TW202024305A - Blue-emitting phosphor compounds - Google Patents

Blue-emitting phosphor compounds Download PDF

Info

Publication number
TW202024305A
TW202024305A TW108132933A TW108132933A TW202024305A TW 202024305 A TW202024305 A TW 202024305A TW 108132933 A TW108132933 A TW 108132933A TW 108132933 A TW108132933 A TW 108132933A TW 202024305 A TW202024305 A TW 202024305A
Authority
TW
Taiwan
Prior art keywords
compound
mixture
light
light source
present
Prior art date
Application number
TW108132933A
Other languages
Chinese (zh)
Inventor
馬堤亞斯 拉法恩
拉夫 派翠
印格 寇勒
大衛 波尼奇
湯瑪斯 約舒泰
梅爾維 艾琳 依馬茲
Original Assignee
德商馬克專利公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商馬克專利公司 filed Critical 德商馬克專利公司
Publication of TW202024305A publication Critical patent/TW202024305A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7737Phosphates
    • C09K11/7738Phosphates with alkaline earth metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Abstract

The present invention relates to blue-emitting compounds, to a process for the preparation thereof, and to the use thereof as phosphors or conversion phosphors in light sources. The present invention furthermore relates to a radiation-converting mixture comprising the compound according to the invention, and to a light source which contains the compounds according to the invention or the radiation-converting mixture. The present invention furthermore relates to light sources, in particular LEDs, and lighting units which contain a primary light source and the compound according to the invention or the radiation-converting mixture. The compounds according to the invention are suitable as luminescent materials, in particular for the generation of blue or white light in LEDs.

Description

發射藍光之磷光體化合物Phosphor compound emitting blue light

本發明係關於發射藍光之化合物、其製備方法及其特定言之在經磷光體轉換之發光裝置,諸如pc-LED (經磷光體轉換之發光二極體)中之用途,其用作用於將具有相對較短波長之輻射轉換為具有相對較長波長之輻射的磷光體或轉換磷光體。The present invention relates to a compound that emits blue light, its preparation method and its specific use in phosphor-converted light-emitting devices, such as pc-LED (phosphor-converted light-emitting diode), which is used for Phosphors or conversion phosphors that convert radiation having a relatively short wavelength into radiation having a relatively long wavelength.

另外,本發明係關於一種包含根據本發明之化合物的輻射轉換混合物,以及一種含有根據本發明之化合物或混合物的光源。本發明進一步係關於一種含有光源之照明單元,該光源含有根據本發明之化合物或混合物。根據本發明之化合物及混合物適合作為發光材料,特定言之用於固態LED光源中產生藍光或白光,該等固態LED光源含有在紫色及/或近紫外(UV)光譜範圍內發射之LED晶片。In addition, the present invention relates to a radiation conversion mixture containing the compound according to the present invention, and a light source containing the compound or mixture according to the present invention. The present invention further relates to a lighting unit containing a light source containing the compound or mixture according to the present invention. The compounds and mixtures according to the present invention are suitable as luminescent materials, in particular for generating blue or white light in solid-state LED light sources that contain LED chips that emit in the violet and/or near ultraviolet (UV) spectral range.

100多年來,已開發出無機磷光體以便適應發光顯示螢幕、X射線放大器及輻射或光源之光譜,以使其以儘可能最優的方式滿足各別應用領域之需求且同時消耗儘可能少的能量。激發之類型(亦即主輻射源之性質)及必需的發射光譜在此處對於選擇主晶格及活化劑至關重要。For more than 100 years, inorganic phosphors have been developed to adapt to the spectrum of light-emitting display screens, X-ray amplifiers, and radiation or light sources, so that they can meet the needs of various applications in the best possible way while consuming as little as possible energy. The type of excitation (that is, the nature of the main radiation source) and the necessary emission spectrum are important here for the selection of the host lattice and activator.

尤其對用於一般照明之螢光光源(亦即,低壓放電燈及發光二極體),正不斷開發新穎磷光體以便進一步提高能效、色彩重現及(色點)穩定性。藉由Eu2+ 活化之磷光體用於放電燈(Hg及Xe放電燈)及電漿顯示面板,通常作為發射藍光之組件。特定言之,使用BaMgAl10 O17 :Eu (BAM:Eu)及(Ba,Sr,Ca)5 (PO4 )3 Cl:Eu (SCAP),迄今僅已在螢光燈(TL、CFL、QL、PL)中使用SCAP。Especially for fluorescent light sources for general lighting (ie, low-pressure discharge lamps and light-emitting diodes), novel phosphors are constantly being developed to further improve energy efficiency, color reproduction and (color point) stability. Phosphors activated by Eu 2+ are used in discharge lamps (Hg and Xe discharge lamps) and plasma display panels, usually as blue-emitting components. In particular, the use of BaMgAl 10 O 17 :Eu (BAM:Eu) and (Ba,Sr,Ca) 5 (PO 4 ) 3 Cl:Eu (SCAP) has only been used in fluorescent lamps (TL, CFL, QL). , PL) use SCAP.

在UV照射時,亦即在小於400 nm之波長下,所有經Eu2+ 活化之磷光體均展現其光產率隨操作時間變化而降低,其由Eu2+ 至Eu3+ 之光電離(光氧化)引起(T. Jüstel, H. Nikol, Adv. Mater. 12, 2000, 527)。此處可觀測到,例如在BAM:Eu之情況下,光產率僅在真空中之UV(VUV)激發(100-199 nm)時降低,而在用更長波UV輻射(200-399 nm)激發時未觀測到亮度降低。換言之,此發現意謂光電離需要足夠高的激發能量。儘管在453 nm處發射之磷光體BAM:Eu將為用於高效能LED或雷射二極體之穩定藍光發射極,然而,其僅可在至多約380 nm之UV範圍內激發。Under UV irradiation, that is, at a wavelength of less than 400 nm, all phosphors activated by Eu 2+ show that their light yield decreases with the change of operation time, and its photoionization from Eu 2+ to Eu 3+ ( Photooxidation) caused (T. Jüstel, H. Nikol, Adv. Mater. 12, 2000, 527). It can be observed here that, for example, in the case of BAM:Eu, the light yield is only reduced when UV (VUV) excitation in vacuum (100-199 nm) is used, and when longer-wave UV radiation (200-399 nm) is used No decrease in brightness was observed during excitation. In other words, this finding means that photoionization requires sufficiently high excitation energy. Although the phosphor BAM:Eu emitted at 453 nm will be a stable blue light emitter for high-performance LEDs or laser diodes, it can only be excited in the UV range up to about 380 nm.

同時,LED幾乎完全替換一般照明及背光區域中之其他光源,且雷射二極體由於其不斷增加之效率而找到愈來愈多的應用領域。在380 nm與420 nm之間發射之(In,Ga)N半導體LED晶片在本文中尤其高效(圖1)(參見C.A. Hurni 等人, Appl. Phys. Lett. 106, 2015, 031101)。At the same time, LEDs almost completely replace other light sources in general lighting and backlighting areas, and laser diodes find more and more applications due to their increasing efficiency. (In,Ga)N semiconductor LED chips emitting between 380 nm and 420 nm are particularly efficient in this article (Figure 1) (see C.A. Hurni et al., Appl. Phys. Lett. 106, 2015, 031101).

因此,基於具有RGB磷光體混合物之發射UV之半導體的白光LED為基於具有發射黃光或黃光/紅光轉換器之發射藍光之半導體的普遍白光LED的確實替代方案。然而,此需要可獲得在380至420 nm範圍內可有效地激發之藍色磷光體,亦即具有小的斯托克位移(Stokes shift)。儘管迄今為止已公佈足夠量之關於發射藍光之磷光體的文獻,仍繼續探索作為在380-420 nm發射之LED的轉換器之理想磷光體。Therefore, white LEDs based on UV-emitting semiconductors with a mixture of RGB phosphors are a definite alternative to universal white LEDs based on blue-emitting semiconductors with yellow or yellow/red converters. However, there is a need to obtain a blue phosphor that can be effectively excited in the range of 380 to 420 nm, that is, with a small Stokes shift. Although a sufficient amount of literature on blue-emitting phosphors has been published so far, the search continues to be an ideal phosphor as a converter for LEDs emitting at 380-420 nm.

此處可提及之實例為鋁酸鹽,諸如SrAl12 O19 :Eu2+ 、SrAl4 O7 :Eu2+ 及Sr4 Al14 O25 :Eu2+ (D. Dutczak, T. Jüstel, C. Ronda, A. Meijerink, Phys. Chem. Chem. Phys. 2015, 17, 15236)、磷酸鹽,諸如Ba3 (ZnB5 O10 )PO4 :Eu2+ (J. Sun, X. Zhang, T. Li, Mater. Lett. 2018, 212, 343)、Ca10 M(PO4 )7 :Eu2+ (M = Li、Na、K) (M. Chen 等人, Chem. Mater. 2017, 29, 7563)、Ca5 (PO4 )3 Cl:Eu2+ (X. Zhang, M. Gong, Mater. Chem. Phys. 2010, 124, 1243)及Sr5 (PO4 )3 Cl:Eu2+ (S. J. Dhoble, J. Phys. D 2000, 33, 158)。藉助於組合化學方法之研究已產生其他磷光體,包括材料KSrPO4 :Eu及Gd3 Al3+x Si3-x O12+x N2-x :Eu (Z. Xia 等人, Dalton Trans. 45, 2016, 11214)。Examples that can be mentioned here are aluminates, such as SrAl 12 O 19 :Eu 2+ , SrAl 4 O 7 :Eu 2+ and Sr 4 Al 14 O 25 :Eu 2+ (D. Dutczak, T. Jüstel, C. Ronda, A. Meijerink, Phys. Chem. Chem. Phys. 2015, 17, 15236), phosphates, such as Ba 3 (ZnB 5 O 10 )PO 4 :Eu 2+ (J. Sun, X. Zhang, T. Li, Mater. Lett. 2018, 212, 343), Ca 10 M(PO 4 ) 7 : Eu 2+ (M = Li, Na, K) (M. Chen et al., Chem. Mater. 2017, 29 , 7563), Ca 5 (PO 4 ) 3 Cl: Eu 2+ (X. Zhang, M. Gong, Mater. Chem. Phys. 2010, 124, 1243), and Sr 5 (PO 4 ) 3 Cl: Eu 2+ (SJ Dhoble, J. Phys. D 2000, 33, 158). With the help of combinatorial chemistry research, other phosphors have been produced, including materials KSrPO 4 : Eu and Gd 3 Al 3+x Si 3-x O 12+x N 2-x : Eu (Z. Xia et al., Dalton Trans. 45, 2016, 11214).

儘管盡一切努力,但具有介於440與460 nm之間的藍色光譜範圍中之發射最大值、展現高光致發光量子產率、可在約250至約430 nm之紫外及紫色光譜範圍內有效地激發、具有高熱淬滅溫度及另外具有高光化學穩定性之用於LED之「完美的」發射藍光磷光體仍不可用。因此,針對發射藍光之磷光體的探索仍在繼續。Despite all efforts, it has an emission maximum in the blue spectral range between 440 and 460 nm, exhibits high photoluminescence quantum yield, and is effective in the ultraviolet and violet spectral range from about 250 to about 430 nm The "perfect" blue-emitting phosphors for LEDs that are ground-excited, have high thermal quenching temperatures and in addition have high photochemical stability are still not available. Therefore, the search for phosphors that emit blue light continues.

本發明之目的 因此,本發明之目的為提供用於LED之磷光體,該等磷光體在具有約450 nm之發射最大值之藍色光譜範圍內發射,具有高光致發光量子產率且可在約250至約430 nm之紫外及紫色光譜範圍內有效地激發。另外,本發明之目的為提供具有高熱淬滅溫度且另外具有高光化學穩定性之用於LED的磷光體。此使得熟習此項技術者可以更好地選擇用於生產發射藍光或白光LED之適合材料。 The object of the present invention Therefore, the object of the present invention is to provide phosphors for LEDs, which emit in the blue spectral range with an emission maximum of about 450 nm, have high photoluminescence quantum yield and can Excite effectively in the ultraviolet and violet spectrum of about 250 to about 430 nm. In addition, the object of the present invention is to provide a phosphor for LED which has a high thermal quenching temperature and additionally has high photochemical stability. This allows those who are familiar with the technology to better choose suitable materials for producing blue or white LEDs.

另外,本發明之目的為提供一種用於製備具有上文所提及之特性之磷光體的方法。另外,本發明之目的為提供一種包含磷光體之輻射轉換混合物及含有該輻射轉換混合物或該磷光體之光源及照明單元。In addition, the object of the present invention is to provide a method for preparing phosphors having the above-mentioned characteristics. In addition, the object of the present invention is to provide a radiation conversion mixture containing a phosphor, and a light source and lighting unit containing the radiation conversion mixture or the phosphor.

出人意料地,已發現藉由通式(I)化合物達成上文所描述之目的: [MI 4 MII 7 (AO4 )6 ]n (I), 其特徵在於通式(I)化合物摻雜有RE及Li或摻雜有RE, 其中以下各者適用於所用符號及指數: MI 係選自由Na、K、Rb、Cs及其兩者或兩者以上之混合物組成之群; MII 係選自由Mg、Ca、Sr、Ba、Cu、Zn及其兩者或兩者以上之混合物組成之群; A係選自由P、As、Sb、Bi、V、Nb、Ta及其兩者或兩者以上之混合物組成之群; RE係選自由Eu、Yb、Sm、Mn及其兩者或兩者以上之混合物組成之群; 0 < n ≤ 4。Unexpectedly, it has been found that the above-described object is achieved by the compound of general formula (I): [M I 4 M II 7 (AO 4 ) 6 ] n (I), which is characterized by doping with compound of general formula (I) With RE and Li or doped with RE, each of the following applies to the symbol and index used: M I is selected from the group consisting of Na, K, Rb, Cs and a mixture of two or more; M II Selected from the group consisting of Mg, Ca, Sr, Ba, Cu, Zn and a mixture of two or more; A is selected from P, As, Sb, Bi, V, Nb, Ta and two or both of them The group consisting of a mixture of more than one; RE is selected from the group consisting of Eu, Yb, Sm, Mn and a mixture of two or more thereof; 0 <n ≤ 4.

本發明之發明人已出人意料地發現,通式(I)化合物與RE及Li或有RE摻雜產生在發射最大值為約450 nm之藍色光譜範圍內發射、具有高光致發光量子產率且可在約250至約430 nm之紫外及紫色光譜範圍內有效地激發之發光材料。The inventors of the present invention have unexpectedly discovered that the compound of general formula (I) and RE and Li or RE doping produces emission in the blue spectral range with an emission maximum of about 450 nm, with high photoluminescence quantum yield and A luminescent material that can be effectively excited in the ultraviolet and violet spectrum of about 250 to about 430 nm.

根據本發明之化合物展現藍色光譜範圍內之有效光致發光且具有發射最大值約為450 nm、較佳在440與460 nm之間、更佳在445與455 nm之間的發射帶。在一較佳實施例中,通式(I)化合物具有發射最大值為約450 nm,更佳在440與460 nm之間,最佳在445與455 nm之間的單一發射帶。The compound according to the present invention exhibits effective photoluminescence in the blue spectral range and has an emission band with an emission maximum of about 450 nm, preferably between 440 and 460 nm, more preferably between 445 and 455 nm. In a preferred embodiment, the compound of formula (I) has a single emission band with an emission maximum of about 450 nm, more preferably between 440 and 460 nm, and most preferably between 445 and 455 nm.

由於小的斯托克位移,此等發射藍光磷光體可在UV範圍及紫色光譜範圍內激發。因此,化合物適合作為在近紫外中發射之LED中之發射藍光轉換器。Due to the small Stokes shift, these blue-emitting phosphors can be excited in the UV range and the violet spectral range. Therefore, the compound is suitable as a blue-emitting converter in an LED emitting in the near ultraviolet.

根據本發明之化合物通常可在約250至約430 nm,較佳約250至約405 nm之光譜範圍內激發,此時吸收最大值在250與325 nm之間,通常在約400至約550 nm之光譜範圍內發射,其中發射最大值在約450 nm之藍色光譜範圍內,較佳在440與460 nm之間的範圍內,更佳在445與455 nm之間的範圍內。另外,根據本發明之化合物展現高光致發光量子產率及高光譜純度且具有高熱淬滅溫度及高光化學穩定性。因此,其適用於製造發射藍光或發射白光之LED。The compounds according to the present invention can generally be excited in the spectral range of about 250 to about 430 nm, preferably about 250 to about 405 nm, when the absorption maximum is between 250 and 325 nm, usually about 400 to about 550 nm The emission maximum is in the blue spectral range of about 450 nm, preferably in the range between 440 and 460 nm, and more preferably in the range between 445 and 455 nm. In addition, the compound according to the present invention exhibits high photoluminescence quantum yield and high spectral purity, and has a high thermal quenching temperature and high photochemical stability. Therefore, it is suitable for manufacturing blue-emitting or white-emitting LEDs.

在本申請案之上下文中,紫外光表示發射最大值介於100與399 nm之間的光,紫色光表示發射最大值介於400與430 nm之間的光,藍色光表示發射最大值介於431與480 nm之間的光,青色光表示發射最大值介於481與510 nm之間的光,綠色光表示發射最大值介於511與565 nm之間的光,黃色光表示發射最大值介於566與575 nm之間的光,橙色光表示發射最大值介於576與600 nm之間的光及紅色光表示發射最大值介於601 nm與750 nm之間的光。In the context of this application, ultraviolet light means light with a maximum emission between 100 and 399 nm, purple light means light with a maximum emission between 400 and 430 nm, and blue light means light with a maximum emission between Light between 431 and 480 nm, cyan light represents light with a maximum emission between 481 and 510 nm, green light represents light with a maximum emission between 511 and 565 nm, and yellow light represents light with a maximum emission between 511 and 565 nm. For light between 566 and 575 nm, orange light represents light with an emission maximum between 576 and 600 nm, and red light represents light with an emission maximum between 601 nm and 750 nm.

