TW202026709A - 光調製裝置 - Google Patents

光調製裝置 Download PDF

Info

Publication number
TW202026709A
TW202026709A TW108129225A TW108129225A TW202026709A TW 202026709 A TW202026709 A TW 202026709A TW 108129225 A TW108129225 A TW 108129225A TW 108129225 A TW108129225 A TW 108129225A TW 202026709 A TW202026709 A TW 202026709A
Authority
TW
Taiwan
Prior art keywords
light
modulator
modulation
light modulator
degrees
Prior art date
Application number
TW108129225A
Other languages
English (en)
Inventor
諾伯特 萊斯特
Original Assignee
盧森堡商喜瑞爾工業公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 盧森堡商喜瑞爾工業公司 filed Critical 盧森堡商喜瑞爾工業公司
Publication of TW202026709A publication Critical patent/TW202026709A/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells

Abstract

本發明涉及一種對入射的線性偏振光(10)進行複合調製的光調製裝置,其具有一第一光調製器、一位於第一光調製之後的第二光調製器、以及至少一個起偏振器,其中第一光調製器及第二光調製器是作為相位調製器,其中第一光調製器的調製軸與第二光調製器的調製軸夾一個角度,同時入射到第一光調製器的光線的偏振方向及起偏振器的偏振方向分別與第一光調製器的調製軸及第二光調製器的調製軸夾一個不等於90度的預定角度。

