TW202024586A - Method of monitoring temperature of a target object - Google Patents

Method of monitoring temperature of a target object Download PDF

Info

Publication number
TW202024586A
TW202024586A TW107146521A TW107146521A TW202024586A TW 202024586 A TW202024586 A TW 202024586A TW 107146521 A TW107146521 A TW 107146521A TW 107146521 A TW107146521 A TW 107146521A TW 202024586 A TW202024586 A TW 202024586A
Authority
TW
Taiwan
Prior art keywords
array data
pixel array
dimensional
temperature
dimensional pixel
Prior art date
Application number
TW107146521A
Other languages
Chinese (zh)
Other versions
TWI686592B (en
Inventor
蘇育德
吳志鴻
林守謙
吳東穎
Original Assignee
中國鋼鐵股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中國鋼鐵股份有限公司 filed Critical 中國鋼鐵股份有限公司
Priority to TW107146521A priority Critical patent/TWI686592B/en
Application granted granted Critical
Publication of TWI686592B publication Critical patent/TWI686592B/en
Publication of TW202024586A publication Critical patent/TW202024586A/en

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

The present disclosure provides a method of monitoring temperature of a target object which uses a thermal imager to retrieve screen images of the target object, and then performs computation based on pixels reflecting temperature values in the screen images, and then filters off interferences and noises that occasionally occur in the screen images according to surface temperatures of the pixels so as to achieve an objective of stably monitoring the temperature of the target object.

Description

監測目標物表面溫度的方法 Method of monitoring the surface temperature of the target

本發明係關於溫度測量的技術領域,特別是關於一種監測目標物表面溫度的方法。 The present invention relates to the technical field of temperature measurement, in particular to a method for monitoring the surface temperature of a target.

一般用來量測物體表面溫度會使用接觸式感測器,但是在工作溫度極高且工作人員無法靠近的環境下,例如煉鋼設備,就必須採用非接觸式的量測方式進行。紅外線熱影像測溫儀(簡稱熱像儀)是目前快速且具準確性的量測儀器。在上述高溫環境中,若無火花、噴濺粒子或其他干擾因子時,工作人員能夠直接從熱像儀所擷取的畫面資訊中判讀目標物的表面溫度。 Generally, a contact sensor is used to measure the surface temperature of an object, but in an environment where the working temperature is extremely high and workers cannot approach, such as steelmaking equipment, it must be carried out in a non-contact measurement method. Infrared thermal image thermometer (thermal imager for short) is currently a fast and accurate measuring instrument. In the above-mentioned high temperature environment, if there are no sparks, splash particles or other interference factors, the staff can directly judge the surface temperature of the target from the picture information captured by the thermal imager.

然而,在干擾因子存在的環境中,如煉鋼廠,直接讀取畫面資訊進行溫度判讀就會得到忽高忽低的溫度量值,而無法穩定且正確的量測目標物的表面溫度。 However, in an environment where interference factors exist, such as a steel mill, directly reading the screen information for temperature interpretation will result in fluctuating temperature values, and the surface temperature of the target cannot be measured stably and accurately.

故,有必要提供一種監測目標物表面溫度的方法,以解決習用技術所存在的問題。 Therefore, it is necessary to provide a method for monitoring the surface temperature of the target to solve the problems of the conventional technology.

本發明之主要目的在於提供一種監測目標物表面溫度的方法,其可大幅降低干擾因子對溫度判讀正確性的影響,有效改善在具有火 花、塵霧或噴濺熱源粒子的惡劣環境下量測目標物表面溫度的準確率。 The main purpose of the present invention is to provide a method for monitoring the surface temperature of a target, which can greatly reduce the influence of interference factors on the accuracy of temperature interpretation, and effectively improve the The accuracy of measuring the surface temperature of the target under the harsh environment of flowers, dust, mist or sprayed heat source particles.

為達上述之目的,本發明提供一種監測目標物表面溫度的方法,其包括下列步驟:S1:連續取得一待測目標的二維圖像畫面;S2:將所述二維圖像畫面轉換為一維像素陣列資料;S3:計算一段時間內連續N筆的一維像素陣列資料的各像素的溫度值變化;S4:依據所述N筆一維像素陣列資料的各像素的溫度值變化判斷是否存在雜訊像素;S5:去除該雜訊像素而得到更新的一維像素陣列資料;以及S6:將更新的一維像素陣列資料轉換成二維圖像畫面。 In order to achieve the above objective, the present invention provides a method for monitoring the surface temperature of a target, which includes the following steps: S1: continuously obtaining a two-dimensional image frame of the target to be tested; S2: converting the two-dimensional image frame into One-dimensional pixel array data; S3: Calculate the temperature value change of each pixel of N consecutive one-dimensional pixel array data within a period of time; S4: Determine whether the temperature value change of each pixel of the N one-dimensional pixel array data There are noisy pixels; S5: remove the noisy pixels to obtain updated one-dimensional pixel array data; and S6: convert the updated one-dimensional pixel array data into a two-dimensional image frame.

