TW202025847A - 用於無線區域網路(wlan)中的多存取點(多ap)協調的系統、方法及裝置 - Google Patents

用於無線區域網路(wlan)中的多存取點(多ap)協調的系統、方法及裝置 Download PDF

Info

Publication number
TW202025847A
TW202025847A TW108140596A TW108140596A TW202025847A TW 202025847 A TW202025847 A TW 202025847A TW 108140596 A TW108140596 A TW 108140596A TW 108140596 A TW108140596 A TW 108140596A TW 202025847 A TW202025847 A TW 202025847A
Authority
TW
Taiwan
Prior art keywords
sta
frame
association
response frame
aps
Prior art date
Application number
TW108140596A
Other languages
English (en)
Other versions
TWI740265B (zh
Inventor
阿格翰柯梅 歐泰瑞
艾爾芬 沙辛
曉飛 王
漢卿 樓
立祥 孫
陸 楊
法蘭克 拉西塔
Original Assignee
美商內數位專利控股公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商內數位專利控股公司 filed Critical 美商內數位專利控股公司
Publication of TW202025847A publication Critical patent/TW202025847A/zh
Application granted granted Critical
Publication of TWI740265B publication Critical patent/TWI740265B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • H04W60/04Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration using triggered events
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文描述了用於無線區域網路(WLAN)中的多AP協調的方法及裝置。例如,站(STA)可以從第一存取點(AP)接收探針回應訊框,該探針回應訊框包括指示第一AP及第二AP的多AP操作能力的一個或複數指示符。STA可向第一AP或第二AP中的至少一個傳輸使得第一AP能夠與第二AP相關聯以用於多AP操作的多AP關聯請求訊框。STA可從第一AP接收指示接受或拒絕與第一AP的多AP操作的第一多AP關聯回應訊框。STA可從第二AP接收指示接受或拒絕與第二AP的多AP操作的第二多AP關聯回應訊框。