Description

光調製裝置
本發明涉及一種光調製裝置,以及一種對入射的線性偏振光進行複合調製的方法。
此外,本發明還涉及一種顯示二維或三維場景用的顯示裝置。
這種光調製裝置適用於全息重建,其中此全息重建是對相干線性偏振入射光束進行複合調製。這種光調製裝置及顯示裝置可應用於電視機及全息重現的投影機。這種光調製裝置被分割為可控制的晶胞(像素),這些可控制的晶胞較佳是能夠以實時或至少是近似實時的方式全息顯示視頻。視頻是由多個場景構成(單一圖像),其中每一場景都是以一全息圖被編碼到光調製裝置的晶胞內。場景可以是相當於一真實的物體,或是由電腦所產生。已知的編碼方法會將光調製裝置的特性考慮進去,例如單獨的相位調製。
透過在入射光束的傳播方向前後排列的振幅及相位調製,可以在兩個適當的調製器內達到這種複合調製。但是這需要一振幅調製器及一相位調製器,而且這兩個調製器需具有類似的開關時間,且彼此要能夠配合的很好。
其他已知的裝置及方法是使用相位和或雙相位編碼。為此兩個相位調製器的出射光束經由光束分配器集中在一起,並產生干擾,這樣就可以調整全息圖的每一晶胞的振幅及相位。
此外,也有產生雙相位編碼的裝置,在這種裝置中,相位調製器的前後排列的晶胞會對入射光束進行調製,以透過干擾,使出射光束在觀察者所在的位置具有所需的振幅及相位。為此相位調製器的兩個或兩個以上的子像素構成全息圖的一像素。此處使用的光調製器可以是一種空間光調製器(SLM)。
本專利申請人登記的EP 1 563 346 A2、DE 10 2004 063 838 A1、DE 102005 023 743 A1以及WO 2008/151980 A1都有提出製造全息顯示器的裝置及方法。此外,文獻 “Full-range, continuous, complex modulation by the use of two coupled-mode liquid-crystal televisions”, Neto et al, Applied Optics Vol. 35, No 23, pp 4567也有關於這些裝置的描述。這個文獻描述的在光程上前後排列的光調製器使用的是採用扭曲向列型液晶技術的液晶顯示器。這個文獻提及的作為引文2的步驟提及的裝置包括一採用扭曲向列型液晶技術的相位調製器及一位於其後面的採用扭曲向列型液晶技術的振幅調製器。兩個前後排列的調製器透過這兩個裝置調製出射光束。每一調製器的前面跟後面都設有一起偏振器。為了達到正確的功能,可能需要為不同的波長設置不同的起偏振裝置。
US 5719650提出一種可以分別獨立調整振幅及相位的光調製器。這種光調製裝置是由兩個具有液晶層的偏振旋轉元件構成,其中這兩個元件是設置在兩個承載基板之間。每一液晶層都另外設有基極及柵極。在製造階段就已經完成對元件之間的調校。
製作光調製器用的液晶是一種雙折射材料,因此可以透過適當的方式(例如電場)將此種材料的分子的光學軸的定向調整到所需要的方向。如果是向列型液晶,分子的光學軸相當於分子的縱軸。入射光的調製是由分子的光學軸對光線的穿透方向及偏振的調整方向決定。在不受電場作用的情況下,可以透過對光調製器面對液晶的那個表面的預處理達到分子的取向。也就是說可以使分子的取向平行於這個液晶表面。在受到電場作用時,正介電各向異性的向列型液晶的分子會朝電場方向旋轉。如果電場垂直於基板表面(面外電場),則分子受電場的作用會垂直於基板表面旋轉。如果光線是垂直通過光調製器,由於電場的作用,分子對光線的定向會從垂直改變為水平。在這種情況下,液晶晶胞的雙折射作用會變弱。
例如,可以使負介電各向異性的向列型液晶的配向大致垂直於基板表面,也就是使其定向與基板表面的角度很接近90度,但不是正好90度。如果電場垂直於基板表面(面外電場),則分子受電場的作用會平行於基板表面旋轉。如果光線是垂直通過光調製器,由於電場的作用,分子對光線的定向會從水平改變為垂直。在這種情況下,液晶晶胞的雙折射作用會變強。
還有其他的液晶模式,但如藍相位模式,在沒有電場的情況下,此種模式為光學各向同性,但是通上電場後會變成雙折射性。以下的描述涉及液晶模式在通上電場後都會產生雙折射性,或是其雙折射性會改變,也就是說變強或變弱。
本發明的目的是提出一種可以進行複合光調製的簡單的可控制光調製裝置。
本發明的另一目的是提出一種以這種光調製裝置對光線進行複合調製的方法。
本發明的另一目的是提出一種可以顯示二維或三維場景的簡單的可控制顯示裝置。
採用本發明之獨立請求項項目之特徵的標的即可達到上述目的。本發明之各種有利的改良方式記載於本發明之附屬請求項項目及說明書中。
為達到上述目的,本發明的光調製裝置可以對入射的線性偏振光進行複合調製,此種光調製裝置具有一第一光調製器、一位於第一光調製之後的第二光調製器、以及至少一起偏振器,其中第一光調製器及第二光調製器是作為相位調製器,其中第一光調製器的調製軸與第二光調製器的調製軸夾一個角度,同時入射到第一光調製器的光線的偏振方向及起偏振器的偏振方向分別與第一光調製器的調製軸及第二光調製器的調製軸夾一個不等於90度的預定角度。
在第一光調製器內,部分光線會在第一調製軸的方向振動,在第二光調製器內,部分光線會在第二調製軸的方向振動,這些部分光線的相位會按照光調製器被控制的方式被調製。由於光線的偏振方向及調製方向之間的預定角度不等於90度,因此會有部分光線在調製軸的方向振動。透過對光調製器的控制,可以單獨改變各部分光線的相位。這樣在光線通過兩個光調製器後,會按照各部分光線受到的相位調整變成橢圓、循環、或線性偏振光。然後起偏振器會按照其偏振方向將光線線性偏振。透過對光調製器的控制,可以調整從光調製裝置射出的線性偏振光的振幅及相位。此外,透過對光調製器的控制,可以調製從第二光調製器射出的橢圓、循環、或線性偏振光,使其在起偏振器的偏振方向達到所需要的振幅及相位。
一種有利的方式是在光調製裝置內設置兩個相同形式的相位調製光調製器,這兩個光調製器的差別僅在於其調製軸的方向不同。這樣做的優點是使兩個光調製器具有相同的與控制有關的開關特性及相同的開關速度。相較於使用不同的光調製器的光調製裝置,使用兩個相同的光調製器的光調製裝置的控制要簡單很多。因為在這種情況下,無需另外在光調製裝置之間設置偏振濾光器,不像相位調製器與振幅調製器的組合需要另外設置一偏振濾光器。因此本發明的光調製裝置的構造較為簡單,也就是說光調製裝置需要的必要元件的數量較少。這樣做也可以避免偏振濾光器造成的輻射損耗。
根據本發明的一種有利的改良方式,光調製器的調製軸之間的角度為60度至120度、較佳是80度至100度、或最好是90度。透過前後排列的光調製器可以調製具有彼此垂直或至少是近似彼此垂直之振動平面的振動部分。這可以使複合調製光線的相位及振幅可以有很大的調整範圍。
根據一種有利的實施方式,起偏振器的偏振方向與入射到第一光調製器之光線的偏振方向所夾的角度為80度至100度、較佳是85度至95度、或最好是彼此垂直,或是起偏振器的偏振方向與入射到第一光調製器之光線的偏振方向所夾的角度為-10度至+10度、較佳是-5度至+5度、或最好是彼此平行。
如果起偏振器的偏振方向及入射到光調製裝置的光線的偏振方向所夾的角度為80度至100度,或是-10度至+10度,則僅需很小的調校工作,就可以在偏振方向彼此夾一角度的情況下,利用光調製裝置使經過複合調製的光線達到很小的振幅。在偏振方向所夾的角度為85度至95度或-5度至+5度的情況下,可以進一步縮小複合調製光線的最小可調整功率。這樣就可以使利用光調製裝置對一物體產生的全息圖像的最亮位置及最暗位置形成很大的反差。在偏振方向彼此垂直或平行的情況下,可以使從光調製裝置射出的光線完全釋放或至少是近似完全釋放。在入射到光調製裝置的光線的偏振方向及起偏振器的偏振方向彼此垂直或大致垂直的情況下,可以達到最小振幅,只要適當的控制兩個光調製器,就不會造成相位相互偏移。在入射到光調製裝置的光線的偏振方向及起偏振器的偏振方向彼此平行或大致平行的情況下,則在相位相互偏移為π時,可以達到最小振幅。