在本發明之一實施例中,所述步驟S3包含:計算每一像素在所述N筆一維像素陣列資料中的溫度平均值及變異數;以及依據所述溫度平均值及變異數計算每筆一維像素陣列資料中每一像素的離散程度。 In an embodiment of the present invention, the step S3 includes: calculating the average temperature and variance of each pixel in the N pieces of one-dimensional pixel array data; and calculating each pixel based on the average temperature and variance The discrete degree of each pixel in the one-dimensional pixel array data.

在本發明之一實施例中,所述步驟S5包含:將離散程度大於一第一門檻值的像素的溫度值自其所屬的該筆一維像素陣列資料移除;重新計算剩餘筆數的一維像素陣列資料中的同一像素的溫度平均值及變異數;以及將新的溫度平均值回填先前被移除之像素的資料位置,以獲得一筆更新的一維像素陣列資料。 In an embodiment of the present invention, the step S5 includes: removing the temperature value of the pixel whose degree of dispersion is greater than a first threshold value from the one-dimensional pixel array data to which it belongs; recalculating one of the remaining numbers The temperature average value and variance of the same pixel in the three-dimensional pixel array data; and the new temperature average value is backfilled with the data position of the previously removed pixel to obtain an updated one-dimensional pixel array data.

在本發明之一實施例中,在所述步驟S3之後,所述方法進一步包含:計算所述N筆一維像素陣列資料中每一像素的離散程度的比率;以及若所述N筆一維像素陣列資料中的其中一像素的離散程度的比率大於一預設第二門檻值,則直接移除所述N筆一維像素陣列資料,並回到步驟S1,反之則接續步驟S4。 In an embodiment of the present invention, after the step S3, the method further includes: calculating the ratio of the discrete degree of each pixel in the N one-dimensional pixel array data; and if the N one-dimensional pixel array data If the ratio of the discrete degree of one of the pixels in the pixel array data is greater than a predetermined second threshold value, the N pieces of one-dimensional pixel array data are directly removed, and step S1 is returned, otherwise, step S4 is continued.

在本發明之一實施例中,所述步驟S2進一步包含:累計轉 換為一維像素陣列資料的畫面筆數;以及若畫面筆數低於一預設值,則回到步驟S1,反之則執行步驟S3。 In an embodiment of the present invention, the step S2 further includes: cumulative transfer Change to the number of frames of the one-dimensional pixel array data; and if the number of frames is lower than a preset value, go back to step S1, otherwise go to step S3.

在本發明之一實施例中,所述方法在步驟S6之後進一步包含:移除所述N筆的一維像素陣列資料中的第一筆,並回到步驟S1。 In an embodiment of the present invention, after step S6, the method further includes: removing the first one of the N pieces of one-dimensional pixel array data, and returning to step S1.

通過上述的監測目標物表面溫度的方法,可有效濾除畫面中由火花、噴濺粒子或煙霧造成的干擾雜訊,達到穩定通過熱影像監測目標物溫度的目的。 Through the above method of monitoring the surface temperature of the target, the interference noise caused by sparks, splash particles or smoke in the screen can be effectively filtered out, so as to achieve the purpose of stably monitoring the temperature of the target through thermal images.

1‧‧‧紅外線熱影像測溫儀 1‧‧‧Infrared Thermal Image Thermometer

2‧‧‧熱影像分析模組 2‧‧‧Thermal image analysis module

3‧‧‧待測目標 3‧‧‧Target to be tested

Datasrc‧‧‧完整熱影像畫面 Data src ‧‧‧Full thermal image screen

Datatar‧‧‧特定區域 Data tar ‧‧‧Specific area

Noisepixel‧‧‧雜訊像素 Noise pixel ‧‧‧Noise pixel

P(x,y)、P1、Pm×n‧‧‧像素 P(x,y), P 1 , P m×n ‧‧‧ pixels

10‧‧‧二維圖像畫面 10‧‧‧Two-dimensional image screen

20‧‧‧一維像素陣列資料 20‧‧‧One-dimensional pixel array data

S1、S11、S2、S21~S24、S3、S31~S35、S4、S5、S51、S6、S7‧‧‧步驟 S1, S11, S2, S21~S24, S3, S31~S35, S4, S5, S51, S6, S7‧‧‧Step

Figure 107146521-A0101-12-0008-6
Figure 107146521-A0101-12-0008-7
‧‧‧像素集
Figure 107146521-A0101-12-0008-6
,
Figure 107146521-A0101-12-0008-7
‧‧‧Pixel Set