Description

用於無線區域網路(WLAN)中的多存取點(多AP)協調的系統、方法及裝置
相關申請案的交叉引用
本申請要求2019年07月12日遞交的美國臨時申請序號62/873,396、2019年03月07日遞交的美國臨時申請序號62/815,130、2019年01月10日遞交的號美國臨時申請序號62/790,738、以及2018年11月08日遞交的美國臨時申請序號62/757,507的權益,其內容藉由引用併入本文。
在由電氣及電子工程師協會(IEEE) 802.11標準實現的現有無線網路(例如,WLAN)中,站(STA)可以向該STA想要關聯的存取點(AP)發送關聯請求,以便建立適當的連接狀態。如果關聯請求的元件與AP的能力匹配,則AP向STA發送關聯回應以指示STA在與AP相關聯的基本服務集(BSS)的成員中。在現有的無線網路中,STA僅交換請求及回應訊框以與單個AP關聯,但是沒有提供對來自單個STA的多AP發現及多AP關聯的任何支援。因此,需要使單個STA能夠發現複數AP並與多於一個AP相關聯的方法及裝置。
本文描述了用於無線區域網路(WLAN)中的多存取點 (或多AP)協調的系統、方法及裝置。例如,站(STA)可以從第一存取點(AP)接收探針(probe)回應訊框,該探針回應訊框包括指示第一AP及第二AP的多AP操作能力的一個或複數指示符。多AP操作能力可以包括多AP聯合傳輸能力、多AP混合自動重複請求(HARQ)能力、多AP多輸入多輸出(MIMO)能力、動態AP選擇能力、多AP漫遊能力或多AP協調波束成形能力。STA然後可向第一AP或第二AP中的至少一個傳輸多AP關聯請求訊框,該多AP關聯請求訊框使得第一AP能夠與第二AP相關聯以用於與STA的多AP操作。多AP操作可包括STA例如使用協調正交分頻多重存取(OFDMA)或協調置零(null)從第一AP及第二AP接收信號。在傳輸多AP關聯請求訊框之際,STA可從第一AP接收指示接受或拒絕與第一AP的多AP操作的第一多AP關聯回應訊框。STA還可從第二AP接收指示接受或拒絕與第二AP的多AP操作的第二多AP關聯回應訊框。在第一及第二多AP關聯回應訊框兩者都指示接受的情況下,STA可以與第一AP及第二AP執行多AP操作。
圖1A是示出了可以實施所揭露的一個或複數實施例的範例通信系統100的圖。該通信系統100可以是為複數無線使用者提供諸如語音、資料、視訊、訊息傳遞、廣播等內容的多重存取存取系統。該通信系統100可以藉由共用包括無線頻寬在內的系統資源而使複數無線使用者能夠存取此類內容。舉例來說,通信系統100可以使用一種或多種通道存取方法,例如分碼多重存取(CDMA)、分時多重存取(TDMA)、分頻多重存取(FDMA)、正交FDMA(OFDMA)、單載波FDMA(SC-FDMA)、零尾唯一字DFT擴展OFDM(ZT UW DTS-s OFDM)、唯一字OFDM(UW-OFDM)、資源塊濾波OFDM以及濾波器組多載波(FBMC)等等。
如圖1A所示,通信系統100可以包括無線傳輸/接收單元(WTRU)102a、102b、102c、102d、RAN 104/113、CN 106/115、公共交換電話網絡(PSTN)108、網際網路110以及其他網路112,然而應該瞭解,所揭露的實施例設想了任意數量的WTRU、基地台、網路及/或網路元件。每一個WTRU 102a、102b、102c、102d可以是被配置成在無線環境中工作及/或通信的任何類型的裝置。舉例來說,任一WTRU 102a、102b、102c、102d都可被稱為“站”及/或“STA”,其可以被配置成傳輸及/或接收無線信號,並且可以包括使用者設備(UE)、行動站、固定或行動用戶單元、基於用戶的單元、傳呼機、行動電話、個人數位助理(PDA)、智慧型電話、膝上型電腦、小筆電、個人電腦、無線感測器、熱點或Mi-Fi裝置、物聯網(IoT)裝置、手錶或其他可穿戴裝置、頭戴式顯示器(HMD)、車輛、無人機、醫療裝置及應用(例如遠端手術)、工業裝置及應用(例如機器人及/或在工業及/或自動處理鏈環境中工作的其他無線裝置)、消費類電子裝置、以及在商業及/或工業無線網路上工作的裝置等等。WTRU 102a、102b、102c、102d的任一個可被可互換地稱為UE。
通信系統100還可以包括基地台114a及/或基地台114b。每一個基地台114a及/或基地台114b可以是被配置成藉由以無線方式與WTRU 102a、102b、102c、102d中的至少一個對接來促使其存取一個或複數通信網路(例如CN106/115、網際網路110、及/或其他網路112)的任何類型的裝置。例如,基地台114a、114b可以是基地收發信台(BTS)、節點B、e節點B、本地節點B、本地e節點 B、gNB、NR節點B、網站控制器、存取點(AP)、以及無線路由器等等。雖然每一個基地台114a、114b都被描述成了單個元件,然而應該瞭解,基地台114a、114b可以包括任何數量的互連基地台及/或網路元件。
基地台114a可以是RAN 104/113的一部分,並且該RAN還可以包括其他基地台及/或網路元件(未顯示),例如基地台控制器(BSC)、無線電網路控制器(RNC)、中繼節點等等。基地台114a及/或基地台114b可被配置成在名為胞元(未顯示)的一個或複數載波頻率上傳輸及/或接收無線信號。這些頻率可以處於許可頻譜、未許可頻譜或是許可與未許可頻譜的組合之中。胞元可以為相對固定或者有可能隨時間變化的特定地理區域提供無線服務覆蓋。胞元可被進一步分成胞元磁區。例如,與基地台114a相關聯的胞元可被分為三個磁區。由此,在一個實施例中,基地台114a可以包括三個收發器,也就是說,每一個收發器都對應於胞元的一個磁區。在實施例中,基地台114a可以使用多輸入多輸出(MIMO)技術,並且可以為胞元的每一個磁區使用複數收發器。例如,藉由使用波束成形,可以在期望的空間方向上傳輸及/或接收信號。
基地台114a、114b可以藉由空中介面116來與WTRU 102a、102b、102c、102d中的一個或多者進行通信,其中該空中介面可以是任何適當的無線通訊鏈路(例如射頻(RF)、微波、釐米波、毫米波、紅外線(IR)、紫外線(UV)、可見光等等)。空中介面116可以使用任何適當的無線電存取技術(RAT)來建立。
更具體地說,如上所述,通信系統100可以是多重存取存取系統,並且可以使用一種或多種通道存取方案,例如CDMA、TDMA、FDMA、OFDMA以及SC-FDMA等等。例如,RAN 104/113中的基地台114a與WTRU 102a、102b、102c可以實施某種無線電技術,例如通用行動電信系統(UMTS)陸地無線電存取(UTRA),其中該技術可以使用寬頻CDMA(WCDMA)來建立空中介面115/116/117。WCDMA可以包括如高速封包存取(HSPA)及/或演進型HSPA(HSPA+)之類的通信協定。HSPA可以包括高速下鏈(DL)封包存取(HSDPA)及/或高速UL封包存取(HSUPA)。
在實施例中,基地台114a及WTRU 102a、102b、102c可以實施某種無線電技術,例如演進型UMTS陸地無線電存取(E-UTRA),其中該技術可以使用長期演進(LTE)及/或先進LTE(LTE-A)及/或先進LTE Pro(LTE-A Pro)來建立空中介面116。
在實施例中,基地台114a及WTRU 102a、102b、102c可以實施某種無線電技術,例如NR無線電存取,其中該無線電技術可以使用新型無線電(NR)建立空中介面116。
在實施例中,基地台114a及WTRU 102a、102b、102c可以實施多種無線電存取技術。例如,基地台114a及WTRU 102a、102b、102c可以共同實施LTE無線電存取及NR無線電存取(例如使用雙連接(DC)原理)。由此,WTRU 102a、102b、102c使用的空中介面可以藉由多種類型的無線電存取技術及/或向/從多種類型的基地台(例如eNB及gNB)發送的傳輸來表徵。
在其他實施例中,基地台114a及WTRU 102a、102b、102c可以實施以下的無線電技術,例如IEEE 802.11(即無線高保真(WiFi))、IEEE 802.16(全球微波存取互通性(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、臨時標準2000(IS-2000)、臨時標準95(IS-95)、臨時標準856(IS-856)、全球行動通信系統(GSM)、用於GSM演進的增強資料速率(EDGE)以及GSM EDGE(GERAN)等等。
圖1A中的基地台114b例如可以是無線路由器、本地節點B、本地e節點B或存取點,並且可以使用任何適當的RAT來促成局部區域中的無線連接,例如營業場所、住宅、車輛、校園、工業設施、空中走廊(例如供無人機使用)以及道路等等。在一個實施例中,基地台114b與WTRU 102c、102d可以藉由實施IEEE 802.11之類的無線電技術來建立無線區域網路(WLAN)。在實施例中,基地台114b與WTRU 102c、102d可以藉由實施IEEE 802.15之類的無線電技術來建立無線個人區域網路(WPAN)。在再一個實施例中,基地台114b及WTRU 102c、102d可藉由使用基於胞元的RAT(例如WCDMA、CDMA2000、GSM、LTE、LTE-A、LTE-A Pro、NR等等)來建立微微胞元或毫微微胞元。如圖1A所示,基地台114b可以直連到網際網路110。由此,基地台114b不需要經由CN 106/115來存取網際網路110。
RAN 104/113可以與CN 106/115進行通信,該CN可以是被配置成向一個或複數WTRU 102a、102b、102c、102d提供語音、資料、應用及/或借助網際網路協定語音(VoIP)服務的任何類型的網路。該資料可以具有不同的服務品質(QoS)需求,例如不同的輸送量需求、時延需求、容錯需求、可靠性需求、資料輸送量需求、以及移動性需求等等。CN 106/115可以提供呼叫控制、記帳服務、基於移動位置的服務、預付費呼叫、網際網路連接、視訊分發等等,及/或可以執行使用者驗證之類的高級安全功能。雖然在圖1A中沒有顯示,然而應該瞭解,RAN 104/113及/或CN 106/115可以直接或間接地及其他那些與RAN 104/113使用相同RAT或不同RAT的RAN進行通信。例如,除了與使用NR無線電技術的RAN 104/113相連之外,CN 106/115還可以與使用GSM、UMTS、CDMA 2000、WiMAX、E-UTRA或WiFi無線電技術的別的RAN(未顯示)通信。
CN 106/115還可以充當供WTRU 102a、102b、102c、102d存取PSTN 108、網際網路110及/或其他網路112的閘道。PSTN 108可以包括提供簡易老式電話服務(POTS)的電路交換電話網絡。網際網路110可以包括使用了公共通信協定(例如傳輸控制協定/網際網路協定(TCP/IP)網際網路協定族中的TCP、使用者資料包協定(UDP)及/或IP)的全球性互聯電腦網路裝置系統。網路112可以包括由其他服務供應者擁有及/或操作的有線或無線通訊網路。例如,網路112可以包括與一個或複數RAN相連的另一個CN,其中該一個或複數RAN可以與RAN 104/113使用相同RAT或不同RAT。
通信系統100中一些或所有WTRU 102a、102b、102c、102d可以包括多模能力(例如WTRU 102a、102b、102c、102d可以包括在不同無線鏈路上與不同無線網路通信的複數收發器)。例如,圖1A所示的WTRU 102c可被配置成與使用基於胞元的無線電技術的基地台114a通信,以及與可以使用IEEE 802無線電技術的基地台114b通信。
圖1B是示出了範例WTRU 102的系統圖。如圖1B所示,WTRU 102可以包括處理器118、收發器120、傳輸/接收元件122、揚聲器/麥克風124、小鍵盤126、顯示器/觸控板128、非可移記憶體130、可移記憶體132、電源134、全球定位系統(GPS)晶片組136以及其他週邊設備138。應該瞭解的是,在保持符合實施例的同時,WTRU 102還可以包括前述元件的任何子組合。
處理器118可以是通用處理器、專用處理器、習用處理器、數位訊號處理器(DSP)、複數微處理器、與DSP核心關聯的一個或複數微處理器、控制器、微控制器、專用積體電路(ASIC)、現場可程式設計閘陣列(FPGA)電路、其他任何類型的積體電路(IC)以及狀態機等等。處理器118可以執行信號編碼、資料處理、功率控制、輸入/輸出處理、及/或其他任何能使WTRU 102在無線環境中工作的功能。處理器118可以耦合至收發器120,收發器120可以耦合至傳輸/接收元件122。雖然圖1B將處理器118及收發器120描述成單獨組件,然而應該瞭解,處理器118及收發器120也可以整合在一個電子元件或晶片中。
傳輸/接收元件122可被配置成經由空中介面116來傳輸或接收去往或來自基地台(例如基地台114a)的信號。舉個例子,在一個實施例中,傳輸/接收元件122可以是被配置成傳輸及/或接收RF信號的天線。作為範例,在實施例中,傳輸/接收元件122可以是被配置成傳輸及/或接收IR、UV或可見光信號的放射器/偵測器。在再一個實施例中,傳輸/接收元件122可被配置成傳輸及接收RF及光信號。應該瞭解的是,傳輸/接收元件122可以被配置成傳輸及/或接收無線信號的任何組合。
雖然在圖1B中將傳輸/接收元件122描述成是單個元件,但是WTRU 102可以包括任何數量的傳輸/接收元件122。更具體地說,WTRU 102可以使用MIMO技術。由此,在一個實施例中,WTRU 102可以包括兩個或複數藉由空中介面116來傳輸及接收無線信號的傳輸/接收元件122(例如複數天線)。
收發器120可被配置成對傳輸/接收元件122所要傳輸的信號進行調製,以及對傳輸/接收元件122接收的信號進行解調。如上所述,WTRU 102可以具有多模能力。因此,收發器120可以包括允許WTRU 102借助多種RAT(例如NR及IEEE 802.11)來進行通信的複數收發器。
WTRU 102的處理器118可以耦合到揚聲器/麥克風124、小鍵盤126及/或顯示器/觸控板128(例如液晶顯示器(LCD)顯示單元或有機發光二極體(OLED)顯示單元),並且可以接收來自這些元件的使用者輸入資料。處理器118還可以向揚聲器/麥克風124、小鍵盤126及/或顯示器/觸控板128輸出使用者資料。此外,處理器118可以從諸如非可移記憶體130及/或可移記憶體132之類的任何適當的記憶體中存取訊號,以及將資料存入這些記憶體。非可移記憶體130可以包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、硬碟或是其他任何類型的記憶儲存裝置。可移記憶體132可以包括用戶身份模組(SIM)卡、記憶條、安全數位(SD)記憶卡等等。在其他實施例中,處理器118可以從那些並非實體位於WTRU 102的記憶體存取資訊,以及將資料存入這些記憶體,作為範例,此類記憶體可以位於伺服器或家用電腦(未顯示)上。
處理器118可以接收來自電源134的電力,並且可被配置分發及/或控制用於WTRU 102中的其他組件的電力。電源134可以是為WTRU 102供電的任何適當裝置。例如,電源134可以包括一個或複數乾電池組(如鎳鎘(Ni-Cd)、鎳鋅(Ni-Zn)、鎳氫(NiMH)、鋰離子(Li-ion)等等)、太陽能電池以及燃料電池等等。
處理器118還可以耦合到GPS晶片組136,該晶片組可被配置成提供與WTRU 102的目前位置相關的位置資訊(例如經度及緯度)。作為來自GPS晶片組136的資訊的補充或替換,WTRU 102可以經由空中介面116接收來自基地台(例如基地台114a、114b)的位置資訊,及/或根據從兩個或複數附近基地台接收的信號時序來確定其位置。應該瞭解的是,在保持符合實施例的同時,WTRU 102可以借助任何適當的定位方法來獲取位置資訊。
處理器118可以進一步耦合到其他週邊設備138,其中該週邊設備可以包括提供附加特徵、功能及/或有線或無線連接的一個或複數軟體及/或硬體模組。例如,週邊設備138可以包括加速度計、電子指南針、衛星收發器、數位相機(用於照片及視訊)、通用序列匯流排(USB)埠、振動裝置、電視收發器、免持耳機、藍牙®模組、調頻(FM)無線電單元、數位音樂播放機、媒體播放機、視訊遊戲機模組、網際網路瀏覽器、虛擬實境及/或增強現實(VR/AR)裝置、以及活動追蹤器等等。週邊設備138可以包括一個或複數感測器,該感測器可以是以下的一個或多者:陀螺儀、加速度計、霍爾效應感測器、磁強計、方位感測器、鄰近感測器、溫度感測器、時間感測器、地理位置感測器、高度計、光感測器、觸控感測器、磁力計、氣壓計、姿勢感測器、生物測定感測器及/或濕度感測器。
WTRU 102可以包括全雙工無線電裝置,其中對於該無線電裝置來說,一些或所有信號(例如與用於UL(例如對傳輸而言)及下鏈(例如對接收而言)的特定子訊框相關聯)的接收或傳輸可以是併發及/或同時的。全雙工無線電裝置可以包括借助於硬體(例如扼流線圈)或是憑藉處理器(例如單獨的處理器(未顯示)或是憑藉處理器118)的信號處理來減小及/或基本消除自干擾的干擾管理單元139。在實施例中,WTRU 102可以包括傳輸或接收一些或所有信號(例如與用於UL(例如對傳輸而言)或下鏈(例如對接收而言)的特定子訊框相關聯)的半雙工無線電裝置。
圖1C是示出了根據實施例的RAN 104及CN 106的系統圖。如上所述,RAN 104可以使用E-UTRA無線電技術在空中介面116與WTRU 102a、102b、102c進行通信。該RAN 104還可以與CN 106進行通信。
RAN 104可以包括e節點B 160a、160b、160c,然而應該瞭解,在保持符合實施例的同時,RAN 104可以包括任何數量的e節點B。每一個e節點B 160a、160b、160c都可以包括藉由空中介面116與WTRU 102a、102b、102c通信的一個或複數收發器。在一個實施例中,e節點B 160a、160b、160c可以實施MIMO技術。由此,舉例來說,e節點B 160a可以使用複數天線來向WTRU 102a傳輸無線信號,及/或以及接收來自WTRU 102a的無線信號。
每一個e節點B 160a、160b、160c都可以關聯於一個特定胞元(未顯示),並且可被配置成處理無線電資源管理決策、切換決策、UL及/或DL中的使用者排程等等。如圖1C所示,e節點B 160a、160b、160c彼此可以藉由X2介面進行通信。
圖1C所示的CN 106可以包括移動性管理閘道(MME)162、服務閘道(SGW)164以及封包資料網路(PDN)閘道(或PGW)166。雖然前述的每一個元件都被描述成是CN 106的一部分,然而應該瞭解,這其中的任一元件都可以由CN操作者之外的實體擁有及/或操作。
MME 162可以經由S1介面連接到RAN 104中的每一個e節點B 162a、162b、162c,並且可以充當控制節點。例如,MME 162可以負責驗證WTRU 102a、102b、102c的使用者,執行承載啟動/去啟動處理,以及在WTRU 102a、102b、102c的初始附著過程中選擇特定的服務閘道等等。MME 162還可以提供一個用於在RAN 104與使用其他無線電技術(例如GSM或WCDMA)的其他RAN(未顯示)之間進行切換的控制平面功能。
SGW 164可以經由S1介面連接到RAN 104中的每一個e節點B 160a、160b、160c。SGW 164通常可以路由及轉發去往/來自WTRU 102a、102b、102c的使用者資料封包。SGW 164還可以執行其他功能,例如在e節點B間的切換過程中錨定使用者平面,在DL資料可供WTRU 102a、102b、102c使用時觸發傳呼處理,以及管理並儲存WTRU 102a、102b、102c的上下文等等。
SGW 164可以連接到PGW 166,該PGW可以為WTRU 102a、102b、102c提供封包交換網路(例如網際網路110)存取,以便促成WTRU 102a、102b、102c與IP賦能的裝置之間的通信。
CN 106可以促成與其他網路的通信。例如,CN 106可以為WTRU 102a、102b、102c提供對電路切換式網路(例如PSTN 108)的存取,以便促成WTRU 102a、102b、102c與傳統的陸線通信裝置之間的通信。例如,CN 106可以包括IP閘道(例如IP多媒體子系統(IMS)伺服器)或與之進行通信,並且該IP閘道可以充當CN 106與PSTN 108之間的介面。此外,CN 106可以為WTRU 102a、102b、102c提供針對其他網路112的存取,其中該網路可以包括其他服務供應者擁有及/或操作的其他有線或無線網路。
雖然在圖1A至圖1D中將WTRU描述成了無線終端,然而應該想到的是,在某些典型實施例中,此類終端與通信網路可以使用(例如臨時或永久性)有線通信介面。
在典型的實施例中,其他網路112可以是WLAN。
採用基礎設施基本服務集(BSS)模式的WLAN可以具有用於該BSS的存取點(AP)以及與該AP相關聯的一個或複數站(STA)。該AP可以存取或是對接到分散式系統(DS)或是將服務送入及/或送出BSS的別的類型的有線/無線網路。源於BSS外部且去往STA的服務可以藉由AP到達並被遞送至STA。源自STA且去往BSS外部的目的地的服務可被發送至AP,以便遞送到相應的目的地。處於BSS內部的STA之間的服務可以藉由AP來發送,例如在源STA可以向AP發送服務並且AP可以將服務遞送至目的地STA的情況下。處於BSS內部的STA之間的服務可被認為及/或稱為點到點服務。該點到點服務可以在源與目的地STA之間(例如在其間直接)用直接鏈路建立(DLS)來發送。在某些典型實施例中,DLS可以使用802.11e DLS或802.11z隧道化DLS(TDLS))。使用獨立BSS(IBSS)模式的WLAN不具有AP,並且處於該IBSS內部或是使用該IBSS的STA(例如所有STA)彼此可以直接通信。在這裡,IBSS通信模式有時可被稱為“特定(ad-hoc)”通信模式。
在使用802.11ac基礎設施工作模式或類似的工作模式時,AP可以在固定通道(例如初級通道)上傳輸信標。該初級通道可以具有固定寬度(例如20MHz的頻寬)或是借助信號動態設定的寬度。初級通道可以是BSS的操作通道,並且可被STA用來與AP建立連接。在某些典型實施例中,所實施的可以是具有衝突避免的載波收聽多路存取(CSMA/CA)(例如在802.11系統中)。對於CSMA/CA來說,包括AP在內的STA(例如每一個STA)可以感測初級通道。如果特定STA感測到/偵測到及/或確定初級通道繁忙,那麼該特定STA可以回退。在給定的BSS中,在任何給定時間都有一個STA(例如只有一個站)進行傳輸。
高輸送量(HT)STA可以使用寬度為40MHz的通道來進行通信,例如,借助於將寬度為20MHz的初級通道與寬度為20MHz的相鄰或不相鄰通道相結合來形成寬度為40MHz的通道。
超高輸送量(VHT)STA可以支援寬度為20MHz、40MHz、80MHz及/或160MHz的通道。40MHz及/或80MHz通道可以藉由組合連續的20MHz通道來形成。160MHz通道可以藉由組合8個連續的20MHz通道或者藉由組合兩個不連續的80MHz通道(這種組合可被稱為80+80配置)來形成。對於80+80配置來說,在通道編碼之後,資料可被傳遞並經過一個分段解析器,該分段解析器可以將資料分成兩個流。在每一個流上可以單獨執行反向快速傅立葉變換(IFFT)處理以及時域處理。該流可被映射在兩個80MHz通道上,並且資料可以由傳輸STA來傳輸。在接收STA的接收器上,用於80+80配置的上述操作可以被顛倒,並且組合資料可被發送至媒體存取控制(MAC)。
802.11af及802.11ah支援次1GHz的工作模式。相比於802.11n及802.11ac,在802.11af及802.11ah中使用的通道工作頻寬及載波有所縮減。802.11af在TV白空間(TVWS)頻譜中支援5MHz、10MHz及20MHz頻寬,並且802.11ah支援使用非TVWS頻譜的1MHz、2MHz、4MHz、8MHz及16MHz頻寬。依照典型實施例,802.11ah可以支援儀錶類型控制/機器類型通信(例如巨集覆蓋區域中的MTC裝置)。MTC裝置可以具有某種能力,例如包含了支援(例如只支援)某些及/或有限頻寬在內的有限的能力。MTC裝置可以包括電池,並且該電池的電池壽命高於門檻值(例如用於保持很長的電池壽命)。
對於可以支援複數通道及通道頻寬的WLAN系統(例如802.11n、802.11ac、802.11af以及802.11ah)來說,這些系統包含了可被指定成初級通道的通道。該初級通道的頻寬可以等於BSS中的所有STA所支援的最大公共工作頻寬。初級通道的頻寬可以由某一個STA設定及/或限制,其中該STA源自在BSS中工作的所有STA且支援最小頻寬工作模式。在關於802.11ah的範例中,即使BSS中的AP及其他STA支援2 MHz、4 MHz、8 MHz、16 MHz及/或其他通道頻寬工作模式,但對支援(例如只支援)1MHz模式的STA(例如MTC類型的裝置)來說,初級通道的寬度可以是1MHz。載波感測及/或網路分配向量(NAV)設定可以取決於初級通道的狀態。如果初級通道繁忙(例如因為STA(其只支援1MHz工作模式)對AP進行傳輸),那麼即使大多數的頻帶保持空閒並且可供使用,也可以認為整個可用頻帶繁忙。
在美國,可供802.11ah使用的可用頻帶是902 MHz到928 MHz。在韓國,可用頻帶是917.5MHz到923.5MHz。在日本,可用頻帶是916.5MHz到927.5MHz。依照國家碼,可用於802.11ah的總頻寬是6MHz到26MHz。
圖1D是示出了根據實施例的RAN 113及CN 115的系統圖。如上所述,RAN 113可以使用NR無線電技術藉由空中介面116來與WTRU 102a、102b、102c進行通信。RAN 113還可以與CN 115進行通信。
RAN 113可以包括gNB 180a、180b、180c,但是應該瞭解,在保持符合實施例的同時,RAN 113可以包括任何數量的gNB。每一個gNB 180a、180b、180c都可以包括一個或複數收發器,以便藉由空中介面116來與WTRU 102a、102b、102c通信。在一個實施例中,gNB 180a、180b、180c可以實施MIMO技術。例如,gNB 180a、180b、180c可以使用波束成形處理來向及/或從gNB 180a、180b、180c傳輸及/或接收信號。由此,舉例來說,gNB 180a可以使用複數天線來向WTRU 102a傳輸無線信號,以及接收來自WTRU 102a的無線信號。在實施例中,gNB 180a、180b、180c可以實施載波聚合技術。例如,gNB 180a可以向WTRU 102a傳輸複數分量載波(未顯示)。這些分量載波的一子集可以處於未許可頻譜上,而剩餘分量載波則可以處於許可頻譜上。在實施例中,gNB 180a、180b、180c可以實施協調多點(CoMP)技術。例如,WTRU 102a可以接收來自gNB 180a及gNB 180b(及/或gNB 180c)的協調傳輸。
WTRU 102a、102b、102c可以使用與可擴縮參數配置相關聯的傳輸來與gNB 180a、180b、180c進行通信。例如,對於不同的傳輸、不同的胞元及/或不同的無線傳輸頻譜部分來說,OFDM符號間隔及/或OFDM子載波間隔可以是不同的。WTRU 102a、102b、102c可以使用具有不同或可擴縮長度的子訊框或傳輸時間間隔(TTI)(例如包含了不同數量的OFDM符號及/或持續不同的絕對時間長度)來與gNB 180a、180b、180c進行通信。
gNB 180a、180b、180c可被配置成與採用獨立配置及/或非獨立配置的WTRU 102a、102b、102c進行通信。在獨立配置中,WTRU 102a、102b、102c可以在不存取其他RAN(例如e節點B 160a、160b、160c)的情況下與gNB 180a、180b、180c進行通信。在獨立配置中,WTRU 102a、102b、102c可以使用gNB 180a、180b、180c中的一個或多者作為行動錨點。在獨立配置中,WTRU 102a、102b、102c可以使用未許可頻帶中的信號來與gNB 180a、180b、180c進行通信。在非獨立配置中,WTRU 102a、102b、102c會在與別的RAN(例如e節點B 160a、160b、160c)進行通信/相連的同時與gNB 180a、180b、180c進行通信/相連。舉例來說,WTRU 102a、102b、102c可以藉由實施DC原理而以基本同時的方式與一個或複數gNB 180a、180b、180c以及一個或複數e節點B 160a、160b、160c進行通信。在非獨立配置中,e節點B 160a、160b、160c可以充當WTRU 102a、102b、102c的行動錨點,並且gNB 180a、180b、180c可以提供附加的覆蓋及/或輸送量,以便為WTRU 102a、102b、102c提供服務。
每一個gNB 180a、180b、180c都可以關聯於特定胞元(未顯示),並且可以被配置成處理無線電資源管理決策、切換決策、UL及/或DL中的使用者排程、支援網路切片、實施雙連線性、實施NR與E-UTRA之間的互通處理、路由去往使用者平面功能(UPF)184a、184b的使用者平面資料、以及路由去往存取及移動性管理功能(AMF)182a、182b的控制平面資訊等等。如圖1D所示,gNB 180a、180b、180c彼此可以藉由Xn介面通信。
圖1D所示的CN 115可以包括至少一個AMF 182a、182b,至少一個UPF 184a、184b,至少一個對話管理功能(SMF)183a、183b,並且有可能包括資料網路(DN)185a、185b。雖然每一個前述元件都被描述了CN 115的一部分,但是應該瞭解,這其中的任一元件都可以被CN操作者之外的其他實體擁有及/或操作。
AMF 182a、182b可以經由N2介面連接到RAN 113中的一個或複數gNB 180a、180b、180c,並且可以充當控制節點。例如,AMF 182a、182b可以負責驗證WTRU 102a、102b、102c的使用者,支援網路切片(例如處理具有不同需求的不同PDU對話)、選擇特定的SMF 183a、183b、管理註冊區域、終止NAS信號,以及移動性管理等等。AMF 182a、182b可以使用網路切片處理,以便基於WTRU 102a、102b、102c使用的服務類型來定制為WTRU 102a、102b、102c提供的CN支援。作為範例,針對不同的用例,可以建立不同的網路切片,例如依賴於超可靠低時延(URLLC)存取的服務、依賴於增強型大規模行動寬頻(eMBB)存取的服務、及/或用於機器類型通信(MTC)存取的服務等等。AMF 162可以提供用於在RAN 113與使用其他無線電技術(例如LTE、LTE-A、LTE-A Pro及/或諸如WiFi之類的非3GPP存取技術)的其他RAN(未顯示)之間切換的控制平面功能。
SMF 183a、183b可以經由N11介面連接到CN 115中的AMF 182a、182b。SMF 183a、183b還可以經由N4介面連接到CN 115中的UPF 184a、184b。SMF 183a、183b可以選擇及控制UPF 184a、184b,並且可以藉由UPF 184a、184b來配置服務路由。SMF 183a、183b可以執行其他功能,例如管理及分配UE IP位址、管理PDU對話、控制策略實施及QoS,以及提供下鏈資料通知等等。PDU對話類型可以是基於IP的、不基於IP的,以及基於乙太網路的等等。