根據一種特別有利的改良方式,入射到第一光調製器的光線的偏振方向及第一光調製器的調製軸之間的預定的角度為30度至60度、較佳是40度至50度、或最好是45度。在30度至60度之間的調整範圍,不需很高的調校精度就可以使從光調製裝置射出的光線具有很高的輸出功率。在入射光線的偏振方向與第一光調製器的調製軸之間的預定的角度為45度的情況下,複合調製光線可以達到最大輸出功率。
因此在光線傳播方向上,只要在第一光調製器之前另外設置一起偏振器,就可以預定入射到第一光調製器的光線的偏振方向,並使其與光調製器的調製方向及/或光調製器的偏振方向的方向適配。這樣所使用的光源就只需提供足夠的相干光線即可。
例如,可以用瓊斯矩陣描述在光調製器內的偏振狀態及調製。例如,由於使用上一段描述的另一起偏振器,入射到第一光調製器的光線具有-45度線性偏振,其瓊斯向量為:
Figure 02_image001
第一光調製層(第一光調製器)可以用瓊斯矩陣表示如下:
Figure 02_image003
其中相位Φ1在第一方向是根據接通到第一調製層的電壓V被調製。
第二光調製層(第二光調製器)可以用瓊斯矩陣表示如下:
Figure 02_image005
其中相位Φ2在第二方向是根據接通到第二調製層的電壓V被調製。
位於出口處並轉動45度(也就是相對於入射到第一光調製器的光線的偏振方向的角度為90度)的起偏振器的瓊斯矩陣為:
Figure 02_image007
將各矩陣與入射光線的瓊斯向量相乘,可以計算出所產生的調製光線的瓊斯向量。
Figure 02_image009
對於
Figure 02_image011
這是對45度線性偏振光
Figure 02_image013
其中振幅為cos(Φ1(V)-Φ2(V)-π)/2,相位為Φ1(V)+Φ2(V)+π)/2。
在這種情況下,如果所選擇的兩個相位相等,也就是Φ1(V) = Φ2(V),則所產生的振幅為cos (-pi/2) = 0。
根據另一種配置方式,入射光線的偏振方向與位於出口處的起偏振器彼此平行,例如二者的角度都是45度,因此入射光線的偏振不同於前面的計算結果。在這種情況下,按照前面的說明,瓊斯矩陣的計算如下:
Figure 02_image015
在這種情況下,振幅為cos(Φ1(V)-Φ2(V)/2)。當第一及第二調製層(第一及第二光調製器)相等時,振幅會達到最大,當第一及第二調製層相差π時,振幅會達到最小。
為了能夠利用已知的技術使光調製裝置的構造變得簡單且成本低,一種可行的方式是使第一光調製器及第二光調製器分別由一可控制的雙折射液晶層構成。這種可電控制的液晶層也稱為ECB(電控雙折射)晶胞。例如,使用正介電各向異性的向列型液晶,在沒有控制的情況下,分子是平行於晶胞表面,同時垂直於光線傳播方向。沿著光線傳播方向通上電場後,分子會被旋轉入光線傳播方向,並降低晶胞之液晶層對垂直通過光調製器之光線的有效雙折射。
另一種的實施方式是使用具有垂直對齊整液晶模式的負介電各向異性向列型液晶,在沒有控制的情況下,分子幾乎垂直於晶胞表面,也就是說與晶胞表面所夾的角度大於85度,但是小於90度,或是液晶分是幾乎平行於光線傳播方向,也就是說與光線傳播方向所夾的角度大於0度,但是小於5度。沿著光線傳播方向通上電場後,分子會被旋轉出光線傳播方向,並加大晶胞之液晶層對垂直通過光調製器之光線的有效雙折射。同時選擇在第一及第二光調製層內的角度,也就是在沒有控制的情況下,與光線傳播方向的夾角大於0度、但是小5度的角度,以使在第一及第二光調製層內對光線傳播方向的翻轉方向此相差90度。在通上電場後,在第一及第二光調製層內,分子會在兩個彼此垂直的平面從光線傳播方向旋轉出去。由於在電場中的旋轉方向不同,光線的不同偏振部分的相位分別在第一及第二光調製器內被調製。
根據第三種實施方式,光調製器具有藍相位液晶模式的光調製層。在沒有控制的情況下,光調製層是光學各向同性。通上電場後,在電場方向形成一具有光學軸的雙折射。此處是利用線形電極產生一面內電場,以便對一特定的線性偏振進行相位調製。位於第一光調製層內的線形電極與位於第二光調製器內的線形電極彼此垂直。由於線形電極的方向不同,因此不同的電場方向會在第一及第二光調製層內產生不同方向的光學軸。因此,光線的不同偏振部分的相位分別在第一及第二光調製層內被調製。
如果使第一光調製器及第二光調製器可以在至少2π的範圍內調整相位移動,則從光調製裝置射出的光線的所有相位移動及所有振幅最大可以調整到2π。如果光調製器僅能使相位移動在一小於2π的範圍內調整,則從光調製裝置射出的光線的振幅及相位移動僅能在一組合的受限範圍內調整。
如果將光調製器分割成由可以獨立控制的像素組成的二維配置,則光調製裝置適用於全息重建。對每一全息晶胞都可以透過控制(尤其是電控制)兩個光調製器沿著一軸設置的像素,調整複合調製光線的相位移動及振幅。在本發明中,所謂的全息晶胞是由前後排列的光調製器的兩個在光線傳播方向前後排列且同時進行相位調製及振幅調製的像素所構成。相較於在一平面上設有相鄰或上下重疊之調整相位及振幅用的像素的光調製裝置,本發明的光調製裝置能夠提供較好 曢決方案,因為本發明的光調製裝置可以在同樣的平積上產生兩倍數量的複合像素。
將第一光調製器及第二光調製器直接連接,可以達到特別緊密的構造。這樣做也可以使光調製裝置在整個使用壽命保持光調製器彼此的正確定向。
一種特別有利的方式是,第一光調製器及第二光調製器具有至少一共同的基板。透過這個共同的基板,在製造階段就可以完成兩個光調製器時的相對調校,因此在使用時光調製裝置時無需再調校光調製器。使用共同基板的另一優點是可以縮短光調製器之間的距離,這有助於減輕光線在前後排列的像素之間傳播出現的干擾繞射效應。減少輻射損耗及干擾效應都可以透過這種方式獲得減輕。
為達到本發明的目的,本發明還提出一種對線性偏振光線進行複合調製的方法,包括一第一光調製器、一位於第一光調製之後的第二光調製器、以及至少一起偏振器,其中第一光調製器可以調整光線在第一光調製器之調製軸的方向振動的部分光線,以延遲其相位,其中第二光調製器可以調整光線在第二光調製器之調製軸的方向振動的部分光線,以延遲其相位,其中第一光調製器之調製軸橫向、尤其是垂直對齊第二光調製器的調製軸,其中從第二光調製器射出的光線被一與調製軸的夾角不等於90度的起偏振器線性偏振。
一調製軸與待調製之光線的傳播方向為部分光線將一振動平面張緊,光調製器可以在這個振動平面上進行相位延遲的調整。光調製器可以調整光線在調製軸的方向振動的部分光線的相位,垂直於調製軸振動的部分光線的相位則不會改變,或是不能被調整。
第一光調製器可以調整延遲第一部分光線的相位,但前提是入射到第一光調製器的線性偏振光含有方向對準第一調製器之第制軸的部分光線。因此入射到第一調製器的光線的偏振方向必須與第一光調製器的第一調製軸夾一個不等於90度的角度。為了使第二光調製器才可以調整延遲第二部分光線的相位,入射到第一調製器的光線的偏振方向必須與第二光調製器的第二調製軸夾一個不等於90度的角度。因此入射到第一光調製器的光線的偏振方向較佳是位於這兩個調製軸的方向之間。
如果一部分光線的相位相較於另一部分光線的相位有所延遲,則在通過光調製裝置之後會產生循環、橢圓、或線性偏振光。可以透過選擇部分光線的延遲,調整這個光線的偏振。使通過第二光調製器的偏振與起偏振器的偏振方向的適配,可以調整從起偏振器射出之光線的振幅及相位。
光調製器的調製軸較佳是彼此垂直,同時入射到第一調製器的光線的偏振方向及起偏振器的偏振方向均與調製軸夾45度角。
