TW202022647A - 社群網路之控制系統與控制方法 - Google Patents

社群網路之控制系統與控制方法 Download PDF

Info

Publication number
TW202022647A
TW202022647A TW107143479A TW107143479A TW202022647A TW 202022647 A TW202022647 A TW 202022647A TW 107143479 A TW107143479 A TW 107143479A TW 107143479 A TW107143479 A TW 107143479A TW 202022647 A TW202022647 A TW 202022647A
Authority
TW
Taiwan
Prior art keywords
information
social network
patent application
item
scope
Prior art date
Application number
TW107143479A
Other languages
English (en)
Inventor
張傑智
郭志忠
簡世杰
洪健詠
林政賢
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW107143479A priority Critical patent/TW202022647A/zh
Priority to CN201811561570.2A priority patent/CN111274419A/zh
Priority to US16/557,774 priority patent/US20200177537A1/en
Publication of TW202022647A publication Critical patent/TW202022647A/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/40Information retrieval; Database structures therefor; File system structures therefor of multimedia data, e.g. slideshows comprising image and additional audio data
    • G06F16/44Browsing; Visualisation therefor
    • G06F16/444Spatial browsing, e.g. 2D maps, 3D or virtual spaces
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/01Social networking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L51/00User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
    • H04L51/04Real-time or near real-time messaging, e.g. instant messaging [IM]
    • H04L51/046Interoperability with other network applications or services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L51/00User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
    • H04L51/07User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail characterised by the inclusion of specific contents
    • H04L51/08Annexed information, e.g. attachments
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L51/00User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
    • H04L51/21Monitoring or handling of messages
    • H04L51/226Delivery according to priorities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L51/00User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
    • H04L51/52User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail for supporting social networking services
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L51/00User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
    • H04L51/21Monitoring or handling of messages
    • H04L51/222Monitoring or handling of messages using geographical location information, e.g. messages transmitted or received in proximity of a certain spot or area

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Computing Systems (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Multimedia (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Software Systems (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Human Computer Interaction (AREA)
  • Mathematical Physics (AREA)
  • Databases & Information Systems (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

一種社群網路之控制系統與控制方法。控制方法包括以下步驟。獲得一偵測資訊。依據偵測資訊,分析至少一社群成員之一狀態資訊。依據一時間區間,濃縮狀態資訊,以獲得一濃縮資訊。依據一優先摘要分數,摘要濃縮資訊,以獲得一摘要資訊。顯示摘要資訊。