Figure 107146521-A0101-12-0008-8
Figure 107146521-A0101-12-0008-9
Figure 107146521-A0101-12-0008-10
Figure 107146521-A0101-12-0008-11
Figure 107146521-A0101-12-0008-12
Figure 107146521-A0101-12-0008-13
Figure 107146521-A0101-12-0008-14
Figure 107146521-A0101-12-0008-15
Figure 107146521-A0101-12-0008-16
Figure 107146521-A0101-12-0008-17
‧‧‧像素
Figure 107146521-A0101-12-0008-8
,
Figure 107146521-A0101-12-0008-9
,
Figure 107146521-A0101-12-0008-10
,
Figure 107146521-A0101-12-0008-11
,
Figure 107146521-A0101-12-0008-12
,
Figure 107146521-A0101-12-0008-13
,
Figure 107146521-A0101-12-0008-14
,
Figure 107146521-A0101-12-0008-15
,
Figure 107146521-A0101-12-0008-16
,
Figure 107146521-A0101-12-0008-17
‧‧‧Pixel

f1、f2、f3、fT、fT+1‧‧‧一維像素陣列資料 f 1 , f 2 , f 3 , f T , f T+1 ‧‧‧One-dimensional pixel array data

FT、FT+1‧‧‧資料集合 F T 、F T+1 ‧‧‧Data collection

第1圖係執行本發明之監測目標物表面溫度的方法一較佳實施例的裝置示意圖。 FIG. 1 is a schematic diagram of a device for implementing a preferred embodiment of the method for monitoring the surface temperature of a target object of the present invention.

第2圖係本發明之監測目標物表面溫度的方法一較佳實施例的主要流程圖。 Figure 2 is a main flow chart of a preferred embodiment of the method for monitoring the surface temperature of a target object of the present invention.

第3圖係本發明之監測目標物表面溫度的方法一較佳實施例的詳細流程圖。 FIG. 3 is a detailed flowchart of a preferred embodiment of the method for monitoring the surface temperature of the target object of the present invention.

第4圖係本發明之監測目標物表面溫度的方法中將二維圖像畫面轉換為一維像素陣列資料的示意圖。 Figure 4 is a schematic diagram of converting a two-dimensional image frame into a one-dimensional pixel array data in the method for monitoring the surface temperature of a target of the present invention.

第5圖係本發明之監測目標物表面溫度的方法中累計N筆一維像素陣列資料的集合的示意圖。 FIG. 5 is a schematic diagram of a collection of N pieces of one-dimensional pixel array data accumulated in the method for monitoring the surface temperature of the target object of the present invention.

為了讓本發明之上述及其他目的、特徵、優點能更明顯易懂,下文將特舉本發明較佳實施例,並配合所附圖式,作詳細說明如下。 In order to make the above and other objectives, features, and advantages of the present invention more obvious and understandable, the following will specifically cite the preferred embodiments of the present invention, together with the accompanying drawings, and describe in detail as follows.

請參考第1圖所示,係執行本發明之監測目標物表面溫度的方法一較佳實施例的裝置示意圖。用於執行本發明之監測目標物表面溫度 的方法的裝置主要包括一紅外線熱影像測溫儀1以及一熱影像分析模組2。 Please refer to FIG. 1, which is a schematic diagram of a device that implements a preferred embodiment of the method for monitoring the surface temperature of a target of the present invention. Used to implement the present invention to monitor the surface temperature of the target The device of the method mainly includes an infrared thermal image thermometer 1 and a thermal image analysis module 2.

所述紅外線熱影像測溫儀1用以對一具有特定溫度的待測目標3進行熱影像擷取動作,以連續生成熱影像的二維圖像畫面。所述待測目標3可以是一用於煉鋼作業的盛鋼桶,可盛載有高熱鋼液。所述紅外線熱影像測溫儀1在一實施例中係針對盛鋼桶的外表進行熱影像擷取動作。 The infrared thermal image thermometer 1 is used for capturing a thermal image of a target 3 with a specific temperature to continuously generate a two-dimensional image frame of the thermal image. The target 3 to be tested may be a steel drum used for steelmaking operations, and may contain high-heat molten steel. In one embodiment, the infrared thermal image thermometer 1 performs a thermal image capturing action on the outer surface of the ladle.

所述熱影像分析模組2則通過有線或無線連接所述紅外線熱影像測溫儀1,以接收所述紅外線熱影像測溫儀1連續生成的二維圖像畫面。所述熱影像分析模組2用以依據接收的二維圖像畫面執行所述監測目標物表面溫度的方法。 The thermal image analysis module 2 is wired or wirelessly connected to the infrared thermal image thermometer 1 to receive two-dimensional image frames continuously generated by the infrared thermal image thermometer 1. The thermal image analysis module 2 is used to execute the method of monitoring the surface temperature of the target object according to the received two-dimensional image frame.