UPF 184a、184b可以經由N3介面連接到RAN 113中的一個或複數gNB 180a、180b、180c,這樣可以為WTRU 102a、102b、102c提供封包交換網路(例如網際網路110)存取,以便促成WTRU 102a、102b、102c與IP賦能的裝置之間的通信,UPF 184、184b可以執行其他功能,例如路由及轉發封包、實施使用者平面策略、支援多宿主PDU對話、處理使用者平面QoS、緩衝下鏈封包、以及提供移動性錨定處理等等。
CN 115可以促成與其他網路的通信。例如,CN 115可以包括或者可以與充當CN 115與PSTN 108之間的介面的IP閘道(例如IP多媒體子系統(IMS)伺服器)進行通信。此外,CN 115可以為WTRU 102a、102b、102c提供針對其他網路112的存取,這其中可以包括其他服務供應者擁有及/或操作的其他有線或無線網路。在一個實施例中,WTRU 102a、102b、102c可以經由對接到UPF 184a、184b的N3介面以及介於UPF 184a、184b與本地資料網路(DN)185a、185b之間的N6介面並藉由UPF 184a、184b連接到DN 185a、185b。
有鑒於圖1A至圖1D以及關於圖1A至圖1D的相應描述,在這裡對照以下的一項或多項描述的一個或複數或所有功能可以由一個或複數仿真裝置(未顯示)來執行:WTRU 102a-d、基地台114a-b、e節點B 160a-c、MME 162、SGW 164、PGW 166、gNB 180a-c、AMF 182a-b、UPF 184a-b、SMF 183a-b、DN 185 a-b及/或這裡描述的一個或複數其他任何裝置。仿真裝置可以是被配置成類比這裡描述的一個或複數或所有功能的一個或複數裝置。舉例來說,仿真裝置可用於測試其他裝置及/或類比網路及/或WTRU功能。
仿真裝置可被設計成在實驗室環境及/或操作者網路環境中實施關於其他裝置的一項或多項測試。例如,該一個或複數仿真裝置可以在被完全或部分作為有線及/或無線通訊網路一部分實施及/或部署的同時執行一個或複數或所有功能,以便測試通信網路內部的其他裝置。該一個或複數仿真裝置可以在被臨時作為有線及/或無線通訊網路的一部分實施或部署的同時執行一個或複數或所有功能。該仿真裝置可以直接耦合到別的裝置以執行測試,及/或可以使用空中無線通訊來執行測試。
一個或複數仿真裝置可以在未被作為有線及/或無線通訊網路一部分實施或部署的同時執行包括所有功能在內的一個或複數功能。例如,該仿真裝置可以在測試實驗室及/或未被部署(例如測試)的有線及/或無線通訊網路的測試場景中使用,以便實施關於一個或複數元件的測試。該一個或複數仿真裝置可以是測試裝置。該仿真裝置可以使用直接的RF耦合及/或借助了RF電路(作為範例,該電路可以包括一個或複數天線)的無線通訊來傳輸及/或接收資料。
在IEEE802.11 ac中,超高輸送量(VHT) STA可以支援20 MHz、40 MHz、80 MHz及160 MHz寬的通道。40 MHz及80 MHz通道可藉由組合鄰近的20 MHz通道來形成,類似於IEEE802.11n。160 MHz通道可以藉由組合8個連續的20 MHz通道或藉由組合兩個非連續的80 MHz通道來形成。這可以被稱為80+80配置。對於80+80配置,在通道編碼之後,資料可被傳遞並經過一個分段解析器,該分段解析器可以將資料分成兩個流。在每一個流上可以單獨執行反向快速傅立葉變換(IFFT)處理以及時域處理。然後,可以將流映射到兩個通道上,並且發送資料。在接收器處,該機制可以被顛倒,並且組合資料可以被發送到MAC。
IEEE 802.11 af及802.11ah支援次1GHz的工作模式。對於這些規範,通道工作頻寬及載波可以相對於IEEE 802.11n及802.11ac中使用的那些而有所縮減。IEEE 802.11 af在TV白空間(TVWS)頻譜中支援5MHz、10MHz及20MHz頻寬,並且IEEE 802.11 ah支援使用非TVWS頻譜的1 MHz、2 MHz、4 MHz、8 MHz及16 MHz頻寬。對於IEEE 802.11 ah,這可以用於支援巨集覆蓋區域中的計量類型控制(MTC)裝置。MTC裝置可具有有限的能力,包含僅支援有限的頻寬,但也可具有對非常長的電池壽命的要求。
支援複數通道及通道寬度的WLAN系統(例如IEEE 802.11n、802.11ac、802.11af及802.11ah)可以包括被指定為初級通道的通道。初級通道可以具有等於BSS中的所有STA所支援的最大公共工作頻寬的頻寬。因此,初級通道的頻寬可以由某一個STA設定及/或限制,其中該STA源自在BSS中工作的所有STA且支援最小頻寬工作模式。例如,對於IEEE 802.11 ah,如果存在僅支援1 MHz模式的STA (例如,MTC裝置),則初級通道可以是1 MHz寬,即使AP及BSS中的其它STA支援2 MHz、4 MHz、8 MHz、16 MHz或其它通道頻寬工作模式。所有載波感測及NAV設定可以取決於初級通道的狀態。例如,如果初級通道繁忙(例如因為STA(其只支援1MHz工作模式)對AP進行傳輸),那麼即使大多數的頻帶保持空閒並且可供使用,也可以認為整個可用頻帶繁忙。
在美國,IEEE 802.11ah可以使用的可用頻帶可以是從902 MHz到928 MHz。在韓國,可用頻帶可以是從917.5 MHz到923.5 MHz,而在日本,可用頻帶可以是從916.5 MHz到927.5 MHz。根據國家代碼,可用於IEEE 802.11 ah的總頻寬可以是6 MHz到26 MHz。
IEEE 802.11TM 高效WLAN (HEW)包括用於在許多場景中增強針對廣譜無線使用者的所有使用者體驗的服務品質的實施例,該場景包括2.4 GHz、5 GHz及6 GHz頻帶中的高密度場景。802.11 HEW正在考慮支援AP、STA及相關聯的無線電資源管理(RRM)技術的密集部署的新用例。
HEW的潛在應用包括新興的使用場景,諸如用於賽場事件的資料遞送、高使用者密度場景(諸如火車站或企業/零售環境)、以及增加的對用於醫療應用的視訊遞送及無線服務的依賴。
在802.11ax或HEW中,針對各種應用的測量服務具有很大的短封包可能性,並且存在也可以產生短封包的網路應用。應用可以包括虛擬局(office)、傳輸功率控制(TPC)確認(ACK)、視訊流ACK、裝置/控制器(例如滑鼠、鍵盤及遊戲控制)、存取(例如探針請求/回應)、網路選擇(例如探針請求及存取網路查詢協定(ANQP))及網路管理(例如控制訊框)。此外,已經引入了包括上鏈(UL)及下鏈(DL) OFDMA以及UL及DL MU-MIMO的多使用者(MU)特徵,並且已經指定了用於出於不同目的而多工UL隨機存取的機制。
IEEE 802.11極高輸送量(EHT)包括進一步增加峰值輸送量並提高IEEE 802.11網路的效率的實施例。EHT的使用情況及應用可以包括高輸送量及低延遲應用,諸如WLAN視訊、增強現實(AR)及虛擬實境(VR)。EHT中的特徵清單可以包括多AP、多頻帶、320 MHz頻寬、16個空間流、HARQ、全雙工(在時域及頻域中)、AP協調、半正交多重存取(SOMA)以及用於6 GHz通道存取的新設計。
在典型的IEEE 802.11網路中,STA可以與單個AP相關聯,並且可以在與相鄰BSS中的傳輸進行很少協調或不進行協調的情況下向該AP發送及從該AP接收。STA可以基於在BSS之間完全獨立的CSMA協定來遵從重疊基本服務集(OBSS)傳輸。在IEEE 802.11 ax中,OBSS之間的某種程度的協調是由空間重用(SR)過程引入的,並且可以基於調整的能量偵測門檻值(例如,使用OBSS PD過程)或藉由接收OBSS STA可以容許的干擾量的知識(例如,使用SRP過程)來允許OBSS傳輸。
本文描述的實施例可以提供藉由允許去往或來自複數AP的傳輸到一個或複數STA而實現OBSS之間的更多協調的過程。OBSS之間的多AP協調可以在未許可頻帶內執行及/或專用於IEEE802.11協定。
複數AP/eNB可以使用聯合處理/傳輸在相同或不同的時間及頻率資源中向相同或複數STA/WTRU進行傳輸,目的是提高所考慮的STA/WTRU的總輸送量。動態胞元選擇可以被看作聯合處理的特殊情況,其中在任何時間,AP/eNB集合中的僅一個AP/eNB活動地發送資料。另一方面,複數AP/eNB可以使用協調的波束成形/排程在相同或不同的時間及頻率資源中向不同的STA/WTRU (例如,為其自己的STA/WTRU服務的每個AP/eNB)進行傳輸,目的是減少每個STA/WTRU所經歷的干擾。胞元平均及/或胞元邊緣輸送量的顯著改進可以藉由複數AP/eNB協調來實現。可假設複數傳輸天線可用於每個STA/WTRU/AP/基地台。其它STA/WTRU的同時干擾抑制及期望STA/WTRU的信號品質最佳化可以藉由在每個基地台的空間域信號處理來處理。
通常,可以假設藉由例如顯式回饋在AP或基地台處可獲得某種程度的通道狀態資訊。此外,可以假定一定程度的時序/頻率同步,使得可以避免處理載波間或符號間干擾的更複雜的信號處理。
WLAN中的多AP傳輸方案可以基於協調OFDMA、協調置零/波束成形及協調SU/MU傳輸來分類。對於協調SU傳輸,複數AP可以在一個資源單元(RU)中向STA進行發送。協調SU傳輸可以是以下之一(按照增加的複雜度的順序):動態選擇、協調SU波束成形及協調MU波束成形。對於協調點選擇,可以從AP集合中的一個AP動態地選擇傳輸,並且該傳輸可以包括HARQ。對於協調SU波束成形,傳輸可以同時來自複數AP,並且傳輸可以是波束成形的。對於協調MU波束成形,複數AP可以在一個RU中向/從複數STA發送或接收資料。
圖2示出了可以與本文描述的任何其他實施例結合使用的協調正交分頻多重存取(OFDMA)的範例200。在協調OFDMA中,每組RU可以由一個AP (例如,214a、214b、214c或214d)使用來發送或接收資料。例如,如圖2所示,STA 202a-202l可以被劃分為兩組,胞元中心STA 202a、202d、202g、202j,以及胞元邊緣STA 202b、202c、202e、202f、202h、202i、202k、202j。AP 214a、214b、214c、214d可以允許其不受干擾影響的STA 202a、202d、202g、202j (即胞元中心STA)使用整個頻寬。然而,AP 214a、214b、214c、214d可以將其可能受到干擾影響的STA 202b、202c、202e、202f、202h、202i、202k、202l (即胞元邊緣STA)限制為僅使用部分頻率頻寬。例如,STA 202a被允許使用整個頻寬(例如,全頻譜/通道),而STA 202b、202c被限制為僅使用頻寬的特定部分。在AP 214a、214b、214c、214d與STA 202a-202l之間傳輸的資料或資訊可以是波束成形的,或者在每個RU 205、210、220、225、230、235、240、245上具有MU-MIMO。複雜度可以相對低到中等。在一個實施例中,AP可以以協調的方式在它們自身之間劃分OFDMA資源單元(RU),其中每個AP被限制到特定RU。在另一個實施例中,AP可以允許不受干擾影響或者將不影響其它的STA使用整個頻寬,同時限制對可能受影響的STA的存取。這被稱為分數頻率重用(FFR)。
圖3示出了用於協調OFDMA的範例資源配置300,其可以與本文描述的任何其它實施例結合使用。如圖3所示,可以允許與組1資源305、315(例如,中心組RU)相關聯的STA (例如,胞元中心STA)使用整個頻帶(例如,子帶1及子帶2),可以限制與組2資源310或組3資源320相關聯的STA (例如,胞元邊緣STA)僅使用所分配的資源(例如,子帶1或子帶2)。
圖4示出了可以與本文描述的任何其他實施例組合使用的協調波束成形/協調置零(CB/CN)的範例400。在協調波束成形/協調置零中,每個AP (例如,AP1 414a及AP2 414b)可應用預編碼以向或從其期望的一個或複數STA (例如,STA1 402a及STA2 402b)傳輸資訊並抑制對其的干擾或抑制來自其的干擾。在圖4所示的範例中,每個STA (例如STA1 402a或STA2 402b)的資料可能僅在其關聯AP (例如AP1 414a或AP2 414b)處需要,但是來自其它STA (例如STA2 402b或STA1 402a)的通道資訊可能在兩個AP (例如AP1 414a及AP2 414b)處都需要。
圖5示出了使用干擾對齊(IA)的協調置零/協調波束成形(CB/CN)的範例500,其可以結合本文描述的任何其他實施例來使用。在干擾對齊中,AP可以預編碼用於STA的資訊,使得在AP的信號傳遞藉由通道之後,不期望的資訊(例如STA1資訊對於STA2是不期望的)落入STA處的干擾子空間。在圖5所示的範例中,其中兩個AP,AP1 514a及AP2 514b,以及兩個STA,STA A 502a及STA B 502b,處於無線媒體中,AP1 514a及AP2 514b可以處於相同的BSS中,並且藉由中央單元連接,該中央單元將用於STA A 502a的資訊(例如,
Figure 02_image001
Figure 02_image003
)及用於STA B 502b的資訊(例如,
Figure 02_image005
Figure 02_image007
)分發到AP1 514a及AP2 514b,其中
Figure 02_image009
可以是STA 502a、502b及AP 514a、514b處的天線數量。AP1 514a處可用的資訊可以是
Figure 02_image011
Figure 02_image013
。AP2 514 b處可用的資訊可以是
Figure 02_image015
Figure 02_image017
。AP 514a、514b之間藉由中央單元的資訊交換可以是慢的或被假定為沒有。然而,AP 514a、514b可藉由具有低資料速率但可靠的通信協定的無線媒體在其之間通信。AP1 514a及STA A 502a、STA B 502b之間的通道可由
Figure 02_image019
Figure 02_image021
表示,AP2 514b及STA A 502a、STA B 502b之間的通道可由
Figure 02_image023
Figure 02_image025
表示。
在AP1 514a及AP2 514b處對一組子載波或單個子載波的運算可如下:
Figure 02_image027
Figure 02_image029
其中,
Figure 02_image031
Figure 02_image033
可以分別是來自AP1 514a及AP2 514b的傳輸符號,並且
Figure 02_image035
Figure 02_image037
可以分別是用於STA A 502a及STA B 502b的干擾子空間。STA A 502a及STA B 502b處接收到的符號可被示為:
Figure 02_image039
由於AP1 514a及AP2 514b處的預編碼,由於跨通道而導致的干擾分量可能落入相同的子空間,例如用於STA A 502a的
Figure 02_image035
及用於STA B 502a的
Figure 02_image037
。該方案可以對應於干擾對齊(IA)方案的特定情況。這個特定方案的主要好處可以是AP1 514a或AP2 514b可能不需要使用與AP2 514b或AP1 514a相關的通道狀態資訊。因此,它可以藉由消除對AP 514a、514b之間的資訊交換的需要來減少服務。此外,它可以藉由使用配備有
Figure 02_image009
個天線的AP 514a、514b及STA 502a、502b來服務於
Figure 02_image041
資訊。
在協調單使用者(SU)或多使用者(MU)傳輸中,複數AP可以協調以同時向或從單個STA或複數STA發送資訊。在這種情況下,在兩個AP處可能需要STA的通道資訊及資料。例如,協調SU或MU傳輸可以是協調的SU傳輸或協調的MU波束成形中的一種。
對於協調SU傳輸,複數AP可以在一個RU中向STA進行傳輸,並且可以是動態點選擇、協調SU波束成形或聯合預編碼中的一種(以增加的複雜度的順序)。對於動態點選擇,可以從AP集合中的一個AP動態地選擇傳輸,並且可以合併HARQ。
圖6示出了單使用者(SU)聯合預編碼的多AP傳輸或協調SU波束成形的範例600,其可以結合本文描述的任何其他實施例來使用。在協調聯合預編碼中,傳輸可以同時來自複數AP (例如,AP1 614a及AP2 614b),並且傳輸可以在一個或複數RU上被波束成形或預編碼到期望STA (例如,STA1 602a)。例如,如圖6所示,AP1 614a及AP2 614b可以在一個UR中向STA1 602發送信號以用於協調SU傳輸。
圖7示出了多使用者(MU)預編碼的多AP傳輸或協調MU波束成形的範例700,其可以與本文描述的任何其他實施例組合使用。對於協調MU波束成形,複數AP (例如,AP1 714a及AP2 714b)可以在一個或複數RU上向/從複數STA (例如,STA1 702a及STA2 702b)傳輸或接收資料。例如,如圖7所示,AP1 714a及AP2 714b協調(例如,經由回程)以在一個或複數RU中同時向/從STA1 702a及STA2 702b傳輸/接收資料。本文描述的多AP方案可以包括與協調波束成形及聯合處理有關的場景。
在IEEE 802.11系統中,STA可以向AP發送關聯請求,並且如果關聯成功,則從AP接收關聯回應以指示其是BSS的成員。對於複數AP系統,AP可能受複數AP影響,並且可能需要與每個AP的某種級別的關聯。本文描述的多AP關聯可使得單個STA能夠發現複數AP並與一個以上AP關聯。
此外,為了在基於觸發的IEEE 802.11系統中實現協調OFDMA,例如IEEE 802.11 ax及以上,這裡描述的實施例可以使STA能夠識別STA是胞元中心還是胞元邊緣STA,並且將該資訊回饋到基於觸發的OFDMA系統中的AP。本文描述的實施例還可以使STA及/或AP能夠執行基於觸發的排程協調OFDMA方案及/或基於觸發的隨機存取協調OFDMA方案。來自不同BSS的OFDMA傳輸可以被同步,以確保在存在不同時序偏移的情況下的正交性。
此外,對於協調的波束成形及協調的置零,傳輸器(或傳輸STA)可估計用於期望接收器(或期望接收STA)及受干擾接收器(例如,受到來自傳輸器的干擾的接收器或STA)的有效通道。通道回饋可用於來自BSS內的期望接收器的回饋。該回饋也可以從另一個BSS或與使用多AP關聯的目前BSS相關聯的BSS中的接收器請求。此外,本文描述的實施例可以使得能夠以高效的方式為期望接收器及受干擾接收器兩者請求回饋。可以考慮期望傳輸(例如,上鏈或下鏈)及干擾(例如,上鏈或下鏈)的方向。可以提供基於觸發的及非基於觸發的過程。
此外,本文描述的實施例可以提供針對不同系統架構的關於獲得有效通道及設計有效預編碼器的設計特定傳輸過程。架構可以基於以下:(1)兩個傳輸器是否都是來自AP的DL (DL-DL);(2)兩個傳輸器是否都是來自STA的上鏈(UL-UL);或者(3)該傳輸器中的一個是AP,另一個是STA,或者反之亦然(DL-U或UL-DL)。在一個範例中,對於UL-UL架構,可以使用或修改IEEE 802.11ax中的基於空間重用參數(SRP)的空間重用(SR)。在基於SRP的空間重用(SR)中,STA可以接收SRP PPDU,該SRP PPDU具有對AP可以容許的來自相鄰BSS中的另一STA的最大干擾量的指示,該另一STA希望在AP從特定STA接收訊框的同時(例如,以SR方式)而同時進行發送。
此外,為了利用波束成形或波束置零技術來實現DL中的多AP傳輸,AP可能需要知道所有STA的DL通道狀態資訊(CSI)。假設DL及UL通道是互易的,AP可以從對從STA發送的UL參考、導頻或訓練信號的接收中獲得DL CSI。由此,AP可以獲得諸如從不同STA到不同AP的路徑損耗之類的資訊,其可以次級AP實現多AP DL波束成形或置零。然而,如果來自STA的UL傳輸是功率受控的,則從所有STA接收的信號可以具有相同或相似的功率水平。因此,在這種情況下,AP可能不能確定路徑損耗,並且因此可能獲得AP及STA之間的路徑損耗資訊。如果STA是功率受限的,則在AP處從發送NDP的STA匯出的互易通道估計可能是差的,因為它可能是雜訊受限的。在這樣的場景中,可以執行並改進用於啟用DL SU-MIMO或MU-MIMO的通道估計。
AP關聯過程可以作為典型STA關聯程序的一部分而發生。圖8A示出了STA關聯期間的範例多AP關聯800,其可以與本文該的任何其他實施例結合使用。
在圖8A所示的範例中,STA 802發送探針請求訊框805A、805b (及/或認證請求訊框815A、815b),並可識別候選AP,例如AP1 814A及AP2 814b。在實施例中,探針請求訊框805a、805b中的每一個可以包括但不限於對多AP關聯、傳輸及/或接收能力的請求。接收到探針請求訊框805a、805b (及/或認證請求訊框815a、815b)的AP (例如,AP1 814a及AP2 814b)向STA 802發送探針回應訊框810a、810b (及/或認證回應訊框820a、820b)。探針回應訊框810a、810b中的每一個可以包括但不限於多AP關聯、傳輸及/或接收能力。它還可以包括候選協調AP (例如,AP1 814a及AP2 814b)及它們的多AP能力(例如,分數頻率重用(FFR)、協調或聯合傳輸)。
STA 802可以連接到初級AP (例如,AP1 814A)。在實施例中,初級AP可以被定義為STA否則將針對單個AP場景連接到的AP。這可以是例如STA否則將連接到的用於IEEE 802.11傳輸(例如IEEE 802.11 ax或更早)的AP。次級AP (例如AP2 814b)可以是用於多AP傳輸的附加AP。在實施例中,初級AP需要是傳輸的一部分。在其它實施例中,多AP服務集中的最佳AP可以用於傳輸。在多AP服務集中可以有多於一個的次級AP,並且AP可以被排序為例如初級AP、次級1 AP、次級2 AP、第三級AP等。多AP服務集或多AP服務集可包括能夠支援STA與複數AP之間的多AP關聯、傳輸及/或接收的複數AP。
如圖8A所示,STA 802可向AP 814a、814b發送一個或複數多AP關聯請求訊框825,其具有對AP 814a、814b要關聯的優先順序的指示(例如,初級AP、次級AP、第三級AP或AP1、AP2)。AP優先順序順序可以在多AP關聯請求訊框825中顯式地用信號通知,或者可以藉由AP識別字在多AP關聯請求訊框825中出現的順序隱式地用信號通知。
STA可根據從AP中的每一個接收到信標或探針回應訊框810a、810b的強度來識別優先順序次序。信標或探針回應訊框810a、810b可以包括AP的關於多AP傳輸/接收的能力資訊,諸如作為範例在圖10中描述的多AP服務集元件。AP 814a、814b可向STA 802通知可能的多AP組合(例如,多AP服務集)及相關聯的複數AP能力,並且STA可選擇要用於多AP關聯請求訊框825的子集。
多AP關聯請求訊框825可指示所請求的協調的一個或複數類型。在一個範例中,STA 802可以請求特定的協調類型。在一些實施例中,STA 802可請求它能夠支援的所有協調類型。協調類型的範例可以包括但不限於協調波束成形、協調OFDMA、聯合傳輸及多AP HARQ。在接收到多AP關聯請求訊框825時,AP 814a、814b可以執行一些AP協調過程830以確保它們能夠以所請求的方式進行協調。這可以涉及藉由回程或AP協調器的高層信號。替代地或附加地,初級AP (例如,AP1 814a)可以向次級AP (例如,AP2 814b)發送具有協調請求的細節及所需資料類型的空中(OTA)信號。多AP關聯請求825可由STA 802發送以添加、移除或改變STA 802所關聯的AP 814a、814b,諸如在先前請求的多AP服務集中的AP阻塞的情況下。作為範例,多AP關聯請求訊框825可包括如圖11所示的多AP選擇元件。多AP關聯請求訊框825可被廣播到多AP服務集中的所有AP 814a、814b,或被單獨傳輸到各個AP 814a、814b。
AP 814a、814b然後可向STA 802發送多AP關聯回應訊框835a、835b。在實施例中,每個AP 814a、814b可向STA 802發送獨立的多AP關聯回應訊框835a、835b。多AP關聯回應訊框835a、835b可以以確保在碼域、時域、頻域及/或空間域中的可分離性的方式發送。可替換地或附加地,可以使用諸如聯合傳輸的所請求的DL多AP方案作為系統的測試來發送多AP關聯回應訊框835a、835b。多AP關聯回應訊框835a、835b可接受STA 802所請求的多AP方案(例如,多AP關聯請求訊框825)。多AP回應訊框835a、835b可拒絕STA 802請求的多AP方案(例如,多AP關聯請求訊框825)。多AP關聯回應訊框835a、835b可建議STA所請求方案的替代或附加方案。
STA 802然後可以用多AP關聯確認(ACK)訊框840a、840b來向AP 814a、814b兩者進行回覆,以確保AP 814a、814b兩者知道STA 802現在已準備好進行多AP傳輸/接收建立。在AP 814a、814b之一不能接受STA 802所請求的多AP關聯並且不發送多AP關聯回應訊框835a、835b的情況下,多AP ACK訊框840a、840b可確保另一AP (例如AP1 814a或AP2 814b)知道它是初級AP並且不應建立多AP傳輸/接收過程。例如,在AP2 814b不接受STA 802所請求的多AP關聯請求訊框825並且不發送多AP關聯回應訊框835b的情況下,STA802可向AP1 814a傳輸多AP關聯ACK訊框840a以確保AP1 814a是不打算設定多AP傳輸/接收過程的初級AP。一旦STA 802從AP 814a、814b接收到多AP關聯ACK訊框840a、840b,STA 802就可以發起與AP 814a、814b的多AP傳輸/接收方案,並且執行與AP 814a、814b的資料傳輸845。
假定AP1 814a及AP2 814b在相同的多AP服務集中,則可以從多AP服務集中的AP 814a、814b發送封包,使得它們在STA 802處不重疊。例如,AP1 814a及AP2 814b可以發送探針回應訊框810a、810b,使得它們不重疊,並且使得AP1的探針回應訊框810a具有在AP2的探針回應訊框810b到達之前被解碼的時間。這也可以應用於多AP關聯回應。例如,AP1 814a及AP2 814b可發送多AP關聯回應訊框835a、835b,使得它們不重疊,並使得AP1的多AP關聯回應訊框835a在AP2的複數AP關聯回應訊框835b到達之前有時間被解碼。換句話說,AP 814a、814b可基於預定順序或隨機順序向STA 802發送封包(例如,探針回應訊框810a、810b或多AP關聯回應訊框835a、835b),使得封包在STA 802處不彼此重疊。該順序可以由AP 814a、814b、STA 802、網路操作者或網路控制器來確定。
圖8B示出了範例多AP關聯程序850,其可以與本文所述的任何其他實施例結合使用。在步驟855,STA可向其附近的複數AP傳輸一個或複數探針請求訊框以指示STA能夠支援多AP操作,諸如與複數AP的傳輸及/或接收。在發送探針請求訊框之前,STA可以基於主動掃描來選擇複數AP。例如,如果STA沒有關於STA周圍的AP的資訊,則STA可以向所有鄰居AP廣播探針請求訊框。如果STA具有關於AP支援的網路操作者或網路操作者的資訊,則STA可以選擇具有與網路操作者或網路操作者相對應的服務集識別字(SSID)的特定AP。STA然後可以向特定AP發送探針請求訊框以從所選AP引出探針回應訊框。如果STA具有特定AP的位址的資訊(例如,BSSID),則STA可以選擇那些AP來發送探針請求訊框並且從那些AP接收探針回應訊框。探針請求訊框可以包括一個或複數指示符,其指示STA能夠支援與複數AP的多AP操作。探針請求訊框還可以包括一個或複數指示符,其向AP請求接收到探針請求訊框的AP是否是向STA提供多AP操作的多AP服務集的一部分。
在步驟860,STA可以從複數AP接收回應於一個或複數探針請求訊框的探針回應訊框。每個探針回應訊框可以包括一個或複數指示符,該指示符指示向STA發送探針回應訊框的AP的多AP操作能力。例如,每個探針回應訊框包括用於傳輸該探針回應訊框的每個AP的多AP服務集元件,如圖10所示。基於多AP服務集元件,STA可以識別用於與複數AP的多AP操作的多AP參數(例如,組及多AP服務集)。多AP服務集元件可包括但不限於多AP聯合傳輸能力、多AP混合自動重複請求(HARQ)能力、多AP多輸入多輸出(MIMO)能力、動態AP選擇能力、多AP漫遊能力、以及多AP協調波束成形能力。
在一個實施例中,如果AP1、AP2及AP3屬於向STA提供多AP操作的同一多AP服務集,則每個探針回應訊框提供AP1、AP2及AP3中的每一個的能力資訊。例如,除了傳輸AP1的能力資訊之外,AP1發送的探針回應訊框還包括AP2及AP3的能力資訊。類似地,除了發送AP2的能力資訊之外,AP2發送的探針回應訊框還包括AP1及AP3的能力資訊。
在另一實施例中,如果AP1及AP2屬於相同的多AP服務集,但AP3不屬於AP1及AP2所屬的多AP服務集,則從AP1及AP2傳輸的每個探針回應訊框包括AP1及AP2中的每一個的能力資訊。然而,從AP3發送的探針回應訊框可不包括AP1及AP2的能力資訊,但可包括AP3所屬的不同的多AP服務集中的其它AP的能力資訊。例如,除了AP1的能力資訊之外,AP1發送的探針回應訊框還包括AP2的能力資訊。然而,AP3發送的探針回應訊框可包括AP3、AP4及AP5的能力資訊,其中AP3、AP4及AP5形成與AP1及AP2所屬的多AP服務集不同的多AP服務集。
在步驟865,STA可以向複數AP傳輸認證請求訊框,並且在步驟870從複數AP接收認證回應訊框。在一個範例中,如圖8A所示,STA可以向AP1 814a發送認證請求訊框815a,並且從AP1 814a接收認證回應訊框820a。STA然後可將另一認證請求訊框815b傳輸到AP2 814b,並從AP2 814b接收另一認證回應訊框820b。在另一個例子中,如圖9所示,在發起與AP2 914b的多AP關聯過程之前STA與AP 1914a相關聯的情況下,STA可以僅向AP1 914a發送認證請求訊框915,並且從AP1 914a接收認證回應訊框920。
在步驟875,STA可向複數AP傳輸一個或複數多AP關聯請求訊框以用於多AP關聯。具體地,多AP關聯請求訊框可以使得複數AP能夠彼此協調以形成向STA提供多AP操作的多AP關聯。例如,一旦AP接收到多AP關聯請求訊框,AP就可經由AP之間的回程鏈路來彼此傳達AP,直到多AP服務集中的所有AP都變得知曉STA與多AP服務集中的AP的關聯。在範例中,初級AP可以向次級AP (及第三級AP)發送OTA信號以通知STA與包括用於多AP操作的AP (例如,初級AP、次級AP及第三級AP)的多AP服務集相關聯。多AP關聯請求訊框可以被廣播到多AP服務集中的所有AP或者被單獨地傳輸到多AP服務集中的複數AP中的每一個。
在步驟880,STA可從複數AP接收多AP關聯回應訊框,該多AP關聯回應訊框包括指示接受或拒絕與複數AP的多AP操作的一個或複數指示符。例如,STA可從AP1接收第一多AP關聯回應訊框,該第一多AP關聯回應訊框包括指示接受或拒絕與AP1的多AP操作的指示符。STA然後可從AP2接收第二多AP關聯回應訊框,該第二多AP關聯回應訊框包括指示接受或拒絕與AP2的多AP操作的指示符。可以在STA處以預定順序或隨機順序接收多AP關聯回應訊框,直到正確地接收到所有多AP關聯回應訊框。例如,可以以多AP服務集中列出的AP的順序接收多AP關聯回應訊框。在STA處接收的多AP關聯回應訊框可以不相互重疊,使得STA有時間在STA從AP2接收到下一個多AP關聯回應訊框之前解碼來自AP1的多AP關聯回應訊框。