在一較佳實施例中,通式(I)化合物由以下通式(II)表示: [MIa 3 MIb MII 7 (AO4 )6 ]n (II), 其中: MIa 係選自由Na、K、Rb及Cs組成之群; MIb 係選自由Na、K、Rb、Cs及其兩者或兩者以上混合物組成之群; 且其中對於通式(I)所指示之定義適用於所使用之其他符號及指數。In a preferred embodiment, the compound of general formula (I) is represented by the following general formula (II): [M Ia 3 M Ib M II 7 (AO 4 ) 6 ] n (II), where: M Ia is selected from The group consisting of Na, K, Rb, and Cs; M Ib is selected from the group consisting of Na, K, Rb, Cs and a mixture of two or more thereof; and the definition indicated for general formula (I) applies to Other symbols and indices used.

MIa 與MIb 較佳彼此不同。M Ia and M Ib are preferably different from each other.

在一更佳實施例中,通式(I)化合物由以下通式(Ia)及(Ib)表示: [MI 4-x MII 7-x (AO4 )6 :REx ,Lix ]n (Ia) [MI 4-2x MII 7 (AO4 )6 :REx ]n (Ib), 其中: 0 < x ≤ 1; 且其中對於通式(I)所指示之定義適用於所使用之其他符號及指數。In a more preferred embodiment, the compound of general formula (I) is represented by the following general formulas (Ia) and (Ib): [M I 4-x M II 7-x (AO 4 ) 6 : RE x , Li x ] n (Ia) [M I 4-2x M II 7 (AO 4 ) 6 :RE x ] n (Ib), where: 0 <x ≤ 1; and the definition indicated for general formula (I) applies to all Other symbols and indices used.

在一更佳實施例中,通式(II)化合物由以下通式(IIa)及(IIb)表示: [MIa 3-y MIb 1-z MII 7-x (AO4 )6 :REx ,Lix ]n (IIa) [MIa 3-2y MIb 1-2z MII 7 (AO4 )6 :REx ]n (IIb), 其中: 0 ≤ y ≤ 1;0 ≤ z ≤ 1;y + z = x;及 0 < x ≤ 1。In a more preferred embodiment, the compound of general formula (II) is represented by the following general formulas (IIa) and (IIb): [M Ia 3-y M Ib 1-z M II 7-x (AO 4 ) 6 : RE x ,Li x ] n (IIa) [M Ia 3-2y M Ib 1-2z M II 7 (AO 4 ) 6 :RE x ] n (IIb), where: 0 ≤ y ≤ 1; 0 ≤ z ≤ 1 ; Y + z = x; and 0 <x ≤ 1.

以下較佳地適用於通式(I)、(Ia)、(Ib)、(II)、(IIa)及(IIb)中之指數n:0 < n ≤ 3,更佳地0 < n ≤ 2。The following is preferably applicable to the exponent n in the general formulas (I), (Ia), (Ib), (II), (IIa) and (IIb): 0 <n ≤ 3, more preferably 0 < n ≤ 2 .

在一尤其較佳實施例中,通式(I)、(Ia)、(Ib)、(II)、(IIa)及(IIb)中之指數n係選自1、2及3之整數。In a particularly preferred embodiment, the index n in formulas (I), (Ia), (Ib), (II), (IIa) and (IIb) is an integer selected from 1, 2 and 3.

在一極尤其較佳實施例中,以下適用於通式(I)、(Ia)、(Ib)、(II)、(IIa)及(IIb)中之指數n:n=1。In a particularly preferred embodiment, the following applies to the exponent n in the general formulas (I), (Ia), (Ib), (II), (IIa) and (IIb): n=1.

在根據本發明之化合物中,MI 為單帶電陽離子(MI )+ 且MII 為雙帶電陽離子(MII )2+ 。A呈氧化態+V中之AV 形式,RE呈雙帶電陽離子RE2+ 形式,Li呈單帶電陽離子Li+ 形式且氧O呈氧化物(O2- )形式。根據本發明之化合物為摻雜有RE及Li或摻雜有RE之轉換材料,其中在摻雜有RE及Li之情況下電荷均衡經由一個RE及一個Li一起置換一個MI 及一個MII 發生,且在摻雜有RE之情況下電荷均衡經由一個RE置換兩個MI 發生。In the compound according to the present invention, M I is a single charged cation (M I ) + and M II is a double charged cation (M II ) 2+ . A form of the oxidation state + V A in the form of V, RE RE 2+ was double charged cations form, Li form singly charged cations Li + form and the oxygen O in an oxide (O 2-) form. The compound according to the present invention is a conversion material doped with RE and Li or doped with RE, where charge equalization occurs through the replacement of one M I and one M II with one RE and one Li in the case of doping with RE and Li and doped with a charge balancing via the RE RE case two permutation M I occurs.

以下較佳適用於本發明之通式(I)、(Ia)及(Ib)之化合物: MI 係選自由Na、K、Rb及Cs及其兩者或兩者以上之混合物組成之群; MII 為Mg,其可部分經Ca、Sr及/或Ba置換; A為P,其可部分由As、Sb、V、Nb及/或Ta置換;及 RE係選自由Eu、Yb、Sm、Mn及其兩者或兩者以上之混合物組成之群。The following are preferably applicable to the compounds of the general formulae (I), (Ia) and (Ib) of the present invention: M I is selected from the group consisting of Na, K, Rb and Cs, and mixtures of two or more thereof; M II is Mg, which can be partially replaced by Ca, Sr and/or Ba; A is P, which can be partially replaced by As, Sb, V, Nb, and/or Ta; and RE is selected from Eu, Yb, Sm, A group consisting of Mn and two or a mixture of two or more.

以下較佳適用於本發明之通式(II)、(IIa)及(IIb)之化合物: MIa 係選自由Na、K、Rb及Cs組成之群; MIb 係選自由Na、K、Rb及Cs及其兩者或兩者以上混合物組成之群; MII 為Mg,其可部分經Ca、Sr及/或Ba置換; A為P,其可部分由As、Sb、V、Nb及/或Ta置換;及 RE係選自由Eu、Yb、Sm、Mn及其兩者或兩者以上之混合物組成之群。The following are preferably applicable to the compounds of the general formulae (II), (IIa) and (IIb) of the present invention: M Ia is selected from the group consisting of Na, K, Rb and Cs; M Ib is selected from the group consisting of Na, K, Rb And Cs and a group consisting of two or more of them; M II is Mg, which may be partially replaced by Ca, Sr and/or Ba; A is P, which may be partially composed of As, Sb, V, Nb and/ Or Ta substitution; and RE is selected from the group consisting of Eu, Yb, Sm, Mn, and a mixture of two or more thereof.

尤其較佳通式(IIa)化合物為: Na3-y (K1-a-b Rba Csb )1-z Mg7-x (P1-c Asc O4 )6 :Eux ,Lix (IIIa), K3-y (Na1-a-b Rba Csb )1-z Mg7-x (P1-c Asc O4 )6 :Eux ,Lix (IVa), Rb3-y (Na1-a-b Ka Csb )1-z Mg7-x (P1-c Asc O4 )6 :Eux ,Lix (Va), Cs3-y (Na1-a-b Ka Rbb )1-z Mg7-x (P1-c Asc O4 )6 :Eux ,Lix (VIa), 其中: 0 ≤ a ≤ 1,較佳0.0 ≤ a ≤ 0.5; 0 ≤ b ≤ 1,較佳0.0 ≤ b ≤ 0.5; 0 ≤ a + b ≤ 1; 0 ≤ c ≤ 1,較佳0.0 ≤ c ≤ 0.5; 0 ≤ y ≤ 1;0 ≤ z ≤ 1;y + z = x;及 0 < x ≤ 1。Particularly preferred compounds of general formula (IIa) are: Na 3-y (K 1-ab Rb a Cs b ) 1-z Mg 7-x (P 1-c As c O 4 ) 6 :Eu x ,Li x ( IIIa), K 3-y (Na 1-ab Rb a Cs b ) 1-z Mg 7-x (P 1-c As c O 4 ) 6 : Eu x ,Li x (IVa), Rb 3-y ( Na 1-ab K a Cs b ) 1-z Mg 7-x (P 1-c As c O 4 ) 6 :Eu x ,Li x (Va), Cs 3-y (Na 1-ab K a Rb b ) 1-z Mg 7-x (P 1-c As c O 4 ) 6 : Eu x ,Li x (VIa), where: 0 ≤ a ≤ 1, preferably 0.0 ≤ a ≤ 0.5; 0 ≤ b ≤ 1 , Preferably 0.0 ≤ b ≤ 0.5; 0 ≤ a + b ≤ 1; 0 ≤ c ≤ 1, preferably 0.0 ≤ c ≤ 0.5; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1; y + z = x; and 0 <x ≤ 1.

在通式(IIIa)、(IVa)、(Va)及(VIa)中,較佳c=0或c=1。In the general formulae (IIIa), (IVa), (Va) and (VIa), preferably c=0 or c=1.

在通式(IIa)、(IIIa)、(IVa)、(Va)及(VIa)中,較佳y=x及z=0。In general formulas (IIa), (IIIa), (IVa), (Va) and (VIa), y=x and z=0 are preferred.

尤其較佳通式(IIb)化合物為: Na3-2y (K1-a-b Rba Csb )1-2z Mg7 (P1-c Asc O4 )6 :Eux (IIIb), K3-2y (Na1-a-b Rba Csb )1-2z Mg7 (P1-c Asc O4 )6 :Eux (IVb), Rb3-2y (Na1-a-b Ka Csb )1-2z Mg7 (P1-c Asc O4 )6 :Eux (Vb), Cs3-2y (Na1-a-b Ka Rbb )1-2z Mg7 (P1-c Asc O4 )6 :Eux (VIb), 其中: 0 ≤ a ≤ 1,較佳0.0 ≤ a ≤ 0.5; 0 ≤ b ≤ 1,較佳0.0 ≤ b ≤ 0.5; 0 ≤ a + b ≤ 1; 0 ≤ c ≤ 1,較佳0.0 ≤ c ≤ 0.5; 0 ≤ y ≤ 1;0 ≤ z ≤ 1;y + z = x;及 0 < x ≤ 1。Particularly preferred compounds of general formula (IIb) are: Na 3-2y (K 1-ab Rb a Cs b ) 1-2z Mg 7 (P 1-c As c O 4 ) 6 : Eu x (IIIb), K 3 -2y (Na 1-ab Rb a Cs b ) 1-2z Mg 7 (P 1-c As c O 4 ) 6 :Eu x (IVb), Rb 3-2y (Na 1-ab K a Cs b ) 1 -2z Mg 7 (P 1-c As c O 4 ) 6 :Eu x (Vb), Cs 3-2y (Na 1-ab K a Rb b ) 1-2z Mg 7 (P 1-c As c O 4 ) 6 : Eu x (VIb), where: 0 ≤ a ≤ 1, preferably 0.0 ≤ a ≤ 0.5; 0 ≤ b ≤ 1, preferably 0.0 ≤ b ≤ 0.5; 0 ≤ a + b ≤ 1; 0 ≤ c ≤ 1, preferably 0.0 ≤ c ≤ 0.5; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1; y + z = x; and 0 < x ≤ 1.

在通式(IIIb)、(IVb)、(Vb)及(VIb)中,較佳c=0或c=1。In the general formulae (IIIb), (IVb), (Vb) and (VIb), preferably c=0 or c=1.

在通式(IIb)、(IIIb)、(IVb)、(Vb)及(VIb)中,較佳y=z=x/2。In the general formulae (IIb), (IIIb), (IVb), (Vb) and (VIb), y=z=x/2 is preferred.

此外,以下較佳地適用於以上提及之通式中之參數x:0 < x < 1,更佳地0.0 < x ≤ 0.5,此外更佳地0.001 ≤ x ≤ 0.1,此外更佳地0.001 ≤ x ≤ 0.05且尤其較佳地0.001 ≤ x ≤ 0.04。In addition, the following preferably applies to the parameter x in the above-mentioned general formula: 0 <x <1, more preferably 0.0 <x ≤ 0.5, more preferably 0.001 ≤ x ≤ 0.1, and more preferably 0.001 ≤ x ≤ 0.05 and particularly preferably 0.001 ≤ x ≤ 0.04.

已發現摻雜有1% Eu2+ (x=0.03)之化合物在350 nm之激發波長下達成71%之量子效率。在摻雜有0.1% Eu2+ 之化合物(x=0.003)之情況下,量子效率提高至88%。It has been found that the compound doped with 1% Eu 2+ (x=0.03) achieves a quantum efficiency of 71% at an excitation wavelength of 350 nm. In the case of a compound doped with 0.1% Eu 2+ (x=0.003), the quantum efficiency is increased to 88%.

因此,下文極尤其較佳地適用於上文所提及之通式:0.001 ≤ x ≤ 0.005,更佳地0.002 ≤ x ≤ 0.004。Therefore, the following is particularly preferably applicable to the general formula mentioned above: 0.001 ≤ x ≤ 0.005, more preferably 0.002 ≤ x ≤ 0.004.

根據本發明之化合物可較佳在其表面上塗佈有另一種化合物,如下所述。The compound according to the present invention may preferably be coated with another compound on its surface, as described below.

本發明此外係關於一種製備根據本發明之上文所提及通式之化合物的方法,其包含以下步驟: a)      製備包含MI 、MII 、AO4 、RE及視情況選用之Li之混合物;及 b)     煅燒所製備之混合物。The present invention further relates to a method for preparing a compound of the above-mentioned general formula according to the present invention, which comprises the following steps: a) preparing a mixture containing M I , M II , AO 4 , RE and optionally Li ; And b) The mixture prepared by calcination.

製備步驟a)中之混合物係藉由混合含有MI 、MII 、AO4 、RE及視情況存在之Li之鹽來進行。可添加步驟a)中之個別鹽且以任何所需順序混合。步驟b)中製備之混合物較佳包含呈由通式I預先指定之混合比率之MI 、MII 、AO4 、RE及視情況選用之Li。The mixture in the preparation step a) is carried out by mixing a salt containing M I , M II , AO 4 , RE and optionally Li. The individual salts in step a) can be added and mixed in any desired order. The mixture prepared in step b) preferably includes M I , M II , AO 4 , RE in the mixing ratios pre-specified by the general formula I, and optionally Li.

含有MI 之較佳鹽為碳酸鹽MI 2 CO3 ,諸如Na2 CO3 、K2 CO3 、Rb2 CO3 及Cs2 CO3 ;草酸鹽MI 2 C2 O4 ,諸如Na2 C2 O4 、K2 C2 O4 、Rb2 C2 O4 及Cs2 C2 O4 ;氧化物MI 2 O,諸如Na2 O、K2 O、Rb2 O及Cs2 O;氫氧化物MI OH,諸如NaOH、KOH、RbOH及CsOH;MI 磷酸鹽,諸如NaH2 PO4 、Na2 HPO4 、Na3 PO4 、Na4 P2 O7 、Na5 P3 O10 及Na2 P4 O11 、KH2 PO4 、K2 HPO4 、K3 PO4 、K4 P2 O7 、K5 P3 O10 及K2 P4 O11 、RbH2 PO4 、Rb2 HPO4 、Rb3 PO4 、Rb4 P2 O7 、Rb5 P3 O10 及Rb2 P4 O11 、CsH2 PO4 、Cs2 HPO4 、Cs3 PO4 、Cs4 P2 O7 、Cs5 P3 O10 及Cs2 P4 O11 ;及硝酸鹽MI NO3 ,諸如NaNO3 、KNO3 、RbNO3 及CsNO3Preferred salts containing M I are carbonate M I 2 CO 3 , such as Na 2 CO 3 , K 2 CO 3 , Rb 2 CO 3 and Cs 2 CO 3 ; oxalate M I 2 C 2 O 4 , such as Na 2 C 2 O 4 , K 2 C 2 O 4 , Rb 2 C 2 O 4 and Cs 2 C 2 O 4 ; oxides M I 2 O, such as Na 2 O, K 2 O, Rb 2 O and Cs 2 O ; Hydroxide M I OH, such as NaOH, KOH, RbOH and CsOH; M I phosphate, such as NaH 2 PO 4 , Na 2 HPO 4 , Na 3 PO 4 , Na 4 P 2 O 7 , Na 5 P 3 O 10 and Na 2 P 4 O 11 , KH 2 PO 4 , K 2 HPO 4 , K 3 PO 4 , K 4 P 2 O 7 , K 5 P 3 O 10 and K 2 P 4 O 11 , RbH 2 PO 4 , Rb 2 HPO 4 , Rb 3 PO 4 , Rb 4 P 2 O 7 , Rb 5 P 3 O 10 and Rb 2 P 4 O 11 , CsH 2 PO 4 , Cs 2 HPO 4 , Cs 3 PO 4 , Cs 4 P 2 O 7 , Cs 5 P 3 O 10 and Cs 2 P 4 O 11 ; and nitrate M I NO 3 , such as NaNO 3 , KNO 3 , RbNO 3 and CsNO 3 .