根據一種特別有利的實施方式,使經過第一光調製器調製過的部分光線及經過第二光調製器調製過的部分光線的相位延遲改變一相同的值,這樣就可以在相同的振幅下,改變從起偏振器射出的光線的相位。由於兩個部分光線產生同方向的相位改變,因此從起偏振器射出的光線的振幅保持不變,但是其相位長度會改變。如果每個光調製器產生的相位移動至少是2*π,則可以透過調整兩個部分光線之間的相位差(調整範圍0至2π),調整標準化的振幅(調整範圍0至1)。如前面所述,這取決於所選擇的起偏振器的偏振方向是否垂直或水平於入射到第一光調製器的偏振方向,以及兩個部分光線之間的相位差0是否相當於一標準化振幅0或1。如果部分光線的相位差為π,在入射到第一光調製器及起偏振器的偏振方向相同的情況下,會產生一最小的振幅,在入射到第一光調製器及起偏振器的偏振方向彼此垂直的情況下,會產生一最大的振幅。與此相應的,如果部分光線的相位差為0,在入射到第一光調製器及起偏振器的偏振方向相同的情況下,會產生一最大的振幅,在入射到第一光調製器及起偏振器的偏振方向彼此垂直的情況下,會產生一最小的振幅。與經過調整的振幅無關,在使用兩個起偏振器的情況下,從光調製裝置射出的光線的相位對所有的振幅值都可以在0至2π之間改變。
根據一種有利的方式,透過使第一光調製器調製過的部分光線的相位延遲及第二光調製器調製過的部分光線的相位延遲彼此逆向改變相同的量,可以在相位不變的情況下改變從起偏振器射出的光線的振幅。這樣就可以改變從光調製器射出的光線的振幅,但是不改變其相位。
為達到本發明目的,本發明還提出一種顯示裝置,特別是一種全息顯示裝置,其可以顯示二維或三維場景,其中此顯示裝置具有如請求項1之特徵的光調製裝置。透過使同兩個相同形式且彼此前後設置的光調製器,只要簡單的控制光調製器,就可以在一很大的範圍內調整光線的相位及振幅。
根據一種有利的實施方式,顯示裝置有配置一照明裝置,此照明裝置可以發出相干光線或相干線性偏振光。如果照明裝置發出的是相干光線,則可以透過光調製器調整光線的振幅及相位。如果照明裝置發出的是線性偏振光,則可以不必使用另外的起偏振器。
圖1是一顯示光調製裝置之組成元件的立體示意圖。這些元件是沿著通過光調製裝置之光線10的傳播方向設置。為了便於描述光調製裝置的功能,圖1是以各元件彼此相隔一段距離的方式將元件繪出。在組裝好的光調製裝置中,這些元件是沿著光線10的傳播方向前後緊密排列。
光線10入射到第一光調製器12及位於其後的第二光調製器13。圖1在光調製器12,13上分別繪出一可個別控制的像素。完整的光調製器12,13是由許多個以網柵狀排列在一平面上的像素所構成。
為形成干涉,光線10具有足夠的相干性。在通過第二光調製器13後,光線10進入一線性偏振的起偏振器14。
為了使光線10產生偏振,可以使光線10先進入另一起偏振器11。另一種可能的方式是使用一輻射源,而且這個輻射源發出就是偏振光,例如發出線性雷射光。這樣就無需設置另一起偏振器11。
在通過起偏振器後,光線10從光調製裝置射出。
如圖1中的箭頭所示,第一光調製器12具有一調製軸21,第二光調製器13具有一與調製軸21夾一個角度的調製軸21。調製軸21的方向與光線10的傳播方向垂直。在本實施例中,調製軸21之間所夾的角度為90度。也就是說,調製軸21彼此垂直。
另一起偏振器11的偏振方向20及入射到第一光調製器12的光線10的偏振方向20也都是以箭頭標示。偏振方向21與第一光調製器12的調製軸21及第二光調製器13的調製軸21都夾一個角度。在本實施例中,入射到第一光調製器12的光線10的偏振方向20與第一光調製器12的調製軸21及第二光調製器13 的調製軸21都是夾45度角。
起偏振器14的偏振方向20也是以箭頭標示。起偏振器14的偏振方向20與入射到第一光調製器12的光線10的偏振方向20、第一光調製器12的調製軸21、以及第二光調製器13 的調製軸21分別夾一個角度。在本實施例中,起偏振器14的偏振方向20垂直於入射到光調製裝置的光線10的偏振方向20。因此起偏振器14的偏振方向20與調製方向21也都是夾45度角。另一種可能的方式是,入射到光調製裝置及起偏振器14的光線10的偏振方向20彼此平行。對於光調製裝置的功能而言,重要的是偏振方向20是傾斜於(較佳是夾45度角)光調製器12、13的調製軸21。
調製軸21、23確定了光線10的偏振方向,其作用是使光調製器12、13產生相位調製的作用。可以分別獨立控制光調製器12、13。可以想像入射到第一光調製器12的線性偏振光10分成兩個部分光線,其中一部分光線被偏振到第一光調製器12的調製軸21的方向,另一部分光線被偏振到垂直於第一光調製器12的調製軸21的方向。同樣的,可以想像射入第二光調製器13的光線10也分成兩個部分光線,其中一部分光線被偏振到第二光調製器13的調製軸21的方向,另一部分光線被偏振到垂直於第二光調製器13的調製軸21的方向。可以控制光調製器12、13,使光調製器12、13內只有被偏振到調製軸21、23之方向的部分光線的相位會被延遲,被偏振到垂直於調製軸21、23的方向的部分光線的相位則不會被延遲。由於入射到第一光調製器12及第二光調製器13的光線10傾斜於第一光調製器12及第二光調製器13的調製軸21,因此在兩個調製軸21的方向會有振動的部分光線。可以個別控制光調製器12、13,使在其上的振動的部分光線的相位發生推移。由於另一起偏振器11的偏振方向20與第一光調製器12及第二光調製器13的調製軸21的方向夾45度角,因此被偏振到調製軸21的方向的兩個部分光線最好是一樣大。這樣就會有相同大小的部分光線分別被兩個光調製器12、13調製。另一種可能的方式是,第一偏振方向20及調製軸21、23之間的夾角不等於45度。在這種情況下,在第一調製軸21的方向及第二調製軸23的方向振動的部分光線是不一樣大的。
圖2是一顯示如圖1之光調製器12、13的不同開關狀態的示意圖。圖2中的光調製器12、13是相鄰的,但是彼此分開,因此並非其他光調製單元內實際的設置情況。圖2中的上下重疊的排列方式顯示光調製器12、13的兩種開關狀態。光線10的傳播方向是以x號表示,而且是繪在圖2的圖面上。
光調製器12、13具有可開關的雙折射材料。也就是說可以改變入射光線10的一偏振方向的折射率,但是與其垂直的偏振部分光線的折射率則不會被改變。
在本實施例中,光調製器12、13是由兩個彼此轉動90度角的液晶晶胞構成。已知的這種液晶晶胞的應用形式可稱為電控雙折射單元(ECB)、Freedericksz晶胞、或0扭曲向列型液晶。”0扭曲”的意思是指沒有扭曲的向列型液晶。在一相位調製層內, 液晶至少是對準大致相同的方向。圖2上方顯示的光調製器12、13並未接通電場。光調製器12、13的調製軸21的方向與液晶的分子軸22相同。在光調製器12、13內,液晶的分子軸22相當於液晶的光學軸。在本實施例中雖然有許多個液晶,但是在圖中僅繪出少數幾個作為代表。如圖1所述,兩個光調製器12、13的調製軸21彼此垂直。在圖2的實施例中,第一光調製器12的調製軸21是垂直的,第二光調製器13的調製軸21是水平的。圖2下方顯示在接通足夠強的電場後,液晶指向光線10的傳播方向。由於電場的作用,液晶被轉動,因此分子軸22垂直於圖面。圖中的小圓圈代表分子軸22。透過電場的改變,可以在圖2顯示的方向之間調整分子軸22的中間位置。
如果分子軸22的方向垂直於光線10的傳播方向,則液晶會作用在光線10沿著分子軸22被偏振的部分光線,使其相位延遲。垂直於分子軸22的被偏振的部分光線在通過光調製器12、13時,相位不會改變。如果將分子軸22翻轉到光線10的傳播方向,液晶的相位延遲效果會減弱。如果分子軸22與光線的傳播方向完全相同,則不會造成任何相位延遲,或所有部分光線的相位延遲都是一樣的。