請進一步參考第2圖及第3圖所示,係本發明之監測目標物表面溫度的方法一較佳實施例的主要流程圖及詳細流程圖。所述監測目標物表面溫度的方法主要包含步驟S1~S6,如下述:步驟S1:連續取得一待測目標的二維圖像畫面;步驟S2:將所述二維圖像畫面轉換為一維像素陣列資料;步驟S3:計算一段時間內連續N筆的一維像素陣列資料的各像素的溫度值變化;步驟S4:依據所述N筆一維像素陣列資料的各像素的溫度值變化判斷是否存在雜訊像素;步驟S5:去除該雜訊像素而得到更新的一維像素陣列資料;步驟S6:將更新的一維像素陣列資料轉換成二維圖像畫面。 Please further refer to FIG. 2 and FIG. 3, which are the main flowchart and detailed flowchart of a preferred embodiment of the method for monitoring the surface temperature of the target object of the present invention. The method for monitoring the surface temperature of a target object mainly includes steps S1 to S6, as follows: Step S1: Continuously obtain a two-dimensional image frame of the target to be measured; Step S2: Convert the two-dimensional image frame into a one-dimensional Pixel array data; Step S3: Calculate the temperature value change of each pixel of N consecutive one-dimensional pixel array data within a period of time; Step S4: Determine whether the temperature value change of each pixel of the N one-dimensional pixel array data There are noisy pixels; step S5: remove the noisy pixels to obtain updated one-dimensional pixel array data; step S6: convert the updated one-dimensional pixel array data into a two-dimensional image frame.

請配合參考第3圖及第4圖所示,係本發明之監測目標物表面溫度的方法中將二維圖像畫面轉換為一維像素陣列資料的示意圖。在步驟 S1中,所述二維圖像畫面10可以是在一個完整熱影像畫面(即Datasrc)中針對特定區域擷取的局部畫面(即Datatar)(如第3圖的步驟S11)。在一實施例中,如第4圖所示,所述二維圖像畫面10可包括m×n個像素,其中P(x,y)表示為第x行第y列的像素。 Please refer to FIG. 3 and FIG. 4, which are schematic diagrams of converting a two-dimensional image frame into a one-dimensional pixel array data in the method for monitoring the surface temperature of a target of the present invention. In step S1, the two-dimensional image frame 10 may be a partial image (ie, Data tar ) captured for a specific area in a complete thermal image frame (ie, Data src ) (as shown in step S11 in FIG. 3). In an embodiment, as shown in FIG. 4, the two-dimensional image frame 10 may include m×n pixels, where P(x,y) is represented as the pixel in the xth row and the yth column.

如第3圖及第4圖所示,在執行步驟S2時,所述二維圖像畫面10會轉換為一維像素陣列資料20,也就是將m×n個像素的資料集合依照順序排列成一維陣列,即P1、P2、...、Pm×n(如第3圖的步驟S21)。在一實施例中,所述順序可以是由左至右、由上而下的順序,也就是依照P(0,0)、P(1,0)、P(2,0)、P(3,0)、...、P(m,0)、P(0,1)、P(1,1)、P(2,1)、...P(m,1)、P(0,2)、....P(m,n-1)、P(0,n)、P(1,n)、P(2,n)、....、P(m-1,n)、P(m,n)的順序排成所述一維陣列資料20。 As shown in Figures 3 and 4, when step S2 is performed, the two-dimensional image frame 10 is converted into one-dimensional pixel array data 20, that is, a data set of m×n pixels is arranged in order into one A three-dimensional array, namely P 1 , P 2 , ..., P m×n (as in step S21 in Fig. 3). In an embodiment, the order may be from left to right, top to bottom, that is, according to P(0,0), P(1,0), P(2,0), P(3 ,0),...,P(m,0), P(0,1), P(1,1), P(2,1),...P(m,1), P(0, 2),...P(m,n-1), P(0,n), P(1,n), P(2,n),..., P(m-1,n) , P(m,n) are arranged in the order of the one-dimensional array data 20.