在步驟885,如果正確地接收到多AP關聯回應訊框,則STA可以向傳輸了該多AP關聯回應訊框的複數AP傳輸多AP關聯確認(ACK)訊框(不管多AP關聯回應訊框是否包括對多AP操作的接受或拒絕)。如果多AP關聯訊框未被正確接收(無論多AP關聯回應訊框是否包括對多AP操作的接受或拒絕),則STA還可以向傳輸了多AP關聯回應訊框的複數AP傳輸多AP關聯否定確認(NACK)訊框。例如,如果在STA處正確地解碼了來自AP1的第一多AP關聯回應訊框,則STA可以向AP1傳輸第一多AP關聯ACK訊框。如果在STA處沒有正確地解碼來自AP1的第一多AP關聯回應訊框,則STA可以向AP1傳輸第一多AP關聯NACK訊框。類似地,如果在STA處正確地解碼了來自AP2的第二多AP關聯回應訊框,則STA可以向AP2傳輸第二多AP關聯ACK訊框。如果在STA處沒有正確地解碼來自AP2的第二多AP關聯回應訊框,則STA可以向AP2傳輸第二多AP關聯NACK訊框。
在步驟890,一旦STA從多AP服務集中的AP接收到多AP關聯回應訊框並且多AP關聯回應訊框指示接受與AP的複數AP操作,STA就可以藉由向AP傳輸資料及/或從AP接收資料來發起與AP的多AP操作。具體地,如果從AP1接收的第一多AP關聯回應訊框指示接受與AP1的多AP操作,而從AP2接收的第二多AP關聯回應訊框指示接受與AP2的多AP操作,則STA可例如使用協調正交分頻多重存取(OFDMA)或協調置零來與AP1及AP2傳輸及/或接收資料。STA還可以利用複數AP (例如AP1及AP2)執行聯合傳輸/接收、HARQ回饋、MIMO、動態AP選擇及多AP漫遊。
圖9示出了由STA發起的範例多AP關聯900,其可以與本文所述的任何其他實施例結合使用。如圖9所示,STA 902可以使用現有的IEEE 802.11探針請求/探針回應機制來識別候選AP (例如,AP1 914a及AP2 914b)並且與單個AP (例如,AP1 914a)相關聯。例如,STA 902可以基於如上該的主動掃描來識別其附近的候選AP (例如,AP1 914a、AP2 914b)。候選AP (例如,AP1 914a及AP2 914b)可被包括在多AP服務集中或被包括在提供對STA及候選AP之間的多AP關聯、傳輸及/或接收的支援的多AP服務集中。在範例中,在相同的多AP服務集中,AP1 914a可以被識別為初級AP,AP2 914b可以被識別為次級AP。一旦識別了候選AP 914a、914b,STA 902就可向AP 914a、914b傳輸探針請求訊框905a、905b並從AP 914a、914b接收探針回應訊框910a、910b。STA 902然後可以執行與AP (例如,AP1 914a)的認證及關聯過程。例如,STA可以向AP1 914a發送認證請求訊框915,並且從AP1 914a接收認證回應訊框920。一旦STA 902被AP1 914a認證,STA 902就可以向AP1 914a發送關聯請求訊框925,並且從AP1 914a接收認證回應訊框930。STA 902然後可發起例如與關於多AP服務集中的一個或複數合適的候選AP的資訊的多AP關聯。在探針請求/探針回應階段期間,可以從來自其它AP的探針回應訊框910a、910b中識別候選AP (例如,AP1 914a及AP2 914b)。
在STA 902首先如圖9所示與初級AP (例如AP1 914a)關聯的情況下,STA 902可向其初級AP (例如AP1 914a)發送多AP關聯請求訊框935a (或通知訊框),其具有關於候選AP (例如AP1 914a及AP2 914b)或多AP服務集中的複數AP的資訊。可替換地或附加地,STA 902可以向候選AP (例如,AP2 914b)發送多AP關聯請求訊框935b (或通告訊框),其具有關於多AP服務集中的其它AP (例如,AP1 914a)或其它多AP的資訊。STA 902可順序地將一個新AP添加到其自己的多AP服務集。AP 914a、914b可以追蹤連接到複數AP服務集中的每一個或與其相關聯的一個或複數STA (例如,STA 902),並且可以使用該資訊來排程多AP方案或與STA的多AP操作。
在實施例中,STA 902可以發送複數AP (例如,AP1 914a及AP2 914b)在多AP服務集中要被關聯的優先順序的指示,包括將初級AP (例如,AP1 914a)改變為次級AP (例如,AP2 914b)、第三級AP等的能力,以及指示新的初級AP。優先順序順序可以在多AP關聯請求訊框935a、935b中顯式地用信號通知,或者AP優先順序可以由AP識別字在複數AP關聯請求訊框935a、935b中出現的順序隱式地用信號通知。在接收到複數AP關聯請求訊框935a、935b時,AP 914a、914b可執行一些AP協調過程940,諸如將安全資訊從初級AP (例如,AP1 914a)傳輸到次級AP (例如,AP2 914b)及/或確保AP (例如,AP1 914a)僅可連接到次級AP (例如,AP2 914b)以確保它們能夠以所請求的方式來協調。這可以涉及藉由回程或AP協調器的高層信號。可替換地或附加地,初級AP (例如,AP1 914a)可以向次級AP (例如,AP2 914b)發送OTA信號,該OTA信號具有協調請求的細節及所需資料的類型。
AP 914a、914b隨後可如圖9中所示向STA 902發送多AP關聯回應訊框945a、945b。在一個實施例中,每個AP 914a、914b可向STA 902發送獨立的多AP關聯回應訊框945a、945b。多AP關聯回應訊框945a、945b可以以確保在代碼、時間、頻率及/或空間中的可分離性的方式來發送。可替換地或附加地,可以使用下鏈多AP方案按照請求(例如,聯合傳輸或作為系統的測試)來發送多AP關聯回應訊框945a、945b。多AP關聯回應訊框945a、945b可接受STA 902在多AP關聯請求訊框935a、935b中請求的多AP方案,或者拒絕STA 902在多AP關聯請求訊框935a、935b中請求的多AP方案。可替換地或附加地,多AP關聯回應訊框945a、945b可建議STA 902所請求方案的替換方案。
STA 902隨後可用多AP關聯ACK訊框950a、950b來向AP 914a、914b兩者回覆以確保AP 914a、914b兩者都知道STA 902現在已準備好進行多AP傳輸/接收建立。儘管圖9中未示出,但是在AP 914a、914b之一不能接受多AP關聯請求(例如935a或935b)並且不發送多AP關聯回應(例如945a或945b)的情況下,多AP關聯ACK訊框(例如950a或950b)可以確保另一AP (例如914a或914b)知道其是初級AP並且不應當建立多AP傳輸/接收過程955。例如,假設AP2 914b不能接受多AP關聯請求935b並且不發送多AP關聯回應945b (圖9中未示出),則多AP關聯ACK訊框950a可以確保AP2 914b知道AP1 914a是初級AP,並且AP2 914b不應當建立多AP傳輸/接收過程955。如果多AP關聯過程不成功,則這可以使得能夠退回到單個AP關聯。
在實施例中,AP可以發送多AP服務集元件以指示該AP是多AP服務集(SS)的一部分。作為多AP SS的一部分可以意味著AP能夠進行多AP傳輸/接收。還可以明確地指示這樣的能力。
圖10示出了範例多AP服務集(SS)元件1000,其可以與本文該的任何其他實施例結合使用。如圖10所示,多AP SS元件1000可以包括元件ID 1005及元件ID擴展欄位1015、長度欄位1010、多AP SS AP計數欄位1020、以及多AP SS AP 1-N欄位1025、1030。元件ID 1005及元件ID擴展欄位1015的組合可以指示目前元件是多AP SS元件1000。長度欄位1010可以用於指示多AP SS元件1000的長度。多AP SS AP計數欄位1020可以指示在多AP SS元件1000中包括多少資訊欄位。在實施例中,如果僅包含一個欄位,例如關於傳輸STA的資訊欄位,則可以省略多AP SS AP計數欄位1020。在其它實施例中,這個多AP SS AP計數欄位120可用於指示多AP服務集的大小,諸如藉由指示在多STA服務集中包含多少個AP。
N個多AP SS AP欄位1020、1030可以包括關於作為多AP服務集的一部分的AP中的每一個的資訊。在實施例中,欄位的數目可以在多AP SS AP計數欄位1020中指示。在其它實施例中,在資訊中可以僅包含一個AP。對於每個AP,N個多AP SS AP欄位1020、1030的一個或複數子欄位中包括的資訊可以包括AP ID1050 (諸如AP的MAC位址或一個或複數其他識別字)、主AP指示符1055 (例如,該欄位中包括的AP是主AP還是初級AP還是從AP的指示、各種多AP能力指示。各種多AP能力的範例可以包括但不限於支援多AP聯合傳輸的能力1060、多AP HARQ 1065、多AP MIMO 1070、多AP MU-MIMO 1075、動態AP選擇1080、多AP漫遊1085及多AP協調波束成形1090以及順序(例如,可以指示在多AP服務集中識別的每個成員AP的順序的子欄位)。
剛才描述的設計、欄位及子欄位是範例,並且可以使用現有的或新的欄位、子欄位、元件、MAC/PLCP報頭或所傳輸訊框的任何部分來實現。
AP可以包括多AP SS元件,例如,在其信標、短信標、探針回應、關聯回應或快速初始鏈路建立(FILS)發現訊框中,以指示AP是多AP服務集的一部分。AP還可以指示其自己的多AP能力,包括例如對多AP聯合傳輸、多AP HARQ、多AP MIMO、多AP MU-MIMO、動態AP選擇、多AP漫遊及多AP協調波束成形的支援。AP還可以指示它是多AP服務集內的主AP (協調器)還是從AP。AP還可以指示該欄位是與傳輸AP相關還是與接收AP相關。另外,多AP SS元件可以包括相同多AP服務集中的一個或複數成員AP的資訊。多AP SS元件可以提供關於其他成員AP的多AP能力的資訊,諸如它們是否支援多AP聯合傳輸、多AP HARQ、多AP MIMO、多AP MU-MIMO、動態AP選擇、多AP漫遊及多AP協調波束成形。多AP SS元件還可以指示其他成員AP是主AP還是從AP。在一些實施例中,AP還可以提供關於另一元件中的相同多AP SS中的一個或複數或所有其它成員AP的資訊,諸如使用減少的鄰居報告元件或鄰居報告元件中的保留位元之一的指示,包括ID (BSSID、SSID)、能力或它們是主AP或從AP的指示。此外,可以以這樣的方式排序多AP服務集中的成員AP,即,包括在多AP SS元件中的成員AP的順序是多AP SS (MASS),其可以由SSID或MASSID識別及/或在多AP SS元件中提供。
非AP STA可以監視媒體以發現例如信標、短信標或FILS發現訊框,以發現適當的AP或MASS。非AP STA可發送目標為AP及/或MASS的探針請求,以便發現其範圍內作為特定MASS成員的一個或複數AP。非AP STA可在探針請求訊框中包括多AP能力元件,這可暗示它可支援多AP傳輸及/或接收。它可包括STA的支援多AP傳輸的能力,諸如支援多AP聯合傳輸、多AP HARQ、多AP MIMO、多AP MU-MIMO、動態AP選擇、多AP漫遊及多AP協調波束成形。這種能力也可以包括在能力元件中,例如極高輸送量(EHT)能力元件。
從AP接收多AP SS元件的非AP STA可以理解該AP是多AP服務集的一部分並且該多AP服務集中的該AP可以支援某些多AP傳輸能力,其中該多AP SS元件可以被包括在信標、短信標、探針回應、關聯回應訊框、FILS發現訊框或任何其他種類的訊框中。此外,它可以發現相同的多AP SS (MASS)中的一個或複數成員AP的識別及/或能力。
在發現了關於相同MASS的一個或複數成員AP的資訊之後,STA可發送另一訊框,例如探針請求訊框、多AP探針請求或MASS探針請求,該訊框可包括STA所瞄準的成員AP的SSID、MASS ID及/或一個或複數ID,例如MAC位址。在其它實施例中,STA可發送目標為MASS ID的探針請求訊框,並且探針請求訊框可包括具有設定為1的一個或複數位的點陣圖,其可指示可與MASS中的成員AP的順序相關聯的成員AP,針對該成員AP正請求探針回應。探針請求訊框還可包括其為對MASS的探針請求的指示。MASS的成員AP在接收到以MASS ID為目標的探針請求之後,可以用探針回應來回應,該MASS ID包括它的MAC位址,或者由點陣圖中的位元1來識別。在其它實施例中,在接收到以MASS ID為目標的探針請求之後,MASS的成員AP可以用探針回應來回應。
可替換地或附加地,由非AP STA發送的探針請求還可以包括用於傳輸探針請求的傳輸功率及接收功率門檻值。接收到低於接收功率門檻值的探針請求訊框的任何目標成員AP,例如來自目標MASS的AP,可以忽略該探針請求訊框。否則,AP可以用探針回應來回應。
非AP STA可具有其在監視媒體並從成員AP接收到目標探針回應、信標、短信標、FILS發現訊框或其它類型的訊框之後發現的MAS的成員AP的參數列表,例如MCS、RSSI或其它通道品質參數。它可以選擇MASS中的一個或複數成員AP作為其指定的AP。指定AP之一可以充當初級AP,而一個或複數AP可以充當STA的一個或複數次級AP。
如果AP及/或MASS滿足非AP STA的要求,則它可向所選AP發送關聯請求或多AP關聯請求,包括多AP選擇元件。圖11示出了範例多AP選擇元件1100,其可以與這裡描述的任何其他實施例結合使用。
多AP選擇元件1100可以包括元件ID 1105及元件ID擴展欄位1115、長度欄位1110、多AP能力欄位1120、多AP服務請求欄位1125、AP資訊計數欄位1130及N個AP資訊欄位1135、1140。元件ID 1105及元件ID擴展欄位1115的組合可以指示目前元件是多AP選擇元件1100。長度欄位1110可用於指示多AP選擇元件1100的長度。多AP能力欄位1120可用於指示STA用於多AP傳輸/接收的能力,包括例如多AP聯合傳輸、多AP HARQ、多AP MIMO、多AP MU-MIMO、動態AP選擇、多AP漫遊及多AP協調波束成形。多AP服務請求欄位1125可指示正由傳輸AP請求的多AP服務,包含多AP聯合傳輸、多AP HARQ、多AP MIMO、多AP MU-MIMO、動態AP選擇、多AP漫遊及多AP協調波束成形。AP資訊計數欄位1130可以指示所包括的AP資訊欄位的數量。N個AP資訊欄位1135、1140可以包括關於正在請求多AP服務的成員AP的資訊。N個AP資訊欄位1135、1140的範例可以包括但不限於AP ID 1150、初級/次級指示符1155、接收的功率/通道品質指示1160及強制性指示符1165。AP ID 1150可以是MAC位址或成員AP在MASS中的順序。如果適用,則初級/次級指示符1155可指示對AP作為初級或次級AP被接受的請求。接收功率/通道品質指示欄位1160可指示AP及傳輸STA之間的通道品質,諸如RSSI、RSRP或RCPI。強制性指示符1165可以指示傳輸STA是請求強制性的目標AP還是可選地接受的目標AP。可替換地或附加地,如果STA不具有關於目標MASS的成員AP的足夠資訊,則它可在多AP選擇元件1100中指示它正在請求關於支援多AP服務的其它成員AP的資訊。AP可以用諸如探針回應或信標、短信標或FILS發現訊框之類的訊框來回應,該訊框可以包括多AP元件以提供所請求的資訊。
在實施例中,非AP STA可以向包括多AP選擇元件的所有期望成員AP發送一個或複數關聯請求訊框或複數AP關聯請求訊框。在接收到關聯請求訊框或多AP關聯請求訊框之後,AP可以決定其是否將接受該關聯作為所請求的初級/次級AP。可替換地或附加地,在探針請求訊框中識別的初級AP可以將關聯請求轉發到在關聯/認證請求或多AP關聯/認證請求中識別的任何次級AP。如果初級AP是從AP,則初級AP可以將針對一個或複數次級AP的關聯/認證請求轉發到主AP,主AP可以代表STA執行與次級AP的關聯。這種轉發及回應可以發生在無線媒體上,使用有線骨幹網,使用不同的頻帶,或者使用頻率通道。一旦次級AP作出回應,初級AP就可以向請求STA發送多AP關聯/認證回應訊框。多AP關聯/認證回應訊框可以包括關於與初級AP及次級AP的關聯/認證是否成功的狀態。
在一個實施例中,非AP STA可以請求與第一AP (例如,所選擇的初級AP)的關聯。一旦STA與初級AP相關聯,STA就可以在AP的信標、短信標、探針回應、關聯回應或其他類型的訊框中接收相同MASS的其他成員AP的列表。STA可以發送一個或複數探針請求訊框,這些訊框的目標是MASS的SSID及/或STA目標所針對的成員AP的一個或複數ID,例如MAC位址。在另一實施例中,STA可發送以MASS ID為目標的探針請求訊框,並且探針請求訊框可包括每一位被設定為1的點陣圖,其可指示可與正請求探針回應的MASS中的成員AP的順序相關聯的成員AP。探針請求訊框還可包括其為對MASS的探針請求的指示。在接收到作為以MASS ID及/或其MAC位址為目標或由點陣圖中的位元1識別的至少一個的探針請求訊框之後,MASS的成員AP可以用探針回應訊框來回應。
可替換地或附加地,由非AP STA發送的探針請求訊框還可以包括用於發送探針請求的傳輸功率及接收功率門檻值。接收到低於接收功率門檻值的探針請求訊框的任何目標成員AP可以忽略該探針請求訊框。
非AP STA可具有參數列表,諸如MCS、RSSI或它在監視媒體並接收到目標探針回應訊框之後發現的MASS的成員AP的其它通道品質參數。STA可以選擇MASS中的一個或複數成員AP作為其次級AP。
非AP STA隨後可向其初級AP發送訊框,諸如多AP關聯請求訊框或多AP服務協商訊框。多AP關聯請求訊框或多AP服務協商訊框可以包含多AP選擇元件,其可以指示對特定多AP服務的請求及/或次級AP的數量。主AP然後可以決定是否向STA提供多AP服務。可替換地或附加地,可以在MASS的主AP處做出這樣的決定。初級AP可將多AP請求轉發給在多AP關聯請求訊框或多AP協商訊框中識別的任何次級AP。如果初級AP是從AP,則它可以將針對一個或複數次級AP的多AP關聯請求訊框或多AP服務協商請求轉發到主AP,主AP然後可以代表STA與次級AP進行多AP服務協商。這種轉發及回應可以發生在無線媒體(例如OTA)上,使用有線主幹、使用不同的頻帶或者使用不同的頻率通道。一旦次級AP作出回應,初級AP就可向請求STA發送複數AP關聯回應訊框或多AP服務協商回應訊框,其中包括指示以下各項的狀態:(1)是否將提供多AP服務;(2)將提供哪個多AP服務;(3)哪些成員AP被成功添加為STA的次級AP;以及(4)將提供哪個多AP服務。
對於協調OFDMA,在實施例中,STA可以自主地估計STA是否相對於其初級或服務BSS位於BSS邊緣(即BSS邊緣STA)或BSS中心(即BSS中心STA)中。例如,路徑損耗、地理或BSS位置可以用於估計。然而,在密集網路中,諸如具有許多重疊的基本服務集(OBSS)的公寓建築物中,BSS之間的交互可以確定STA是否需要被放置在BSS邊緣組中。這可能需要涉及BSS及STA的過程。術語BSS中心STA及胞元中心STA在本揭露中可以互換使用。術語BSS邊緣STA及胞元邊緣STA在本揭露中可以互換使用。
在實施例中,複數AP,例如AP1及AP2,可能需要協調以決定實現協調OFDMA。在一個範例中,AP1可以檢查多AP關聯STA (即,與複數AP關聯的STA)並且將AP2識別為要與之協調的AP。AP可以自動地將被識別為多AP關聯STA的任何STA指派為BSS邊緣STA。可替換地或者附加地,AP可以協調以發送資訊來説明STA估計它們是BSS邊緣STA還是BSS中心STA。
在一個實施例中,可以執行以下步驟用於協調的邊緣/中心發現。在步驟1,AP1可向AP2發送協調請求訊框(例如,藉由空中或藉由回程鏈路)。在步驟2,如果AP1願意並能夠與AP1協調,則它可從AP2接收協調確認訊框。在步驟3,AP1可向AP2及其BSS中的STA (即,非多AP關聯STA及多AP關聯STA兩者)發送空資料封包宣告(NDPA)訊框。在一個範例中,AP2可以將NDPA訊框作為ACK發送到AP1,並且向其BSS中的STA (即,非多AP關聯的STA及多AP關聯的STA)通告即將到來的NDP。該過程可以用於一般協調或聯合傳輸。可替換地或附加地,在該實施例中描述的步驟可以由上述複數AP關聯過程來替換。
在步驟4,AP1及AP2可以向它們BSS中的STA發送NDP。在一個實施例中,AP1及AP2可同時發送NDP。在這樣的實施例中,NDPA及NDP之間的接收RSSI中的差異可以指示STA是BSS邊緣STA還是BSS中心STA。如果NDPA及NDP之間的RSSI之差小於門檻值,則STA可以被認為是BSS中心STA,因為它可以指示沒有接收到來自AP2的信號。如果NDPA及NDP之間的RSSI之差大於門檻值,則STA可以被認為是BSS邊緣STA。
在另一個實施例中,來自AP的NDP訊框可以是正交的。在一個範例中,NDP訊框可以與來自AP2的NDP在時間上正交,其中在來自AP1的NDP之後發送SIFS。在另一個例子中,NDP訊框在頻率上可以是正交的(例如,在頻率上是交錯的)。NDP訊框的位置可取決於NDP子載波間隔(例如,Ng)。作為範例,如果Ng等於四(NG = 4),交織值等於二(交織值= 2),則AP1可在子載波0、4、8、…上發送其NDP,而AP2可在子載波2、6、10、…上發送其NDP。在另一個範例中,NDP訊框可以作為正交或半正交序列發送。
每個STA可以測量來自每個AP的NDP信號的RSSI,然後估計來自其初級AP (例如,AP1)及其次級AP (例如,AP2)的信號之間的RSSI差/比。如果RSSI差/比小於門檻值,則STA可以被認為是BSS邊緣STA。如果RSSI差/比值大於門檻值,則STA可以被認為是BSS中心STA。
在步驟5,STA在識別出它們是BSS邊緣STA還是BSS中心STA時,可以將該資訊回饋給AP。在一個範例中,AP可以針對回饋資訊輪詢每個STA。在另一個例子中,STA可以使用NDP回饋報告來提供回饋資訊。在該範例中,AP可以發送具有參數的NDP回饋報告輪詢(NFRP)觸發訊框,該參數指示對關於STA是BSS中心還是邊緣STA的資訊的請求。在另一範例中,NFRP觸發訊框可以傳輸指示關於胞元中心/胞元邊緣分類的截止值(例如,邊緣Tx功率、信噪比(SIR)截止值或RSSI差)的一個或複數附加參數。在接收到NFRP觸發訊框之後的SIFS持續時間,STA可以在NDP回饋報告中發送所需的資訊。在範例中,只有特定類型的STA可以發送資訊,這意味著不發送NDP回饋報告的任何STA都是其它類型的。AP可以將發送NDP回饋報告的STA識別為BSS中心STA/BSS邊緣STA,並且將沒有發送NDP回饋報告的STA識別為BSS邊緣STA/BSS中心STA。在另一個例子中,所有STA可以發送具有指定STA類型(例如,BSS邊緣或中心STA)的資訊的回饋。在另一範例中,STA可以使用HE-CQI報告來回饋RSSI或RSSI差。這可以是針對單個空間-時間子帶(STS)的,並且在整個頻寬上被平均。
從STA的角度來看,與複數AP相關聯並且識別初級及次級AP的STA可以首先識別來自AP1的多AP發現NDPA。STA可以從AP2識別多AP發現NDPA。STA然後可以從NDP估計所需測量。例如,STA可以識別SIR NDP並估計SIR (RSSI1-RSSI2;每音調或平均)。STA可以根據NFRP識別用於中心/邊緣確定的SIR截止。STA可以向AP發送包括中心/邊緣指示符的信號。可替換地或附加地,STA可以在HE-CQI訊框中發送SIR,並且允許AP決定STA是BSS中心還是邊緣STA。
圖12示出了排程/隨機存取協調OFDMA 1200的範例,其可以與本文描述的任何其他實施例結合使用。資料傳輸可以是排程的或隨機存取協調OFDMA。對於下鏈及上鏈中的排程的資料傳輸,AP 1214a、1214b可以利用傳輸功率控制或協調波束成形/置零(CB/N)在相應資源中排程適當的STA。假定AP1 1214a被分派RU1 1205並且AP2 1214b被分派RU2 1220,胞元邊緣STA可以由RU1 1205中的AP1 1214a分派,胞元邊緣STA可以由RU2 1220中的AP2 1214b分派,並且胞元中心STA可以由RU1 1205及RU2 1210中的AP1 1214a以及RU1 1215及RU2 1220中的AP2 1214b分派。胞元中心STA可以按照原樣進行發送,並且功率控制為限制與其它BSS的胞元中心/邊緣STA的干擾量。如下面更詳細地描述的,胞元中心STA可以使用CB/N方案來進行發送,以限制與其它BSS的胞元中心/邊緣STA的干擾量。
對於上鏈中的隨機存取(RA)資料傳輸,AP 1214a、1214b可以使用協調的上鏈OFDM隨機存取。如圖12所示,AP1 1214a可以允許邊緣及中心STA都將RU1 1205設定為合格的RA-RU (例如,HE STA能夠產生HE TB PPDU的RA-RU)。AP1 1214a可以將RU2 1210設定為僅用於中心STA的合格RA-RU。類似地,AP2 1214b可允許邊緣及中心STA都將RU2 1220設定為合格的RA-RU (例如,HE STA能夠為其產生HE TB PPDU的RA-RU)。AP2 1214b可以將RU1 1215設定為僅用於中心STA的合格RA-RU。
對於簡化的信號,在一些實施例中,可以將中心及邊緣STA手動地分派給組ID。組ID可以被分派給特定RA-RU。可替換地或附加地,胞元邊緣及中心STA可以被分派給特定的AID/AID組,並且RA-RU可以被分派給那些特定的AID/AID組。
圖13是多AP關聯、胞元中心/胞元邊緣發現及資料傳輸的範例1300的系統圖,其可以結合本文描述的任何其他實施例來使用。在該範例中,假設STA1 1302a是相對於AP1 1314a的BSS中心STA,STA2 1302b是相對於AP1 1314a的BSS邊緣STA,STA3 1302c是相對於AP2 1314b的BSS中心STA,並且STA4 1302d是相對於AP2 1314b的BSS邊緣STA。還假設STA2 1302b及STA4 1302d位於距AP1 1314a及AP2 1314b的胞元邊緣中。如圖13所示,在多AP關聯階段1301期間,STA1 1302a可從AP1 1314a接收信標訊框1305a,並執行與AP1 1314a的關聯過程。位於距AP1 1314a及AP2 1314b的胞元邊緣中的STA2 1302b可從AP1 1314a及AP2 1314b接收信標訊框1305a、1305b兩者,並如上所述執行與AP1 1314a及AP2 1314b的多AP關聯過程。類似地,STA3 1302c可以從AP2 1314b接收信標訊框1305b,並且執行與AP2 1314b的關聯過程。位於AP1 1314a及AP2 1314b的胞元邊緣中的STA4 1302d可以從AP1 1314a及AP2 1314b接收信標訊框1305a、1305b,並如上所述執行與AP1 1314a及AP2 1314b的多AP關聯過程。
在多AP關聯階段1301期間或之後,AP1 1314a及AP2 1314b可執行AP協調程序1302以確保AP1314a、1314b能夠向STA2 1302b及STA4 1302d提供多AP操作。AP協調過程1302可以以集中式方式或分散式方式來執行。在一個範例中,AP1 1314a及AP2 1314b可以藉由集中式控制器來協商分數頻率重用(FFR),該集中式控制器經由回程鏈路或OTA信號與AP1 1314a及AP2 1314b通信,如步驟1320中所示。在另一範例中,AP1 1314a及AP2 1314b可經由回程鏈路或OTA信號直接協商分數頻率重用(FFR),如步驟1325中所示。具體地,AP1 1314a可以向AP2 1314b發送控制訊息,並且從AP2 1314b接收ACK以用於FFR協商。
在中心/邊緣發現階段1303期間,AP1 1314a可以向其BSS中的AP2 1314b及STA 1302a、1302b發送NDPA訊框1330a。類似地,AP2 1314b可以向其BSS中的AP1 1314a及STA1302c、1302d發送NDPA訊框1330b。AP1 1314a然後可以向其BSS中的STA1302a、1302b發送信噪比(SIR) NDP訊框1335a,使得STA1302a、1302b可以估計SIR,例如,所接收的NDPA訊框1330a與所接收的SIR NDP訊框1335a之間的RSSI差。類似地,AP2 1314b然後可以向其BSS中的STA1302c、1302d發送SIR NDP訊框1335b,以使得STA1302c、1302d可以估計SIR,例如,所接收的NDPA訊框1330b與所接收的SIR NDP訊框1335b之間的RSSI差。此時,STA1302a、1302b、1302c、1302d可以例如基於所估計的SIR來識別它們是胞元邊緣還是中心STA。AP1 1314a可以向STA1 1302a及STA2 1302b發送NDP回饋報告輪詢(NFRP)訊框1340a以請求STA1302a、1302b是胞元中心還是邊緣STA的資訊。在接收到NFRP訊框1340a時,STA1 1302a可回應指示STA1 1302a是胞元中心STA的NDP回饋訊框1345a,並且STA2 1302b可回應指示STA2 1302b是胞元邊緣STA的NDP回饋訊框1345b。類似地,AP2 1314b還可以向STA3 1302c及STA4 1302d發送NFRP訊框1340b,以請求STA1302c、1302d是胞元中心還是邊緣STA的資訊。在接收到NFRP訊框1340b時,STA3 1302c可以回應指示STA3 1302c是胞元中心STA的NDP回饋訊框1350a,並且STA4 1302d可以回應指示STA4 1302d是胞元邊緣STA的NDP回饋訊框1350b。
在資料傳輸階段1304期間,AP1 1314a及AP2 1314b可以向STA 1302a、1302b、1302c、1302d傳輸隨機存取觸發訊框,以分配用於隨機存取的資源單元(RU)。例如,AP1 1314a可將UL-OFDMA隨機存取(UORA)觸發訊框1355a發送到STA1 1302a及STA2 1302b以指示STA1 1302a (即,胞元中心STA)被分配為使用RU1及RU2,以及STA2 1302b (即,胞元邊緣STA)被分配為使用RU1。在接收到UORA觸發訊框1355a時,STA1 1302a可以使用RU1及RU2 1360a來發送資料,並且STA2 1302b可以使用RU1 1365來向一個或複數AP1314a、1314b發送資料。類似地,AP2 1314b可以向STA3 1302c及STA4 1302d發送UORA觸發訊框1355b,以指示STA3 1302c (即胞元中心STA)被分配為使用RU1及RU2,以及STA4 1302d (即胞元邊緣STA)被分配為使用RU1。在接收到UORA觸發訊框1355b時,STA3 1302c可以使用RU1及RU2 1370來發送資料,並且STA4 1302d可以使用RU1 1375來向一個或複數AP1314a、1314b發送資料。
在一個實施例中,對於協調OFDMA,可以在為協調OFDMA分配的資源之間協商一組保護資源或保護RU。這可以允許一些載波間干擾而不需要緊密同步。