圖3a以立體方式顯示如圖1之光調製裝置的一種實施方式,此光調製裝置具有可電控制的雙折射液晶(ECB液晶模式)作為第一光調製器12及第二光調製器13 的光學作用元件。圖3a還顯示兩個彼此轉動90度的起偏振器11、14,以及兩個光調製器12、13,其液晶係設置在兩個基板15之間。分子軸22的方向代表液晶的開關狀態。分子軸22的方向是由基板15的表面接受的預處理決定。在第二光調製器13內的分子軸22垂直於在第一光調製器12內的分子軸22,同時在第一光調製器12及第二光調製器13內的分子軸22都垂直於光線10的傳播方向。因此分子軸22平行於基板15的表面。液晶在分子軸22的方向上的折射率大於在垂直於分子軸22的方向上的折射率。因此光線10的相位會根據其偏振方向被不同程度的推移。
如前面所述,兩個光調製器12、13也可以具有一共同的中間基板15。每個基板15都具有一平面電極。如果是像素結構,則每個光調製器12、13的一基板上的每個像素都具有一自身的電極,在另一基板上的所有像素則具有一共同的共用電極。共同基板15的每一邊各有一電極。這兩種情況最好都是使用共用電極,這樣像素電極就是設置在兩個光調製器12、13的外側基板15上。
圖3b顯示圖3a的裝置另外加上與基板15上的電極的接線的配置方式,這樣就可以個別為每個光調製器12、13接通一控制電壓16。接通控制電壓16後,會在第一光調製器12的基板15之間產生一電場。同樣的,也可以接通控制電壓,以便在第二光調製器13的基板15之間產生一電場。3b所示,在控制電壓16較高的情況下,分子軸22會轉向電場方向。因此接通較高的控制電壓16後,光線10的相位移動就不再是由其偏振方向決定。如果接通的是較低的控制電壓16,則會出現中間狀態,也就是說分子軸22會部分轉動。
圖4a是以立體方式顯示前面描述的光調製裝置,在沒有電場的情況下,液晶的方向垂直於基板15的表面(垂直配向液晶,VA液晶模式)。和前面的實施例一樣,此處光線10的傳播方向也是從左往右。圖4a的光調製裝置具有兩個起偏振器11、14。在本實施例中,兩個起偏振器11、14彼此平行。但是將起偏振器平行配置的作法並非只能應用於VA液晶模式。彼此平行或轉動90度的起偏振器11、14可以選擇性的應用於前面及接下來描述的液晶模式。
在不受電場作用的情況下,由於與基板15的表面交互作用的關係,在第一及第二光調製器12、13內,分子軸22會朝光線10的傳播方向翻轉一小角度23(小於5度)。在第一及第二光調製器12、13內,這個翻轉是發生在兩個彼此垂直的平面上。在本實施例中,第一光調製器12內的角度23位於一水平平面上,第二光調製器13內的角度23位於一垂直平面上。本發明的這種光調製裝置使用的液晶分子具有負介電各向異性,因此其在電場中的方向是垂直於電場方向。
圖4b顯示一如圖4a的配置方式,但是另外加上與控制電壓16的接線。此處使用的也是在基板15上的平面電極,因此在光調製器12、13的每兩個電極之間都可以接通一電場(面外電場)。在兩個光調製器12、13內,液晶分子的分子軸22會垂直向電場轉動,但是其方向是由表面方向的小角度23決定。因此接通控制電壓16後,在兩個光調製器12、13內,分子軸22的方向是不一樣的,也機是說光學軸的方向是不一樣的。如果接通較高的控制電壓16,液晶的分子軸22的方向類似於圖3a中的ECB模式在沒有接通控制電壓16的情況。因此在這種情況下,VA模式對相位及振幅調製的作用強度與ECB模式相反。在ECB模式中,如果接通較高的控制電壓16,光調製器12、13的相位調製作用會變弱,但是在VA模式中,如果接通較高的控制電壓16,光調製器12、13的相位調製作用會變強。
圖5a以立體方式顯示前面描述的光調製裝置,但是使用的是藍相位液晶(藍相位液晶模式)。和前面的實施例一樣,此處光線10的傳播方向也是從左往右。圖5a的光調製裝置具有兩個起偏振器11、14。在本實施例中,兩個起偏振器11、14彼此垂直。在本實施例中,每個光調製器12、13的一基板15上都設有線性電極17,其作用是產生一面內電場(平行於基板15的表面),但是另一基板15則沒有設置電極。線性電極17可以經由接線接通控制電壓16。第一調製器12的線性電極相對於第二光調製器13的線性電極轉動90度。如果沒有接通控制電壓16,則光調製器12、13內的藍相位液晶是光學各向同性。這在圖面上是以一球狀的折射率-橢圓體24來表示。
圖5b顯示圖5a的光調製裝置接通控制電壓16的情況。此時在線性電極17決定的電場方向上會產生一光學軸。這在圖面上是以一折射率-橢圓體24來表示。藍相位液晶的雙折射性會隨著電場的變大而變強。由於線性電極彼此的方向不同,因此第一光調製器12及第二光調製器13的光學軸彼此相差90度。在本實施例中,光學軸並不是由單獨一液晶分子決定,而是由許多液晶分子的配置方式決定。圖5a、圖5b中的圓球/橢圓球僅是以示意方式表示光學軸的方向。
圖6的第一振幅變化曲線圖30顯示光線10的兩個部分光線通過兩個如圖1至圖5b之光調製器12、13後,兩個部分光線相對於時間的振幅變化曲線32、33。振幅變化曲線32、33的繪製是以共同的第一振幅軸31為縱軸及第一時間軸35為橫軸。第一振幅變化曲線32配屬於在第一光調製器12的調製軸21的方向被偏振的部分光線,第二振幅變化曲線33配屬於在第二光調製器13的調製軸21的方向被偏振的部分光線。相對於第一振幅變化曲線32,第二振幅變化曲線33有相位延遲的現象。在圖6中是以一箭頭代表相位移動34。相位移動34的大小是由兩個光調製器12、13內光線10的部分光線的相位延遲決定。可以透過相位延遲調整相位移動34的大小。透過一光調製器12、13能夠達到的相位延遲(以相位常數表示)是由液晶層的厚度、沿著調製軸21偏振及垂直於調製軸21偏振的部分光線的折射率的差、以及光線10的波長等因素決定。可以根據分子的光學軸的轉動角,或是折射率-橢圓體代表的折射率,調整沿著調製軸21偏振的部分光線的折射率。
透過光線10的彼此垂直的部分光線之間的相位差,使從第二光調製器13射出的光線被循環、橢圓、或線性偏振。
圖7的第二振幅變化曲線圖40顯示沿著光線10的傳播方向看過去,在通過兩個如圖1至圖5b之光調製器12、13後,光線10可能的振幅變化曲線41、43、44。振幅變化曲線41、43、44的繪製是以第二振幅軸42為縱軸及第三振幅軸45為橫軸。如圖1至圖5b所示,第二振幅軸42的方向與第一光調製器12的調製軸21的方向相同,第三振幅軸42的方向與第二光調製器13的調製軸21的方向相同。在第二振幅變化曲線圖40中,入射到第一光調製器12的光線10的偏振方向20是以一指向左上方的箭頭表示。通過起偏振器14後,光線10的偏振方向20是以一指向右上方的箭頭表示。如圖1所示,入射到第一光調製12的光線10的偏振方向20及光線10在通過起偏振器14後的偏振方向20彼此垂直,而且與兩個光調製器12、13的調製軸21都是夾45度角。如前面所述,另一種可能的方式是,入射到第一光調製器12的光線10及兩個偏振方向20光線10在通過起偏振器14後的偏振方向20的方向是相同的。
如果在被前後排列的光調製器12、13相位調製的部分光線之間沒有相位差或有一相當於π的偶數倍的相位差,則可以獲得線性偏振的第三振幅變化曲線41。如果部分光線之間的相位差為π或π的奇數倍,則可以獲得同樣是線性偏振的第五振幅變化曲線44。如果部分光線之間的相位差不是π的整數倍,也不是0,則可以獲得橢圓偏振的第四振幅變化曲線43。橢圓的形狀及方向是由相位差的大小決定。如果相位差為0.5π,則可以獲得循環偏振光。橢圓或循環偏振光的轉動方向取決於是那一部分光線在到另一部分光線前面。