含有MII 之較佳鹽為碳酸鹽MII CO3 ,諸如MgCO3 、CaCO3 、SrCO3 、BaCO3 、CuCO3 及ZnCO3 ;混合碳酸鹽/氫氧化物化合物MII CO3 ·MII (OH)2 ·xH2 O,諸如MgCO3 ·Mg(OH)2 ·5H2 O、CaCO3 ·Ca(OH)2 ·5H2 O、SrCO3 ·Sr(OH)2 ·5H2 O、BaCO3 ·Ba(OH)2 ·5H2 O、CuCO3 ·Cu(OH)2 ·5H2 O及ZnCO3 ·Zn(OH)2 ·5H2 O;草酸鹽MII C2 O4 ,諸如MgC2 O4 、CaC2 O4 、SrC2 O4 、BaC2 O4 、CuC2 O4 及ZnC2 O4 ;氧化物MII O,諸如MgO、CaO、SrO、BaO、CuO及ZnO;氫氧化物MII (OH)2 ,諸如Mg(OH)2 、Ca(OH)2 、Sr(OH)2 、Ba(OH)2 、Cu(OH)2 及Zn(OH)2 ;硝酸鹽MII (NO3 )2 ,諸如Mg(NO3 )2 、Ca(NO3 )2 、Sr(NO3 )2 、Ba(NO3 )2 、Cu(NO3 )2 及Zn(NO3 )2 ;MII 磷酸鹽,諸如Mg(H2 PO4 )2 、MgHPO4 、Mg3 (PO4 )2 、Mg2 P2 O7 、Mg2 P4 O12 及MgP4 O11 ;及MII 羧酸鹽化合物,諸如檸檬酸鹽、乳酸鹽及抗壞血酸鹽。The preferred salt is a carbonate containing M II M II CO 3, such as MgCO 3, CaCO 3, SrCO 3 , BaCO 3, CuCO 3 and ZnCO 3; mixed carbonate / hydroxide compound M II CO 3 · M II ( OH) 2 ·xH 2 O, such as MgCO 3 ·Mg(OH) 2 ·5H 2 O, CaCO 3 ·Ca(OH) 2 ·5H 2 O, SrCO 3 ·Sr(OH) 2 ·5H 2 O, BaCO 3 ·Ba(OH) 2 ·5H 2 O, CuCO 3 ·Cu(OH) 2 ·5H 2 O and ZnCO 3 ·Zn(OH) 2 ·5H 2 O; oxalate M II C 2 O 4 , such as MgC 2 O 4 , CaC 2 O 4 , SrC 2 O 4 , BaC 2 O 4 , CuC 2 O 4 and ZnC 2 O 4 ; oxide M II O, such as MgO, CaO, SrO, BaO, CuO and ZnO; hydroxide M II (OH) 2 , such as Mg(OH) 2 , Ca(OH) 2 , Sr(OH) 2 , Ba(OH) 2 , Cu(OH) 2 and Zn(OH) 2 ; nitrate M II (NO 3 ) 2 , such as Mg(NO 3 ) 2 , Ca(NO 3 ) 2 , Sr(NO 3 ) 2 , Ba(NO 3 ) 2 , Cu(NO 3 ) 2 and Zn(NO 3 ) 2 ; M II phosphoric acid Salts, such as Mg(H 2 PO 4 ) 2 , MgHPO 4 , Mg 3 (PO 4 ) 2 , Mg 2 P 2 O 7 , Mg 2 P 4 O 12 and MgP 4 O 11 ; and M II carboxylate compounds, Such as citrate, lactate and ascorbate.

含有AO4 之較佳鹽係銨鹽(NH4 )3 AO4 ,諸如(NH4 )3 PO4 、(NH4 )3 AsO4 、(NH4 )3 SbO4 、(NH4 )3 VO4 及(NH4 )3 NbO4 ;氫銨鹽(NH4 )2 HAO4 ,諸如(NH4 )2 HPO4 、(NH4 )2 HAsO4 、(NH4 )2 HSbO4 、(NH4 )2 HVO4 及(NH4 )2 HNbO4 ;及二氫銨鹽(NH4 )H2 AO4 ,諸如(NH4 )H2 PO4 、(NH4 )H2 AsO4 、(NH4 )H2 SbO4 、(NH4 )H2 VO4 及(NH4 )2 HNbO4The preferred salt series ammonium salt (NH 4 ) 3 AO 4 containing AO 4 , such as (NH 4 ) 3 PO 4 , (NH 4 ) 3 AsO 4 , (NH 4 ) 3 SbO 4 , (NH 4 ) 3 VO 4 And (NH 4 ) 3 NbO 4 ; Hydrogen ammonium salt (NH 4 ) 2 HAO 4 , such as (NH 4 ) 2 HPO 4 , (NH 4 ) 2 HAsO 4 , (NH 4 ) 2 HSbO 4 , (NH 4 ) 2 HVO 4 and (NH 4 ) 2 HNbO 4 ; and dihydroammonium salt (NH 4 )H 2 AO 4 , such as (NH 4 )H 2 PO 4 , (NH 4 )H 2 AsO 4 , (NH 4 )H 2 SbO 4 , (NH 4 )H 2 VO 4 and (NH 4 ) 2 HNbO 4 .

含有RE之較佳鹽為EuO、YbO、SmO、Eu2 O3 、Yb2 O3 、Sm2 O3 、MnO2 、MnCO3 及MnC2 O4 ·2H2 O。The preferred salts containing RE are EuO, YbO, SmO, Eu 2 O 3 , Yb 2 O 3 , Sm 2 O 3 , MnO 2 , MnCO 3 and MnC 2 O 4 ·2H 2 O.

含有Li之較佳鹽為Li2 CO3 、Li2 C2 O4 、Li2 O、LiOH及LiNO3The preferred salts containing Li are Li 2 CO 3 , Li 2 C 2 O 4 , Li 2 O, LiOH and LiNO 3 .

混合物之製備可在-10與100℃之間、較佳0與50℃之間、更佳10與40℃之間且最佳15與30℃之間的溫度下進行。The preparation of the mixture can be carried out at a temperature between -10 and 100°C, preferably between 0 and 50°C, more preferably between 10 and 40°C, and most preferably between 15 and 30°C.

在步驟a)中,含有MI 、MII 、AO4 、RE及Li之鹽較佳懸浮於非極性或極性非質子溶劑中且彼此混合至乾燥。此可較佳藉助於超音波浴及/或瑪瑙研缽進行。In step a), the salt containing M I , M II , AO 4 , RE and Li is preferably suspended in a non-polar or polar aprotic solvent and mixed with each other until dry. This can preferably be done by means of an ultrasonic bath and/or an agate mortar.

適合之非極性或極性非質子溶劑為例如脂族或芳族烴,諸如戊烷、己烷、庚烷、辛烷、苯及甲苯;鹵化烴,諸如三氯甲烷及CCl4 ;以及丙酮及乙腈。Suitable non-polar or polar aprotic solvents are, for example, aliphatic or aromatic hydrocarbons such as pentane, hexane, heptane, octane, benzene and toluene; halogenated hydrocarbons such as trichloromethane and CCl 4 ; and acetone and acetonitrile .

步驟b)中所製備之混合物之煅燒較佳在還原條件下進行。此處之反應通常在高於800℃之溫度下進行,較佳在850與1100℃之間的範圍內。還原條件較佳藉由還原氛圍來達成,在其中煅燒混合物。因此較佳地,步驟b)中之煅燒在一氧化碳、氮氣、氫氣及/或合成氣體存在下及/或在真空中進行。尤其較佳地建立還原氮氣/氫氣氛圍,諸如5至70% N2 及95至30% H2 ,或例如70至95% N2 及30至5% H2 。極尤其較佳為包含70% H2 及30% N2 或包含90% N2 及10% H2 之還原氮氣/氫氣氛圍。The calcination of the mixture prepared in step b) is preferably carried out under reducing conditions. The reaction here is usually carried out at a temperature higher than 800°C, preferably in the range between 850 and 1100°C. The reduction conditions are preferably achieved by a reducing atmosphere in which the mixture is calcined. Therefore, preferably, the calcination in step b) is carried out in the presence of carbon monoxide, nitrogen, hydrogen and/or synthesis gas and/or in a vacuum. It is particularly preferable to establish a reducing nitrogen/hydrogen atmosphere, such as 5 to 70% N 2 and 95 to 30% H 2 , or, for example, 70 to 95% N 2 and 30 to 5% H 2 . Very particularly preferred is a reducing nitrogen/hydrogen atmosphere containing 70% H 2 and 30% N 2 or containing 90% N 2 and 10% H 2 .

步驟b)中所製備之混合物之煅燒較佳在0.1至24 h、更佳4至20 h、同樣更佳6至14 h且最佳10至14 h之時段內進行。The calcination of the mixture prepared in step b) is preferably carried out within a period of 0.1 to 24 h, more preferably 4 to 20 h, also more preferably 6 to 14 h, and most preferably 10 to 14 h.

在步驟b)中之煅燒之後,獲得作為發光材料之本發明之所需化合物。After the calcination in step b), the desired compound of the present invention as a luminescent material is obtained.

在另一實施例中,本發明化合物可經塗佈。均適合於此目的為來自先前技術之熟習此項技術者已知的且用於磷光體的所有塗佈方法。詳言之,用於塗層之適合材料為非晶碳(類金剛石碳(diamond-like carbon,DLC))、金屬氧化物、金屬氟化物及金屬氮化物,尤其諸如Al2 O3 之鹼土金屬氧化物、諸如CaF2 之鹼土金屬氟化物及諸如AlN之鹼土金屬氮化物,以及SiO2 。此處塗佈可例如藉由流化床方法或濕式化學方法進行。適合之塗佈方法為例如自JP 04-304290、WO 91/10715、WO 99/27033、US 2007/0298250、WO 2009/065480及WO 2010/075908已知,該等方法以引用之方式併入本文中。塗佈之目標一方面為化合物例如對空氣或濕氣之更高穩定性。然而,目標亦可為經由適當選擇塗佈表面及塗佈材料之折射率來改良光之耦合進出。In another embodiment, the compounds of the invention may be coated. All suitable for this purpose are all coating methods for phosphors known to those skilled in the art from the prior art. In detail, suitable materials for coating are amorphous carbon (diamond-like carbon (DLC)), metal oxides, metal fluorides and metal nitrides, especially alkaline earth metals such as Al 2 O 3 Oxides, alkaline earth metal fluorides such as CaF 2 and alkaline earth metal nitrides such as AlN, and SiO 2 . The coating here can be carried out, for example, by a fluidized bed method or a wet chemical method. Suitable coating methods are, for example, known from JP 04-304290, WO 91/10715, WO 99/27033, US 2007/0298250, WO 2009/065480 and WO 2010/075908, and these methods are incorporated herein by reference. in. On the one hand, the goal of coating is the higher stability of the compound, such as air or moisture. However, the goal can also be to improve the coupling of light in and out by appropriately selecting the coating surface and the refractive index of the coating material.

本發明此外另外係關於根據本發明之化合物作為磷光體或轉換磷光體之用途,尤其用於將UV光及/或紫色光部分或完全轉換成更低能量光,亦即具有更長波長的光。尤其較佳的為根據本發明之化合物作為磷光體或轉換磷光體之用途,其用於將在約250至430 nm之UV及紫色光譜範圍內之光部分或完全轉換成具有更長波長之光。The present invention further relates to the use of the compounds according to the present invention as phosphors or conversion phosphors, especially for partially or completely converting UV light and/or violet light into lower energy light, that is, light with longer wavelength . Particularly preferred is the use of the compounds according to the present invention as phosphors or conversion phosphors for partially or completely converting light in the UV and violet spectral range of about 250 to 430 nm into light with longer wavelengths .

因此根據本發明之化合物亦稱為磷光體。Therefore, the compounds according to the present invention are also called phosphors.

本發明進一步係關於一種包含根據本發明之化合物的輻射轉換混合物。輻射轉換混合物可由一或多種根據本發明之化合物組成且因此將等效於上文所定義之術語「磷光體」或「轉換磷光體」。The invention further relates to a radiation conversion mixture comprising a compound according to the invention. The radiation conversion mixture can be composed of one or more compounds according to the present invention and will therefore be equivalent to the term "phosphor" or "conversion phosphor" as defined above.

除根據本發明之一種化合物以外,輻射轉換混合物較佳包含一或多種其他發光材料。較佳其他發光材料為與根據本發明之化合物不同之轉換磷光體,或半導體奈米粒子(量子材料)。In addition to a compound according to the invention, the radiation conversion mixture preferably contains one or more other luminescent materials. Preferably, the other luminescent material is a conversion phosphor different from the compound according to the present invention, or a semiconductor nanoparticle (quantum material).

在一尤其較佳實施例中,輻射轉換混合物包含根據本發明之化合物及另一轉換磷光體。根據本發明之化合物及另一轉換磷光體各自發射互補波長之光係極尤其較佳的。In a particularly preferred embodiment, the radiation conversion mixture comprises a compound according to the invention and another conversion phosphor. The compound according to the present invention and another conversion phosphor each emit a complementary wavelength light system extremely particularly preferred.

在一替代性尤其較佳實施例中,輻射轉換混合物包含根據本發明之化合物及量子材料。根據本發明之化合物及量子材料各自發射互補波長之光係極尤其較佳的。In an alternative particularly preferred embodiment, the radiation conversion mixture comprises a compound according to the invention and a quantum material. The compound and quantum material according to the present invention each emit light of complementary wavelengths, which are extremely preferred.

在另一替代性尤其較佳實施例中,輻射轉換混合物包含根據本發明之化合物、轉換磷光體及量子材料。In another alternative particularly preferred embodiment, the radiation conversion mixture comprises a compound according to the invention, a conversion phosphor and a quantum material.

若根據本發明之化合物以少量採用,則其已產生良好LED品質。此處藉助於習知參數描述LED品質,諸如顯色指數(colour rendering index,CRI)、相關色溫(correlated colour temperature,CCT)、流明當量或絕對流明,或CIE x及y座標中之色點。If the compound according to the present invention is used in small amounts, it already produces good LED quality. Here, the LED quality is described with the help of conventional parameters, such as color rendering index (CRI), correlated color temperature (CCT), lumen equivalent or absolute lumen, or the color point in the CIE x and y coordinates.

顯色指數(CRI)為熟悉此項技術者所熟悉的無因次測光量,其將人工光源之色彩再現忠實性與日光或燈絲光源(後兩者CRI為100)之色彩再現忠實性進行比較。Color Rendering Index (CRI) is a dimensionless light measurement that is familiar to those familiar with this technology. It compares the faithfulness of color reproduction of artificial light sources with that of daylight or filament light sources (the latter two have a CRI of 100). .

相關色溫(CCT)為熟習此項技術者所熟悉的測光量,單位為克耳文(kelvin)。數值愈高,光之藍色含量愈大,且對觀測者呈現之來自人工輻射源的白光愈冷。CCT遵循黑體輻射器之概念,其色溫描述CIE圖中所謂的普朗克曲線(Planck curve)。Correlated Color Temperature (CCT) is a light metering quantity familiar to those who are familiar with this technology, and the unit is kelvin. The higher the value, the greater the blue content of the light, and the colder the white light from the artificial radiation source presented to the observer. CCT follows the concept of blackbody radiator, and its color temperature describes the so-called Planck curve in the CIE diagram.

流明當量為熟習此項技術者所熟悉的測光量,單位為lm/W,其描述在特定輻射量測輻射功率(單位為瓦特(watt))下光源之測光光通量(單位為流明)之量值。流明當量愈高,光源愈有效。Lumen equivalent is the light metering quantity familiar to those who are familiar with this technology, the unit is lm/W, which describes the measurement value of the light source's metering luminous flux (unit: lumens) under a specific radiation measurement radiation power (unit: watt) . The higher the lumen equivalent, the more effective the light source.

單位為流明之光通量為熟習此項技術者所熟悉之測光量,其描述光源之光通量,該光通量為由輻射源發射之總可見光輻射之量度。光通量愈大,對觀測者呈現之光源愈亮。The unit of luminous flux in lumens is the amount of light that is familiar to those familiar with this technology, which describes the luminous flux of a light source, which is a measure of the total visible light radiation emitted by the radiation source. The greater the luminous flux, the brighter the light source presented to the observer.

CIE x及CIE y表示為熟習此項技術者所熟悉的標準CIE色彩圖(此處標準觀測者1931)中之座標,藉助於其描述光源之色彩。CIE x and CIE y represent the coordinates in the standard CIE color chart (here, standard observer 1931) familiar to those who are familiar with the technology, and describe the color of the light source by means of them.

上述所有量均可使用熟習此項技術者已知的方法由光源之發射光譜計算。All the above quantities can be calculated from the emission spectrum of the light source using methods known to those skilled in the art.

根據本發明之磷光體的可激發性在廣泛範圍上延伸,其自約250延伸至約430 nm,較佳自約250延伸至約405 nm,其中吸收最大值在250與325 nm之間。The excitability of the phosphor according to the present invention extends over a wide range, which extends from about 250 to about 430 nm, preferably from about 250 to about 405 nm, where the absorption maximum is between 250 and 325 nm.

本發明進一步係關於一種光源,其含有至少一種一次光源及至少一種根據本發明之化合物或根據本發明之輻射轉換混合物。此處一次光源之發射最大值較佳在約250至約430 nm範圍內,較佳在約250至約405 nm範圍內,其中主輻射藉由根據本發明之磷光體部分或完全轉換成具有更長波長之輻射。The invention further relates to a light source comprising at least one primary light source and at least one compound according to the invention or a radiation conversion mixture according to the invention. Here, the maximum emission of the primary light source is preferably in the range of about 250 to about 430 nm, preferably in the range of about 250 to about 405 nm, wherein the main radiation is partially or completely converted by the phosphor according to the present invention to have more Long-wavelength radiation.

在根據本發明之光源的一較佳實施例中,一次光源包含發光氮化銦鋁鎵,尤其式Ini Gaj Alk N,其中0 ≤ i、0 ≤ j、0 ≤ k及i + j + k = 1。In a preferred embodiment of the light source according to the present invention, the primary light source comprises luminescent indium aluminum gallium nitride, especially the formula In i Ga j Al k N, where 0 ≤ i, 0 ≤ j, 0 ≤ k, and i + j + K = 1.