圖14示出了用於分數協調OFDMA的範例保護頻帶1400,其可以與本文描述的任何其他實施例結合使用。如圖14所示,對於AP1,RU1 1405被分配給胞元邊緣及中心STA,並且RU2 1415被分配給胞元中心STA。在這個範例中,分配給胞元邊緣STA的資源(即RU1 1405)可以具有一組保護資源或保護RU 1410。類似地,對於AP2,RU2 1430被分配給胞元邊緣及中心STA,RU1 1415被分配給胞元中心STA。分配給胞元邊緣STA (即RU2 1430)的資源可以具有一組保護資源或保護RU1430。
在一個實施例中,迴圈首碼(CP)長度修改可以用於確保CP長度大於以下之及:(1)與BSS1相關聯的STA的最大時序偏移;(2)與BSS2相關聯的STA的最大時序偏移;以及(3) BSS1及BSS2的最大通道脈衝回應(CIR)長度。儘管在上述範例中沒有描述,但是藉由對針對協調BSS集合中的所有BSS的參數進行求及,該方案可應用於多於兩個BSS。
在IEEE 802.11 ax中,回應於來自AP的觸發PPDU,例如包括觸發訊框或具有觸發回應排程(TRS)控制子欄位的訊框的PPDU,發送HE TB PPDU的STA可以確保HE TB PPDU到達AP的到達時間在從觸發PPDU的傳輸開始時間起的TXTIME + aSIFSTime + RTD的±0.4μs內。這裡,TXTIME可以是觸發PPDU的TXTIME,並且RTD可以是AP及STA之間的往返延遲。在一個實施例中,這可以在協調OFDMA中進行修改,以確保現有的CP長度是足夠的(例如,對於2 BSS協調集,可以將容限時間減半)。附加地或替換地,對於2 BSS協調集,容限時間可以保持恒定,但是最大CP長度可以加倍。在一個簡單的範例中,可以使用六個可能的CP長度,而不是IEEE802.11 ax中的3個可能的CP長度。
在另一個實施例中,每個AP可以校準其BSS中的STA的回應時序,並且向每個STA發送時序提前/時序延遲請求,以便減小STA之間的時序差。然後,可以將最大時序差發送到每個AP,以使得每個AP能夠估計要使用的CP。該資訊可以經由回程鏈路被發送到集中式AP,集中式AP可以估計公共CP並將該資訊發送到每個AP。可替換地或附加地,該資訊可以經由回程鏈路被發送到集中式AP,其可以估計可以被發送到每個AP的BSS及/或STA特定CP。可替換地或附加地,資訊可以被發送到協調集中的每個AP,並且AP然後可以獨立地設定其CP。該資訊可以經由回程鏈路或空中(OTA)信號來發送。對於OTA,在一個範例中,資訊可以由邊緣STA在特定訊框中或在極高輸送量(EHT)前導碼中發送,以允許集合中的相鄰AP收聽該資訊。
在一個實施例中,可以從主AP發送協調OFDMA同步觸發訊框。主AP可以是協調集中的所有AP的單獨AP,諸如協調OFDMA傳輸中涉及的BSS集合。可替換地或附加地,主AP可以是協調集中的AP之一。該AP可以是預定的、隨機選擇的或者由協調集中的AP選擇的。
在另一實施例中,可以使用協調OFDMA同步觸發及/或序列。在接收到主觸發訊框時,該組中的所有AP可以以預定的時序容限向它們各自的STA發送觸發,以確保正交性。在一些實施例中,可以在任何單獨AP發送單獨觸發訊框之前發送主觸發訊框。附加地或替換地,主觸發訊框可以以可配置的間隔來發送。可以在接收到主觸發訊框之後的特定時間發送各個觸發訊框。間隔可以靜態或動態地配置。如果它們是動態配置的,則單獨的AP可以在其載波間干擾(ICI)超過預定門檻值的情況下請求主觸發傳輸。
在另一實施例中,主AP可以發送特定的同步信號或序列以發起各個AP觸發的開始,而不是單獨的主觸發訊框。在一些實施例中,主AP可以向所有邊緣STA發送觸發訊框,並且請求校準傳輸。然後,另一協調AP可以基於接收到主觸發訊框的結束與接收到其邊緣STA的回應的開始之間的時序差來校準其觸發訊框的開始。這樣,在從主AP接收到主觸發訊框時,其能夠發送其觸發訊框以確保其BSS內傳輸的訊框與主AP觸發同步。
在另一實施例中,主觸發訊框可以包括關於預期觸發訊框的最大長度的資訊。如果每個AP的觸發訊框小於所需長度,則AP可以向觸發訊框添加填充,以確保傳輸以確保正交性的方式開始。在一些實施例中,填充可以是AP特定的,以提供時序提前/時序延遲,並且允許複數BSS中的傳輸的同步。
本文描述了用於協調波束成形/協調置零(CB/CN)的實施例。在協調式波束成形中,傳輸裝置(或STA)、期望裝置(或STA)及不期望裝置(或STA)可以確定所使用的過程及所請求的回饋的類型。本文描述了可以使用的各種架構及實施例。
圖15示出了用於下鏈-下鏈CB/CN的範例性架構1500,其可以與本文描述的任何其他實施例結合使用。如圖15所示,對於下鏈-下鏈CB/CN,傳輸裝置可以是AP1 1514及AP2 1514b兩者,並且期望及不期望裝置可以是STA1 1502a及STA2 1502b兩者。
圖16示出了上鏈-上鏈CB/CN的範例架構1600,其可以與本文描述的任何其他實施例組合使用。如圖16所示,傳輸裝置可以是STA1 1602a及STA2 1602b兩者,而期望及不期望裝置可以是AP1 1614a及AP2 1614b兩者。
圖17示出了上鏈-下鏈CB/CN的範例性架構1700,其可以與本文描述的任何其他實施例結合使用。如圖17所示,對於上鏈-下鏈CB/CN,傳輸裝置可以是STA1 1702a,期望裝置可以是AP1 1714a,而不期望裝置是STA2 1702b。相反,對於下鏈-上鏈CB/CN,傳輸裝置可以是AP2 1714b,期望裝置可以是STA2 1702b,而不期望裝置可以是AP1 1714a。
本文描述了用於下鏈-下鏈CB/CN及下鏈-上鏈CB/CN的通道資訊獲取的實施例。在協調波束成形或置零中,傳輸裝置可能需要針對到期望接收器及不期望接收器兩者的通道的通道回饋。對於下鏈-下鏈CB/CN,可以從期望STA及不期望STA接收該通道回饋資訊。在一個範例中,AP可以向每個STA發送NDPA/NDP,並且分別請求或輪詢來自每個STA的回饋。然而,對於下鏈傳輸,基於觸發訊框的NDPA/NDP過程可用於以更高效的方式從每個STA獲取回饋。
圖18示出了用於獨立NDPA/NDP及基於觸發的回饋的範例信號流1800,其可以與本文描述的任何其他實施例組合使用。如圖18中所示,每個AP (例如AP1 1814a及AP2 1814b)可獨立地將NDPA/NDP訊框組合(例如NDPA1 1805及NDP1 1810的組合,以及NDPA2 1815及NDP2 1820的組合)發送到STA (例如STA1 1802a及STA2 1802b),其中獨立的觸發訊框(例如觸發訊框1825及觸發訊框1840)發送到每個STA以獲取回饋(例如FB1 1830、FB2 1835、FB1 1845及FB2 1850)。由於每個STA (例如STA1 1802a及STA2 1802b)與兩個AP (例如AP1 1814a及AP2 1814b)相關聯,因此每個AP可能能夠觸發STA以進行回饋(例如以OFDMA方式)。
NDPA訊框(例如NDPA1 1805及NDPA2 1815)可以指示需要回饋類型以及指示應當測量NDP訊框(例如NDP1 1810及NDP2 1820)的一個或複數STA從AP獲取通道。NDPA訊框(例如,NDPA1 1805及NDPA2 1815)可以指示從AP到期望裝置的通道的測量及全通道回饋。NDPA訊框(例如,NDPA1 1805及NDPA2 1815)可以指示從AP到不期望裝置的通道的測量及全通道回饋。NDPA訊框(例如,NDPA1 1805及NDPA2 1815)可以指示從AP到不期望裝置的通道的測量及部分通道回饋。部分資訊可以被定義為不是期望通道所需的完整IEEE 802.11通道資訊回饋的任何資訊。部分通道回饋可以用於確定設計的預編碼器應當與之正交的零空間,並且因此可以不需要詳細資訊來改進性能。部分通道回饋的範例可包括但不限於,減少的量化通道回饋、增加的子載波取樣(Ng)通道回饋、基於通道相關性的通道回饋、以及基於磁區或碼本的通道回饋。
來自每個AP的觸發訊框(例如,觸發訊框1825或觸發訊框1840)可以指示來自每個接收裝置的回饋(例如,FB1 1830、FB2 1835、FB1 1845及FB2 1850)被發送到通告器的方式。回饋(例如,FB1 1830、FB2 1835、FB1 1845及FB2 1850)可以由頻率(例如,OFDMA)、時間(例如,時間交錯)或空間(例如,上鏈MU-MIMO)來分離。在這種情況下,每個AP可以獨立地從每個STA請求資訊。
圖19示出了基於主觸發的NDPA/NDP及基於主觸發的回饋的範例1900,其可以與本文描述的任何其他實施例組合使用。如圖19中所示,主AP (例如,AP1 1914a)可以向次級/從AP (例如,AP2 1914b)及兩個STA1902a、1902b發送NDPA觸發訊框1905以指示NDP測量活動的開始。AP1914a、1914b兩者可以向STA1902a、1902b發送NDP訊框(例如,NDP1 1910及NDP2 1915)。NDP (例如,NPD1 1910及NDP2 1915)可以在STA1902a、1902b處是可分離的。NDP (例如,NPD1 1910及NDP2 1915)可以在不同的時間發送。例如,AP1 1914a發送NDP1 1910,然後AP2 1914b發送NDP2 1915。NDP (例如,NPD1 1910及NDP2 1915)可以同時但使用不同的子載波來發送。在一個範例中,AP1 1914a及AP2 1914b都可以設定Ng = x (例如,由NDPA觸發訊框1905確定),但是以沒有重疊的方式偏移。例如,在Ng = 4的情況下,AP1 1914a可以使用子載波索引0、4、…,而AP2 1914b可以使用子載波索引2、6、…。這可能需要AP1 1914a及AP2 1914b之間的緊密同步(類似於聯合預編碼),以確保在執行接收的STA1902a、1902b處沒有頻率、時間或同步偏移。主AP (例如AP1 1914a)可以向STA1902a、1902b及從AP (例如AP2 1914b)發送觸發訊框1920,以向AP1914a、1914b回饋期望及不期望的資訊。例如,STA1 1902a可向AP1 1914a發送FB1 1925,並且STA2 1902b可向AP2 1914b發送FB2 1930。
對於其中可能存在AP-STA組的集群(例如3個AP及3個STA)的情形,可以以成對的方式來實現該操作,其中僅允許兩個AP/STA同時進行發送。附加地或替換地,單個定向的及兩個不期望的回饋封包可以與被設計成在兩個不期望通道的置零空間中操作的預編碼器一起被發送。
圖20示出了來自AP的NDP回饋請求的範例2000,其可以與本文所述的任何其他實施例結合使用。如圖20中所示,AP1 2014a可以向AP2 2014b及兩個STA2002a、2002b發送NDPA1 2005及NDP1 2010以指示NDP測量活動的開始。類似地,AP2 2014b可以向AP1 2014a及兩個STA2002a、2002b發送NDPA2 2015及NDP2 2020以指示NDP測量活動的開始。AP1 2014a然後可以向AP2 2014b及兩個STA2002a、2002b發送觸發訊框2025,以向AP1 2014a回饋期望及不期望的資訊。例如,在接收到觸發訊框2025時,AP2 2014b可將FB3 2030發送到AP1 2014a,STA1 2002a可將FB1 2035發送到AP1 2014a,並且STA2 2002b可將FB2 2040發送到AP1 2014a。AP2 2014b然後可以發送觸發訊框2045到AP1 2014a及兩個STA2002a、2002b以回饋期望及不期望的資訊到AP2 2014b。例如,在接收到觸發訊框2045時,AP1 2014a可向AP2 2014b發送FB3 2050,STA1 2002a可向AP2 2014b發送FB1 2055,並且STA2 2002b可向AP2 2014b發送FB2 2060。圖20中所示的AP請求來自另一AP的回饋的範例可以用於下鏈-上鏈CB/CN。
圖21示出了用於隱式多AP探測的NDP觸發的範例2100,其可以與本文描述的任何其他實施例組合使用。如圖21所示,主AP (例如AP1 2114a)可以向次級AP或從AP (例如AP2 2114b)及兩個STA 2102a、2102b發送NDPA觸發訊框2105,以指示隱式NDP測量的開始。STA 2102a、2102b可以向AP 2114a、2114b發送NDP訊框(例如,NDP1 2110及NDP2 2115)或探測訊框,以使得AP 2114a、2114b可以估計上鏈通道並從該上鏈通道中匯出下鏈通道。在接收到NDP訊框(例如,NDP1 2110及NDP2 2115)或探測訊框時,AP 2114a、2114b可以向STA 2102a、2102b回應ACK訊框2120、2125。對於其中可能存在AP-STA組的集群(例如,三個AP及三個STA)的情形,觸發訊框可以指示每個上鏈STA傳輸的開始或者可以指示STA同時向AP進行傳輸。
本文描述了上鏈-上鏈CB/CN及上鏈-下鏈CB/CN的通道資訊的實施例。對於上鏈-上鏈CB/CN,每個STA可能需要知道到其期望AP及不期望AP的通道。由於觸發訊框用於下鏈(即,觸發從AP發送到STA),因此可能需要修改在下鏈-下鏈CB/CN場景中描述的NDPA/NDP /回饋過程。在一個範例中,可以使用互易性(例如,在STA處的DL/DL CB/CN期間獲得的通道可以適合於上鏈,並且可以使用上述NDPA/NDP過程而不需要任何回饋)。NDPA可以用於指示隨後的NDP可以用於上鏈協調波束成形的測量。
圖22示出了用於基於互易性的UL/UL CB/CN的獨立NDPA/NDP的範例2200,其可以與本文描述的任何其他實施例組合使用。STA 2202a、2202b中的每一個都可以獲得AP 2214a、AP2 2214b中到其期望AP及不期望AP的通道的知識,例如,其下鏈CB/CN。如圖22所示,利用通道資訊,AP1 2214a可以向STA 2202a、2202b發送NDPA1 2205,以指示隨後的NDP1 2210用於上鏈協調波束成形的測量。類似地,AP2 2214b可以向STA 2202a、2202b發送NDPA2 2215,以指示隨後的NDP2 2220用於上鏈協調波束成形的測量。
圖23示出了用於UL/UL CB/CN的基於主觸發的NDPA/NDP的範例2300,其可以與本文描述的任何其他實施例組合使用。如圖23中所示,主AP (例如,AP1 2314a)可將NDPA觸發訊框2305發送到次級/從AP (例如,AP2 2314b)及STA 2302a、2302b兩者以指示隨後的NDP訊框2310、2315用於上鏈協調波束成形的測量。AP 2314a、2314b兩者都可以向STA 2302a、2302b發送NDP訊框(例如,NDP1 2310及NDP2 2315)。NDP 2310、2315可以在STA 2302a、2302b處是可分離的。NDP 2310、2315可以在不同的時間發送,或者在相同的時間但使用不同的子載波發送。
圖24示出了STA發起的通道獲取的範例2400,其可以與本文所述的任何其他實施例結合使用。如果互易性不適用,如圖24所示,STA2402a、2402b可以藉由向AP 2414a、2424b發送NDP (例如,NDP1 2410及NDP2 2420)並在UL/UL CB/CN的情況下請求來自AP 2414a、2414b的回饋來發起通道獲取。在一個範例中,每個STA 2402a、2402b可向AP 2414a、2424b發送NDPA 2405、2415及NDP 2410、2420,並向AP 2414a、2424b請求回饋2430、2435。具體地,STA1 2402a可向AP 2414a、2424b發送NDPA1 2405以獲得通道資訊,並向AP 2414a、2424b發送NDP1 2410以請求來自AP 2414a、2424b的回饋。類似地,STA2 2402b可向AP 2414a、2424b發送NDPA2  2415以獲得通道資訊,並向AP 2414a、2424b發送NDP2 2420以請求來自AP 2414a、2424b的回饋。可替換地或附加地,每個AP 2414a、2424b可以向STA 2402a、2402b發送回饋觸發訊框2425、2435或通告訊框,並向回饋2430、2440提供針對期望及不期望STA的通道資訊,如圖24所示。
圖25示出了AP發起的通道獲取的範例2500,其可以與本文描述的任何其他實施例組合使用。在可能存在許多STA並且STA發起的方法可能導致大量開銷的場景中,主AP (例如,AP1 2514a)可以觸發聯合BSS中的次級AP (例如,AP2 2514b)及所有STA (例如,STA1 2502a、STA2 2502b、STA3 2502c及STA4 2502d)向AP 2514a、2514b發送一系列NDP (例如,NDP1 2515、NDP2 2520、NDP3 2525及NDP4 2530)。AP 2414a、2424b可以向STA 2502a、2502b、2502c、2502d發送回饋觸發訊框2535、2545或通告訊框,並且向STA 2502a、2502b、2502c、2502d提供具有期望及不期望通道的回饋2540、2550,如圖25所示。
對於UL-DL CB/CN,NDPA可以定址不期望的STA並且在稍後的時間請求來自STA的回饋。
如上所述,AP可能需要知道所有STA的DL通道狀態資訊(CSI)。在實施例中,這可以使用隱式DL通道獲取來完成,其中例如AP可以從UL通道獲取DL通道。
圖26示出了隱式DL通道獲取的範例2600,其可以結合本文描述的任何其他實施例來使用。如圖26所示,AP1 2614a可從UL (例如,標準化的)通道
Figure 02_image043
Figure 02_image045
.推斷DL (例如,標準化的)通道
Figure 02_image047
Figure 02_image049
。AP1 2614a可在其自身位置處經由例如接收信號強度(RSS)指示(RSSI)藉由觸發訊框來廣播期望的RSS。STA1 2602a及STA2 2602b可分別基於RSSI來設定其傳輸功率
Figure 02_image051
Figure 02_image053
。這可以使得能夠減輕由於在遠近情況下的載波頻率偏移(CFO)差異而引起的小區間干擾(ICI)。在這種情況下,AP1 2614a處的接收信號可表示為:
Figure 02_image055
其中,
Figure 02_image057
Figure 02_image059
是具有單位功率的傳輸符號,
Figure 02_image061
Figure 02_image061
是路徑損耗係數,並且由於在STA2602a、2602b處的功率設定以實現期望的相同RSS,因此
Figure 02_image063
。AP1 2614a可從UL通道學習DL通道為:
Figure 02_image065
由於功率設定可能導致RSS相同,因此相對路徑損耗資訊可能丟失。另一方面,用於各種目的,例如CB/CN、AP 12614a的最佳波束形成向量可能需要由下式給出的矩陣:
Figure 02_image067
其可以是相對路徑損耗
Figure 02_image069
的函數。
為了獲得
Figure 02_image061
Figure 02_image071
Figure 02_image073
,STA 2602a、2602b可以使用UL中的確定性功率(例如最大功率)或功率譜密度(例如每Hz的功率或每26個音調RU的功率)來回應從AP1 2614a發送的通道獲取訊框(例如NDP、NDPA或觸發訊框)。確定性功率或功率譜密度的值(如果不是最大功率)可以在通道獲取訊框中用信號通知。在這種情況下,由於所有STA 2602a、2602b可以使用相同的功率來傳輸信號,所以可以在AP (包括AP1 2614a)處測量傳遞損耗。
STA 2602a、2602b可以經由MAC訊框(例如關聯或設定訊框)報告它們的最大功率。如果STA 2602a、2602b是功率控制的(例如,它們可以使用不同的傳輸功率),則STA 2602a、2602b可以經由PHY信號來指示它們的傳輸功率或傳輸功率譜密度,諸如在PHY報頭之一中,諸如SIG欄位,或者在傳輸UL PPDU時藉由MAC訊框。STA 2602a、2602b可以經由PHY信號來指示它們的功率余量,諸如在PHY報頭之一中,諸如SIG欄位,或者在發送UL PPDU時藉由MAC訊框。如果來自AP (包括AP1 2614a)的通道獲取信號包括在AP (包括AP1 2614a)處使用的傳輸功率,則STA 2602a、2602b可以從不同的AP產生DL傳遞損耗,並且使用UL通道或SIG欄位將它們回饋回AP (包括AP1 2614a)。
本文描述了用於網格探測程序的實施例。藉由在區域中分佈的複數AP同時啟用UL及DL,可以減少網路中的延遲。圖27示出了用於同時UL及DL服務的範例場景2700中的干擾,其可以與本文描述的任何其他實施例組合使用。如圖27所示,AP1 2714a及STA1 2702a之間的服務是UL。AP2 2714b及STA2 2702b之間的服務是DL。AP2 2714b可能干擾AP1 2714a,並且STA1 2702a可能干擾STA2 2702b。為了減輕干擾,可以使用CB/CN,但是可能需要識別AP2 2714b處的AP1-AP2通道及STA1 2702a處的STA1-STA2通道。
為了解決這個問題,期望發送資訊的AP/STA (也稱為發起者)可以發送網格探測觸發(MST)訊框。MST訊框可以包括網格中的參與者(例如,關聯ID或MAC地址)。MST訊框還可包括每個STA在即將到來的併發傳輸中的角色。例如,在圖27中,STA1 2702a及AP2 2714、2 2714b可以是傳輸STA,而AP1 2714a及STA2 2702b可以是接收STA。傳輸STA可能需要置零以減輕對一個或複數不期望的接收STA的干擾。MST訊框可以包括可以明確地指示探測訊框的傳輸順序欄位。在一些實施例中,這可以由STA角色隱式地指示。
參與STA/AP可以經由CSMA協定來存取媒體並且發送NDP訊框。NDP訊框可以在時間上順序地藉由不同的STA/AP來傳輸。在一些實施例中,STA可以經由正交通道估計欄位同時存取。非傳輸STA/AP可以使用所接收的NDP來估計傳輸STA與它們自己之間的通道。此外,非傳輸STA/AP可以設定它們的MIMO預編碼向量以最小化干擾,同時確保朝向期望的AP/STA的波束成形。
發起方AP/STA然後可以傳輸網格資料觸發(MDT)訊框。MDT訊框可以在下一訊框中包括參與者STA (例如,它們的關聯ID),參與者STA可以聯合資料傳輸及資料傳輸的持續時間。MDT訊框可以包括每個STA在即將到來的同時傳輸中的角色。例如,在圖27中,STA1 2702a及AP2 2714b可以是傳輸STA,而AP1 2714a及STA2 2702b可以是接收STA。傳輸STA可能需要置零以減輕對不期望的接收STA的干擾。參與者STA可以接收MDT。如果指示了它們的AID,則可以允許它們經由PPDU發送資料。發起者AP/STA及MDT中指示的STA可以同時發送資料。PPDU中的OFDM符號可以在時間上對齊以最小化干擾。
圖28示出了MDT及MST訊框到CB/CN的範例利用2800,其可以與本文描述的任何其他實施例組合使用。在圖28所示的範例中,AP2 2814b是發起者,並且可以發送MST訊框2805。AP1 2814a、STA1 2802a及STA2 2802b可接收MST訊框2805,並順序地傳輸具有關於TX信號功率的資訊的探測信號2810、2815、2820、2825 (例如,NDP或PPDU)。AP2 2814b還可以傳輸探測信號2815。在探測信號2810、2815、2820、2825期間,所有接收STA (例如STA1 2802a及STA2 2802b)及AP (例如AP1 2814a)可以估計通道並調整它們的波束成形向量。AP2 2814b然後可以發送MDT觸發訊框2830,其可以允許STA1 2802a進行發送。STA1 2802a及AP2 2918b隨後可藉由同步PPDU來傳輸其資料。由於它們調整了它們的波束成形向量(例如CB/CN),因此STA1 2802a及AP2 2814b可分別減輕對AP1 2814a及STA2 2802b的干擾。
圖29示出了使用基於單側空間重用參數(SRP)的空間重用(SR)的上鏈CB/CN的範例2900,其可以與本文描述的任何其他實施方式組合使用。接收SRP資訊的SR STA可以將預編碼器合併到其SR傳輸中以降低總干擾,並且在單側SR中進行傳輸。例如,如圖29所示,單側SR可以暗示STA1 2902a正常地傳輸,而STA2 2902b執行CB/CN以限制在傳輸期間對AP1 2914a的干擾。
STA可以將波束形成器的增益/置零合併到SRP干擾估計中。IEEE 802.11 ax中的最大干擾估計假定具有0 dB增益的全向天線。STA然後可在其對將到達不期望AP (諸如AP1)的干擾的估計中補償預編碼器的置零效應。SRP輸入然後可以變為:SRP_輸入 =TXPWRAP -SCMA _增益 +可接受的接收器干擾水平AP- (AP2),其中SCMA_增益可以由WTRU使用SCA增益估計類型1及2來估計。
圖30示出稀疏碼多重存取(SCMA)增益估計類型1的範例3000,其可以與本文描述的任何其他實施例組合使用。AP1 3014a可以發送將存在CB/CN增益估計的宣告3005,並且指示要測試的STA 3002a、3002b以及要針對其測試的AP 3014a、3014b。每個STA 3002a、3002b可以使用全向天線3010、3020及從估計CB/CN預編碼器獲得的預編碼器天線3015、3025來發送SCMA封包,如圖30所示,然後STA 3002a、3002b可以接收指示將發送增益回饋3035的觸發訊框3030。增益回饋3035可以是用兩個天線傳輸的訊框的接收功率之間的RSSI差。增益回饋3035可以是針對每個天線接收的RSSI。在這種情況下,STA 3002a、3002b可以估計SCMA增益。STA 3002a、3002b可以從回饋接收(或估計) SCMA增益。
圖31示出了SCMA增益估計類型2的範例3100,其可以與本文所述的任何其他實施例組合使用。如圖31所示,AP1 3114a可以發送將存在CB/CN增益估計的通告3105,並且指示要測試的STA 3102a、3102b及要針對其測試的AP 3114a、3114b。STA 3102a、3102b都可以使用全向天線3110、3115進行發送,然後切換到定向預編碼器3120、3125,以限制對快速切換天線波束的需要,如圖31所示。然後STA 3102a、3102b可以接收觸發訊框3130,該觸發訊框指示將發送增益回饋3135。增益回饋3135可以是用兩個天線傳輸的訊框的接收功率之間的RSSI差。增益回饋3135可以是針對每個天線接收的RSSI。在這種情況下,STA 3102a、3102b可以估計SCMA增益。STA 3102a、3102b可以從回饋接收(或估計) SCMA增益。
圖32示出了可以與本文描述的任何其它實施例組合使用的基於上鏈-上鏈兩側SRP的SR的範例3200。在圖32所示的範例中,由於不期望接收器(例如,AP2 3214b)是已知的,來自AP1 3214a的SRP觸發可包括到STA1 3202a的觸發訊框中關於候選協調AP (例如,AP2 3214b)的資訊,以使得STA1 3202a能夠設計預編碼器來限制其對其傳輸的干擾。這可以實現兩側的UL/UL CB/CN。
圖33示出了使用初級UL/DL傳輸的單側DL/UL CB/CN的範例3300,其可以與本文描述的任何其他實施例組合使用。在圖33所示的範例中,如果從STA1 3302a到AP1 3314a的UL傳輸是初級傳輸,則次級AP (即AP2 3314b)可選擇向其STA (即STA2 3302b)進行傳輸,同時限制對AP1 3314a的干擾。在這種情況下,如上所述,次級AP (即AP2 3314b)可能需要從初級AP (即AP1 3314a)請求資訊回饋。次級STA (即STA2 3302b)還可向AP2 3302b發送ACK以驗證它可在存在來自STA1 3302a的干擾的情況下接收到資訊。ACK可以與預編碼器一起被發送到AP2 3314b,該預編碼器限制對AP1 3314、1 3314a的干擾。
本文描述了用於DL/DL或DL/UL架構的協調波束成形的實施例。對於DL/DL CB/CN,如果提供給干擾源的干擾是已知的,則可以使用多種不同方法中的一種。
在一個實施例中,AP可以發送CB/CN觸發以指示STA需要發出其干擾水平。目標STA可以以容許的干擾水平進行回應。它可以在20 MHz通道上發送容許的干擾水平。可替換地或附加地,它可以使用每RU細微性來發出其干擾水平。AP然後可以發送下鏈傳輸。是否包括干擾水平是可選的。這可以允許收聽STA來估計對AP的相對干擾水平。相鄰AP可以使用關於所識別的STA的資訊來基於所容許的干擾水平設定預編碼器及傳輸功率。這可能是單側的,因為AP1可能不調節其傳輸預編碼器以適應AP2的接收STA。在雙側範例中,AP可以使用限制對BSS2的干擾的預編碼器(例如,使用廣角置零空間)向STA1發送資訊。可替換地或者附加地,AP可以在發起傳輸之前交換關於期望STA的資訊。
在另一個實施例中,AP可以發送對BSS中的一組STA的干擾水平的請求,而不是每次一個STA請求暫態干擾水平。AP可以發送CB/CN觸發訊框以指示一組STA (例如,所有STA)需要發出它們所期望的干擾水平。AP可以與相鄰AP協調以在該對話期間具有靜默時段。目標STA可以以容許的干擾水平進行回應。它可以在20 MHz通道上發送容許的干擾水平。附加地或替換地,它可以使用每RU細微性來發出干擾水平。AP然後可以發送下鏈傳輸。是否包括干擾水平可以是可選的。這可以允許收聽STA估計對AP的相對干擾水平。相鄰AP可以使用關於所識別的STA的資訊來基於所容許的干擾水平設定預編碼器及傳輸功率。
在另一實施例中,對於DL/UL初級及UL/DL次級,AP1可向其BSS中的STA (例如STA1)傳輸,其中對AP2的干擾有限制。BSS1中的所有STA可以發出它們的干擾水平。BSS2中的STA可以競爭並向AP1傳輸資訊。如上所述,傳輸器可能必須獲得到每個STA的通道。
本文描述了干擾對齊(IA)過程的實施例。
圖34示出了複數主觸發的範例3400,其可以與本文描述的任何其他實施例組合使用。如圖34所示,AP1 3414a可以發送IA觸發訊框(IATF),以便AP2 3414b在即將到來的傳輸中利用IA方案進行發送。AP2 3414b可以接收IATF 3405,並且理解它將是即將到來的傳輸中的IA傳輸的一部分。AP2 3414b可以其被觸發時將
Figure 02_image075
用於STA2 3402b。在一個範例中,IATF 3405可以指示在STA (例如,STA1 3402a及STA2 3402b)處使用的干擾基數。AP2 3414b可以校準其載波頻率以補償它們之間的潛在頻率失配。
在接收到IATF 3405時,AP2 3414b可以發送確認AP1 3414a用於IA傳輸的ACK (即IA就緒ACK訊框3410)。AP2 3414b可以進入其等待來自STA3402a、3402b的ACK進行傳輸的狀態。AP1 3414a然後可以發送用於STA1 3402a及STA2 3402b的IATF 3415。STA1 3402a及STA2 3402b可接收IATF 3415,確定它們是接收者,並且理解IA傳輸將發生。STA1 3402a及STA2 3402b可分別確定它們的干擾基數為
Figure 02_image035
Figure 02_image037
。該資訊可以在IATF 3415中。STA1 3402a及STA2 3402b可以校準它們的載波頻率以補償潛在的頻率失配。AP1 3414a可以進入等待來自STA3402a、3402b的ACK以用於下一傳輸的傳輸的狀態。