從第二光調製器13射出的光線10被導引至起偏振器14。起偏振器14僅讓沿著其偏振方向20被偏振的部分光線通過。根據第三振幅變化曲線41,垂直於起偏振器14的偏振方向20被偏振的光線會被起偏振器14完全抑制。反之,根據第五振幅變化曲線44,在起偏振器14的偏振方向20被偏振的光線可以完全或至少是幾乎完全(略 有輻射損耗)通過起偏振器14。根據本發明一種可能的配置方式,如果入射到第一光調製器12及起偏振器14的光線10的方向是一樣的,則根據第三振幅變化曲線41,光線10可以通過起偏振器14 ,但是根據第五振幅變化曲線44,光線10會被起偏振器14堵住。
如果光線通過第二光調製器13後變成橢圓或循環偏振的光線10,則平行於起偏振器14之偏振方向20被偏振的部分光線可以通過起偏振器14。
圖8的第三振幅變化曲線圖50顯示如圖1至圖5b之光調製器12、13經過不同的調整後,光線10在通過光調製裝置之起偏振器後隨時變化的振幅變化曲線52、53、54。此外,圖8中還以第四振幅軸51為軸及第二時間軸55為橫軸,繪出第六、第七、及第八振幅變化曲線52、53、54。第四振幅軸51的方向是沿著起偏振器14 振方向20。
根據第六振幅變化曲線52,在通過起偏振器14後,光線10 具有一最大標準化振幅1。如圖7所述,如果在第一光調製器12之前的光線及起偏振器14的偏振方向20彼此垂直,則在光調製器12、13內被調製的部分光線之間的相位差為π或π的奇數倍的情況下,就會達到最大振幅。如果起偏振器14及另一起偏振器11的偏振方向20彼此平行,則在光線10的部分光線之間的相位差為0或π的偶數倍的情況下,就會達到最大振幅。
只要改變部分光線之間的相位差,就可以改變通過起偏振器14之後的光線10的振幅,相較於第六振幅變化曲線52,這個情況如第七及第八振幅變化曲線53、54所示。如第7振幅變化曲線所示,如果光調製器12、13彼此逆向改變相同的量,則在通過起偏振器14後,光線10的相位保持不變。例如,這樣可以使第一光調製器12產生的相位延遲變小一個量,同時使第二光調製器13產生的相位延遲變大一個相同的量。在通過起偏振器14後,光線10的振幅是由兩個部分光線之間的相位差決定。如果兩個光調製器12、13產生的相位差彼此同向改變相同的量,則在通過起偏振器14後,光線10的相位會改變,但是振幅保持不變。比較第七及第八振幅變化曲線53、54即可發現這種現象。如果使光線10的兩個部分光線的相位延遲改變不同的量,則在通過起偏振器14後,可以同時改變光線10的振幅及相位。
為了能夠在至少接近0-1的範圍內調整所有的振幅,以及在至少接近0至2π的範圍內調整所有的相位,光調製器12、13都必須達到至少0至2π的相位延遲。
本發明的光調製裝置能夠以兩個相同形式的相位調製光調製器對足夠相干的光線行複合調製,例如可應用於全息重建。這種複合調製可以分別獨立調整相位及振幅。光調製裝置的元件是以三明治構造的方式排列。在組裝光調製裝置時就已經將光調製器12、13彼此的方向關係精確定位,在光調製裝置的整個使用壽命中,這個關係都不會改變。另一種可能的方式是在兩個光調製器彼此面對的面上使用一共同的基板15。這樣就可以確保光調製器12、13彼此精確的方向關係,以及縮短光調製器12、13之間的距離,因此可以縮小前後設置之光調製器12、13之構成全息單元的像素之間的視差。由於作用在第一光調製器12的像素上的繞射效應的關係,縮小光調製器12、13之間的距離有助於降低光線行進到第二光調製器13的過程中的幅射損耗。
較佳是使用相同形式的光調製器12、13。這樣就可以用相同的製程及設備製造光調製器12、13,這有助於降低成本。兩個光調製器12、13具有相同的控制特性,例如控制電壓與相關之相位值的關係。因此製造及控制本發明的光調製裝置的總成本明顯低於使用配置一振幅調製器及一相位調製器的光調製裝置。
相較於已知的光調製裝置,本發明的光調製裝置的另一優點是,在光調製器12、13之間無需另外設置其他的元件,特別是無需另外設置起偏振器。這有助於縮小相位調製層之間的距離,及/或與前面提及的使用一共同的基板的優點結合在一起。這樣也可以避免因另外設置其他的元件造成的光線損耗。本發明的光調製裝置的另一優點是,相同配置方式的起偏振器可以適用於不同波長的光線。例如,只需一起偏振器14即可應用於彩色全息顯示,以及必要時可以加設一起偏振器11,以用於相鄰的不同原色的光線調製的全息單元。
相較於已知的光調製裝置,本發明的光調製裝置的另一優點是,本發明的光調製裝置的總調製作用相當於兩個前後排列的光調製器12、13之調製作用的和。如果是已知的光調製裝置,例如文獻 “Full-range, continuous, complex modulation by the use of two coupled-mode liquid-crystal televisions”, Neto et al, Applied Optics Vol. 35, No 23, pp 4567,描述的光調製裝置,總調製作用相當於兩個單一調製作用的乘積。如果其中的一個值出錯,例如光調製器12或13的像素出現雜訊,則本發明的光調製裝置的總錯誤僅相當於單一錯誤的和,但是已知的光調製裝置的總錯誤相當於單一錯誤的乘積。
光調製裝置可以使用具有可開關的雙折射特性的光調製器12、13。一種簡單且低成本的方法是使用液晶。較佳是使用0扭曲向列型液晶、電控制液晶、垂直配向液晶、或藍相位液晶。利用可電控的光調製器12、13可以簡單且可重現的調整相位延遲。這種可電控的光調製器12、13稱為ECB(電控雙折射)液晶像素,其同義詞為”Freedericksz晶胞”或”0扭曲向列型液晶”。當然也可以使用可電控的光調製器12、13以外的光調製器,例如光學可控制的光調製器12、13。
圖9顯示一具有反射元件18的光調製裝置。入射到光調製裝置的光線10按照另一起偏振器11的偏振方向20被偏振,並被引導到第一光調製器12。接著光線10通過第二光調製器13,然後照射到反射元件18。光線10被反射元件18反射回第二光調製器13,然後被引導到第一光調製器12,再經由起偏振器11離開光調製裝置。這屬於一種反射光顯示裝置,而圖1至圖5b的光調製裝置則屬於透射式顯示裝置。
10:光線 11、14:起偏振器 12:第一光調製器 13:第二光調製器 15:基板 16:控制電壓 17:線性電極 18:反射元件 20:偏振方向 21、23:調製軸 22:分子軸 24:折射率-橢圓體 30:第一振幅變化曲線圖 31:第一振幅軸 32、33、41、43、44、52、53、54:振幅變化曲線 34:相位移動 35:第一時間軸 40:第二振幅變化曲線圖 42:第二振幅軸 45:第三振幅軸 50:第三振幅變化曲線圖 51:第四振幅軸 55:第二時間軸
以下將配合實施方式及圖式對本發明做進一步的說明。在各圖式中,相同或相同作用的元件均以相同的元件符號標示。 圖1:一顯示光調製裝置之組成元件的立體示意圖。 圖2:一顯示如圖1之光調製裝置的不同開關狀態的示意圖。 圖3a、圖3b:光調製裝置的一種實施方式,此光調製裝置具有可電控制的雙折射液晶。 圖4a、圖4b:光調製裝置的一種實施方式,此光調製裝置具有在無控制電壓的情況下垂直對準基板的液晶。 圖5a、圖5b:光調製裝置的一種實施方式,此光調製裝置具有藍相位液晶。 圖6:第一振幅變化曲線圖,顯示輻射通過兩個如圖1至圖5b之光調製器後,兩個部分光線的振幅隨時間改變的曲線圖。 圖7:第二振幅變化曲線圖,顯示沿著輻射傳播方向看過去,在通過兩個如圖1至圖5b之光調製器後,輻射可能的振幅變化曲線。 圖8:第三振幅變化曲線圖,顯示如圖1至圖5b之光調製器經過不同的調整後,光調製裝置的輸出輻射的振幅隨時間改變的曲線圖。 圖9:光調製裝置的一種實施方式,此光調製裝置具有一光反射元件。
10:光線
11、14:起偏振器
12:第一光調製器
13:第二光調製器
20:偏振方向
21:調製軸