Description

社群網路之控制系統與控制方法
本揭露是有關於一種社群網路之控制系統與控制方法。
現代人忙於工作之際,仍然會想要關心家庭成員的日常生活。尤其是年長的長輩或年幼的小孩更是需要關懷的對象。若能夠自動偵測家庭成員的所在場景與目前的身心狀況並在社群網路讓其他成員知悉,將有助於雙方的互動關係。
然而,欲發展此社群網路需要考慮到的需求相當的多,例如成員的隱私、是否被干擾、以及資訊內容如何呈現等,此為目前發展方向之一。
本揭露係有關於一種社群網路之控制系統與控制方法。在社群網路中,社群成員可透過虛擬人物在虛擬場景中,以多媒體呈現社群成員的活動記錄(包括心情狀態、生活樣態、特殊事件、成員交談、虛擬互動)等。並且,使用者可以自行選擇虛擬化、隱喻化的多媒體來呈現資訊,並透過非線性縮放之時間軸來呈現濃縮資訊。
根據本揭露之一實施例,提出一種社群網路之控制方法。控制方法包括以下步驟。獲得一偵測資訊。依據偵測資訊,分析至少一社群成員之一狀態資訊。依據一時間區間,濃縮狀態資訊,以獲得一濃縮資訊。依據一優先摘要分數,摘要濃縮資訊,以獲得一摘要資訊。顯示摘要資訊。
根據本揭露之另一實施例,提出一種社群網路之控制系統。控制系統包括至少一偵測單元、一分析單元、一濃縮單元、一摘要單元及一顯示單元。偵測單元獲得一偵測資訊。分析單元用以依據偵測資訊,分析至少一社群成員之一狀態資訊。濃縮單元用以依據一時間區間,濃縮狀態資訊,以獲得一濃縮資訊。摘要單元用以依據一優先摘要分數,摘要濃縮資訊,以獲得一摘要資訊。顯示單元用以顯示摘要資訊。
為了對本揭露之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下:
以下提出各種實施例說明本揭露之社群網路之控制系統及控制方法。在本揭露中,社群成員可透過虛擬人物在虛擬場景中以多媒體呈現社群成員的活動記錄(包括心情狀態、生活樣態、特殊事件、成員交談或虛擬互動)等。並且,使用者可以自行選擇虛擬化、隱喻化的多媒體來呈現資訊,並透過非線性縮放之時間軸來呈現濃縮資訊。
請參照第1圖,其繪示根據一實施例之社群網路9000的示意圖。社群網路9000中可以加入數個社群成員P1~P5。社群網路9000在虛擬場景中透過虛擬人物呈現社群成員P1~P5。社群網路9000可以呈現出社群成員P1~P5之心情狀態、生活樣態、特殊事件、成員交談、虛擬互動等。使用者可以點選社群成員P1~P5之其中之一,以進一步瞭解細項資訊。除此之外,社群網路9000更能夠主動通知特殊事件或提供資訊修正之功能,以下搭配流程圖與方塊圖詳細說明。
請參照第2圖及第3圖,第2圖繪示根據一實施例之社群網路9000之控制系統100之示意圖,第3圖繪示根據一實施例之社群網路9000之控制方法的流程圖。控制系統100包括至少一偵測單元110、一分析單元120、一濃縮單元130、一摘要單元140、一顯示單元150、一修正單元160、一儲存單元170及一輸入單元180。偵測單元110例如是一接觸式偵測器或一非接觸式偵測器。分析單元120、濃縮單元130、摘要單元140、修正單元160例如是一電路、一晶片、一電路板、一電腦、儲存一或數組程式碼之儲存裝置、或軟體程式模組。顯示單元150例如是一液晶螢幕、一電視、一報表裝置或一喇叭。儲存單元170例如是一記憶體、一硬碟、或一雲端儲存中心。輸入單元180例如是一觸控面板、一無線訊號接收器、一連接埠、一滑鼠、一觸控筆、或一鍵盤。
上述各項元件係可整合於同一電子裝置中,或者分設於不同的電子裝置中。舉例來說,偵測單元110可以分散設置於不同位置,分析單元120、濃縮單元130、摘要單元140、修正單元160及儲存單元170則可以設置於同一主機內,顯示單元150則可以是使用者之智慧型手機的螢幕。