STA1 3402a及STA2 3402b可以同時發送ACK (即IA就緒ACK3420、3425),這些ACK可以指示它們已準備好進行IA並觸發IA傳輸。AP1 3414a及AP2 3414b可以具有
Figure 02_image077
個天線。因此,它們可以解碼來自多達3個不同傳輸器的ACK3420、3425。AP1 3414a及AP2 3414b可以使用通道估計來構造IA預編碼器。AP1 3414a及AP2 3414b可以被觸發以用於下一PPDU中的IA傳輸。
AP1 3414a及AP2 3414b可以基於IA方案來預編碼及發送資訊(即,IA傳輸3430、3435)。STA1 3402a及STA2 3402b可以傳輸ACK (即IA接收的ACK3440、3445)以指示它們接收到封包(即IA傳輸3430、3435)。STA1 3402a可以丟棄
Figure 02_image035
的列所跨越的子空間上的干擾,並解碼該子空間的其餘部分。STA2 3402b可以丟棄由
Figure 02_image035
的列跨越的子空間上的干擾,並解碼該子空間的其餘部分。藉由考慮基於OFDM的系統,ACK可以在與用於IA傳輸的RU不同的RU上被發送。
圖35示出了順序觸發的範例3500,其可以與本文所述的任何其他實施例組合使用。如圖35所示,AP1 3514a為AP2 3514b發送IA觸發訊框(IATF) 3505,以便在即將到來的傳輸中利用IA方案進行發送。AP2 3514b可以接收IATF 3505,並且理解它將是即將到來的傳輸中的IA傳輸的一部分。AP2 3514b可在其被觸發時將
Figure 02_image075
用於STA2 3502b。在另一個實施例中,IATF 3505可以指示在STA 3502a、3502b處使用的干擾基數。AP2 3514b可校準其載波頻率以補償它們之間的潛在頻率失配。
AP2 3514b可以發送IA ACK 及觸發訊框(IATF-AT) 3510,其指示針對AP1 3514a的ACK以及針對STA1 3502a及STA2 3502b的觸發。AP1 3514a然後可以進入其等待來自STA3502a、3502b的ACK以便傳輸的狀態。STA1 3502a及STA2 3502b可以接收IATF-AT 3510,確定它們是接收者,並且理解IA傳輸將發生。STA1 3502a及STA2 3502b可以分別確定它們的干擾基數為
Figure 02_image035
Figure 02_image079
。該資訊可以在IATF-AT訊框3510中。STA1 3502a及STA2 3502b可以校準它們的載波頻率以補償它們之間的潛在頻率失配。AP2 3514b然後可以進入在傳輸之後等待來自STA 3502a、3502b的ACK以進行傳輸的狀態。
STA1 3502a及STA2 3502b可以同時傳輸ACK (即IA就緒ACK3515、3520),這些ACK可以指示它們已準備好IA並觸發IA傳輸。AP1 3514a及AP2 3514b可以具有
Figure 02_image077
個天線。因此,它們可解碼來自多達3個不同傳輸器的ACK 3515、3520。AP1 3514a及AP2 3514b可以使用通道估計來構造IA預編碼器。AP1 3514a及AP2 3514b可被觸發以用於下一PPDU中的IA傳輸。
AP1 3514a及AP2 3514b可以基於IA方案來預編碼並傳輸資訊(即,IA傳輸3525、3530)。STA1 3502a及STA2 3502b可以傳輸ACK (即IA接收的ACK3535、3540)以指示它們接收到封包(即IA傳輸3525、3530)。STA1 3502a可以丟棄由
Figure 02_image035
的列所跨越的子空間上的干擾,並解碼該子空間的其餘部分。STA2 3502b可以丟棄由
Figure 02_image037
的列跨越的子空間上的干擾,並解碼該子空間的其餘部分。藉由考慮基於OFDM的系統,ACK可以在與用於IA傳輸的RU不同的RU上被發送。
圖36示出了基於預探測的主觸發的範例3600,其可以與本文描述的任何其他實施例組合使用。如圖36所示,AP1 3614a發送IA觸發訊框(IATF) 3605,以供AP2 3614b發送,以及供STA1 3602a及STA2 3602b在即將到來的傳輸中利用IA方案接收。AP2 3614b、STA1 3602a及STA2 3602b可接收IATF3605並理解IA傳輸將發生。AP2 3614b可確定它將是即將到來的傳輸中的IA傳輸的一部分。AP2 3614b可在其被觸發時將
Figure 02_image037
用於STA2 3602b。在一個範例中,IATF3605可以指示在STA3602a、3602b處使用的干擾基數。STA1 3602a及STA2 3602b可以確定它們是接收者。STA1 3602a及STA2 3602b可以分別確定它們的干擾基數為
Figure 02_image035
Figure 02_image037
。AP2 3614b、STA1 3602a及STA2 3602b可以校準它們的載波頻率以補償它們之間的潛在頻率失配。
AP2 3614b、STA1 3602a及STA2 3602b可併發地傳輸ACK訊框(即IA就緒ACK3610、3615、3620),這些ACK訊框可指示它們已準備好進行IA並觸發IA傳輸。AP1 3614a可以具有
Figure 02_image077
個天線。因此,AP1 3614a可解碼來自3個不同傳輸器的ACK (即IA就緒ACK3610、3615、3620),例如AP2 3614b、STA1 3602a及STA2 3602b。AP1 3614a及AP2 3614b可以基於IA方案來預編碼及發送資訊(即,IA傳輸3625、3630)。STA1 3602a及STA2 3602b可以傳輸ACK (即IA接收的ACK3635、3640)以指示它們接收到封包(即IA傳輸3625、3630)。STA1 3602a可以丟棄由
Figure 02_image035
的列跨越的子空間上的干擾,並且解碼該子空間的剩餘部分。STA2 3602b可以丟棄由
Figure 02_image037
的列所跨越的子空間上的干擾,並解碼該子空間的剩餘部分。藉由考慮基於OFDM的系統,ACK可以在與用於IA傳輸的RU不同的RU上被傳輸。
本文描述了用於干擾對齊(IA)的通道估計欄位的預編碼的實施例。在實施例中,在矩陣形式中,來自AP1及AP2的傳輸信號及在STA1及STA2處的接收信號可被表達為:
Figure 02_image081
Figure 02_image083
Figure 02_image085
以及
Figure 02_image087
其中
Figure 02_image089
Figure 02_image091
是解碼資訊可能需要的通道矩陣。為了實現對
Figure 02_image089
Figure 02_image091
的估計,考慮到在IA方案中一個站的資訊符號不是來自同一AP的事實,可以擴展LTF (例如,具有不同
Figure 02_image011
Figure 02_image015
Figure 02_image013
Figure 02_image017
的多LTF傳輸)。在一個實施例中,AP1及AP2可基於聯合設計來傳輸複數信號,這可在接收側產生正交通道估計矩陣。換句話說,當信號到達接收器時,AP1及AP2處的傳輸方案可產生兩個正交矩陣。例如,考慮以下擴展: 第1次傳輸:
Figure 02_image093
,
Figure 02_image095
,
Figure 02_image097
以及
Figure 02_image099
,其中,
Figure 02_image101
Figure 02_image103
分別是長度
Figure 02_image105
的全1列向量及全0列向量。這種選擇可以分別在STA1及STA2處產生以下向量:
Figure 02_image107
以及
Figure 02_image109
第2次傳輸:
Figure 02_image111
,
Figure 02_image113
,
Figure 02_image115
以及
Figure 02_image117
。這種選擇可以分別在STA1及STA2處產生以下向量:
Figure 02_image119
以及
Figure 02_image121
第3次傳輸:
Figure 02_image123
,
Figure 02_image113
,
Figure 02_image125
, 以及
Figure 02_image127
。這種選擇分別在STA1及STA2處產生以下向量:
Figure 02_image129
以及
Figure 02_image131
在第3次傳輸結束時,在AP1、AP2、STA1及STA2處傳輸的資訊可由下式給出,其中每列與不同傳輸時刻(
Figure 02_image133
是第i 傳輸時刻)相關聯:
Figure 02_image135
Figure 02_image137
Figure 02_image139
以及
Figure 02_image141
雖然
Figure 02_image143
可以是正交矩陣,但
Figure 02_image145
可以不是正交矩陣。兩個STA可以估計通道
Figure 02_image089
Figure 02_image091
。然而,STA2的估計可能比STA1的估計更可靠,因為
Figure 02_image147
是正交矩陣。為了在通道估計方面對兩個站公平,可以發生第4次傳輸: 第4次傳輸:
Figure 02_image123
Figure 02_image149
Figure 02_image125
以及
Figure 02_image117
。這種選擇可以分別在STA1及STA2處產生以下向量:
Figure 02_image151
Figure 02_image153
在第4次傳輸結束時,AP1、AP2、STA1及STA2處的擴展矩陣(其中每列與傳輸索引相關聯)可由下式給出:
Figure 02_image155
Figure 02_image157
Figure 02_image159
以及
Figure 02_image161
由於第1、第2及第4次傳輸可導致正交矩陣STA1的估計,因此STA1處的通道估計品質可得到改善。
圖37示出了用於IA的AP1及AP2的範例LTF構造3700,其可與本文所述的任何其它實施例組合使用。在圖37所示的範例中,
Figure 02_image163
是長訓練欄位(LTF)序列(例如,IEEE 802.11傳統LTF)的元件,
Figure 02_image165
Figure 02_image167
的元件,以及
Figure 02_image169
Figure 02_image171
的元件。為了在AP1 3714a及AP2 3714b處實現類似的功率分佈,行及列
Figure 02_image167
Figure 02_image171
可以針對不同的子載波及OFDM符號索引而交替。
在另一範例中,AP1及AP2可共用通用正交擴展矩陣的行。例如,假設通用擴展矩陣
Figure 02_image173
由下式給出:
Figure 02_image175
Figure 02_image167
可以是
Figure 02_image173
矩陣的前兩行,並且
Figure 02_image167
可以是
Figure 02_image173
矩陣的後兩行。矩陣可僅關於產生正交流,並且IA預編碼器可將其擴展到天線。在這種情況下,STA1可藉由使用與第一及第二有用流的
Figure 02_image177
Figure 02_image179
相關聯的
Figure 02_image173
的行(例如,
Figure 02_image173
的第一行用於從AP1傳輸的第一流,而
Figure 02_image173
的第三行用於從AP2傳輸的第二流)以及與干擾子空間
Figure 02_image035
Figure 02_image181
Figure 02_image183
相關聯的
Figure 02_image173
的行之一來估計
Figure 02_image089
。類似地,STA2可藉由使用與第一及第二有用流的
Figure 02_image181
Figure 02_image183
相關聯的
Figure 02_image173
的行(例如,
Figure 02_image173
的第二行用於從AP1傳輸的第一流,而
Figure 02_image173
的第四行用於從AP2傳輸的第二流)以及與干擾子空間
Figure 02_image037
Figure 02_image177
Figure 02_image179
相關聯的
Figure 02_image173
的行之一來估計
Figure 02_image091
。作為數值範例,假設
Figure 02_image185
Figure 02_image187
是基於上述
Figure 02_image173
矩陣的4個OFDM符號的一個子載波的STA1及STA2處的觀測向量。
Figure 02_image089
Figure 02_image091
可以如下獲得:
Figure 02_image189
Figure 02_image191
本文描述了用於功率增強隱式探測的實施例。AP能夠以比STA更高的功率進行發送。利用明確的探測,AP可以以與STA相比相對較高的功率來發送探測封包。STA可以執行通道估計,然後量化通道資訊並將其發送回AP。利用隱式探測,STA能夠以與AP相比相對較低的功率來傳輸探測封包,並且AP可以執行通道估計。由於傳輸功率差異,基於DL探測訊框的通道估計可能比基於UL探測訊框的通道估計更準確。以下描述了可以補償AP及STA之間的傳輸功率差異的實施例。
概括地說,在隱式通道獲取中發送NDP的裝置(AP或STA)是功率受限的情況下,該裝置可以自主地修改其NDP傳輸以改進通道估計,或者從接收器接收信號以修改其NDP傳輸以改進通道估計。它可以藉由以下方法中的一個或多者來改進其通道估計:限制NDP (例如,RU)的頻寬,並且提升它在所限制的頻寬內傳輸的功率,並且改變探測持續時間(例如,多次重複傳輸NDP信號以增加從其估計通道的導頻/參考信號的數目)。
對於UL探測的情況,在一些實施例中,一個或複數STA可以在較窄的頻帶中(例如,在子載波的子集上)發送UL探測序列,使得當總發送功率保持相同時,可以增加每個子載波上的功率密度。這可能受到總功率或功率譜密度約束。在一些實施例中,一個或複數STA可以以正常傳輸功率及功率密度來傳輸UL探測序列。然而,UL探測序列可以在時域中重複若干次,使得一個或複數AP可以接收具有更好的SNR的探測序列。探測序列的重複也可以與改變所傳輸信號的功率譜密度相結合。
圖38示出了具有探測訊框的範例多AP隱式探測過程3800,其可以與本文描述的任何其他實施例組合使用。如圖38所示,AP1 3814a可以向STA3802a、3802b發送探測觸發訊框3805。在接收到探測觸發訊框3805之後,STA3802a、3802b可以向AP3814a、3814b發送探測訊框3810、3815。在圖38中所示的範例中,探測訊框3810、3815可以攜帶寬頻傳統前導碼部分3810a、3815a及基於RU的LTF部分3810b、3815b。寬頻前導碼部分3810a、3815a可以攜帶L-STF、L-LTF及L-SIG欄位以及使用傳統參數配置傳輸的附加SIG欄位。可以使用受控功率或最大功率來正常地發送該寬頻前導碼部分3810a、3815a。對於基於RU的LTF部分3810b、3815b,RU可以被認為是基本傳輸單元。STA可以發送用於LTF傳輸的一個或複數RU。在接收到探測訊框3810、3815之後,AP3814a、3814b可以向STA3802a、3802b發送ACK訊框3820、3825。
在一些實施例中,STA可以在一個OFDM符號中發送一個或複數RU。RU可以是集中式的(例如,彼此相鄰)或分散式的。在一些實施例中,STA可以為RU分配盡可能多的功率。STA可以發送更多的OFDM符號用於通道探測。在一些實施例中,STA可以在用於所有OFDM符號的相同RU集合上進行傳輸。
在一個範例中,如圖38所示,STA 3802a、3802b可以在所有OFDM符號的不同RU集合上進行發送(例如,如圖38所示,STA 3802a、3802b可以在相同數量的RU上進行發送,但是對RU位置進行移位)。可以在探測觸發訊框中指示用於每個STA發送其探測序列的RU分配。攜帶探測序列的OFDM符號的數量可以在探測觸發訊框中指示。在一些實施例中,傳輸NDP的STA可傳輸複數NDP訊框,其中每個訊框在不同頻率資源或RU上,具有確保每個資源上的適當通道估計品質所需的功率及持續時間。在一些實施例中,AP可以用信號通知特定RU以及它們要被傳輸所採用的順序。在一個範例中,AP可以用信號通知開始RU及結束RU,並且傳輸NDP的STA可以以預定順序(例如,連續地)在RU上傳輸,直到跨越整個頻寬。
如果多於一個STA可以發送同時的UL探測訊框,則STA可以藉由P矩陣或在頻域中被區分。在一些實施例中,AP可以用信號通知複數STA以這樣的方式迴圈地發送它們的NDP,即,每個STA跨越其期望的探測BW,並且所有STA在正交資源上進行發送。
為了執行隱式通道探測,AP可能需要被校準。在一些實施例中,AP可以執行自校準,以便其可以不需要非AP STA來估計通道並發送回CSI。
圖39示出了用於自校準的範例性過程3900,其可以與本文所述的任何其他實施例組合使用。自校準可以允許非AP STA (例如,STA 3902)知道自校準過程的持續時間,以便STA可以相應地設定NAV。在圖39所示的範例中,AP1 3914可傳輸CTS-2-自身訊框3905或具有被設定成覆蓋用於自校準的時間的歷時欄位的其他類型的控制/管理訊框。可替換地或附加地,AP1 3914可將自校準訊框3910、3915作為聚合訊框的一部分傳輸給複數使用者(例如,STA 3902),其中自校準子訊框被定址到其自身。例如,當STA 3902處於NAV 3920中時,AP1 3914可將自校準訊框3910、3915發送到STA 3902。
AP可以發送一個或複數自校準訊框。在一些實施例中,自校準訊框可以是廠商定義的,並且可以不需要被系統中的其它STA理解。在一些實施例中,自校準訊框可以使用Wi-Fi PPDU格式,因此其他STA可以知道它們是Wi-Fi訊框。在校準結束時,AP可以發送TXOP結束訊框以指示自校準的完成。如圖39所示,非AP STA (例如STA 3902)可以檢查CTS-2-自身訊框3905,並且相應地設定NAV 3920。如果AP是STA的服務AP,則STA還可以進入功率節省模式。
儘管在此考慮IEEE 802.11特定協定來描述特徵及元件,但是可以理解,在此描述的解決方案不限於該場景,並且也可應用於其它無線系統。
此外,儘管以上以特定組合描述了特徵及元件,但是本領域普通技術人員將理解,每個特徵或元件可以單獨使用或以與其他特徵及元件的任何組合使用。另外,本文描述的方法可以在電腦程式、軟體或韌體中實現,該電腦程式、軟體或韌體併入電腦可讀媒體中以由電腦或處理器執行。電腦可讀媒體的範例包括電子信號(經由有線或無線連接傳輸)及電腦可讀儲存媒體。電腦可讀儲存媒體的範例包括但不限於,唯讀記憶體(ROM)、隨機存取記憶體(RAM)、暫存器、快取記憶體、半導體記憶體裝置、諸如內部硬碟及可移磁片等的磁媒體、磁光媒體、以及諸如CD-ROM碟片及數位多功能光碟(DVD)等的光學媒體。與軟體相關聯的處理器可以用於實現在WTRU、UE、終端、基地台、RNC或任何主機電腦中使用的射頻收發器。
ACK、3420、3425、3440、3445、3515、3520、3535、3540、3635、3640:確認 AP、AP 214a、214b、214c、214d、2414a、2414b、3014a、3014b、3114a、3114b、3814a、3814b:存取點 BSS:基本服務集 CB/CN:協調置零/協調波束成形 DL:下鏈 HARQ:混合自動重複請求 IA:干擾對齊 MIMO:多輸入多輸出 MDT:網格資料觸發 MST:網格探測觸發 N2、N3、N4、N6、N11、S1、X2、Xn:介面 OTA:回程鏈路或空中 RU:資源單元 SCMA:稀疏碼多重存取 STA、202a、202b、202c、202d、202e、202f、202g、202h、202i、202j、202k、202l、802、902、2102a、2102b、2302a、2302b、3002a、3002b、3102a、3102b、3802a、3802b、3902:站 UL:上鏈 100:通信系統 102、102a、102b、102c、102d:無線傳輸/接收單元(WTRU) 104/113:無線電存取網路(RAN) 106/115:核心網路(CN) 108:公共交換電話網絡(PSTN) 110:網際網路 112:其他網路 114a、114b:基地台 116:空中介面 118:處理器 120:收發器 122:傳輸/接收元件 124:揚聲器/麥克風 126:小鍵盤 128:顯示器/觸控板 130:非可移記憶體 132:可移記憶體 134:電源 136:全球定位系統(GPS)晶片組 138:週邊設備 160a、160b、160c:e節點B 162:移動性管理閘道(MME) 164:服務閘道(SGW) 166:封包資料網路(PDN)閘道(或PGW) 180a、180b、180c:gNB 182a、182b:存取及移動性管理功能(AMF) 183a、183b:對話管理功能(SMF) 184a、184b:使用者平面功能(UPF) 185a、185b:資料網路(DN) 200、400、500、600、700、1300、1900、2000、2100、2200、2300、2400、2500、2600、2900、3000、3100、3200、3300、3400、3500、3600:範例 300:範例資源配置 305、315:組1資源 310:組2資源 320:組3資源 402a、602、702a、1302a、1502a、1602a、1702a、1802a、1902a、2002a、2402a、2502a、2602a、2702a、2802a、2902a、3202a、3302a、3502a、3602a:STA1 402b、702b、1302b、1502b、1602b、1702b、1802b、1902b、2002b、2402b、2502b、2602b、2702b、2802b、2902b、3302b、3502b、3602b:STA2 414a、514a、614a、714a、814A、914a、1214a、1314a、1514a、1614a、1714a、1814a、1914a、2014a、2114a、2214a、2314a、2514a、2614a、2714a、2814a、2914a、3214a、3314a、3514a、3614a、3714a、3914:AP1 414b、514b、614b、714b、814b、914b、1214b、1314b、1514b、1614b、1714b、1814b、1914b、2014b、2114b、2214b、2314b、2514b、2714b、2814b、2914b、3214b、3314b、3514b、3614b、3714b:AP2 502a :STA A 502b:STA B 800:範例多AP關聯 805a、805b、905a、905b:探針請求訊框 810a、810b、910a、910b:探針回應訊框 815a、815b、915:認證請求訊框 820a、820b、920、930:認證回應訊框 825、935a、935b:多AP關聯請求訊框 830、940:AP協調過程 835a、835b、945a、945b:多AP關聯回應訊框 840a、840b、950a、950b:多AP關聯確認(ACK)訊框 845:資料傳輸 850:多AP關聯過程 900:多AP關聯 925:關聯請求訊框 955:多AP傳輸/接收過程 1000:多AP服務集(SS)元件 1005、1105:元件ID 1010、1110:長度欄位 1015、1115:元件ID擴展欄位 1020:多AP SS AP計數欄位 1025、1030:多AP SS AP 1-N欄位 1050、1150:AP ID 1055:主AP指示符 1060:多AP聯合傳輸的能力 1065:多AP HARQ 1070:多AP MIMO 1075:多AP MU-MIMO 1080:動態AP選擇 1085:多AP漫遊 1090:多AP協調波束成形 1100:多AP選擇元件 1120:多AP能力欄位 1125:多AP服務請求欄位 1130:AP資訊計數欄位 1135、1140:N個AP資訊欄位 1155:初級/次級指示符 1160:接收功率/通道品質指示 1165:強制性指示符 1200:排程/隨機存取協調OFDMA 1205、1215、1365、1375、1405、1415:RU1 1210、1220、1430:RU2 1301:多AP關聯階段 1302:AP協調過程 1302c:STA 3 1302d:STA 4 1303:中心/邊緣發現階段 1304:資料傳輸階段 1305a、1305b:信標訊框 1320、1325:步驟 1330a、1330b:空資料封包宣告(NDPA)訊框 1335a、1335b:信噪比(SIR) NDP訊框 1340a、1340b:NDP回饋報告輪詢(NFRP)訊框 1350a、1350b:空資料封包(NDP)回饋訊框 1355a、1355b:UL-OFDMA隨機存取(UORA)觸發訊框 1360a 、1370:RU1及RU2 1400:範例保護頻帶 1500、1700:範例性架構 1600:範例架構 1800:範例信號流 1805、2005、2205、2405:NDPA1 1810、1910、2010、2110、2210、2310、2410、2515:NDP1 1815、2015、2215、2415、2420:NDPA2 1820、1915、2020、2115、2220、2315、2520:NDP2 1825、1840、1920、2025、2045、3030、3130:觸發訊框 1830、1845、1925、2035、2055:FB1 1835、1850、1930、2040:FB2 1905、2105、2305:NDPA觸發訊框 2030、2050:FB3 2120、2125:ACK訊框 2425、2435、2535、2545:回饋觸發訊框 2430、2440、2540、2550:回饋 2525:NDP3 2530:NDP4 2700:範例場景 2800:範例利用 2805:MST訊框 2810、2815、2820、2825:探測信號 2830:MDT觸發訊框 3010、3020、3110、3115:全向天線 3015、3025、3120、3125:預編碼器天線 3035、3135:增益回饋 3405、3415、3505、3605:IA觸發訊框(IATF) 3410 :IA就緒ACK訊框 3430、3435、3525、3530、3625、3630:IA傳輸 3510 :IA ACK 及觸發訊框(IATF-AT) 3610、3615、3620:IA就緒ACK 3700:範例長訓練欄位(LTF)構造 3800:範例多AP隱式探測過程 3805:探測觸發訊框 3810a、3815a:寬頻前導碼部分 3810b、3815b:LTF部分 3820、3825:ACK訊框 3900:範例性過程 3905:CTS-2-自身訊框 3910、3915:校準訊框 3920:網路分配向量(NAV)
從以下結合附圖以範例方式給出的描述中可以獲得更詳細的理解,其中附圖中相同的附圖標記表示相同的元件,並且其中: 圖1A是示出了可以實施所揭露的一個或複數實施例的範例通信系統的系統圖; 圖1B是示出了根據實施例的可以在圖1A所示的通信系統內部使用的範例的無線傳輸/接收單元(WTRU)的系統圖; 圖1C是示出了根據實施例的可以在圖1A所示的通信系統內部使用的範例無線電存取網路(RAN)及範例核心網路(CN)的系統圖; 圖1D是示出了根據實施例的可以在圖1A所示的通信系統內部使用的另一個範例RAN及另一個範例CN的系統圖; 圖2是示出了協調正交分頻多重存取(OFDMA)的範例的圖; 圖3是示出了用於協調OFDMA的範例資源配置的圖; 圖4是示出了協調置零/協調波束成形的範例的圖; 圖5是示出了使用干擾對齊的協調置零/協調波束成形(CB/CN)的範例的圖; 圖6是示出了單使用者聯合預編碼的多存取點(多AP)傳輸或協調單使用者(SU)波束成形的範例的圖; 圖7是示出了多使用者聯合預編碼的多AP傳輸或協調多使用者(MU)波束成形的範例的圖; 圖8A是示出了在站(STA)關聯期間的範例多AP關聯的圖; 圖8B是示出了範例多AP關聯過程的圖; 圖9是示出了由STA發起的範例多AP關聯的圖式; 圖10是示出了範例多AP服務集(SS)元件的圖; 圖11是示出了範例性多AP選擇元件的圖; 圖12是示出了排程/隨機存取協調OFDMA的範例的圖; 圖13是示出了多AP關聯、胞元中心/胞元邊緣發現及資料傳輸的範例的信號圖; 圖14是示出了用於分數協調OFDMA的範例保護頻帶的圖; 圖15是示出了下鏈-下鏈CB/CN的範例的圖; 圖16是示出了上鏈-上鏈CB/CN的範例的圖; 圖17是示出了上鏈-下鏈CB/CN的範例的圖; 圖18是示出了用於獨立空資料封包宣告(NDPA) /空資料封包(NDP)及基於觸發的回饋的範例信號流的示圖; 圖19是示出了基於主觸發的NDPA/NDP及基於主觸發的回饋的範例的信號圖; 圖20是示出了來自AP的NDP回饋請求的範例的信號圖; 圖21是示出了用於隱式多AP探測的NDP觸發的範例的信號圖; 圖22是示出了用於基於互易性的上鏈-上鏈(UL/UL) CB/CN的獨立NDPA/NDP的範例的信號圖; 圖23是示出了用於UL/UL CB/CN的基於主觸發的NDPA/NDP的範例的信號圖; 圖24是示出了STA發起的通道獲取的實例的信號圖; 圖25是示出了AP發起的通道獲取的範例的信號圖; 圖26是示出了隱式DL通道獲取的範例的圖; 圖27是示出了在用於同時UL及DL服務的範例場景中的干擾的圖; 圖28是示出了對CB/CN的網格資料觸發(MDT)及網格探測觸發(MST)訊框的範例利用的圖; 圖29是示出了使用基於單側空間重用參數(SRP)的空間重用(SR)的上鏈-上鏈CB/CN的範例的圖; 圖30是示出了稀疏碼多重存取(SCMA)增益估計類型1的範例的圖; 圖31是示出了SCMA增益估計類型2的範例的圖; 圖32是示出了基於上鏈-上鏈兩側SRP的SR的範例的圖; 圖33是示出了使用初級(primary)UL/DL傳輸的單側DL/UL CB/CN的範例的圖; 圖34是示出了複數主觸發的範例的圖; 圖35是示出了順序觸發的範例的圖; 圖36是示出了基於預探測的主觸發的範例的圖; 圖37是示出了用於干擾對齊(IA)的AP1及AP2的範例長訓練欄位(LTF)構造的示圖; 圖38是示出了利用探測訊框的範例多AP隱式探測過程的圖;以及 圖39是示出了用於自校準的範例過程的圖。
ACK:確認
AP:存取點
OTA:回程鏈路或空中
STA、802:站
800:範例多AP關聯
805a、805b:探針請求訊框
810a、810b:探針回應訊框
814A:AP1
814b:AP2
815a、815b:認證請求訊框
820a、820b:認證回應訊框
825:多AP關聯請求訊框
830:AP協調過程
835a、835b:多AP關聯回應訊框
840a、840b:多AP關聯確認(ACK)訊框
845:資料傳輸