此類型之光源之可能形式為熟習此項技術者已知。此等可為各種結構之發光LED晶片。The possible forms of this type of light source are known to those familiar with the art. These can be light-emitting LED chips of various structures.

在根據本發明之光源的另一較佳實施例中,一次光源為基於ZnO、TCO (透明傳導氧化物(transparent conducting oxide))、ZnSe或SiC之發光配置或基於有機發光層(organic light-emitting layer,OLED)之配置。In another preferred embodiment of the light source according to the present invention, the primary light source is a light-emitting configuration based on ZnO, TCO (transparent conducting oxide), ZnSe or SiC or based on an organic light-emitting layer (organic light-emitting layer). layer, OLED) configuration.

在根據本發明之光源的另一較佳實施例中,一次光源為呈現電致發光及/或光致發光之源。一次光源亦可另外為電漿源或放電源。In another preferred embodiment of the light source according to the present invention, the primary light source is a source that exhibits electroluminescence and/or photoluminescence. The primary light source can also be a plasma source or discharge source.

根據本發明之對應光源亦稱為發光二極體或LED。根據本發明之光源可用於信號傳導、照明、背光、投影、裝飾或用於光化學目的。The corresponding light source according to the present invention is also called a light emitting diode or LED. The light source according to the present invention can be used for signal transmission, lighting, backlighting, projection, decoration or for photochemical purposes.

根據本發明之化合物可單獨地採用或作為與熟習此項技術者所熟悉的適合其他發光材料的混合物採用。原則上適用於混合物之對應其他發光材料為轉換磷光體或量子材料。The compound according to the present invention can be used alone or as a mixture with other luminescent materials familiar to those skilled in the art. In principle, the corresponding other luminescent materials applicable to the mixture are conversion phosphors or quantum materials.

特定言之,當根據本發明之化合物與其他螢光色彩之其他發光材料混合或與此類其他發光材料一起用於LED中時展現優勢。In particular, the compound according to the present invention exhibits advantages when mixed with other luminescent materials of other fluorescent colors or used with such other luminescent materials in LEDs.

尤其較佳為除根據本發明之化合物以外包含一或多種其他發光材料之混合物,該等發光材料在480與700 nm之間發射以便獲得白光LED。It is particularly preferred to include a mixture of one or more other luminescent materials in addition to the compound according to the present invention, which luminescent materials emit between 480 and 700 nm in order to obtain a white LED.

在另一較佳實施例中,根據本發明之化合物用作單一磷光體。根據本發明之化合物在用作單一磷光體時亦呈現極佳結果,此係因為具有高藍色含量之寬發射光譜。In another preferred embodiment, the compound according to the invention is used as a single phosphor. The compound according to the present invention also exhibits excellent results when used as a single phosphor because of the broad emission spectrum with high blue content.