在一較佳實施例中,配合參考第3圖及第5圖所示,所述步驟S2可進一步包含:累計轉換為一維像素陣列資料20的畫面筆數i(如第3圖的步驟S22);以及若畫面筆數i低於一預設值T,則回到步驟S1,反之則執行步驟S3(如第3圖的步驟S23)。換言之,在本步驟中,累計取得的N張二維圖像畫面必須至少等於T張,並轉換成T筆一維像素陣列資料,才將所述N筆一維像素陣列資料視為一個資料集合FT(如第3圖的步驟S24),才接續步驟S3。在一較佳實施例中,所述預設值T可為10,但不在此限。 In a preferred embodiment, with reference to FIGS. 3 and 5, the step S2 may further include: accumulating the number of frames i converted into the one-dimensional pixel array data 20 (as shown in step S22 in FIG. 3 ); and if the screen number i is lower than a preset value T, go back to step S1, otherwise, go to step S3 (such as step S23 in Figure 3). In other words, in this step, the cumulatively obtained N two-dimensional image frames must be at least equal to T and converted into T one-dimensional pixel array data before the N one-dimensional pixel array data is regarded as a data set F T (Such as step S24 in Figure 3), then step S3 is continued. In a preferred embodiment, the preset value T may be 10, but it is not limited thereto.

配合參考第3圖所示,所述步驟S3可包含:計算每一像素在所述N筆一維像素陣列資料中的溫度平均值及變異數(如第3圖的步驟S31);以及依據所述溫度平均值及變異數計算每筆一維像素陣列資料中每一像素的離散程度(如第3圖的步驟S32)。換言之,以第5圖而言,所述步驟S31 即是計算所述N筆一維像素陣列資料中的同一位置的像素集

Figure 107146521-A0101-12-0006-22
的溫度平均值及變異數,例如第1筆一維像素陣列資料f1中的第一個像素
Figure 107146521-A0101-12-0006-19
、第2筆一維像素陣列資料f2中的第一個像素
Figure 107146521-A0101-12-0006-20
、....以及第N筆一維像素陣列資料fT中的第一個像素
Figure 107146521-A0101-12-0006-21
即是所述N筆一維像素陣列資料中的位於第一個位置的像素集,其中N等於前述的預設值T。所述步驟S32即是將所述N筆一維像素陣列資料中的位於同一位置的像素的溫度值配合所計算出的溫度平均值及變異數計算出所述N筆一維像素陣列資料中的位於同一位置的像素各自的離散程度。 With reference to Figure 3, the step S3 may include: calculating the average temperature and variance of each pixel in the N pieces of one-dimensional pixel array data (such as step S31 in Figure 3); and The temperature average value and variation number are used to calculate the degree of dispersion of each pixel in each one-dimensional pixel array data (such as step S32 in Figure 3). In other words, in Fig. 5, the step S31 is to calculate the pixel set at the same position in the N one-dimensional pixel array data.
Figure 107146521-A0101-12-0006-22
The average temperature and variance of the temperature, such as the first pixel in the first one-dimensional pixel array data f 1
Figure 107146521-A0101-12-0006-19
, The first pixel in the second one-dimensional pixel array data f 2
Figure 107146521-A0101-12-0006-20
,... and the first pixel in the Nth one-dimensional pixel array data f T
Figure 107146521-A0101-12-0006-21
That is, the pixel set at the first position in the N pieces of one-dimensional pixel array data, where N is equal to the aforementioned preset value T. The step S32 is to calculate the temperature values of the pixels located at the same position in the N pieces of one-dimensional pixel array data with the calculated temperature average value and variation number to calculate the value of the N pieces of one-dimensional pixel array data The degree of dispersion of pixels located at the same position.

配合參考第2圖所示,所述步驟S5包含:將離散程度大於一第一門檻值的像素的溫度值自其所屬的該筆一維像素陣列資料移除;重新計算剩餘筆數的一維像素陣列資料中的同一像素的溫度平均值及變異數;以及將新的溫度平均值回填先前被移除之像素的資料位置,以獲得一筆更新的一維像素陣列資料(如第3圖的步驟S51)。步驟S51即是將離散程度大於一第一門檻值的像素視為具有不尋常溫度的雜訊像素來予以移除。例如盛鋼桶中的火花或鋼液表面的鋼渣具有較高的溫度,當其噴濺出時,便會成為第4圖所示的二維圖像畫面中具有不尋常溫度值的雜訊像素Noisepixel。當這些雜訊像素Noisepixel移除後,步驟S51即重新計算剩餘筆數的一維像素陣列資料中的同一像素的溫度平均值及變異數,以對被移除的像素進行溫度值補償,將新的溫度平均值回填先前被移除之像素的資料位置,以獲得一筆更新的一維像素陣列資料。此時,原本被視為雜訊像素變為正常像素,其離散程度已變為小於所述第一門檻值。 With reference to Fig. 2, the step S5 includes: removing the temperature value of the pixel whose degree of dispersion is greater than a first threshold value from the one-dimensional pixel array data to which it belongs; recalculating the remaining one-dimensional The temperature average value and variance of the same pixel in the pixel array data; and backfill the data position of the previously removed pixel with the new temperature average value to obtain an updated one-dimensional pixel array data (as shown in the step in Figure 3) S51). Step S51 is to treat pixels with a degree of dispersion greater than a first threshold as noise pixels with unusual temperature and remove them. For example, the sparks in the ladle or the slag on the surface of the molten steel has a high temperature. When it is splashed, it will become a noise pixel with an unusual temperature value in the two-dimensional image shown in Figure 4. Noise pixel . When these pixel Noise pixel noise is removed, i.e., step S51 and recalculates the average temperature variation of the same pixel number of one-dimensional array of pixel data in the remaining items, for temperature compensation of the pixel value is removed, the The new temperature average value backfills the data positions of the previously removed pixels to obtain an updated one-dimensional pixel array data. At this time, the pixels originally regarded as noise have become normal pixels, and the degree of dispersion has become smaller than the first threshold value.