Claims (20)

  1. 一種用於在一IEEE 802.11站(STA)中使用的方法,該方法包括: 從一第一存取點(AP)接收一探針回應訊框,該探針回應訊框包括指示該第一AP及一第二AP的多AP操作能力的一個或複數指示符; 向該第一AP或該第二AP中的至少一個傳輸一多AP關聯請求訊框,該多AP關聯請求訊框使得該第一AP能夠與該第二AP相關聯以用於與該IEEE 802.11 STA的一多AP操作,其中多AP操作包括由該IEEE802.11 STA從該第一AP及該第二AP接收信號; 從該第一AP接收一第一多AP關聯回應訊框,該第一多AP關聯回應訊框指示接受或拒絕與該第一AP的該多AP操作;以及 從該第二AP接收一第二多AP關聯回應訊框,該第二多AP關聯回應訊框指示接受或拒絕與該第二AP的該多AP操作。
  2. 如請求項1所述的方法,其中該多AP操作能力包括一多AP聯合傳輸能力、一多AP混合自動重複請求(HARQ)能力、一多AP多輸入多輸出(MIMO)能力、一動態AP選擇能力、一多AP漫遊能力、或一多AP協調波束成形能力。
  3. 如請求項1所述的方法,其中該第一AP及該第二AP被包括在一多AP服務集中,其中該多AP服務集包括能夠支援該多AP操作的複數AP。
  4. 如請求項3所述的方法,進一步包括: 從該第二AP接收一第二探針回應訊框,其中在該第一AP及該第二AP不在一相同多AP服務集中的情況下,該第一探針回應訊框包括指示與該第一AP相關聯的一第一多AP服務集中的複數AP的多AP操作能力的一個或複數指示符,並且其中該第二探針回應訊框包括指示與該第二AP相關聯的一第二多AP服務集中的複數AP的多AP操作能力的一個或複數指示符。
  5. 如請求項1所述的方法,進一步包括: 傳輸一探針請求訊框,該探針請求訊框包括該IEEE802.11 STA能夠支援多AP操作的一指示。
  6. 如請求項1所述的方法,進一步包括: 在該第一多AP關聯回應訊框被正確解碼的情況下,向該第一AP傳輸一第一多AP關聯確認(ACK)訊框; 在該第一多AP關聯回應訊框未被正確解碼的情況下,向該第一AP傳輸一第一多AP關聯否定確認(NACK)訊框; 在該第二多AP關聯回應訊框被正確解碼的情況下,向該第二AP傳輸一第二多AP關聯ACK訊框;以及 在該第二多AP關聯回應訊框未被正確解碼的情況下,向該第二AP傳輸一第二多AP關聯NACK訊框。
  7. 如請求項1所述的方法,進一步包括: 在該第一多AP關聯回應訊框及該第二多AP關聯回應訊框兩者都指示接受的情況下,執行與該第一AP及該第二AP的該多AP操作。
  8. 如請求項1所述的方法,其中該第一多AP關聯回應訊框及該第二多AP關聯回應訊框是按照一預定順序而被接收的。
  9. 如請求項1所述的方法,其中與該第一AP及該第二AP的該多AP操作是使用協調正交分頻多重存取(OFDMA)或協調置零而被執行的。
  10. 如請求項1所述的方法,其中該多AP操作包括由該IEEE 802.11 STA從該第一AP及該第二AP同時接收信號以及從該IEEE 802.11 STA向該第一AP及該第二AP同時傳輸信號。
  11. 一種IEEE 802.11站(STA),包括: 一接收器,被配置成從一第一存取點(AP)接收一探針回應訊框,該探針回應訊框包括指示該第一AP及一第二AP的多AP操作能力的一個或複數指示符; 一傳輸器,被配置成向該第一AP或該第二AP中的至少一個傳輸一多AP關聯請求訊框,該多AP關聯請求訊框使得該第一AP能夠與該第二AP相關聯以用於與該IEEE 802.11 STA的一多AP操作,其中多AP操作包括由該IEEE 802.11 STA從該第一AP及該第二AP接收信號;以及 該接收器進一步被配置成: 從該第一AP接收一第一多AP關聯回應訊框,該第一多AP關聯回應訊框指示接受或拒絕與該第一AP的該多AP操作;以及 從該第二AP接收一第二多AP關聯回應訊框,該第二多AP關聯回應訊框指示接受或拒絕與該第二AP的該多AP操作。
  12. 如請求項11所述的IEEE 802.11 STA,其中該多AP操作能力包括一多AP聯合傳輸能力、一多AP混合自動重複請求(HARQ)能力、一多AP多輸入多輸出(MIMO)能力、一動態AP選擇能力、一多AP漫遊能力、或一多AP協調波束成形能力。
  13. 如請求項11所述的IEEE 802.11 STA,其中該第一AP及該第二AP被包括在一多AP服務集中,其中該多AP服務集包括能夠支援該多AP操作的複數AP。
  14. 如請求項13所述的IEEE 802.11 STA,其中該接收器進一步被配置成從該第二AP接收一第二探針回應訊框,其中在該第一AP及該第二AP不在一相同的多AP服務集中的情況下,該探針回應訊框包括指示與該第一AP相關聯的一第一多AP服務集中的複數AP的多AP操作能力的一個或複數指示符,並且其中該第二探針回應訊框包括指示與該第二AP相關聯的一第二多AP服務集中的複數AP的多AP操作能力的一個或複數指示符。
  15. 如請求項11所述的IEEE 802.11 STA,其中該傳輸器進一步被配置成傳輸包括該IEEE 802.11 STA能夠支援多AP操作的一指示的一探針請求訊框。
  16. 如請求項11所述的IEEE 802.11 STA,其中該傳輸器進一步被配置成: 在該第一多AP關聯回應訊框被正確解碼的情況下,向該第一AP傳輸一第一多AP關聯確認(ACK)訊框; 在該第一多AP關聯回應訊框未被正確解碼的情況下,向該第一AP傳輸一第一多AP關聯否定確認(NACK)訊框; 在該第二多AP關聯回應訊框被正確解碼的情況下,向該第二AP傳輸一第二多AP關聯ACK訊框;以及 在該第二多AP關聯回應訊框未被正確解碼的情況下,向該第二AP傳輸一第二多AP關聯NACK訊框。
  17. 如請求項11所述的IEEE 802.11 STA,其中該傳輸器及該接收器進一步被配置成在該第一多AP關聯回應訊框及該第二多AP關聯回應訊框兩者都指示接受的情況下,執行與該第一AP及該第二AP的該多AP操作。
  18. 如請求項11所述的IEEE 802.11 STA,其中該第一多AP關聯回應訊框及該第二多AP關聯回應訊框是按照一預定順序而被接收的。
  19. 如請求項11所述的IEEE 802.11 STA,其中與該第一AP及該第二AP的該多AP操作是使用協調正交分頻多重存取(OFDMA)或協調置零而被執行的。
  20. 如請求項11所述的IEEE 802.11 STA,其中該多AP操作包括由該IEEE 802.11 STA從該第一AP及該第二AP同時接收信號,以及從該IEEE 802.11 STA向該第一AP及該第二AP同時傳輸信號。
TW108140596A 2018-11-08 2019-11-08 用於無線區域網路(wlan)中的多存取點(多ap)協調的系統、方法及裝置 TWI740265B (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201862757507P 2018-11-08 2018-11-08
US62/757507 2018-11-08
US201962790738P 2019-01-10 2019-01-10
US62/790738 2019-01-10
US201962815130P 2019-03-07 2019-03-07
US62/815130 2019-03-07
US201962873396P 2019-07-12 2019-07-12
US62/873396 2019-07-12