可與根據本發明之化合物一起使用且因此形成根據本發明之輻射轉換混合物的轉換磷光體不經受任何特定限制。因此,一般有可能使用任何可能的轉換磷光體。詳言之,此處適合的為:Ba2 SiO4 :Eu2+ 、Ba3 SiO5 :Eu2+ 、(Ba,Ca)3 SiO5 :Eu2+ 、BaSi2 N2 O2 :Eu、BaSi2 O5 :Pb2+ 、Ba3 Si6 O12 N2 :Eu、Bax Sr1-x F2 :Eu2+ (其中0 ≤ x ≤ 1)、BaSrMgSi2 O7 :Eu2+ 、BaTiP2 O7 、(Ba,Ti)2 P2 O7 :Ti、BaY2 F8 :Er3+ ,Yb+ 、Be2 SiO4 :Mn2+ 、Bi4 Ge3 O12 、CaAl2 O4 :Ce3+ 、CaLa4 O7 :Ce3+ 、CaAl2 O4 :Eu2+ 、CaAl2 O4 :Mn2+ 、CaAl4 O7 :Pb2+ ,Mn2+ 、CaAl2 O4 :Tb3+ 、Ca3 Al2 Si3 O12 :Ce3+ 、Ca3 Al2 Si3 O12 :Ce3+ 、Ca3 Al2 Si3 O12 :Eu2+ 、Ca2 B5 O9 Br:Eu2+ 、Ca2 B5 O9 Cl:Eu2+ 、Ca2 B5 O9 Cl:Pb2+ 、CaB2 O4 :Mn2+ 、Ca2 B2 O5 :Mn2+ 、CaB2 O4 :Pb2+ 、CaB2 P2 O9 :Eu2+ 、Ca5 B2 SiO10 :Eu3+ 、Ca0.5 Ba0.5 Al12 O19 :Ce3+ ,Mn2+ 、Ca2 Ba3 (PO4 )3 Cl:Eu2+ 、含CaBr2 :Eu2+ 之SiO2 、含CaCl2 :Eu2+ 之SiO2 、含CaCl2 :Eu2+ ,Mn2+ 之SiO2 、CaF2 :Ce3+ 、CaF2 :Ce3+ ,Mn2+ 、CaF2 :Ce3+ , Tb3+ 、CaF2 :Eu2+ 、CaF2 :Mn2+ 、CaGa2 O4 :Mn2+ 、CaGa4 O7 :Mn2+ 、CaGa2 S4 :Ce3+ 、CaGa2 S4 :Eu2+ 、CaGa2 S4 :Mn2+ 、CaGa2 S4 :Pb2+ 、CaGeO3 :Mn2+ 、含CaI2 :Eu2+ 之SiO2 、 含CaI2 :Eu2+ ,Mn2+ 之SiO2 、CaLaBO4 :Eu3+ 、CaLaB3 O7 :Ce3+ ,Mn2+ 、Ca2 La2 BO6.5 :Pb2+ 、Ca2 MgSi2 O7 、Ca2 MgSi2 O7 :Ce3+ 、CaMgSi2 O6 :Eu2+ 、Ca3 MgSi2 O8 :Eu2+ 、Ca2 MgSi2 O7 :Eu2+ 、CaMgSi2 O6 :Eu2+ ,Mn2+ 、Ca2 MgSi2 O7 :Eu2+ ,Mn2+ 、CaMoO4 、CaMoO4 :Eu3+ 、CaO:Bi3+ 、CaO:Cd2+ 、CaO:Cu+ 、CaO:Eu3+ 、CaO:Eu3+ ,Na+ 、CaO:Mn2+ 、CaO:Pb2+ 、CaO:Sb3+ 、CaO:Sm3+ 、CaO:Tb3+ 、CaO:Tl、CaO:Zn2+ 、Ca2 P2 O7 :Ce3+ 、α-Ca3 (PO4 )2 :Ce3+ 、β-Ca3 (PO4 )2 :Ce3+ 、Ca5 (PO4 )3 Cl:Eu2+ 、Ca5 (PO4 )3 Cl:Mn2+ 、Ca5 (PO4 )3 Cl:Sb3+ 、Ca5 (PO4 )3 Cl:Sn2+ 、β-Ca3 (PO4 )2 :Eu2+ ,Mn2+ 、Ca5 (PO4 )3 F:Mn2+ 、Ca5 (PO4 )3 F:Sb3+ 、Ca5 (PO4 )3 F:Sn2+ 、α-Ca3 (PO4 )2 :Eu2+ 、β-Ca3 (PO4 )2 :Eu2+ 、Ca2 P2 O7 :Eu2+ 、Ca2 P2 O7 :Eu2+ ,Mn2+ 、CaP2 O6 :Mn2+ 、α-Ca3 (PO4 )2 :Pb2+ 、α-Ca3 (PO4 )2 :Sn2+ 、β-Ca3 (PO4 )2 :Sn2+ 、β-Ca2 P2 O7 :Sn,Mn、α-Ca3 (PO4 )2 :Tr、CaS:Bi3+ 、CaS:Bi3+ ,Na、CaS:Ce3+ 、CaS:Eu2+ 、CaS:Cu+ ,Na+ 、CaS:La3+ 、CaS:Mn2+ 、CaSO4 :Bi、CaSO4 :Ce3+ 、CaSO4 :Ce3+ ,Mn2+ 、CaSO4 :Eu2+ 、CaSO4 :Eu2+ ,Mn2+ 、CaSO4 :Pb2+ 、CaS:Pb2+ 、CaS:Pb2+ ,Cl、CaS:Pb2+ ,Mn2+ 、CaS:Pr3+ ,Pb2+ ,Cl、CaS:Sb3+ 、CaS:Sb3+ ,Na、CaS:Sm3+ 、CaS:Sn2+ 、CaS:Sn2+ ,F、CaS:Tb3+ 、CaS:Tb3+ ,Cl、CaS:Y3+ 、CaS:Yb2+ 、CaS:Yb2+ ,Cl、CaSc2 O4 :Ce、Ca3 (Sc,Mg)2 Si3 O12 :Ce、CaSiO3 :Ce3+ 、Ca3 SiO4 Cl2 :Eu2+ 、Ca3 SiO4 Cl2 :Pb2+ 、CaSiO3 :Eu2+ 、Ca3 SiO5 :Eu2+ 、(Ca,Sr)3 SiO5 :Eu2+ 、(Ca,Sr)3 MgSi2 O8 :Eu2+ 、(Ca,Sr)3 MgSi2 O8 :Eu2+ ,Mn2+ 、CaSiO3 :Mn2+ ,Pb、CaSiO3 :Pb2+ 、CaSiO3 :Pb2+ ,Mn2+ 、CaSiO3 :Ti4+ 、CaSr2 (PO4 )2 :Bi3+ 、β-(Ca,Sr)3 (PO4 )2 :Sn2+ Mn2+ 、CaTi0.9 Al0.1 O3 :Bi3+ 、CaTiO3 :Eu3+ 、CaTiO3 :Pr3+ 、Ca5 (VO4 )3 Cl、CaWO4 、CaWO4 :Pb2+ 、CaWO4 :W、Ca3 WO6 :U、CaYAlO4 :Eu3+ 、CaYBO4 :Bi3+ 、CaYBO4 :Eu3+ 、CaYB0 .8 O37 :Eu3+ 、CaY2 ZrO6 :Eu3+ 、(Ca,Zn,Mg)3 (PO4 )2 :Sn、(Ce,Mg)BaAl11 O18 :Ce、(Ce,Mg)SrAl11 O18 :Ce、CeMgAl11 O19 :Ce:Tb、Cd2 B6 O11 :Mn2+ 、CdS:Ag+ ,Cr、CdS:In、CdS:In、CdS:In、Te、CdS:Te、CdWO4 、CsF、Csl、CsI:Na+ 、CsI:Tl、(ErCl3 )0.25 (BaCl2 )0 .75 、GaN:Zn、Gd3 Ga5 O12 :Cr3+ 、Gd3 Ga5 O12 :Cr,Ce、GdNbO4 :Bi3+ 、Gd2 O2 S:Eu3+ 、Gd2 O2 Pr3+ 、Gd2 O2 S:Pr,Ce,F、Gd2 O2 S:Tb3+ 、Gd2 SiO5 :Ce3+ 、KAI11 O17 :Tl+ 、KGa11 O17 :Mn2+ 、K2 La2 Ti3 O10 :Eu、KMgF3 :Eu2+ 、KMgF3 :Mn2+ 、K2 SiF6 :Mn4+ 、LaAl3 B4 O12 :Eu3+ 、LaAlB2 O6 :Eu3+ 、LaAlO3 :Eu3+ 、LaAlO3 :Sm3+ 、LaAsO4 :Eu3+ 、LaBr3 :Ce3+ 、LaBO3 :Eu3+ 、LaCl3 :Ce3+ 、La2 O3 :Bi3+ 、LaOBr:Tb3+ 、LaOBr:Tm3+ 、LaOCl:Bi3+ 、LaOCl:Eu3+ 、LaOF:Eu3+ 、La2 O3 :Eu3+ 、La2 O3 :Pr3+ 、La2 O2 S:Tb3+ 、LaPO4 :Ce3+ 、LaPO4 :Eu3+ 、LaSiO3 Cl:Ce3+ 、LaSiO3 Cl:Ce3+ ,Tb3+ 、LaVO4 :Eu3+ 、La2 W3 O12 :Eu3+ 、LiAlF4 :Mn2+ 、LiAl5 O8 :Fe3+ 、LiAlO2 :Fe3+ 、LiAlO2 :Mn2+ 、LiAl5 O8 :Mn2+ 、Li2 CaP2 O7 :Ce3+ ,Mn2+ 、LiCeBa4 Si4 O14 :Mn2+ 、LiCeSrBa3 Si4 O14 :Mn2+ 、LiInO2 :Eu3+ 、LiInO2 :Sm3+ 、LiLaO2 :Eu3+ 、LuAlO3 :Ce3+ 、(Lu,Gd)2 SiO5 :Ce3+ 、Lu2 SiO5 :Ce3+ 、Lu2 Si2 O7 :Ce3+ 、LuTaO4 :Nb5+ 、 Lu1-x Yx AlO3 :Ce3+ (其中0 ≤ x ≤ 1)、(Lu,Y)3 (Al,Ga,Sc)5 O12 :Ce、MgAl2 O4 :Mn2+ 、MgSrAl10 O17 :Ce、MgB2 O4 :Mn2+ 、MgBa2 (PO4 )2 :Sn2+ 、MgBa2 (PO4 )2 :U、MgBaP2 O7 :Eu2+ 、MgBaP2 O7 :Eu2+ ,Mn2+ 、MgBa3 Si2 O8 :Eu2+ 、MgBa(SO4 )2 :Eu2+ 、Mg3 Ca3 (PO4 )4 :Eu2+ 、MgCaP2 O7 :Mn2+ 、Mg2 Ca(SO4 )3 :Eu2+ 、Mg2 Ca(SO4 )3 :Eu2+ ,Mn2 、MgCeAln O19 :Tb3+ 、Mg4 (F)GeO6 :Mn2+ 、Mg4 (F)(Ge,Sn)O6 :Mn2+ 、MgF2 :Mn2+ 、MgGa2 O4 :Mn2+ 、Mg8 Ge2 O11 F2 :Mn4+ 、MgS:Eu2+ 、MgSiO3 :Mn2+ 、Mg2 SiO4 :Mn2+ 、Mg3 SiO3 F4 :Ti4+ 、MgSO4 :Eu2+ 、MgSO4 :Pb2+ 、MgSrBa2 Si2 O7 :Eu2+ 、MgSrP2 O7 :Eu2+ 、MgSr5 (PO4 )4 :Sn2+ 、MgSr3 Si2 O8 :Eu2+ ,Mn2+ 、Mg2 Sr(SO4 )3 :Eu2+ 、Mg2 TiO4 :Mn4+ 、MgWO4 、MgYBO4 :Eu3+ 、M2 MgSi2 O7 :Eu2+ (M = Ca、Sr及/或Ba)、M2 MgSi2 O7 :Eu2+ ,Mn2+ (M = Ca、Sr及/或Ba)、M2 MgSi2 O7 :Eu2+ ,Zr4+ (M = Ca、Sr及/或Ba)、M2 MgSi2 O7 :Eu2+ ,Mn2+ ,Zr4+ (M = Ca、Sr及/或Ba)、Na3 Ce(PO4 )2 :Tb3+ 、Na1.23 K0.42 Eu0.12 TiSi4 O11 :Eu3+ 、Na1.23 K0.42 Eu0.12 TiSi5 O13 •xH2 O:Eu3+ 、Na1.29 K0.46 Er0.08 TiSi4 O11 :Eu3+ 、Na2 Mg3 Al2 Si2 O10 :Tb、Na(Mg2-x Mnx )LiSi4 O10 F2 :Mn (其中0 ≤ x ≤ 2)、NaYF4 :Er3+ ,Yb3+ 、NaYO2 :Eu3+ 、P46(70%) + P47 (30%)、β-SiAlON:Eu、SrAl12 O19 :Ce3+ ,Mn2+ 、SrAl2 O4 :Eu2+ 、SrAl4 O7 :Eu3+ 、SrAl12 O19 :Eu2+ 、SrAl2 S4 :Eu2+ 、Sr2 B5 O9 Cl:Eu2+ 、SrB4 O7 :Eu2+ (F,Cl,Br)、SrB4 O7 :Pb2+ 、SrB4 O7 :Pb2+ ,Mn2+ 、SrB8 O13 :Sm2+ 、Srx Bay Clz Al2 O4-z/2 :Mn2+ ,Ce3+ 、SrBaSiO4 :Eu2+ 、(Sr,Ba)3 SiO5 :Eu、(Sr,Ca)Si2 N2 O2 :Eu、含Sr(Cl,Br,I)2 :Eu2+ 之SiO2 、含SrCl2 :Eu2+ 之SiO2 、Sr5 Cl(PO4 )3 :Eu、Srw Fx B4 O6.5 :Eu2+ 、Srw Fx By Oz :Eu2+ ,Sm2+ 、SrF2 :Eu2+ 、SrGa12 O19 :Mn2+ 、SrGa2 S4 :Ce3+ 、SrGa2 S4 :Eu2+ 、Sr2-y Bay SiO4 :Eu (其中0 ≤ y ≤ 2)、SrSi2 O2 N2 :Eu、SrGa2 S4 :Pb2+ 、SrIn2 O4 :Pr3+ ,Al3+ 、(Sr,Mg)3 (PO4 )2 :Sn、SrMgSi2 O6 :Eu2+ 、Sr2 MgSi2 O7 :Eu2+ 、Sr3 MgSi2 O8 :Eu2+ 、SrMoO4 :U、SrO•3B2 O3 :Eu2+ ,Cl、β-SrO•3B2 O3 :Pb2+ 、β-SrO•3B2 O3 :Pb2+ ,Mn2+ 、 α-SrO•3B2 O3 :Sm2+ 、Sr6 P5 BO20 :Eu、Sr5 (PO4 )3 Cl:Eu2+ 、Sr5 (PO4 )3 Cl:Eu2+ ,Pr3+ 、Sr5 (PO4 )3 Cl:Mn2+ 、Sr5 (PO4 )3 Cl:Sb3+ 、Sr2 P2 O7 :Eu2+ 、β-Sr3 (PO4 )2 :Eu2+ 、Sr5 (PO4 )3 F:Mn2+ 、Sr5 (PO4 )3 F:Sb3+ 、Sr5 (PO4 )3 F:Sb3+ ,Mn2+ 、Sr5 (PO4 )3 F:Sn2+ 、Sr2 P2 O7 :Sn2+ 、β-Sr3 (PO4 )2 :Sn2+ 、β-Sr3 (PO4 )2 :Sn2+ ,Mn2+ (Al)、SrS:Ce3+ 、SrS:Eu2+ 、SrS:Mn2+ 、SrS:Cu+ ,Na、SrSO4 :Bi、SrSO4 :Ce3+ 、SrSO4 :Eu2+ 、SrSO4 :Eu2+ ,Mn2+ 、Sr5 Si4 O10 Cl6 :Eu2+ 、Sr2 SiO4 :Eu2+ 、Sr3 SiO5 :Eu2+ 、(Sr,Ba)3 SiO5 :Eu2+ 、SrTiO3 :Pr3+ 、SrTiO3 :Pr3+ ,Al3+ 、SrY2 O3 :Eu3+ 、ThO2 :Eu3+ 、ThO2 :Pr3+ 、ThO2 :Tb3+ 、YAl3 B4 O12 :Bi3+ 、YAl3 B4 O12 :Ce3+ 、YAl3 B4 O12 :Ce3+ ,Mn、YAl3 B4 O12 :Ce3+ ,Tb3+ 、YAl3 B4 O12 :Eu3+ 、YAl3 B4 O12 :Eu3+ ,Cr3+ 、YAl3 B4 O12 :Th4+ ,Ce3+ ,Mn2+ 、YAlO3 :Ce3+ 、Y3 Al5 O12 :Ce3+ 、Y3 Al5 O12 :Cr3+ 、YAlO3 :Eu3+ 、Y3 Al5 O12 :Eu3r 、Y4 Al2 O9 :Eu3+ 、Y3 Al5 O12 :Mn4+ 、YAlO3 :Sm3+ 、YAlO3 :Tb3+ 、Y3 Al5 O12 :Tb3+ 、YAsO4 :Eu3+ 、YBO3 :Ce3+ 、YBO3 :Eu3+ 、YF3 :Er3+ ,Yb3+ 、YF3 :Mn2+ 、YF3 :Mn2+ ,Th4+ 、YF3 :Tm3+ ,Yb3+ 、(Y,Gd)BO3 :Eu、(Y,Gd)BO3 :Tb、(Y,Gd)2 O3 :Eu3+ 、Y1.34 Gd0.60 O3 :(Eu,Pr)、Y2 O3 :Bi3+ 、YOBr:Eu3+ 、Y2 O3 :Ce、Y2 O3 :Er3+ 、Y2 O3 :Eu3+ 、Y2 O3 :Ce3+ ,Tb3+ 、YOCl:Ce3+ 、YOCl:Eu3+ 、YOF:Eu3+ 、YOF:Tb3+ 、Y2 O3 :Ho3+ 、Y2 O2 S:Eu3+ 、Y2 O2 S:Pr3+ 、Y2 O2 S:Tb3+ 、Y2 O3 :Tb3+ 、YPO4 :Ce3+ 、YPO4 :Ce3+ ,Tb3+ 、YPO4 :Eu3+ 、YPO4 :Mn2+ ,Th4+ 、YPO4 :V5+ 、Y(P,V)O4 :Eu、Y2 SiO5 :Ce3+ 、YTaO4 、YTaO4 :Nb5+ 、YVO4 :Dy3+ 、YVO4 :Eu3+ 、ZnAl2 O4 :Mn2+ 、ZnB2 O4 :Mn2+ 、ZnBa2 S3 :Mn2+ 、(Zn,Be)2 SiO4 :Mn2+ 、Zn0.4 Cd0.6 S:Ag、Zn0.6 Cd0.4 S:Ag、(Zn,Cd)S:Ag,Cl、(Zn,Cd)S:Cu、ZnF2 :Mn2+ 、ZnGa2 O4 、ZnGa2 O4 :Mn2+ 、ZnGa2 S4 :Mn2+ 、Zn2 GeO4 :Mn2+ 、(Zn,Mg)F2 :Mn2+ 、ZnMg2 (PO4 )2 :Mn2+ 、(Zn,Mg)3 (PO4 )2 :Mn2+ 、ZnO:Al3+ ,Ga3+ 、ZnO:Bi3+ 、ZnO:Ga3+ 、ZnO:Ga、ZnO-CdO:Ga、ZnO:S、ZnO:Se、ZnO:Zn、ZnS:Ag+ ,Cl- 、ZnS:Ag,Cu,Cl、ZnS:Ag,Ni、ZnS:Au,In、ZnS-CdS (25-75)、ZnS-CdS (50-50)、ZnS-CdS (75-25)、ZnS-CdS:Ag,Br,Ni、ZnS-CdS:Ag+ ,Cl、ZnS-CdS:Cu,Br、ZnS-CdS:Cu,I、ZnS:Cl- 、ZnS:Eu2+ 、ZnS:Cu、ZnS:Cu+ ,Al3+ 、ZnS:Cu+ ,Cl- 、ZnS:Cu,Sn、ZnS:Eu2+ 、ZnS:Mn2+ 、ZnS:Mn,Cu、ZnS:Mn2+ ,Te2+ 、ZnS:P、ZnS:P3- ,Cl- 、ZnS:Pb2+ 、ZnS:Pb2+ ,Cl- 、ZnS:Pb,Cu、Zn3 (PO4 )2 :Mn2+ 、Zn2 SiO4 :Mn2+ 、Zn2 SiO4 :Mn2+ ,As5+ 、Zn2 SiO4 :Mn,Sb2 O2 、Zn2 SiO4 :Mn2+ ,P、Zn2 SiO4 :Ti4+ 、ZnS:Sn2+ 、ZnS:Sn,Ag、ZnS:Sn2+ ,Li+ 、ZnS:Te,Mn、ZnS-ZnTe:Mn2+ 、ZnSe:Cu+ ,Cl及ZnWO4The conversion phosphors that can be used with the compounds according to the invention and thus form the radiation conversion mixtures according to the invention are not subject to any specific restrictions. Therefore, it is generally possible to use any possible conversion phosphor. In detail, the suitable ones here are: Ba 2 SiO 4 :Eu 2+ , Ba 3 SiO 5 :Eu 2+ , (Ba,Ca) 3 SiO 5 :Eu 2+ , BaSi 2 N 2 O 2 :Eu, BaSi 2 O 5 : Pb 2+ , Ba 3 Si 6 O 12 N 2 : Eu, Ba x Sr 1-x F 2 : Eu 2+ (where 0 ≤ x ≤ 1), BaSrMgSi 2 O 7 : Eu 2+ , BaTiP 2 O 7 , (Ba,Ti) 2 P 2 O 7 : Ti, BaY 2 F 8 : Er 3+ , Yb + , Be 2 SiO 4 : Mn 2+ , Bi 4 Ge 3 O 12 , CaAl 2 O 4 : Ce 3+ , CaLa 4 O 7 : Ce 3+ , CaAl 2 O 4 : Eu 2+ , CaAl 2 O 4 : Mn 2+ , CaAl 4 O 7 : Pb 2+ , Mn 2+ , CaAl 2 O 4 : Tb 3+ , Ca 3 Al 2 Si 3 O 12 : Ce 3+ , Ca 3 Al 2 Si 3 O 12 : Ce 3+ , Ca 3 Al 2 Si 3 O 12 : Eu 2+ , Ca 2 B 5 O 9 Br :Eu 2+ , Ca 2 B 5 O 9 Cl: Eu 2+ , Ca 2 B 5 O 9 Cl: Pb 2+ , CaB 2 O 4 : Mn 2+ , Ca 2 B 2 O 5 : Mn 2+ , CaB 2 O 4 : Pb 2+ , CaB 2 P 2 O 9 : Eu 2+ , Ca 5 B 2 SiO 10 : Eu 3+ , Ca 0.5 Ba 0.5 Al 12 O 19 : Ce 3+ , Mn 2+ , Ca 2 Ba 3 (PO 4 ) 3 Cl:Eu 2+ , SiO 2 containing CaBr 2 : Eu 2+ , SiO 2 containing CaCl 2 : Eu 2+ , SiO 2 containing CaCl 2 : Eu 2+ , Mn 2+ , SiO 2 , CaF 2 : Ce 3+ , CaF 2 : Ce 3+ , Mn 2+ , CaF 2 : Ce 3+ , Tb 3+ , CaF 2 : Eu 2+ , CaF 2 : Mn 2+ , CaGa 2 O 4 : Mn 2+ , CaGa 4 O 7 : Mn 2+ , CaGa 2 S 4 : Ce 3+ , CaGa 2 S 4 : Eu 2+ , CaGa 2 S 4 : Mn 2+ , CaGa 2 S 4 : Pb 2+, CaGeO 3: Mn 2+ , containing CaI 2: Eu 2+ of SiO 2, containing CaI 2: Eu 2+, Mn 2+ of SiO 2, CaLaBO 4: Eu 3+ , CaLaB 3 O 7: Ce 3+ , Mn 2+ , Ca 2 La 2 BO 6.5 : Pb 2+ , Ca 2 MgSi 2 O 7 , Ca 2 MgSi 2 O 7 : Ce 3+ , CaMgSi 2 O 6 : Eu 2+ , Ca 3 MgSi 2 O 8 : Eu 2+ , Ca 2 MgSi 2 O 7 : Eu 2+ , CaMgSi 2 O 6 : Eu 2+ , Mn 2+ , Ca 2 MgSi 2 O 7 : Eu 2+ , Mn 2+ , CaMoO 4 , CaMoO 4 :Eu 3+ , CaO:Bi 3+ , CaO:Cd 2+ , CaO:Cu + , CaO:Eu 3+ , CaO:Eu 3+ ,Na + , CaO:Mn 2+ , CaO:Pb 2+ , CaO :Sb 3+ , CaO:Sm 3+ , CaO:Tb 3+ , CaO:Tl, CaO:Zn 2+ , Ca 2 P 2 O 7 :Ce 3+ , α-Ca 3 (PO 4 ) 2 :Ce 3 + , Β-Ca 3 (PO 4 ) 2 : Ce 3+ , Ca 5 (PO 4 ) 3 Cl: Eu 2+ , Ca 5 (PO 4 ) 3 Cl: Mn 2+ , Ca 5 (PO 4 ) 3 Cl : Sb 3+ , Ca 5 (PO 4 ) 3 Cl: Sn 2+ , β-Ca 3 (PO 4 ) 2 : Eu 2+ , Mn 2+ , Ca 5 (PO 4 ) 3 F: Mn 2+ , Ca 5 (PO 4 ) 3 F: Sb 3+ , Ca 5 (PO 4 ) 3 F: Sn 2+ , α-Ca 3 (PO 4 ) 2 : Eu 2+ , β-Ca 3 (PO 4 ) 2 : Eu 2+ , Ca 2 P 2 O 7 : Eu 2+ , Ca 2 P 2 O 7 : Eu 2+ , Mn 2+ , CaP 2 O 6 : Mn 2+ , α-Ca 3 (PO 4 ) 2 : Pb 2 + , Α-Ca 3 (PO 4 ) 2 : Sn 2+ , β-Ca 3 (PO 4 ) 2 : Sn 2+ , β-Ca 2 P 2 O 7 : Sn, Mn, α-Ca 3 (PO 4 ) 2 :Tr, CaS:Bi 3+ , CaS:Bi 3+ , Na, CaS: Ce 3+ , CaS: Eu 2+ , CaS: Cu + , Na + , CaS: La 3+ , CaS: Mn 2+ , CaSO 4 : Bi, CaSO 4 : Ce 3+ , CaSO 4 : Ce 3+ ,Mn 2+ , CaSO 4 :Eu 2+ , CaSO 4 :Eu 2+ ,Mn 2+ , CaSO 4 :Pb 2+ , CaS:Pb 2+ , CaS:Pb 2+ ,Cl, CaS:Pb 2+ , Mn 2+ , CaS: Pr 3+ , Pb 2+ , Cl, CaS: Sb 3+ , CaS: Sb 3+ , Na, CaS: Sm 3+ , CaS: Sn 2+ , CaS: Sn 2+ , F, CaS: Tb 3+ , CaS: Tb 3+ , Cl, CaS: Y 3+ , CaS: Yb 2+ , CaS: Yb 2+ , Cl, CaSc 2 O 4 : Ce, Ca 3 (Sc, Mg ) 2 Si 3 O 12 : Ce, CaSiO 3 : Ce 3+ , Ca 3 SiO 4 Cl 2 : Eu 2+ , Ca 3 SiO 4 Cl 2 : Pb 2+ , CaSiO 3 : Eu 2+ , Ca 3 SiO 5 : Eu 2+ , (Ca,Sr) 3 SiO 5 :Eu 2+ , (Ca,Sr) 3 MgSi 2 O 8 :Eu 2+ , (Ca,Sr) 3 MgSi 2 O 8 :Eu 2+ ,Mn 2+ , CaSiO 3 : Mn 2+ , Pb, CaSiO 3 : Pb 2+ , CaSiO 3 : Pb 2+ , Mn 2+ , CaSiO 3 : Ti 4+ , CaSr 2 (PO 4 ) 2 : Bi 3+ , β-( Ca,Sr) 3 (PO 4 ) 2 : Sn 2+ Mn 2+ , CaTi 0.9 Al 0.1 O 3 : Bi 3+ , CaTiO 3 : Eu 3+ , CaTiO 3 : Pr 3+ , Ca 5 (VO 4 ) 3 cl, CaWO 4, CaWO 4: Pb 2+, CaWO 4: W, Ca 3 WO 6: U, CaYAlO 4: Eu 3+, CaYBO 4: Bi 3+, CaYBO 4:. Eu 3+, CaYB 0 8 O 3 , 7 : Eu 3+ , CaY 2 ZrO 6 : Eu 3+ , (Ca, Zn, Mg) 3 (PO 4 ) 2 : Sn, (Ce, Mg) BaAl 11 O 18 : Ce, (Ce, Mg) SrAl 11 O 18 : Ce, CeMgAl 11 O 19 : Ce: Tb, Cd 2 B 6 O 11 : Mn 2+ , CdS: Ag + , Cr, CdS: In, CdS: In, CdS: In, Te, CdS: Te, CdWO 4, CsF, Csl, CsI : Na +, CsI: Tl, (ErCl 3) 0.25 (BaCl 2) 0 75, GaN:. Zn, Gd 3 Ga 5 O 12: Cr 3+, Gd 3 Ga 5 O 12 :Cr,Ce, GdNbO 4 :Bi 3+ , Gd 2 O 2 S: Eu 3+ , Gd 2 O 2 Pr 3+ , Gd 2 O 2 S: Pr, Ce, F, Gd 2 O 2 S: Tb 3 + , Gd 2 SiO 5 : Ce 3+ , KAI 11 O 17 : Tl + , KGa 11 O 17 : Mn 2+ , K 2 La 2 Ti 3 O 10 : Eu, KMgF 3 : Eu 2+ , KMgF 3 : Mn 2+ , K 2 SiF 6 : Mn 4+ , LaAl 3 B 4 O 12 : Eu 3+ , LaAlB 2 O 6 : Eu 3+ , LaAlO 3 : Eu 3+ , LaAlO 3 : Sm 3+ , LaAsO 4 : Eu 3+ , LaBr 3 : Ce 3+ , LaBO 3 : Eu 3+ , LaCl 3 : Ce 3+ , La 2 O 3 : Bi 3+ , LaOBr: Tb 3+ , LaOBr: Tm 3+ , LaOCl: Bi 3+ , LaOCl: Eu 3+, LaOF: Eu 3+, La 2 O 3: Eu 3+, La 2 O 3: Pr 3+, La 2 O 2 S: Tb 3+, LaPO 4: Ce 3+, LaPO 4 :Eu 3+ , LaSiO 3 Cl: Ce 3+ , LaSiO 3 Cl: Ce 3+ , Tb 3+ , LaVO 4 : Eu 3+ , La 2 W 3 O 12 : Eu 3+ , LiAlF 4 : Mn 2+ , LiAl 5 O 8 : Fe 3+ , LiAlO 2 : Fe 3+ , LiAlO 2 : Mn 2+ , LiAl 5 O 8 : Mn 2+ , Li 2 CaP 2 O 7 : Ce 3+ , Mn 2+ , LiCeBa 4 Si 4 O 14 : Mn 2+ , LiCeSrBa 3 Si 4 O 14 : Mn 2+ , LiInO 2 : Eu 3+ , LiInO 2 : Sm 3+ , LiLaO 2 : Eu 3+ , LuAlO 3 : Ce 3+ , (Lu, Gd) 2 SiO 5 : Ce 3+ , Lu 2 SiO 5 : Ce 3+ , Lu 2 Si 2 O 7 : Ce 3+ , LuTaO 4 : Nb 5+ , Lu 1-x Y x AlO 3 : Ce 3+ (where 0 ≤ x ≤ 1), (Lu,Y) 3 (Al,Ga,Sc) 5 O 12 :Ce , MgAl 2 O 4 : Mn 2+ , MgSrAl 10 O 17 : Ce, MgB 2 O 4 : Mn 2+ , MgBa 2 (PO 4 ) 2 : Sn 2+ , MgBa 2 (PO 4 ) 2 : U, MgBaP 2 O 7 : Eu 2+ , MgBaP 2 O 7 : Eu 2+ , Mn 2+ , MgBa 3 Si 2 O 8 : Eu 2+ , MgBa(SO 4 ) 2 : Eu 2+ , Mg 3 Ca 3 (PO 4 ) 4 : Eu 2+ , MgCaP 2 O 7 : Mn 2+ , Mg 2 Ca(SO 4 ) 3 : Eu 2+ , Mg 2 Ca(SO 4 ) 3 : Eu 2+ , Mn 2 , MgCeAl n O 19 : Tb 3+ , Mg 4 (F)GeO 6 : Mn 2+ , Mg 4 (F)(Ge,Sn)O 6 : Mn 2+ , MgF 2 : Mn 2+ , MgGa 2 O 4 : Mn 2+ , Mg 8 Ge 2 O 11 F 2 : Mn 4+ , MgS: Eu 2+ , MgSiO 3 : Mn 2+ , Mg 2 SiO 4 : Mn 2+ , Mg 3 SiO 3 F 4 : Ti 4+ , MgSO 4 : Eu 2+ , MgSO 4 : Pb 2+ , MgSrBa 2 Si 2 O 7 : Eu 2+ , MgSrP 2 O 7 : Eu 2+ , MgSr 5 (PO 4 ) 4 : Sn 2+ , MgSr 3 Si 2 O 8 : Eu 2+ , Mn 2+ , Mg 2 Sr(SO 4 ) 3 : Eu 2+ , Mg 2 TiO 4 : Mn 4+ , MgWO 4 , MgYBO 4 : Eu 3+ , M 2 MgSi 2 O 7 : Eu 2+ (M = Ca, Sr and/or Ba), M 2 MgSi 2 O 7 : Eu 2+ , Mn 2+ (M = Ca, Sr and/or Ba), M 2 MgSi 2 O 7 : Eu 2+ ,Zr 4+ (M = Ca, Sr and/or Ba), M 2 MgSi 2 O 7 : Eu 2+ ,Mn 2+ , Zr 4+ (M = Ca, Sr and/or Ba), Na 3 Ce(PO 4 ) 2 : Tb 3+ , Na 1.23 K 0.42 Eu 0.12 TiSi 4 O 11 : Eu 3+ , Na 1.23 K 0.42 Eu 0.12 TiSi 5 O 13 •xH 2 O: Eu 3+ , Na 1.29 K 0.46 Er 0.08 TiSi 4 O 11 : Eu 3+ , Na 2 Mg 3 Al 2 Si 2 O 10 : Tb, Na(Mg 2-x Mn x ) LiSi 4 O 10 F 2 : Mn (where 0 ≤ x ≤ 2), NaYF 4 : Er 3+ ,Yb 3+ , NaYO 2 : Eu 3+ , P46(70%) + P47 (30%), β-SiAlON: Eu, SrAl 12 O 19 : Ce 3+ , Mn 2+ , SrAl 2 O 4 :Eu 2+ , SrAl 4 O 7 :Eu 3+ , SrAl 12 O 19 :Eu 2+ , SrAl 2 S 4 :Eu 2+ , Sr 2 B 5 O 9 Cl: Eu 2+ , SrB 4 O 7 :Eu 2+ (F,Cl,Br), SrB 4 O 7 :Pb 2+ , SrB 4 O 7 :Pb 2+ ,Mn 2+ , SrB 8 O 13 :Sm 2+ , Sr x Ba y Cl z Al 2 O 4-z/2 : Mn 2+ , Ce 3+ , SrBaSiO 4 : Eu 2+ , (Sr,Ba) 3 SiO 5 : Eu, (Sr,Ca)Si 2 N 2 O 2 : Eu, containing Sr (Cl, Br, I) 2 : Eu 2+ of SiO 2, containing SrCl 2: Eu 2+ of SiO 2, Sr 5 Cl (PO 4) 3: Eu, Sr w F x B 4 O 6.5: Eu 2+ , Sr w F x B y O z :Eu 2+ ,Sm 2+ , SrF 2 :Eu 2+ , SrGa 12 O 19 :Mn 2+ , SrGa 2 S 4 :Ce 3+ , SrGa 2 S 4 :Eu 2 + , Sr 2-y Ba y SiO 4 : Eu (where 0 ≤ y ≤ 2), SrSi 2 O 2 N 2 : Eu, SrGa 2 S 4 : Pb 2+ , SrIn 2 O 4 : Pr 3+ ,Al 3+ , (Sr,Mg) 3 (PO 4 ) 2 : Sn, SrMgSi 2 O 6 : Eu 2+ , Sr 2 MgSi 2 O 7 : Eu 2+ , Sr 3 MgSi 2 O 8 :Eu 2+ , SrMoO 4 :U, SrO•3B 2 O 3 :Eu 2+ ,Cl, β-SrO•3B 2 O 3 :Pb 2+ , β-SrO•3B 2 O 3 :Pb 2+ ,Mn 2+ , α-SrO•3B 2 O 3 :Sm 2+ , Sr 6 P 5 BO 20 :Eu, Sr 5 (PO 4 ) 3 Cl:Eu 2+ , Sr 5 (PO 4 ) 3 Cl:Eu 2+ ,Pr 3+ , Sr 5 (PO 4 ) 3 Cl: Mn 2+ , Sr 5 (PO 4 ) 3 Cl: Sb 3+ , Sr 2 P 2 O 7 : Eu 2+ , β-Sr 3 (PO 4 ) 2 : Eu 2+ , Sr 5 (PO 4 ) 3 F: Mn 2+ , Sr 5 (PO 4 ) 3 F: Sb 3+ , Sr 5 (PO 4 ) 3 F: Sb 3+ , Mn 2+ , Sr 5 (PO 4 ) 3 F: Sn 2+ , Sr 2 P 2 O 7 : Sn 2+ , β-Sr 3 (PO 4 ) 2 : Sn 2+ , β-Sr 3 (PO 4 ) 2 : Sn 2+ , Mn 2+ (Al), SrS: Ce 3+ , SrS: Eu 2+ , SrS: Mn 2+ , SrS: Cu + , Na, SrSO 4 : Bi, SrSO 4 : Ce 3+ , SrSO 4 : Eu 2 + , SrSO 4 : Eu 2+ , Mn 2+ , Sr 5 Si 4 O 10 Cl 6 : Eu 2+ , Sr 2 SiO 4 : Eu 2+ , Sr 3 SiO 5 : Eu 2+ , (Sr,Ba) 3 SiO 5 : Eu 2+ , SrTiO 3 : Pr 3+ , SrTiO 3 : Pr 3+ , Al 3+ , SrY 2 O 3 : Eu 3+ , ThO 2 : Eu 3+ , ThO 2 : Pr 3+ , ThO 2 : Tb 3+ , YAl 3 B 4 O 12 : Bi 3+ , YAl 3 B 4 O 12 : Ce 3+ , YAl 3 B 4 O 12 : Ce 3+ , Mn, YAl 3 B 4 O 12 : Ce 3+ ,Tb 3+ 、YAl 3 B 4 O 12 :Eu 3 + , YAl 3 B 4 O 12 : Eu 3+ , Cr 3+ , YAl 3 B 4 O 12 : Th 4+ , Ce 3+ , Mn 2+ , YAlO 3 : Ce 3+ , Y 3 Al 5 O 12 : Ce 3+ , Y 3 Al 5 O 12 : Cr 3+ , YAlO 3 : Eu 3+ , Y 3 Al 5 O 12 : Eu 3r , Y 4 Al 2 O 9 : Eu 3+ , Y 3 Al 5 O 12 : Mn 4+ , YAlO 3 : Sm 3+ , YAlO 3 : Tb 3+ , Y 3 Al 5 O 12 : Tb 3+ , YAsO 4 : Eu 3+ , YBO 3 : Ce 3+ , YBO 3 : Eu 3+ , YF 3 : Er 3+ , Yb 3+ , YF 3 : Mn 2+ , YF 3 : Mn 2+ , Th 4+ , YF 3 : Tm 3+ , Yb 3+ , (Y, Gd) BO 3 : Eu, (Y,Gd)BO 3 :Tb, (Y,Gd) 2 O 3 :Eu 3+ , Y 1.34 Gd 0.60 O 3 :(Eu,Pr), Y 2 O 3 :Bi 3+ , YOBr:Eu 3+ , Y 2 O 3 : Ce, Y 2 O 3 : Er 3+ , Y 2 O 3 : Eu 3+ , Y 2 O 3 : Ce 3+ , Tb 3+ , YOCl: Ce 3+ , YOCl: Eu 3+ , YOF:Eu 3+ , YOF:Tb 3+ , Y 2 O 3 :Ho 3+ , Y 2 O 2 S:Eu 3+ , Y 2 O 2 S:Pr 3+ , Y 2 O 2 S:Tb 3 + , Y 2 O 3 : Tb 3+ , YPO 4 : Ce 3+ , YPO 4 : Ce 3+ , Tb 3+ , YPO 4 : Eu 3+ , YPO 4 : Mn 2+ , Th 4+ , YPO 4 : V 5+ , Y(P,V)O 4 : Eu, Y 2 SiO 5 : Ce 3+ , YTaO 4 , YTaO 4 : Nb 5+ , YVO 4 : Dy 3+ , YVO 4 : Eu 3+ , ZnAl 2 O 4 : Mn 2+ , ZnB 2 O 4 : Mn 2+ , ZnBa 2 S 3 : Mn 2+ , (Zn,Be) 2 SiO 4 : Mn 2+ , Zn 0.4 Cd 0.6 S: Ag, Zn 0.6 Cd 0.4 S: Ag, (Zn, Cd) S: Ag, Cl, (Zn, Cd) S: Cu, ZnF 2 : Mn 2+ , ZnGa 2 O 4 , ZnGa 2 O 4 : Mn 2+ , ZnGa 2 S 4 : Mn 2+ , Zn 2 GeO 4 : Mn 2+ , (Zn,Mg)F 2 : Mn 2+ , ZnMg 2 ( PO 4 ) 2 : Mn 2+ , (Zn,Mg) 3 (PO 4 ) 2 : Mn 2+ , ZnO: Al 3+ , Ga 3+ , ZnO: Bi 3+ , ZnO: Ga 3+ , ZnO: Ga , ZnO-CdO: Ga, ZnO: S, ZnO: Se, ZnO: Zn, ZnS: Ag + , Cl - , ZnS: Ag, Cu, Cl, ZnS: Ag, Ni, ZnS: Au, In, ZnS-CdS (25-75), ZnS-CdS (50-50), ZnS-CdS (75-25), ZnS-CdS: Ag, Br, Ni, ZnS-CdS: Ag + , Cl, ZnS-CdS: Cu, Br , ZnS-CdS: Cu, I , ZnS: Cl -, ZnS: Eu 2+, ZnS: Cu, ZnS: Cu +, Al 3+, ZnS: Cu +, Cl -, ZnS: Cu, Sn, ZnS: Eu 2+, ZnS: Mn 2+, ZnS : Mn, Cu, ZnS: Mn 2+, Te 2+, ZnS: P, ZnS: P 3-, Cl -, ZnS: Pb 2+, ZnS: Pb 2+, cl -, ZnS: Pb, Cu , Zn 3 (PO 4) 2: Mn 2+, Zn 2 SiO 4: Mn 2+, Zn 2 SiO 4: Mn 2+, As 5+, Zn 2 SiO 4: Mn, Sb 2 O 2 , Zn 2 SiO 4 : Mn 2+ , P, Zn 2 SiO 4 : Ti 4+ , ZnS: Sn 2+ , ZnS: Sn, Ag, ZnS: Sn 2+ , Li + , ZnS: Te, Mn, ZnS-ZnTe: Mn 2+ , ZnSe: Cu + , Cl and ZnWO 4 .

