS. 18A-18C are schematic cross-sectional views of an intermediate stage of manufacturing a fin-type field effect transistor device according to some embodiments. FIGS. 19A-19C are schematic cross-sectional views of an intermediate stage of manufacturing a fin-type field effect transistor device according to some embodiments. FIGS. 20A-20C are schematic cross-sectional views of an intermediate stage of manufacturing a fin-type field effect transistor device according to some embodiments. 21A-21C are schematic cross-sectional diagrams of an intermediate stage of manufacturing a fin-type field effect transistor device according to some embodiments. FIG. 22 is a schematic cross-sectional view of an intermediate stage of manufacturing a fin-type field effect transistor device with merged epitaxial regions according to some embodiments. FIG. 23 is a flowchart of a method for forming a fin-type FET device using a reshaping notch according to some embodiments.
2000:方法 2000: method
2001、2003、2005、2007、2009、2011、2013:步驟 2001, 2003, 2005, 2007, 2009, 2011, 2013: steps
Claims (20)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862738851P | 2018-09-28 | 2018-09-28 | |
US62/738,851 | 2018-09-28 | ||
US16/429,262 | 2019-06-03 | ||
US16/429,262 US11315838B2 (en) | 2018-09-28 | 2019-06-03 | FinFET device and method of forming same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202029349A true TW202029349A (en) | 2020-08-01 |
TWI764050B TWI764050B (en) | 2022-05-11 |
Family
ID=69946437
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108135427A TWI764050B (en) | 2018-09-28 | 2019-10-01 | Semiconductor devices and methods for forming the same |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR102269455B1 (en) |
CN (1) | CN110970487B (en) |
TW (1) | TWI764050B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI806136B (en) * | 2020-09-23 | 2023-06-21 | 南韓商三星電子股份有限公司 | Semiconductor device |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100561689C (en) * | 2004-06-24 | 2009-11-18 | 应用材料股份有限公司 | Be used to form transistorized method |
US7244659B2 (en) * | 2005-03-10 | 2007-07-17 | Micron Technology, Inc. | Integrated circuits and methods of forming a field effect transistor |
US7494858B2 (en) * | 2005-06-30 | 2009-02-24 | Intel Corporation | Transistor with improved tip profile and method of manufacture thereof |
US8815712B2 (en) * | 2011-12-28 | 2014-08-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method for epitaxial re-growth of semiconductor region |
US9105654B2 (en) * | 2012-03-21 | 2015-08-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | Source/drain profile for FinFET |
KR102259080B1 (en) * | 2014-09-23 | 2021-06-03 | 삼성전자주식회사 | Semiconductor device and method of manufacturing the same |
US10026837B2 (en) * | 2015-09-03 | 2018-07-17 | Texas Instruments Incorporated | Embedded SiGe process for multi-threshold PMOS transistors |
KR102374321B1 (en) * | 2015-10-14 | 2022-03-14 | 삼성전자주식회사 | Method of fabricating semiconductor device |
US10269793B2 (en) * | 2016-04-28 | 2019-04-23 | Taiwan Semiconductor Manufacturing Company, Ltd. | Source/drain regions in fin field effect transistors (FinFETs) and methods of forming same |
US10453943B2 (en) * | 2016-11-29 | 2019-10-22 | Taiwan Semiconductor Manufacturing Company, Ltd. | FETS and methods of forming FETS |
US9812363B1 (en) * | 2016-11-29 | 2017-11-07 | Taiwan Semiconductor Manufacturing Company, Ltd. | FinFET device and method of forming same |
US10522359B2 (en) * | 2016-11-29 | 2019-12-31 | Taiwan Semiconductor Manufacturing Company, Ltd. | FinFET device and method of forming |
-
2019
- 2019-09-25 CN CN201910909568.8A patent/CN110970487B/en active Active
- 2019-09-30 KR KR1020190121214A patent/KR102269455B1/en active IP Right Grant
- 2019-10-01 TW TW108135427A patent/TWI764050B/en active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI806136B (en) * | 2020-09-23 | 2023-06-21 | 南韓商三星電子股份有限公司 | Semiconductor device |
US11848287B2 (en) | 2020-09-23 | 2023-12-19 | Samsung Electronics Co., Ltd. | Semiconductor device and method for fabricating thereof |
US12113035B2 (en) | 2020-09-23 | 2024-10-08 | Samsung Electronics Co., Ltd. | Semiconductor device and method for fabricating thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20200037115A (en) | 2020-04-08 |
KR102269455B1 (en) | 2021-06-29 |
CN110970487B (en) | 2023-12-19 |
CN110970487A (en) | 2020-04-07 |
TWI764050B (en) | 2022-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11004688B2 (en) | FinFET device and method of forming | |
TWI727071B (en) | Semiconductor devices and methods for forming the same | |
TWI721392B (en) | Semiconductor devices and methods for forming the same | |
US11211476B2 (en) | FinFET device and method of forming same | |
TWI740250B (en) | Semiconductor devices and methods for forming the same | |
TWI739178B (en) | Semiconductor devices and methods for forming the same | |
US11315838B2 (en) | FinFET device and method of forming same | |
US20230207646A1 (en) | Non-conformal oxide liner and manufacturing methods thereof | |
US11855213B2 (en) | FinFET device and method of forming same | |
US11264505B2 (en) | FinFET device and method of forming same | |
TWI764050B (en) | Semiconductor devices and methods for forming the same | |
US20240087947A1 (en) | Semiconductor device and method of manufacturing | |
US20240063294A1 (en) | Semiconductor device structure and method for forming the same |