配合參考第2圖所示,在所述步驟S3之後,所述方法進一步 包含:計算所述N筆一維像素陣列資料中每一像素的離散程度的比率(如第3圖的步驟S33);以及若所述N筆一維像素陣列資料中的其中一像素的離散程度的比率大於一預設第二門檻值,則直接移除所述N筆一維像素陣列資料(如第3圖的步驟S34及S35),並回到步驟S1以重新取得N筆一維像素陣列資料,反之則接續步驟S4。步驟S33~S35是為了避免在待測目標狀態不穩定的情況下,所取得的連續多筆二維圖像畫面存在太多雜訊像素所執行的排除步驟。換言之,在所述N筆一維像素陣列資料中位於同一位置的N個像素中,若此N個像素中離散程度過大的像素的數量占全部位於同一位置的N個像素的數量(即N個)的比率大於所述第二門檻值,則表示所述N筆一維像素陣列資料中的雜訊像素過多,需直接移除所述N筆一維像素陣列資料,並重新回到步驟S1以重新取得N筆一維像素陣列資料。在一實施例中,所述第二門檻值可以為0.5,當所述N筆一維像素陣列資料中的其中一像素的離散程度的比率大於0.5時,即意味N個像素中有超過一半離散程度過大的像素。 With reference to Figure 2, after the step S3, the method further Including: calculating the ratio of the degree of dispersion of each pixel in the N pieces of one-dimensional pixel array data (such as step S33 in Figure 3); and if the degree of dispersion of one of the pixels in the N pieces of one-dimensional pixel array data If the ratio of is greater than a predetermined second threshold value, the N one-dimensional pixel array data are directly removed (such as steps S34 and S35 in Figure 3), and step S1 is returned to obtain N one-dimensional pixel arrays again Data, otherwise proceed to step S4. Steps S33 to S35 are the elimination steps performed to avoid too many noise pixels in the acquired continuous two-dimensional image frames when the state of the target to be measured is unstable. In other words, among the N pixels located at the same position in the N pieces of one-dimensional pixel array data, if the number of pixels with excessive dispersion in the N pixels accounts for the total number of N pixels located at the same position (ie N pixels ) Is greater than the second threshold, it means that there are too many noise pixels in the N pieces of one-dimensional pixel array data, and the N pieces of one-dimensional pixel array data need to be directly removed, and step S1 is returned to Re-acquire N one-dimensional pixel array data. In an embodiment, the second threshold value may be 0.5. When the discrete degree ratio of one of the pixels in the N one-dimensional pixel array data is greater than 0.5, it means that more than half of the N pixels are discrete Excessive pixels.

配合參考第2圖及第3圖所示,所述方法在步驟S6之後進一步包含步驟S7:移除所述N筆的一維像素陣列資料中的第一筆(f1),並回到步驟S1(如第3圖的步驟S7)。也就是在順序上,移除掉最先取得的頭一張二維圖像畫面,將第N+1張的二維圖像畫面轉換一維像素陣列資料,與剩餘的一維像素陣列資料集合,以持續對待測目標的表面溫度的監測。 With reference to Figures 2 and 3, the method further includes step S7 after step S6: removing the first entry (f 1 ) in the N entries of one-dimensional pixel array data, and returning to step S1 (as in step S7 in Figure 3). That is, in order, the first two-dimensional image frame obtained first is removed, the N+1-th two-dimensional image frame is converted into one-dimensional pixel array data, and the remaining one-dimensional pixel array data is assembled to Continuous monitoring of the surface temperature of the target to be measured.