可與根據本發明之化合物一起使用且形成根據本發明之輻射轉換混合物之較佳量子材料不受任何特定限制。因此,一般有可能使用任何可能的量子材料。特定言之,可呈核/殼組態或呈核/多殼組態之具有矩形、圓形、橢圓形或錐形幾何形狀之半導體奈米粒子為適合的。此類型之半導體奈米粒子例如自WO 2005075339、WO 2006134599、EP 2 528 989 B1及US 8,062,421 B2已知,其揭示內容以引用之方式併入本文中。The preferred quantum materials that can be used with the compounds according to the invention and form the radiation conversion mixtures according to the invention are not subject to any particular restrictions. Therefore, it is generally possible to use any possible quantum material. In particular, semiconductor nanoparticles with rectangular, circular, elliptical, or tapered geometry that can be in a core/shell configuration or a core/multi-shell configuration are suitable. Semiconductor nanoparticles of this type are known, for example, from WO 2005075339, WO 2006134599, EP 2 528 989 B1 and US 8,062,421 B2, the disclosures of which are incorporated herein by reference.

量子材料較佳由第II-VI族、第III-V族、第IV-VI族或第I-III-VI2 族半導體或其任何所需組合組成。舉例而言,量子材料可選自由以下各者組成之群:CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、GaAs、GaP、GaAs、GaSb、GaN、HgS、HgSe、HgTe、InAs、InP、InSb、AlAs、AlP、AlSb、Cu2 S、Cu2 Se、CuGaS2 、CuGaSe2 、CuInS2 、CuInSe2 、Cu2 InGaS4 、AgInS2 、AgInSe2 、Cu2 ZnSnS4 、其合金及其混合物。The quantum material is preferably composed of Group II-VI, Group III-V, Group IV-VI or Group I-III-VI 2 semiconductors or any desired combination thereof. For example, the quantum material can be selected from the group consisting of CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, GaAs, GaP, GaAs, GaSb, GaN, HgS, HgSe, HgTe, InAs, InP, InSb, AlAs, AlP, AlSb, Cu 2 S, Cu 2 Se, CuGaS 2 , CuGaSe 2 , CuInS 2 , CuInSe 2 , Cu 2 InGaS 4 , AgInS 2 , AgInSe 2 , Cu 2 ZnSnS 4 , alloys and mixtures thereof.

量子材料亦可呈非活化結晶材料之表面上的半導體奈米粒子形式。在此類材料中,一或多種類型之半導體奈米粒子位於一或多種類型之非活化結晶材料(諸如非活化磷光體基質材料)之表面上。此類材料亦稱為磷光體基質上之量子材料(quantum material on the phosphor matrix,QMOP)且自WO 2017/041875 A1已知,其揭示內容以引用之方式併入本文中。The quantum material can also be in the form of semiconductor nanoparticles on the surface of the non-activated crystalline material. In this type of material, one or more types of semiconductor nanoparticles are located on the surface of one or more types of non-activated crystalline materials (such as non-activated phosphor matrix materials). Such materials are also known as quantum material on the phosphor matrix (QMOP) and are known from WO 2017/041875 A1, the disclosure of which is incorporated herein by reference.

根據本發明之磷光體或磷光體組合可呈散料、粉末材料、厚層或薄層材料或自撐式材料之形式,較佳呈膜之形式。其可進一步嵌入封裝材料中。The phosphor or phosphor combination according to the present invention may be in the form of bulk material, powder material, thick or thin layer material or self-supporting material, preferably in the form of a film. It can be further embedded in the packaging material.

根據本發明之磷光體或磷光體組合可分散於封裝材料中,或在適合之尺寸比率之情況下,直接配置於一次光源上或者視應用而定自其遠端配置(後一配置亦包括「遠端磷光體技術」)。遠端磷光體技術之優勢為熟習此項技術者已知的,且由(例如)以下公開案揭示:Japanese Journal of Applied Physics, 第44卷, 第21 (2005)期, L649-L651。The phosphor or phosphor combination according to the present invention can be dispersed in the packaging material, or in the case of suitable size ratio, directly disposed on the primary light source or disposed from its remote end depending on the application (the latter configuration also includes " Remote phosphor technology"). The advantages of remote phosphor technology are known to those familiar with the technology, and are disclosed by, for example, the following publication: Japanese Journal of Applied Physics, Volume 44, Issue 21 (2005), L649-L651.

術語「封裝材料」係關於包圍根據本發明之化合物及輻射轉換混合物之傳光基質材料。傳光基質材料可由聚矽氧、聚合物(其由液體或半固體前驅體材料,諸如單體或寡聚物形成)、環氧化物、玻璃或包含聚矽氧及環氧化物之混成體形成。聚合物之特定但非限制性實例包括氟化聚合物、聚丙烯醯胺聚合物、聚丙烯酸聚合物、聚丙烯腈聚合物、聚苯胺聚合物、聚二苯甲酮聚合物、聚(甲基丙烯酸甲酯)聚合物、聚矽氧聚合物、鋁聚合物、聚雙酚聚合物、聚丁二烯聚合物、聚二甲基矽氧烷聚合物、聚乙烯聚合物、聚異丁烯聚合物、聚丙烯聚合物、聚苯乙烯聚合物、聚乙烯基聚合物、聚乙烯醇縮丁醛聚合物或全氟環丁基聚合物。聚矽氧可包括凝膠,諸如Dow Corning® OE-6450;彈性體,諸如Dow Corning® OE-6520、Dow Corning® OE-6550、Dow Corning® OE-6630;及樹脂,諸如Dow Corning® OE-6635、Dow Corning® OE-6665、Nusil LS-6143及來自Nusil、Momentive RTV615、Momentive RTV656之其他產品及諸多來自其他製造商之其他產品。此外,封裝材料可為(聚)矽氮烷,例如經改質之有機聚矽氮烷(modified organic polysilazane,MOPS)或全氫聚矽氮烷(perhydropolysilazane,PHPS)。以封裝材料計,根據本發明之化合物或輻射轉換混合物之比例較佳在1至300重量%範圍內,更佳在3至50重量%範圍內。The term "encapsulation material" refers to the light-transmitting matrix material surrounding the compound and radiation conversion mixture according to the present invention. The light-transmitting matrix material can be formed of polysiloxane, polymer (which is formed from liquid or semi-solid precursor materials, such as monomers or oligomers), epoxy, glass, or a mixture containing polysiloxane and epoxy . Specific but non-limiting examples of polymers include fluorinated polymers, polyacrylamide polymers, polyacrylic acid polymers, polyacrylonitrile polymers, polyaniline polymers, polybenzophenone polymers, poly(methyl) (Methyl acrylate) polymer, polysiloxane polymer, aluminum polymer, polybisphenol polymer, polybutadiene polymer, polydimethylsiloxane polymer, polyethylene polymer, polyisobutylene polymer, Polypropylene polymer, polystyrene polymer, polyvinyl polymer, polyvinyl butyral polymer or perfluorocyclobutyl polymer. The silicone may include gels such as Dow Corning® OE-6450; elastomers such as Dow Corning® OE-6520, Dow Corning® OE-6550, Dow Corning® OE-6630; and resins such as Dow Corning® OE-6450 6635, Dow Corning® OE-6665, Nusil LS-6143 and other products from Nusil, Momentive RTV615, Momentive RTV656 and many other products from other manufacturers. In addition, the packaging material can be (poly)silazane, such as modified organic polysilazane (MOPS) or perhydropolysilazane (PHPS). Based on the packaging material, the proportion of the compound or the radiation conversion mixture according to the present invention is preferably in the range of 1 to 300% by weight, more preferably in the range of 3 to 50% by weight.