以下搭配流程圖詳細說明上述各項元件之運作及社群網路9000的各種功能。在第3圖之步驟S110中,偵測單元110獲得偵測資訊S1。偵測資訊S1例如是一心跳頻率、一呼吸頻率、一氧化碳濃度、一移動路徑、一體溫、一影像、一語音、一環境聲音、一濕度或一空氣品質。偵測單元110可以採定點設置,例如是無線通訊感測器、紅外線感測器、超音波感測器、雷射感測器、視覺感測器或音訊辨識器。定點設置之偵測單元110對應於一預設之場景,例如是客廳。顯示單元150可以在社群網路9000上顯示出對應於此場景之背景。背景的呈現可以是一預設之虛擬化圖形。當偵測單元110收集到偵測資訊S1時,更可以進行物件辨識或人臉識別,而將辨識到之物件或社群成員,以預設之虛擬圖像,呈現在顯示單元150上。
上述偵測單元110也可以是攜帶式偵測器。當偵測單元110放置在一環境中,偵測資訊S1可以用來判斷周遭環境場景為何。舉例來說,偵測資訊S1透過影像物件識別技術的辨識,可以辨識出環境中的特徵物件(如電視機、床、餐桌)。或者,偵測資訊S1可以是家電裝置之無線訊號,利用具無線通訊能力之家電裝置,可以識別出所在環境。
在一實施例中,社群網路9000可以進行物件辨識或人臉識別,並將辨識到之物件或社群成員,以預設之虛擬圖像,呈現在顯示單元150上。
上述偵測單元110也可配戴在一自主移動裝置上。自主移動裝置可經由物件追蹤技術跟隨物件或社群成員的移動,並且自主移動裝置也可以搭配同步定位與地圖構建(Simultaneous localization and mapping, SLAM)技術進行自主移動。在自主移動裝置移動時,偵測單元110可以辨識周遭環境並將辨識到之物件或社群成員,並以預設之虛擬圖像,呈現在顯示單元150上。透過偵測單元110的偵測,偵測項目可以模擬的方式呈現於社群網路9000之虛擬環境。
偵測單元110可以是接觸式及/或非接觸式,例如是麥克風、攝影機、紅外線溫度感測器、溼度感測器、光線感測器(Ambient Light Sensor)、距離感測器(proximity sensor)、重力感測器(G-Sensor)、加速度感測器(Accelerometer Sensor)、磁(場)感測器(Magnetism Sensor)、陀螺儀(Gyroscope)、全球定位系統感應器、指紋感測器、霍爾感測器(Hall Sensor)、氣壓感測器(barometer)、心率感測器、血氧感測器、紫外線感測器或Wi-Fi傳送接收模組等。
偵測單元110亦可直接搭載於各種智慧型電子產品,例如是智慧手環、智慧耳機、智慧眼鏡、智慧手錶、智慧衣、智慧戒指、智慧襪、智慧鞋或心跳感測帶。
此外,偵測單元110亦可以是一電子裝置之一部分,例如是智慧電視、監控攝影機、遊戲機、聯網冰箱或防盜系統之一部分元件等。
然後,在第3圖之步驟S120中,分析單元120依據偵測資訊S1,分析社群成員P1~P5之一狀態資訊S2。狀態資訊S2例如是生理狀態、心理狀態(情緒狀態)、生存狀態(活動狀態、生活樣態)、特殊事件或互動狀態(成員交談、虛擬互動)等。
狀態資訊S2可以分為個人資訊、空間資訊及/或特殊事件。個人資訊包括身心狀態(生理狀態、心理狀態等)及/或活動記錄(個人活動、互動活動等)。空間資訊包括環境狀態(溫度、濕度等)及/或事物記錄(電視開啟、鈴響等)。特殊事件例如是忽喊救命、大地震、異常聲響等緊急事件、環境事件或異常事件之統稱。個人資訊、空間資訊可以由使用者在社群網路9000上瀏覽,特殊事件則可由社群網路9000主動通知使用者。
更詳細來說,偵測單元110可以利用穿戴式裝置收集社群成員的體溫、血氧、心跳、消耗熱量、活動、位置、睡眠等偵測資訊S1,或者是利用紅外線溫度感測器收集社群成員之體溫等偵測資訊S1,或者透過非接觸雷達感測技術收集人體心跳等偵測資訊S1。分析單元120再透過這些偵測資訊S1分析出生理狀態之狀態資訊S2。上述這些偵測與分析方式可為即時、非接觸式、長時間及/或連續的偵測與分析,並且可利用結合智慧型手機來整合感測、訊號處理、無線資料傳輸等功能。
此外,分析單元120亦可透過語音之偵測資訊S1分析出生理狀態之狀態資訊S2。舉例來說,咳嗽、打噴嚏、打呼及/或說夢話等偵測資訊S1輸入至分析單元120後,分析單元120可以依據打呼、磨牙及/或咳嗽事件之頻率變化,分析出睡眠狀態之狀態資訊S2。