綜上所述,相較於現有技術,本發明通過將二維的畫面資料轉換成一維資料,依據前後連續畫面的一維資料來辨識畫面中應屬於雜訊的像素,並透過連續畫面中同樣位於相同位置的其他像素的溫度值,取平均值作為補償值填回被移除的像素(即取代該像素原有的不尋常溫度值),達 到消除圖像雜訊的目的。故本發明可有效濾除畫面中由火花、噴濺粒子或煙霧造成的干擾雜訊,達到穩定通過熱影像監測目標物溫度的目的。 In summary, compared with the prior art, the present invention converts two-dimensional picture data into one-dimensional data, and identifies pixels that should belong to noise in the picture based on the one-dimensional data of the successive pictures before and after, and through the same picture in the continuous picture The temperature values of other pixels located at the same position are averaged as the compensation value to fill in the removed pixel (that is, to replace the original unusual temperature value of the pixel), to To eliminate image noise. Therefore, the present invention can effectively filter out the interference noise caused by sparks, splash particles or smoke in the picture, and achieve the purpose of stably monitoring the temperature of the target through thermal images.

雖然本發明已以較佳實施例揭露,然其並非用以限制本發明,任何熟習此項技藝之人士,在不脫離本發明之精神和範圍內,當可作各種更動與修飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the preferred embodiments, it is not intended to limit the present invention. Anyone familiar with the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection shall be subject to the scope of the attached patent application.

S1、S2、S3、S4、S5、S6、S7‧‧‧步驟 S1, S2, S3, S4, S5, S6, S7‧‧‧Step

Claims (7)

一種監測目標物表面溫度的方法,係包括下列步驟:S1:連續取得一待測目標的二維圖像畫面;S2:將所述二維圖像畫面轉換為一維像素陣列資料;S3:計算連續N筆的一維像素陣列資料的各像素的溫度值變化;S4:依據所述N筆一維像素陣列資料的各像素的溫度值變化判斷是否存在雜訊像素;S5:去除該雜訊像素而得到更新的一維像素陣列資料;以及S6:將更新的一維像素陣列資料轉換成二維圖像畫面。 A method for monitoring the surface temperature of a target includes the following steps: S1: continuously obtaining a two-dimensional image frame of a target to be measured; S2: converting the two-dimensional image frame into one-dimensional pixel array data; S3: calculating The temperature value change of each pixel of the continuous N pieces of one-dimensional pixel array data; S4: Determine whether there is a noise pixel according to the temperature value change of each pixel of the N pieces of one-dimensional pixel array data; S5: Remove the noise pixel Obtain updated one-dimensional pixel array data; and S6: Convert the updated one-dimensional pixel array data into a two-dimensional image frame. 如申請專利範圍第1項所述之監測目標物表面溫度的方法,其中所述步驟S3包含:計算每一像素在所述N筆一維像素陣列資料中的溫度平均值及變異數;以及依據所述溫度平均值及變異數計算每筆一維像素陣列資料中每一像素的離散程度。 According to the method for monitoring the surface temperature of a target object as described in the first item of the scope of patent application, the step S3 includes: calculating the average temperature and variance of each pixel in the N pieces of one-dimensional pixel array data; and according to The temperature average value and variation number are used to calculate the degree of dispersion of each pixel in each one-dimensional pixel array data. 如申請專利範圍第2項所述之監測目標物表面溫度的方法,其中所述步驟S4包含:將離散程度大於一預設第一門檻值的像素視為雜訊像素。 According to the method for monitoring the surface temperature of a target object as described in item 2 of the scope of patent application, the step S4 includes: treating pixels with a dispersion degree greater than a predetermined first threshold as noise pixels. 如申請專利範圍第3項所述之監測目標物表面溫度的方法,其中所述步驟S5包含:將離散程度大於一第一門檻值的像素的溫度值自其所屬的該筆一維像素陣列資料移除; 重新計算剩餘筆數的一維像素陣列資料中的同一像素的溫度平均值及變異數;以及將新的溫度平均值回填先前被移除之像素的資料位置,以獲得一筆更新的一維像素陣列資料。 The method for monitoring the surface temperature of a target object as described in item 3 of the scope of patent application, wherein the step S5 includes: dividing the temperature value of the pixel whose degree of dispersion is greater than a first threshold value from the one-dimensional pixel array data to which it belongs Remove Recalculate the temperature average and variance of the same pixel in the remaining one-dimensional pixel array data; and backfill the new temperature average to the data position of the previously removed pixel to obtain an updated one-dimensional pixel array data. 如申請專利範圍第2項所述之監測目標物表面溫度的方法,其中在所述步驟S3之後,所述方法進一步包含:計算所述N筆一維像素陣列資料中每一像素的離散程度的比率;以及若所述N筆一維像素陣列資料中的其中一像素的離散程度的比率大於一預設第二門檻值,則直接移除所述N筆一維像素陣列資料,並回到步驟S1,反之則接續步驟S4。 The method for monitoring the surface temperature of a target object as described in item 2 of the scope of patent application, wherein after the step S3, the method further comprises: calculating the degree of dispersion of each pixel in the N pieces of one-dimensional pixel array data And if the ratio of the discrete degree of one of the pixels in the N pieces of one-dimensional pixel array data is greater than a predetermined second threshold value, then the N pieces of one-dimensional pixel array data are directly removed, and the step is returned S1, otherwise proceed to step S4. 如申請專利範圍第1項所述之監測目標物表面溫度的方法,其中所述步驟S2包含:累計轉換為一維像素陣列資料的畫面筆數;以及若畫面筆數低於一預設值,則回到步驟S1,反之則執行步驟S3。 The method for monitoring the surface temperature of a target object as described in item 1 of the scope of patent application, wherein the step S2 includes: accumulating the number of screens converted into one-dimensional pixel array data; and if the number of screens is lower than a preset value, Go back to step S1, otherwise go to step S3. 如申請專利範圍第6項所述之監測目標物表面溫度的方法,其中所述方法在步驟S6之後進一步包含:移除所述N筆的一維像素陣列資料中的第一筆,並回到步驟S1。 The method for monitoring the surface temperature of a target object as described in item 6 of the scope of patent application, wherein after step S6, the method further includes: removing the first one of the N one-dimensional pixel array data, and returning Step S1.
TW107146521A 2018-12-21 2018-12-21 Method of monitoring temperature of a target object TWI686592B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107146521A TWI686592B (en) 2018-12-21 2018-12-21 Method of monitoring temperature of a target object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107146521A TWI686592B (en) 2018-12-21 2018-12-21 Method of monitoring temperature of a target object