Publications (2)

Publication Number Publication Date
TW202025847A true TW202025847A (zh) 2020-07-01
TWI740265B TWI740265B (zh) 2021-09-21

Family

ID=69467672

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108140596A TWI740265B (zh) 2018-11-08 2019-11-08 用於無線區域網路(wlan)中的多存取點(多ap)協調的系統、方法及裝置

Country Status (7)

Country Link
US (2) US11683774B2 (zh)
EP (2) EP4325992A3 (zh)
JP (2) JP7417604B2 (zh)
KR (1) KR20210102201A (zh)
CN (2) CN118215034A (zh)
TW (1) TWI740265B (zh)
WO (1) WO2020097487A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI774313B (zh) * 2021-04-08 2022-08-11 瑞昱半導體股份有限公司 通訊裝置及相關的控制方法
TWI793802B (zh) * 2021-09-08 2023-02-21 鴻齡科技股份有限公司 雲無線接入網路中用於下行鏈路的預編碼方法及系統
TWI803038B (zh) * 2020-10-30 2023-05-21 新加坡商聯發科技(新加坡)私人有限公司 6GHz低功耗室內系統中使用分佈式音調的資源單元的無線通訊方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12010748B2 (en) * 2019-01-24 2024-06-11 Sony Group Corporation Communication device, communication control device, communication method, and communication control method
WO2020166770A1 (ko) * 2019-02-15 2020-08-20 엘지전자 주식회사 무선랜 시스템에서 조인트 전송을 수행하는 방법 및 장치
CN112188590A (zh) * 2019-07-01 2021-01-05 中兴通讯股份有限公司 多接入点辅助传输方法及装置
US20220360411A1 (en) * 2019-07-12 2022-11-10 Sony Group Corporation Communication control device and method, wireless communication device and method, and wireless communication terminal
US11252689B2 (en) * 2019-07-12 2022-02-15 Charter Communications Operating, Llc Wi-fi access point coordinated transmission of data
US20200403745A1 (en) * 2019-09-06 2020-12-24 Juan Fang Multiple access point diversity
JP7410618B2 (ja) * 2019-10-30 2024-01-10 キヤノン株式会社 通信装置、制御方法、およびプログラム
US11375398B2 (en) * 2019-11-12 2022-06-28 Cisco Technology, Inc. Modular, reliable wireless client device
WO2021095559A1 (ja) * 2019-11-14 2021-05-20 ソニーグループ株式会社 無線通信端末および方法
US11917551B2 (en) * 2020-04-01 2024-02-27 Mediatek Singapore Pte. Ltd. Apparatus and methods for coordinated spatial reuse in a wireless network
US11522581B2 (en) * 2020-05-08 2022-12-06 Qualcomm Incorporated Switching between intra-band multiple input multiple output and inter-band carrier aggregation
CN113727384B (zh) * 2020-05-26 2023-04-04 华为技术有限公司 一种信道测量方法及通信装置
WO2021256838A1 (ko) * 2020-06-15 2021-12-23 엘지전자 주식회사 무선랜 시스템에서 센싱을 수행하는 방법 및 장치
US20230236307A1 (en) * 2020-06-15 2023-07-27 Lg Electronics Inc. Method and device for carrying out sensing in wireless lan system
US20230262758A1 (en) * 2020-06-15 2023-08-17 Lg Electronics Inc. Method and device for performing sensing in wireless lan system
US20230319875A1 (en) * 2020-06-15 2023-10-05 Lg Electronics Inc. Method and device for performing sensing in wireless lan system
US11683757B2 (en) * 2020-06-22 2023-06-20 Qualcomm Incorporated Leveraging wake-up signals and discontinuous reception cycles for assisted antenna calibration
US20220007207A1 (en) * 2020-07-06 2022-01-06 Qualcomm Incorporated Beam switching and enhanced beam reporting to mitigate interference in beamforming
US20230276302A1 (en) * 2020-08-05 2023-08-31 Panasonic Intellectual Property Corporation Of America Wireless communication device and wireless communication method
WO2022045963A1 (en) * 2020-08-28 2022-03-03 Panasonic Intellectual Property Corporation Of America Communication apparatus and communication method for multiple access point based null data packet feedback report
US20220070710A1 (en) * 2020-09-03 2022-03-03 Lg Electronics Inc. Grouping of wireless apparatus performing sensing
WO2022108370A1 (ko) * 2020-11-20 2022-05-27 엘지전자 주식회사 무선랜 시스템에서 송신 mld 내 ap들에 대한 부분 정보를 요청하는 방법 및 장치
TW202308436A (zh) * 2021-06-22 2023-02-16 南韓商韋勒斯標準與技術協會公司 使用共享txop的無線通訊方法及使用該方法的無線通訊終端
WO2023283240A1 (en) * 2021-07-06 2023-01-12 Interdigital Patent Holdings, Inc. Method and procedures for adaptive high granularity sensing using multi-sta coordination
WO2023069340A1 (en) * 2021-10-20 2023-04-27 Sony Group Corporation Multiple access point uplink orthogonal frequency-division multiple access based random access
CN114302496A (zh) * 2021-12-17 2022-04-08 深圳市联平半导体有限公司 数据发送方法、装置、存储介质、处理器及ap终端
US20230261776A1 (en) * 2022-01-14 2023-08-17 TurbineOne, Inc. Lightweight Node Synchronization Protocol for Ad-Hoc Peer-To-Peer Networking of On-Body Combat Systems
WO2023182719A1 (ko) * 2022-03-23 2023-09-28 엘지전자 주식회사 무선랜 시스템에서 다중 액세스 포인트 동작 기반 자원 분할 다중 액세스에 대한 시그널링 방법 및 장치
US11950286B2 (en) * 2022-03-29 2024-04-02 Qualcomm Incorporated Uplink multiple access sounding sequences
US20240040642A1 (en) * 2022-07-29 2024-02-01 Huawei Technologies Canada Co., Ltd. Method and systems for multiple access point coordination

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10123351B2 (en) * 2011-04-15 2018-11-06 Intel Corporation Methods and arrangements for channel access in wireless networks
WO2013089747A1 (en) * 2011-12-15 2013-06-20 Intel Corporation System and method for enabling low power devices
US9204299B2 (en) * 2012-05-11 2015-12-01 Blackberry Limited Extended service set transitions in wireless networks
US9137621B2 (en) * 2012-07-13 2015-09-15 Blackberry Limited Wireless network service transaction protocol
US10305550B2 (en) * 2012-11-08 2019-05-28 Interdigital Patent Holdings, Inc. Method and apparatus for medium access control for uniform multiple access points coverage in wireless local area networks
US9072033B2 (en) * 2013-03-08 2015-06-30 Qualcomm Incorporated Systems and methods for concurrent device discovery
US9204383B2 (en) * 2013-03-15 2015-12-01 Intel Corporation Techniques for selecting an access point for wireless network discovery
WO2014179713A1 (en) 2013-05-03 2014-11-06 Interdigital Patent Holdings, Inc. Systems and methods for fractional carrier sense multiple access with collision avoidance (csma/ca) for wlans
WO2015006537A2 (en) * 2013-07-11 2015-01-15 Interdigital Patent Holdings, Inc. Method and apparatus for supporting sectorization coordination
EP3105990B1 (en) * 2014-02-10 2020-11-04 Intel Corporation Wi-fi direct services mechanisms for wireless gigabit display extension
US9602174B2 (en) * 2014-04-08 2017-03-21 Electronics And Telecommunications Research Institute Protocol for cooperation communication between access points in overlapped basic service set (OBSS) environment
US20160105829A1 (en) * 2014-10-14 2016-04-14 Qualcomm Incorporated Direct link wireless devices with power savings
CN104639303B (zh) * 2014-12-31 2018-01-12 上海交通大学 无线网络多接入点关联的确认帧检测方法
US9596688B2 (en) * 2015-01-09 2017-03-14 Intel IP Corporation Techniques for group-based spatial stream assignment signaling in 60 GHz wireless networks
EP3257301A1 (en) * 2015-02-11 2017-12-20 Telefonaktiebolaget LM Ericsson (publ) Wireless device, node and methods therein for deciding whether or not to activate a wlan interface
US20170055255A1 (en) * 2015-08-18 2017-02-23 Qualcomm Incorporated Techniques for response frames in cooperative reception
US10111226B2 (en) * 2015-08-26 2018-10-23 Qualcomm Incorporated Techniques to identify packets associated with an overlapping basic service set
US10237188B2 (en) * 2016-01-15 2019-03-19 Qualcomm Incorporated Regulating responses based on request addressing or request channels
US10687226B2 (en) * 2016-03-22 2020-06-16 Cable Television Laboratories, Inc System and method for access point coordination
US10986552B2 (en) * 2016-05-25 2021-04-20 Nokia Technologies Oy Connection establishment in a 5G radio access network
US10582469B2 (en) * 2016-07-01 2020-03-03 Qualcomm Incorporated Network initiated ranging
CN106572489B (zh) * 2016-11-03 2019-11-05 西北工业大学 一种基于多bss关联的接入与传输方法
US10159060B2 (en) * 2016-12-28 2018-12-18 Intel Corporation Coordinated basic set (BSS) communication with different modulation coding scheme (MCS) per link
US20180205429A1 (en) * 2017-01-17 2018-07-19 Qualcomm Incorporated Methods and systems for simultaneous multi access point transmissions on a wireless channel
US11337263B2 (en) * 2017-01-19 2022-05-17 Qualcomm Incorporated Packet based link aggregation architectures
US10856203B2 (en) 2017-01-19 2020-12-01 Qualcomm Incorporated Signaling for link aggregation setup and reconfiguration
CN113347651A (zh) * 2017-01-20 2021-09-03 无线通信与技术公司 利用通用网关节点设置网状网络的系统和方法
US10159039B2 (en) * 2017-04-19 2018-12-18 Fortinet, Inc. Steering wireless local area network (WLAN) clients
US20180376467A1 (en) * 2017-06-26 2018-12-27 Qualcomm Incorporated Extension of beacon request/report mechanism for spatial reuse
US20190014538A1 (en) * 2017-07-07 2019-01-10 Qualcomm Incorporated Broadcast twt indication in broadcast probe response and fils discovery frames to aid unassociated stas
US20190082382A1 (en) * 2017-09-12 2019-03-14 Qualcomm Incorporated Adaptive discovery process for wireless devices
US20190132724A1 (en) * 2017-10-26 2019-05-02 Qualcomm Incorporated Systems for signaling communication characteristics
US11057922B2 (en) * 2017-12-20 2021-07-06 Qualcomm Incorporated Systems for communicating with unassociated stations

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI803038B (zh) * 2020-10-30 2023-05-21 新加坡商聯發科技(新加坡)私人有限公司 6GHz低功耗室內系統中使用分佈式音調的資源單元的無線通訊方法
TWI774313B (zh) * 2021-04-08 2022-08-11 瑞昱半導體股份有限公司 通訊裝置及相關的控制方法
TWI793802B (zh) * 2021-09-08 2023-02-21 鴻齡科技股份有限公司 雲無線接入網路中用於下行鏈路的預編碼方法及系統

Also Published As

Publication number Publication date
KR20210102201A (ko) 2021-08-19
CN112970327B (zh) 2024-03-12
EP3878237A1 (en) 2021-09-15
CN112970327A (zh) 2021-06-15
US11683774B2 (en) 2023-06-20
EP4325992A3 (en) 2024-04-24
JP2024045182A (ja) 2024-04-02
US20210385779A1 (en) 2021-12-09
US20240040531A1 (en) 2024-02-01
JP7417604B2 (ja) 2024-01-18
WO2020097487A1 (en) 2020-05-14
TWI740265B (zh) 2021-09-21
EP3878237B1 (en) 2024-07-17
EP4325992A2 (en) 2024-02-21
CN118215034A (zh) 2024-06-18
JP2022506813A (ja) 2022-01-17

Similar Documents

Publication Publication Date Title
TWI740265B (zh) 用於無線區域網路(wlan)中的多存取點(多ap)協調的系統、方法及裝置
JP6849793B2 (ja) ミリメートル波(mmW)システムのためのマルチチャネルセットアップメカニズムおよび波形設計
CN111901887B (zh) 探测和信道选择的方法和系统
US11160112B2 (en) Methods for concurrent link setup and downlink data retrieval for high efficiency WLAN
US20230319886A1 (en) Multi-ap setup and transmission procedures for wlan systems
US20230163808A1 (en) Coordinated multi-access point transmissions for wireless local area network systems
CN118300650A (zh) Mimo信道接入
TW201937973A (zh) 實體隨機存取
TWI748365B (zh) 具均勻涵蓋多ap傳輸系統及方法
TWI785331B (zh) 站及由其執行的方法
CN112075116B (zh) 针对非对称的全双工无线局域网(wlan)的全双工时机发现和传输
TW202106083A (zh) Wlan系統中有效率上鏈資源要求
EP3536103A1 (en) Dynamic allocation in dense mmwave networks
JP2024515101A (ja) Wlanシステムのためのマルチapチャネルサウンディングフィードバック手順
CN110546894B (zh) Mmw wlan系统中的增强分段扇区级扫描过程