Claims (14)

  1. 一種對入射的線性偏振光進行複合調製的光調製裝置,其具有一第一光調製器、一位於第一光調製之後的第二光調製器、以及至少一起偏振器,其中第一光調製器及第二光調製器是作為相位調製器,其中第一光調製器的調製軸與第二光調製器的調製軸夾一個角度,同時入射到第一光調製器的光線的偏振方向及起偏振器的偏振方向分別與第一光調製器的調製軸及第二光調製器的調製軸夾一個不等於90度的預定角度。
  2. 如請求項1的光調製裝置,其特徵為:第一光調製器的調製軸及第二光調製器的調製軸之間的角度為60度至120度、較佳是80度至90度、或最好是90度。
  3. 如請求項1或請求項2的光調製裝置,其特徵為:起偏振器的偏振方向與入射到第一光調製器之光線的偏振方向所夾的角度為80度至100度、較佳是85度至95度、或最好是彼此垂直,或是起偏振器的偏振方向與入射到第一光調製器之光線的偏振方向所夾的角度為-10度至+10度、較佳是-5度至+5度、或最好是彼此平行。
  4. 如請求項1的光調製裝置,其特徵為:入射到第一光調製器的光線的偏振方向及第一光調製器的調製軸之間的預定的角度為30度至60度、較佳是40度至50度、或最好是45度。
  5. 如請求項1的光調製裝置,其特徵為:在光線傳播方向上,在第一光調製器之前另外設置一起偏振器。
  6. 如請求項1的光調製裝置,其特徵為:第一光調製器及第二光調製器分別由一可控制的雙折射液晶層構成。
  7. 如請求項1的光調製裝置,其特徵為:第一光調製器及第二光調製器可以在至少2π的範圍內調整相位移動。
  8. 如請求項1的光調製裝置,其特徵為:第一光調製器及第二光調製器彼此直接連接。
  9. 如請求項1的光調製裝置,其特徵為:第一光調製器及第二光調製器具有至少一共同的基板。
  10. 對線性偏振光線進行複合調製的方法,包括一第一光調製器、一位於第一光調製之後的第二光調製器、以及至少一個起偏振器,其中第一光調製器可以調整光線在第一光調製器之調製軸的方向振動的部分光線,以延遲其相位,其中第二光調製器可以調整光線在第二光調製器之調製軸的方向振動的部分光線,以延遲其相位,其中第 調製器之調製軸橫向、尤其是垂直對齊第二光調製器的調製軸,其中從第二光調製器射出的光線被一個與調製軸的夾角不等於90度的起偏振器線性偏振。
  11. 如請求項10的方法,其特徵為:使經過一第一光調製器調製過的部分光線及經過一第二光調製器調製過的部分光線的相位延遲改變一相同的值,以便在相同的振幅下,改變從一起偏振器射出的光線的相位。
  12. 如請求項10或請求項11的方法,其特徵為:透過使一第一光調製器調製過的部分光線的相位延遲及一第二光調製器調製過的部分光線的相位延遲彼此逆向改變相同的量,在相位不變的情況下改變從一起偏振器射出的光線的振幅。:
  13. 一種顯示裝置,特別是全息顯示裝置,用於顯示二維及/或三維場景,其中顯示裝置具有如請求項1至請求項9中任一項的光調製裝置。
  14. 如請求項13的顯示裝置,其特徵為:該顯示裝置有配置一照明裝置,此照明裝置可以發出相干光線或相干線性偏振光。
TW108129225A 2018-08-16 2019-08-16 光調製裝置 TW202026709A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18189229.0 2018-08-16
EP18189229 2018-08-16