Publications (2)

Publication Number Publication Date
TWI686592B TWI686592B (en) 2020-03-01
TW202024586A true TW202024586A (en) 2020-07-01

Family

ID=70767098

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107146521A TWI686592B (en) 2018-12-21 2018-12-21 Method of monitoring temperature of a target object

Country Status (1)

Country Link
TW (1) TWI686592B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4687344A (en) * 1986-02-05 1987-08-18 General Electric Company Imaging pyrometer
JP4743453B2 (en) * 2008-12-25 2011-08-10 住友電気工業株式会社 Gas monitoring device, combustion state monitoring device, secular change monitoring device, and impurity concentration monitoring device
TWM395825U (en) * 2010-08-27 2011-01-01 Univ China Sci & Tech Detection system with a plurality of single-point type temperature sensing heads
JP6679915B2 (en) * 2015-12-14 2020-04-15 日本製鉄株式会社 Surface temperature distribution measuring device and measuring method

Also Published As

Publication number Publication date
TWI686592B (en) 2020-03-01

Similar Documents

Publication Publication Date Title
CN102410880B (en) Infrared focal plane array blind pixel detection method based on integral time adjustment
CN107532999B (en) Passive infrared gas imaging based on wavelength bands
JP6992035B2 (en) How to determine misalignment of the measurement range of an imager and a non-temporary computer-readable medium
CN106679581B (en) Object deformation measurement method under a kind of hot environment
JP7394952B2 (en) Slag amount measuring device and slag amount measuring method
JP4901462B2 (en) Gas flow state monitoring method, monitoring apparatus, and computer program for furnace top
EP3462413A1 (en) Background radiance estimation and gas concentration-length quantification method for optical gas imaging camera
JP2011179897A (en) Image processing device and image processing program
JP7009783B2 (en) Face monitoring system
US20150355030A1 (en) Equipment and method for intensity-temperature transformation of imaging system
CN106755683A (en) A kind of blast-furnace roasting band temperature field detection device based on colorimetric method
CN111337132A (en) Temperature measuring method and device and digital image acquisition equipment
TWI686592B (en) Method of monitoring temperature of a target object
TWI465702B (en) Non-contact temperature measurung method
KR102178319B1 (en) Apparatus and method for brightness uniformity inspecting of display panel
JP6685639B2 (en) Temperature measuring method and temperature measuring device
Cantatore et al. Hyperbolic tangent algorithm for periodic effect cancellation in sub-pixel resolution edge displacement measurement
JP5920277B2 (en) Temperature measuring apparatus and temperature measuring method
Souto et al. Real machine vision use-cases applied to hot rolling mill plants
KR0169582B1 (en) Real-tmie measurement equipment and method for degree of bending at the front of thick plate during hot rolling
JP2002309307A (en) Method for detecting temperature in furnace
CN112432711B (en) Side-blown converter high temperature visual detection method and detection system
CN117056148B (en) Method for detecting abnormal display of screen
KR20160036974A (en) Apparatus and method for obtaining high resolution image
JPH0526734A (en) Temperature image measuring method and device