在另一實施例中,較佳藉由光導配置來達成發光材料與一次光源之間的光耦合。此使得一次光源有可能安裝在中心位置處且藉助於光導裝置(諸如光纖)光耦合至發光材料。以此方式,有可能將強一次光源置放於有利於電氣安裝之位置,且在任何所需位置處在無需其他電纜佈放的情況下但取而代之僅藉由佈置光波導來安裝含有發光材料的燈,該等發光材料光耦合至光波導。In another embodiment, the optical coupling between the luminescent material and the primary light source is preferably achieved by light guide configuration. This makes it possible for the primary light source to be installed at a central location and optically coupled to the luminescent material by means of light guide means (such as optical fibers). In this way, it is possible to place the strong primary light source at a location that is conducive to electrical installation, and at any desired location without the need for other cable routing, but instead only install light-emitting materials by arranging optical waveguides Lamp, the luminescent materials are optically coupled to the optical waveguide.

另外,根據本發明之磷光體或根據本發明之輻射轉換混合物可用於燈絲LED中,如描述於例如US 2014/0369036 A1中。In addition, the phosphor according to the invention or the radiation conversion mixture according to the invention can be used in filament LEDs, as described in, for example, US 2014/0369036 A1.

本發明係進一步關於一種尤其用於顯示裝置之背光照明的照明單元,其特徵在於其含有至少一種根據本發明之光源,且係關於一種具有背光照明的顯示裝置,尤其液晶顯示裝置(LC顯示器),其特徵在於其含有至少一種根據本發明之照明單元。The present invention further relates to a lighting unit particularly used for backlighting of display devices, characterized in that it contains at least one light source according to the present invention, and relates to a display device with backlighting, especially liquid crystal display devices (LC displays) It is characterized in that it contains at least one lighting unit according to the invention.

用於LED中之根據本發明之磷光體之平均粒徑通常在50 nm與100 µm之間,較佳在0.1 µm與25 µm之間,且更佳在1 µm與20 µm之間。平均粒度較佳係根據ISO 13320:2009(「粒度分析-雷射繞射方法」)測定。ISO標準係基於藉由分析粒子之光散射特性來量測粒子的尺寸分佈。平均粒度亦可藉助於適合之Multisizer (例如Beckman Coulter Multisizer 3)測定。The average particle size of the phosphor according to the present invention used in the LED is usually between 50 nm and 100 µm, preferably between 0.1 µm and 25 µm, and more preferably between 1 µm and 20 µm. The average particle size is preferably determined in accordance with ISO 13320:2009 ("particle size analysis-laser diffraction method"). The ISO standard is based on measuring the particle size distribution by analyzing the light scattering characteristics of the particles. The average particle size can also be determined by means of a suitable Multisizer (such as Beckman Coulter Multisizer 3).

對於用於LED,磷光體亦可轉換成任何所需的外部形狀,諸如球狀顆粒、薄片及結構化材料及陶瓷。出於本發明之目的,此等形狀概述於術語「成形體」下。成形體較佳為「磷光體」。因此,本發明另外係關於一種包含根據本發明之磷光體的成形體。對應成形體之生產及使用自大量公開案為熟習此項技術者所熟悉。For use in LEDs, phosphors can also be converted into any desired external shape, such as spherical particles, flakes and structured materials and ceramics. For the purposes of the present invention, these shapes are summarized under the term "formed body". The molded body is preferably a "phosphor". Therefore, the present invention additionally relates to a shaped body comprising the phosphor according to the present invention. The production and use of the corresponding formed body are familiar to those familiar with this technology from a large number of publications.

另外,根據本發明之磷光體亦可呈磷光體/聚合物複合物形式。用於製備磷光體/聚合物複合物之適合聚合物為上文所提及之封裝材料。In addition, the phosphor according to the present invention may also be in the form of a phosphor/polymer composite. Suitable polymers for the preparation of phosphor/polymer composites are the encapsulating materials mentioned above.

根據本發明之化合物具有以下有利特性: 1)        根據本發明之化合物具有含高藍色含量之發射光譜且其具有高光致發光量子產率。 2)        根據本發明之化合物具有低熱淬滅。因此,根據本發明之化合物之TQ1 / 2 值通常在高於900 K之範圍內。 3)        根據本發明之化合物的高溫穩定性亦使得材料能夠用於具有高熱負荷之光源中。 4)        此外,根據本發明之化合物藉由長使用壽命區別開並促進LED中之高色彩再現及色溫之高穩定性。此使得能夠達成具有高顯色指數之發射白光之pc-LED。 5)        根據本發明之化合物可經由簡單合成而有效且低成本地製備。The compound according to the present invention has the following advantageous characteristics: 1) The compound according to the present invention has an emission spectrum with high blue content and it has a high photoluminescence quantum yield. 2) The compounds according to the invention have low heat quenching. Thus, the compounds according to the present invention TQ 1/2 value is usually in the range of 900 K of the above. 3) The high temperature stability of the compound according to the present invention also enables the material to be used in light sources with high thermal load. 4) In addition, the compound according to the present invention distinguishes and promotes high color reproduction and high color temperature stability in LEDs by long service life. This makes it possible to achieve white-emitting pc-LEDs with high color rendering index. 5) The compounds according to the present invention can be efficiently and inexpensively prepared via simple synthesis.

本文中所描述之所有實施例皆可與彼此組合,只要對應實施例不相互排斥。特定言之,基於本說明書之教示,作為常規最佳化之一部分,精密組合本文中所描述之各種實施例以獲得特定尤其較佳之實施例為顯而易見之操作。All the embodiments described herein can be combined with each other, as long as the corresponding embodiments are not mutually exclusive. In particular, based on the teachings of this specification, as a part of conventional optimization, it is an obvious operation to precisely combine the various embodiments described herein to obtain specific and particularly preferred embodiments.

以下實例意欲說明本發明,且尤其展示所描述之本發明實施例之此類例示性組合之結果。然而,其決不應視為限制性的,而是替代地意欲促使歸納。可用於製備之所有化合物或組份為已知且市售的或可利用已知方法合成。實例中指示之溫度始終以℃為單位。此外,不言而喻,在實施方式且亦在實例兩者中,組合物中所使用之組份的量始終總計為100%。百分比資料應始終視為在給定上下文中。The following examples are intended to illustrate the invention, and in particular to show the results of such exemplary combinations of the described embodiments of the invention. However, it should never be regarded as restrictive, but instead is intended to induce induction. All compounds or components that can be used in the preparation are known and commercially available or can be synthesized using known methods. The temperature indicated in the example is always in °C. In addition, it goes without saying that in both the embodiment and the examples, the amounts of the components used in the composition always total 100%. Percentage data should always be considered in the given context.

實例 量測方法 使用Rigaku Miniflex II記錄x射線繞射圖案,在具有Cu-Kα 輻射之情況下在1 s積分時間0.02°步驟中以Bragg-Brentano幾何形狀操作。 Example measurement method Rigaku Miniflex II was used to record the X-ray diffraction pattern, and the Bragg-Brentano geometry was operated in a step of 1 s integration time 0.02° with Cu-K α radiation.

使用Edinburgh Instruments Ltd.的螢光光譜儀測定反射光譜。出於此目的,將樣品置放於塗有BaSO4 之烏布里希球(Ulbricht sphere)中且在同步掃描(發射及激發單色器平行)中量測。在250至800 nm之範圍內記錄反射光譜。所使用白色標準為BaSO4 (Alfa Aesar 99.998%)。450 W高壓Xe燈充當激發源。The reflectance spectrum was measured using a fluorescence spectrometer of Edinburgh Instruments Ltd. For this purpose, the sample is placed in a Ulbricht sphere coated with BaSO 4 and measured in a simultaneous scan (emission and excitation monochromator parallel). The reflectance spectrum was recorded in the range of 250 to 800 nm. The white standard used is BaSO 4 (Alfa Aesar 99.998%). The 450 W high-voltage Xe lamp serves as the excitation source.

使用裝配有用於粉末樣品之鏡面光學器件的Edinburgh Instruments Ltd.螢光光譜儀在350 nm之激發波長下記錄發射光譜。所用激發源為450 W Xe燈。對於發射之溫度依賴性量測,光譜儀裝配有Oxford Instruments低溫恆溫器(MicrostatN2)。所採用之冷卻劑為氮。The emission spectra were recorded using an Edinburgh Instruments Ltd. fluorescence spectrometer equipped with mirror optics for powder samples at an excitation wavelength of 350 nm. The excitation source used was a 450 W Xe lamp. For the measurement of the temperature dependence of emission, the spectrometer is equipped with an Oxford Instruments cryostat (Microstat N2). The coolant used is nitrogen.

使用裝配有用於粉末樣品之鏡面光學器件的Edinburgh Instruments Ltd.螢光光譜儀在450 nm之激發波長下記錄激發光譜。所用激發源為450 W Xe燈。An Edinburgh Instruments Ltd. fluorescence spectrometer equipped with mirror optics for powder samples was used to record the excitation spectrum at an excitation wavelength of 450 nm. The excitation source used was a 450 W Xe lamp.

CIE 1931色圖之色彩座標係根據DIN 5033-3 (經DIN EN ISO 11664-3替換)計算。The color coordinates of the CIE 1931 color map are calculated according to DIN 5033-3 (replaced by DIN EN ISO 11664-3).

實例 1 Na2.985 Eu0.015 RbMg6.985 Li0.015 (PO4 )6 (0.5% Eu2+ ) 為了合成2.2360 g (2.5000 mmol),將含0.4152 g (3.9178 mmol) Na2 CO3 、0.3464 g (1.5000 mmol) Rb2 CO3 、1.6961 g (3.4925 mmol) 4∙MgCO3 ∙Mg (OH)2 ∙5 H2 O、1.7254 g (15.0000 mmol) (NH4 )H2 PO4 、0.0066 g (0.0188 mmol) Eu2 O3 及0.0014 g (0.0188 mmol) Li2 CO3 之己烷於瑪瑙研缽中彼此組合至乾燥。隨後將粉末轉移至燒杯中且在超音波浴中處理15分鐘。隨後在瑪瑙研缽中將混合物再次濕磨至乾燥。隨後在合成氣體(10% H2 ,90% N2 )下在900℃下煅燒起始材料混合物12 h。隨後在瑪瑙研缽中將所獲得之顏料餅研成粉末以便獲得標題化合物。圖2展示所獲得之化合物之x射線繞射圖。相關反射、發射及激發光譜分別展示於圖3、圖4及圖5中。圖6展示來自具有Na2.985 Eu0.015 RbMg6.985 Li0.015 (PO4 )6 之色點之CIE 1931色圖之細節。圖7展示發射積分隨溫度變化之相對過程。 Example 1 : Na 2.985 Eu 0.015 RbMg 6.985 Li 0.015 (PO 4 ) 6 (0.5% Eu 2+ ) In order to synthesize 2.2360 g (2.5000 mmol), 0.4152 g (3.9178 mmol) Na 2 CO 3 , 0.3464 g (1.5000 mmol) ) Rb 2 CO 3 , 1.6961 g (3.4925 mmol) 4∙MgCO 3 ∙Mg (OH) 2 ∙5 H 2 O, 1.7254 g (15.0000 mmol) (NH 4 )H 2 PO 4 , 0.0066 g (0.0188 mmol) Eu 2 O 3 and 0.0014 g (0.0188 mmol) Li 2 CO 3 in hexane were combined with each other in an agate mortar to dryness. The powder was then transferred to a beaker and treated in an ultrasonic bath for 15 minutes. The mixture was then wet-milled again to dryness in an agate mortar. The starting material mixture was then calcined at 900° C. for 12 h under forming gas (10% H 2 , 90% N 2 ). The obtained pigment cake was then ground into powder in an agate mortar to obtain the title compound. Figure 2 shows the x-ray diffraction pattern of the obtained compound. The relevant reflection, emission and excitation spectra are shown in Figure 3, Figure 4 and Figure 5, respectively. Figure 6 shows details from the CIE 1931 color chart with the color point of Na 2.985 Eu 0.015 RbMg 6.985 Li 0.015 (PO 4 ) 6 . Figure 7 shows the relative process of emission integration with temperature.

實例 2 Na2.4 Eu0.3 KMg7 (PO4 )6 (10% Eu2+ ) 為了合成13.2 g (15.000 mmol),將1.9078 g (18 mmol) Na2 CO3 、1.1402 g (8.25000 mmol) K2 CO3 、10.014 g (45.000 mmol) Mg2 P2 O7 、0.87 g (15.000 mmol) Mg(OH)2 及0.7918 g (0.2249 mmol) Eu2 O3 在瑪瑙研缽中彼此組合。隨後在合成氣體(70% H2 ,30% N2 )下在950℃下煅燒起始材料混合物6 h。隨後在瑪瑙研缽中將所獲得之顏料餅研成粉末以便獲得標題化合物。 Example 2 : Na 2.4 Eu 0.3 KMg 7 (PO 4 ) 6 (10% Eu 2+ ) In order to synthesize 13.2 g (15.000 mmol), 1.9078 g (18 mmol) Na 2 CO 3 , 1.1402 g (8.25000 mmol) K 2 CO 3 , 10.014 g (45.000 mmol) Mg 2 P 2 O 7 , 0.87 g (15.000 mmol) Mg(OH) 2 and 0.7918 g (0.2249 mmol) Eu 2 O 3 were combined with each other in an agate mortar. The starting material mixture was then calcined at 950°C for 6 h under forming gas (70% H 2 , 30% N 2 ). The obtained pigment cake was then ground into powder in an agate mortar to obtain the title compound.

實例 3 Na2.985 Eu0.015 RbMg6.985 Li0.015 (AsO4 )6 (0.5% Eu2+ ) 為了合成2.2360 g (2.500 mmol),將含0.4152 g (3.9178 mmol) Na2 CO3 、0.3464 g (1.5000 mmol) Rb2 CO3 、1.6961 g (3.4925 mmol) 4∙MgCO3 ∙Mg(OH)2 ∙5 H2 O、2.3846 g (15.0000 mmol) (NH4 )H2 AsO4 、0.0066 g (0.0188 mmol) Eu2 O3 及0.0014 g (0.0188 mmol)Li2 CO3 之己烷於瑪瑙研缽中彼此組合至乾燥。隨後將粉末轉移至燒杯中且在超音波浴中處理15分鐘。隨後在瑪瑙研缽中將混合物再次濕磨至乾燥。隨後在合成氣體(10% H2 ,90% N2 )下在900℃下煅燒起始材料混合物12 h。隨後在瑪瑙研缽中將獲得之顏料餅研成粉末以便獲得標題化合物。 Example 3 : Na 2.985 Eu 0.015 RbMg 6.985 Li 0.015 (AsO 4 ) 6 (0.5% Eu 2+ ) In order to synthesize 2.2360 g (2.500 mmol), 0.4152 g (3.9178 mmol) Na 2 CO 3 , 0.3464 g (1.5000 mmol) ) Rb 2 CO 3 , 1.6961 g (3.4925 mmol) 4∙MgCO 3 ∙Mg(OH) 2 ∙5 H 2 O, 2.3846 g (15.0000 mmol) (NH 4 )H 2 AsO 4 , 0.0066 g (0.0188 mmol) Eu 2 O 3 and 0.0014 g (0.0188 mmol) Li 2 CO 3 in hexane were combined with each other in an agate mortar to dryness. The powder was then transferred to a beaker and treated in an ultrasonic bath for 15 minutes. The mixture was then wet-milled again to dryness in an agate mortar. The starting material mixture was then calcined at 900° C. for 12 h under forming gas (10% H 2 , 90% N 2 ). The obtained pigment cake was then ground into powder in an agate mortar to obtain the title compound.