Publications (1)

Publication Number Publication Date
TW202026709A true TW202026709A (zh) 2020-07-16

Family

ID=63311803

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108129225A TW202026709A (zh) 2018-08-16 2019-08-16 光調製裝置

Country Status (6)

Country Link
US (1) US20210231996A1 (zh)
KR (1) KR20210041616A (zh)
CN (1) CN112888998A (zh)
DE (1) DE112019004123A5 (zh)
TW (1) TW202026709A (zh)
WO (1) WO2020035206A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113534556A (zh) * 2021-06-16 2021-10-22 西安中科微星光电科技有限公司 一种振幅与相位独立可控型液晶光阀

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5719650A (en) 1995-05-12 1998-02-17 Massachusetts Institute Of Technology High-fidelity spatial light modulator
KR100891293B1 (ko) 2002-11-13 2009-04-06 씨리얼 테크놀로지스 게엠베하 삼차원 홀로그램 재구성 방법 및 장치와 홀로그램 베어링 매체
KR100558880B1 (ko) * 2003-12-15 2006-03-10 한국전자통신연구원 편광방식의 광 시야각 3차원 영상 디스플레이를 위한 액정디스플레이 장치
DE102004063838A1 (de) 2004-12-23 2006-07-06 Seereal Technologies Gmbh Verfahren und Einrichtung zum Berechnen computer generierter Videohologramme
DE102005023743B4 (de) 2005-05-13 2016-09-29 Seereal Technologies Gmbh Projektionsvorrichtung und Verfahren zur holographischen Rekonstruktion von Szenen
DE102007028371B4 (de) 2007-06-13 2012-05-16 Seereal Technologies S.A. Einrichtung zur Lichtmodulation
JP5297996B2 (ja) * 2009-12-18 2013-09-25 株式会社アスナ 立体画像表示装置および立体画像表示方法
JP2011186334A (ja) * 2010-03-10 2011-09-22 Seiko Epson Corp 液晶装置および液晶メガネ
US8820937B2 (en) * 2010-08-17 2014-09-02 Lc-Tec Displays Ab Optical polarization state modulator assembly for use in stereoscopic three-dimensional image projection system
US8184215B2 (en) * 2010-08-17 2012-05-22 Lc-Tec Displays Ab High-speed liquid crystal polarization modulator
WO2014084007A1 (ja) * 2012-11-29 2014-06-05 シチズンホールディングス株式会社 光変調素子
CN103197465A (zh) * 2013-03-29 2013-07-10 京东方科技集团股份有限公司 一种立体液晶显示装置
CN106462017B (zh) * 2014-04-02 2019-08-09 依视路国际公司 消色差相位调制器和光学器件

Also Published As

Publication number Publication date
WO2020035206A1 (de) 2020-02-20
DE112019004123A5 (de) 2021-09-09
KR20210041616A (ko) 2021-04-15
CN112888998A (zh) 2021-06-01
US20210231996A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
TWI749073B (zh) 用於組合與光調制器之相鄰像素相互作用之光束的裝置
TWI409532B (zh) Contains a regular arrangement of controllable light modulating elements An optical modulation method, and an optical modulation device for a total image reproduction apparatus
JP5651595B2 (ja) 複数の偏光回折格子配置を有する偏光無依存型液晶ディスプレイ装置及び関連装置
TWI515495B (zh) 高速液晶偏極化調變器
CN103969835B (zh) 复合空间光调制器和包括其的3d图像显示设备
TWI464457B (zh) 數位全像顯示裝置
KR20090109510A (ko) 레이저 조명 시스템에서의 리타더 기반의 스펙클 제거 장치
US20150160614A1 (en) Complex spatial light modulator and three-dimensional image display apparatus having the same
CN109983378B (zh) 光学元件和光学元件制造方法
JP2021503624A (ja) 自己補償型液晶リタデーションスイッチ
CN103635857B (zh) 光学器件、投影机、制造方法
US9488843B2 (en) Complex spatial light modulator and 3D image display including the same
TW202026709A (zh) 光調製裝置
KR101857818B1 (ko) 패턴드 반파장 지연판을 이용한 광 결합 패널 및 그 제조 방법
US10274755B2 (en) Beam modulator and display apparatus using the same
US20200089016A1 (en) High brightness stereoscopic 3d projection system
CN114902117A (zh) 偏振转换系统、被动式线偏振3d眼镜及线偏振3d系统
US20220260953A1 (en) Apparatus for generating hologram and a method for generating hologram using the same
KR102028998B1 (ko) 공간 광 변조기를 포함하는 홀로그래픽 디스플레이 장치
KR20220118307A (ko) 홀로그램 생성 장치 및 방법
WO2022219350A1 (en) Holographic displays and methods
WO2023180693A1 (en) Holographic displays and methods
CN115004091A (zh) 具有高光效率的光调制装置