實例 4 Na2.7 Eu0.3 RbMg6.7 Li0.3 (AsO4 )6 (10% Eu2+ ) 為了合成2.2360 g (2.5000 mmol),將含0.3756 g (3.5438 mmol) Na2 CO3 、0.3464 g (1.5000 mmol) Rb2 CO3 、1.6269 g (3.3500 mmol) 4∙MgCO3 ∙Mg(OH)2 ∙5 H2 O、2.3846 g (15.0000 mmol) (NH4 )H2 AsO4 、0.1320 g (0.3750 mmol)Eu2 O3 及0.0277 g (0.3750 mmol) Li2 CO3 之己烷於瑪瑙研缽中彼此組合至乾燥。隨後將粉末轉移至燒杯中且在超音波浴中處理15分鐘。隨後在瑪瑙研缽中將混合物再次濕磨至乾燥。隨後在合成氣體(10% H2 ,90% N2 )下在900℃下煅燒起始材料混合物12 h。隨後在瑪瑙研缽中將所獲得之顏料餅研成粉末以便獲得標題化合物。 Example 4 : Na 2.7 Eu 0.3 RbMg 6.7 Li 0.3 (AsO 4 ) 6 (10% Eu 2+ ) In order to synthesize 2.2360 g (2.5000 mmol), 0.3756 g (3.5438 mmol) Na 2 CO 3 , 0.3464 g (1.5000 mmol) ) Rb 2 CO 3 , 1.6269 g (3.3500 mmol) 4∙MgCO 3 ∙Mg(OH) 2 ∙5 H 2 O, 2.3846 g (15.0000 mmol) (NH 4 )H 2 AsO 4 , 0.1320 g (0.3750 mmol) Eu 2 O 3 and 0.0277 g (0.3750 mmol) Li 2 CO 3 in hexane were combined with each other in an agate mortar to dryness. The powder was then transferred to a beaker and treated in an ultrasonic bath for 15 minutes. The mixture was then wet-milled again to dryness in an agate mortar. The starting material mixture was then calcined at 900° C. for 12 h under forming gas (10% H 2 , 90% N 2 ). The obtained pigment cake was then ground into powder in an agate mortar to obtain the title compound.

實例 5 6500 K 白色 LED 中使用 將0.46 g來自實例1之Na2.985 Eu0.015 RbMg6.985 Li0.015 (PO4 )6 (0.5% Eu2+ )與0.02 g Ba2 MgSi2 O7 :Eu及0.005 g (Sr,Ca)AlSiN3 :Eu混合且隨後分散於Dow Corning HF OE6370聚矽氧中。將分散液引入具有395 nm LED晶片之LED晶片板封裝中且隨後在150℃下固化一小時。 Example 5 : Used in a 6500 K white LED : 0.46 g of Na 2.985 Eu 0.015 RbMg 6.985 Li 0.015 (PO 4 ) 6 (0.5% Eu 2+ ) from Example 1 and 0.02 g Ba 2 MgSi 2 O 7 : Eu and 0.005 g (Sr, Ca) AlSiN 3: Eu mixed and subsequently dispersed in Dow Corning HF OE6370 poly silicon oxygen. The dispersion was introduced into an LED chip board package with 395 nm LED chips and then cured at 150°C for one hour.

實例 6 2800 K 白色 LED 中使用 將來自實例1之0.72 g之Na2.985 Eu0.015 RbMg6.985 Li0.015 (PO4 )6 (0.5% Eu2+ )與0.12 g Lu3 Al5 O12 :Ce及0.09 g之(Ba,Sr)2 Si5 N8 :Eu混合,且隨後將其分散於來自德國Bluestar Silicons之Silbione RT Gel 4317 A/Silbione RT Gel 4317 B二組分聚矽氧中。將所固化之聚矽氧施加至370 nm LED晶片。 Example 6 : Used in a 2800 K white LED : 0.72 g of Na 2.985 Eu 0.015 RbMg 6.985 Li 0.015 (PO 4 ) 6 (0.5% Eu 2+ ) from Example 1 and 0.12 g Lu 3 Al 5 O 12 : Ce And 0.09 g of (Ba,Sr) 2 Si 5 N 8 :Eu were mixed, and then dispersed in Silbione RT Gel 4317 A/Silbione RT Gel 4317 B two-component silicone from Bluestar Silicons, Germany. The cured silicone is applied to the 370 nm LED chip.

1 LED及雷射二極體之效率隨發射波長而變。在此處三角形表示LED及正方形表示雷射二極體。 2 用於Cu-Kα 輻射之Na2.985 Eu0.015 RbMg6.985 Li0.015 (PO4 )6 之X射線繞射圖(實例1)。 3 相對於作為白色標準之BaSO4 ,Na2.985 Eu0.015 RbMg6.985 Li0.015 (PO4 )6 之反射光譜(實例1)。 4 Na2.985 Eu0.015 RbMg6.985 Li0.015 (PO4 )6 在350 nm下激發時之發射光譜(實例1)。 5 對於450 nm下之Eu2+ 發射帶,Na2.985 Eu0.015 RbMg6.985 Li0.015 (PO4 )6 之激發光譜(實例1)。 6 來自具有Na2.985 Eu0.015 RbMg6.985 Li0.015 (PO4 )6 之色點的CIE 1931色圖之細節(實例1)。 7 在350 nm激發時,Na2.985 Eu0.015 RbMg6.985 Li0.015 (PO4 )6 之發射積分隨溫度變化之相對過程(實例1)。 8 LED使用實例在6500 K之色溫下之發射光譜,其中Na2.985 Eu0.015 RbMg6.985 Li0.015 (PO4 )6 作為藍色組份與Ba2 MgSi2 O7 :Eu及(Sr,Ca)AlSiN3 :Eu組合(參見實例5)。 9 LED使用實例在2800 K之色溫下之發射光譜,其中Na2.985 Eu0.015 RbMg6.985 Li0.015 (PO4 )6 作為藍色組份與Lu3 Al5 O12 :Ce及(Ba,Sr)2 Si5 N8 :Eu組合(參見實例6)。 Figure 1 : The efficiency of LEDs and laser diodes varies with the emission wavelength. Here the triangle represents the LED and the square represents the laser diode. Figure 2 : X-ray diffraction pattern of Na 2.985 Eu 0.015 RbMg 6.985 Li 0.015 (PO 4 ) 6 used for Cu-K α radiation (Example 1). Figure 3 : Reflectance spectrum of Na 2.985 Eu 0.015 RbMg 6.985 Li 0.015 (PO 4 ) 6 relative to BaSO 4 as the white standard (Example 1). Figure 4 : The emission spectrum of Na 2.985 Eu 0.015 RbMg 6.985 Li 0.015 (PO 4 ) 6 when excited at 350 nm (Example 1). Figure 5 : For the Eu 2+ emission band at 450 nm, the excitation spectrum of Na 2.985 Eu 0.015 RbMg 6.985 Li 0.015 (PO 4 ) 6 (Example 1). Figure 6 : Details from the CIE 1931 color diagram with the color point of Na 2.985 Eu 0.015 RbMg 6.985 Li 0.015 (PO 4 ) 6 (Example 1). Figure 7 : When excited at 350 nm, the relative process of the emission integral of Na 2.985 Eu 0.015 RbMg 6.985 Li 0.015 (PO 4 ) 6 changes with temperature (Example 1). Figure 8 : The emission spectrum of an LED usage example at a color temperature of 6500 K, where Na 2.985 Eu 0.015 RbMg 6.985 Li 0.015 (PO 4 ) 6 is used as the blue component and Ba 2 MgSi 2 O 7 :Eu and (Sr,Ca) AlSiN 3 :Eu combination (see Example 5). Figure 9 : The emission spectrum of an LED usage example at a color temperature of 2800 K, where Na 2.985 Eu 0.015 RbMg 6.985 Li 0.015 (PO 4 ) 6 is used as the blue component and Lu 3 Al 5 O 12 : Ce and (Ba, Sr) 2 Si 5 N 8 : Eu combination (see Example 6).

Figure 108132933-A0304-11-0002-1
Figure 108132933-A0304-11-0002-1

Claims (15)

一種通式(I)化合物: [MI 4 MII 7 (AO4 )6 ]n (I), 其特徵在於該化合物摻雜有RE及Li或摻雜有RE, 其中以下各者適用於所用符號及指數: MI 係選自由Na、K、Rb、Cs及其兩者或兩者以上之混合物組成之群; MII 係選自由Mg、Ca、Sr、Ba、Cu、Zn及其兩者或兩者以上之混合物組成之群; A 係選自由P、As、Sb、Bi、V、Nb、Ta及其兩者或兩者以上之混合物組成之群; RE    係選自由Eu、Yb、Sm、Mn及其兩者或兩者以上之混合物組成之群; 0 < n ≤ 4。A compound of general formula (I): [M I 4 M II 7 (AO 4 ) 6 ] n (I), characterized in that the compound is doped with RE and Li or doped with RE, wherein each of the following is suitable for the used Symbols and indices: M I is selected from the group consisting of Na, K, Rb, Cs and a mixture of two or more; M II is selected from Mg, Ca, Sr, Ba, Cu, Zn and both Or a group consisting of a mixture of two or more; A is selected from the group consisting of P, As, Sb, Bi, V, Nb, Ta and a mixture of two or more; RE is selected from the group consisting of Eu, Yb, Sm , Mn and its two or more mixtures; 0 < n ≤ 4. 如請求項1之化合物,其由通式(II)表示: [MIa 3 MIb MII 7 (AO4 )6 ]n (II), 其中: MIa 係選自由Na、K、Rb及Cs組成之群; MIb 係選自由Na、K、Rb、Cs及其兩者或兩者以上混合物組成之群。Such as the compound of claim 1, which is represented by the general formula (II): [M Ia 3 M Ib M II 7 (AO 4 ) 6 ] n (II), where: M Ia is selected from Na, K, Rb and Cs The group of composition; M Ib is selected from the group consisting of Na, K, Rb, Cs, and a mixture of two or more of them. 如請求項1之化合物,其由通式(Ia)或(Ib)表示: [MI 4-x MII 7-x (AO4 )6 :REx ,Lix ]n (Ia) [MI 4-2x MII 7 (AO4 )6 :REx ]n (Ib), 其中: 0 < x ≤ 1。Such as the compound of claim 1, which is represented by the general formula (Ia) or (Ib): [M I 4-x M II 7-x (AO 4 ) 6 :RE x ,Li x ] n (Ia) [M I 4-2x M II 7 (AO 4 ) 6 : RE x ] n (Ib), where: 0 <x ≤ 1. 如請求項2之化合物,其由通式(IIa)或(IIb)表示: [MIa 3-y MIb 1-z MII 7-x (AO4 )6 :REx ,Lix ]n (IIa) [MIa 3-2y MIb 1-2z MII 7 (AO4 )6 :REx ]n (IIb), 其中: 0 ≤ y ≤ 1;0 ≤ z ≤ 1;y + z = x;及 0 < x ≤ 1。Such as the compound of claim 2, which is represented by the general formula (IIa) or (IIb): [M Ia 3-y M Ib 1-z M II 7-x (AO 4 ) 6 : RE x ,Li x ] n ( IIa) [M Ia 3-2y M Ib 1-2z M II 7 (AO 4 ) 6 :RE x ] n (IIb), where: 0 ≤ y ≤ 1; 0 ≤ z ≤ 1; y + z = x; And 0 <x ≤ 1. 如請求項1至4中任一項之化合物,其中 MII 為Mg,其可部分由Ca、Sr及/或Ba置換;及 A為P,其可部分由As、Sb、V、Nb及/或Ta置換。Such as the compound of any one of claims 1 to 4, wherein M II is Mg, which may be partially replaced by Ca, Sr and/or Ba; and A is P, which may be partially replaced by As, Sb, V, Nb and/ Or Ta replacement. 如請求項1至5中任一項之化合物,其中以下化合物適用於x:0 < x < 1,較佳0.0 < x ≤ 0.5,更佳0.001 ≤ x ≤ 0.1且尤其較佳0.001 ≤ x ≤ 0.04。The compound according to any one of claims 1 to 5, wherein the following compounds are suitable for x: 0 <x <1, preferably 0.0 <x ≤ 0.5, more preferably 0.001 ≤ x ≤ 0.1 and particularly preferably 0.001 ≤ x ≤ 0.04 . 如請求項1至6中任一項之化合物,其中該化合物與另一化合物一起經塗佈於表面上。The compound according to any one of claims 1 to 6, wherein the compound is coated on the surface together with another compound. 一種製備如請求項1至7中任一項之化合物之方法,其包含步驟: a)   製備包含MI 、MII 、AO4 、RE及Li之混合物;及 b)   煅燒所製備之混合物。A method for preparing a compound according to any one of claims 1 to 7, which comprises the steps of: a) preparing a mixture containing M I , M II , AO 4 , RE and Li; and b) calcining the prepared mixture. 一種如請求項1至7中任一項之化合物之用途,其用作用於將UV光及/或紫色光部分或完全轉換成具有更長波長之光的磷光體或轉換磷光體。A use of the compound according to any one of claims 1 to 7, which is used as a phosphor or conversion phosphor for partially or completely converting UV light and/or violet light into light having a longer wavelength. 一種輻射轉換混合物,其包含如請求項1至7中任一項之化合物。A radiation conversion mixture comprising the compound according to any one of claims 1 to 7. 如請求項10之輻射轉換混合物,其進一步包含一或多種選自轉換磷光體及半導體奈米粒子之其他發光材料。The radiation conversion mixture of claim 10, which further comprises one or more other luminescent materials selected from conversion phosphors and semiconductor nanoparticles. 一種光源,其含有至少一個一次光源及至少一種如請求項1至7中任一項之化合物或如請求項10或11之輻射轉換混合物。A light source comprising at least one primary light source and at least one compound according to any one of claims 1 to 7 or a radiation conversion mixture according to claim 10 or 11. 如請求項12之光源,其中該一次光源包含發光氮化銦鋁鎵。Such as the light source of claim 12, wherein the primary light source comprises luminescent indium aluminum gallium nitride. 如請求項13之光源,其中該發光氮化銦鋁鎵為式Ini Gaj Alk N化合物,其中0 ≤ i、0 ≤ j、0 ≤ k及i + j + k = 1。Such as the light source of claim 13, wherein the luminescent indium aluminum gallium nitride is a compound of formula In i Ga j Al k N, where 0 ≤ i, 0 ≤ j, 0 ≤ k, and i + j + k = 1. 一種照明單元,其含有至少一種如請求項12至14中任一項之光源。A lighting unit containing at least one light source as claimed in any one of claims 12 to 14.
TW108132933A 2018-09-14 2019-09-12 Blue-emitting phosphor compounds TW202024305A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18194461.2 2018-09-14
EP18194461 2018-09-14

Publications (1)

Publication Number Publication Date
TW202024305A true TW202024305A (en) 2020-07-01

Family

ID=63592571

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108132933A TW202024305A (en) 2018-09-14 2019-09-12 Blue-emitting phosphor compounds

Country Status (2)

Country Link
TW (1) TW202024305A (en)
WO (1) WO2020053381A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114231283A (en) * 2022-01-24 2022-03-25 西安建筑科技大学 Phosphate blue fluorescent powder excited by near ultraviolet light, preparation method thereof and white light LED light-emitting device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5051277A (en) 1990-01-22 1991-09-24 Gte Laboratories Incorporated Method of forming a protective bi-layer coating on phosphore particles
JP2967559B2 (en) 1991-03-29 1999-10-25 日亜化学工業株式会社 Phosphor and manufacturing method thereof
US6265068B1 (en) 1997-11-26 2001-07-24 3M Innovative Properties Company Diamond-like carbon coatings on inorganic phosphors
US6855202B2 (en) 2001-11-30 2005-02-15 The Regents Of The University Of California Shaped nanocrystal particles and methods for making the same
US20050167646A1 (en) 2004-02-04 2005-08-04 Yissum Research Development Company Of The Hebrew University Of Jerusalem Nanosubstrate with conductive zone and method for its selective preparation
ATE520156T1 (en) 2005-06-15 2011-08-15 Yissum Res Dev Co III-V SEMICONDUCTOR CORE HETEROSHELL NANOCRYSTALS, METHOD FOR THEIR PRODUCTION AND THEIR USES
US20070298250A1 (en) 2006-06-22 2007-12-27 Weimer Alan W Methods for producing coated phosphor and host material particles using atomic layer deposition methods
DE102007056343A1 (en) 2007-11-22 2009-05-28 Litec Lll Gmbh Surface-modified phosphors
DE102008060680A1 (en) 2008-12-08 2010-06-10 Merck Patent Gmbh Surface modified silicate phosphors
US20130032768A1 (en) 2010-01-28 2013-02-07 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Phosphor-nanoparticle combinations
CN103087714B (en) * 2013-01-23 2014-12-17 重庆大学 Single matrix white phosphor for LED (light emitting diode) and preparation method thereof
CN103322525B (en) 2013-06-17 2015-04-22 深圳市源磊科技有限公司 LED (light-emitting diode) lamp and filament thereof
KR20180051606A (en) 2015-09-10 2018-05-16 메르크 파텐트 게엠베하 Photo-conversion material

Also Published As

Publication number Publication date
WO2020053381A1 (en) 2020-03-19

Similar Documents

Publication Publication Date Title
TWI502052B (en) Silicophosphate phosphors
CN102725378B (en) Luminophore
US20170051201A1 (en) Phosphors
US9580649B2 (en) Process for production of phosphors
US9920246B2 (en) Phosphors
CN102216419B (en) Codoped 1-1-2 nitrides
KR20160094414A (en) Eu2+ -activated phosphors
US10125315B2 (en) Phosphors and phosphor-converted LEDs
TWI632225B (en) Eu-activated phosphors
CN102471681B (en) Co-doped silicooxynitrides
US20160108311A1 (en) Phosphors
KR20150136091A (en) Magnesium alumosilicate-based phosphor
TW201728745A (en) Mn-activated phosphors
US9745511B2 (en) Phosphors
US20160152891A1 (en) Phosphors
TW202024305A (en) Blue-emitting phosphor compounds
US20200194625A1 (en) Mn4+-activated luminescent material as conversion phosphor for led solid-state light sources
TWI814793B (en) Mn-activated oxidohalides as conversion luminophores for led-based solid-state light sources
US20170107426A1 (en) Europium- or samarium-doped terbium molybdates
US20170084797A1 (en) Conversion phosphors
GB2565189A (en) Tin-based langasites activated with europium
US20230279292A1 (en) NOVEL Mn(VI) - ACTIVATED OXIDOFLUORIDES AS LUMINESCENT MATERIALS FOR SOLID STATE LIGHT SOURCES