此外,透過影像或音訊等偵測資訊S1,分析單元120可以分析出社群成員的情緒狀態(快樂、驚訝、生氣、厭惡、悲傷、害怕或中性等)。分析單元120可以透過影像人臉表情偵測技術來辨識目前的表情狀態。透過語者識別技術區分出社群成員後,分析單元120可以進行語音情緒偵測、情緒示意詞偵測及/或非語音(Non-Verbal Sounds)的情緒分析(如笑聲),亦可結合影像與音訊的結果來綜合處理輸出。或者,分析單元120亦可透過語音等偵測資訊S1,進行自言自語、說話內容反覆等心理相關事件的分析,以獲得心理狀態之狀態資訊S2。
上述偵測與分析動作亦可作為失智或異常行為狀態的警訊,例如透過患者之表情、眼神、聲音、行為舉動及/或步態等偵測資訊S1,分析單元120可以分析出可能會發生攻擊行之狀態資訊S2。以聲音之偵測為例,可以照護目的為導向,偵測社群成員之口語特質、習慣、用語及/或聊天內容等偵測資訊S1,分析單元120並透過機器學習或深度學習演算法,分析出異常行為之狀態資訊S2。
再者,偵測單元110可以透過室內定位技術與活動力分析技術來偵測社群成員目前的所處的位置資訊(如餐廳、臥室、客廳、書房或走廊等)與活動資訊(如用餐、睡覺、看電視、看書或跌倒等)等偵測資訊S1,分析單元120依據偵測資訊S1及時間資訊,利用機器學習或深度學習演算法進而分析出社群成員處於用餐之狀態資訊S2。
此外,偵測單元110可從第三方獲得天氣資訊,或者偵測出環境狀況(如溫度、溼度、天氣狀況、聲音狀況、空氣品質及/或水位偵測等)、玻璃聲、鞭炮(槍)聲、巨大聲響、高濃度一氧化碳及/或淹水等事件,進而獲得環境之偵測資訊S1。分析單元120再依據偵測資訊S1,利用機器學習或深度學習演算法進而分析出社群成員所處環境之狀態資訊S2。
再者,偵測單元110可以取得串流影/音訊中的偵測資訊S1,分析單元120再依據偵測資訊S1判別說話活動段落、類別、說話情境(講電話、交談或 非交談)、對象、長度及/或關鍵詞出現頻率等,來綜合理解社群成員之身心狀態的狀態資訊S2。
或者,分析單元120亦可依據偵測資訊S1之內容、哭聲、罵聲及/或呼叫聲,分析出吵架事件之狀態資訊S2。
在步驟S121中,若分析單元120判斷出狀態資訊S2含有特殊事件,則於步驟S122中,進行警示。
接著,在第3圖之步驟S130中,濃縮單元130依據一時間區間T1,濃縮狀態資訊S2,以獲得一濃縮資訊S3。請參照第4圖,其繪示根據一實施例之濃縮資訊S3之示意圖。使用者可以針對將關心的時間區間T1透過輸入單元180輸入至濃縮單元130。濃縮單元130透過非線性縮放之時間軸來呈現時間區間T1之濃縮資訊S3。濃縮資訊S3依據一發生頻率及一持續時間呈現於時間軸上。以第4圖為例,狀態資訊S2包含高興指數曲線C11及驚訝指數曲線C12。高興指數曲線C11超過閥值TH1者,社群成員位於高興狀態,驚訝指數曲線C12超過閥值TH2者,社群成員位於驚訝狀態。閥值TH1與閥值TH2可以相同或不相同。濃縮單元130將時間區間T1內的高興指數曲線C11及驚訝指數曲線C12轉換成濃縮資訊S3。濃縮資訊S3包含高興濃縮區塊B11及驚訝濃縮區塊B12。高興濃縮區塊B11之兩側邊長度分別表示高興時間累積值T11及高興指數累積值I11,驚訝濃縮區塊B12之兩側邊長度分別表示驚訝時間累積值T12及驚訝指數累積值I12。也就是說,經由濃縮單元130進行轉換後,可以直接從高興濃縮區塊B11的兩側邊長度直覺地看出高興狀態累積多久、以及高興狀態的程度。同樣地,經由濃縮單元130進行轉換後,可以直接從驚訝濃縮區塊B12的兩側邊長度直覺地看出驚訝狀態累積多久、以及驚訝狀態的程度。在一實施例中,時間軸的縮放比例可以按照該時段之狀態資訊S2之某一內容的多寡而定。內容的多寡例如是該內容的筆數、該內容隨時間之變動程度、特殊事件的多寡、或使用者感興趣的內容多寡等。此外,濃縮資訊S3亦可依據指數累積值或時間累積值進行排序。
請再參照第5圖,其繪示根據另一實施例之濃縮資訊S3的示意圖。以第5圖為例,生活樣態之狀態資訊S2包含睡眠狀態、工作狀態、開車狀態或用餐狀態等。濃縮單元130將時間區間T2內的睡眠狀態、工作狀態、開車狀態或用餐狀態轉換成濃縮資訊S3。濃縮資訊S3包含用餐濃縮區塊B21、睡眠濃縮區塊B22、工作濃縮區塊B23及開車濃縮區塊B24。用餐濃縮區塊B21之兩側邊長度分別表示用餐時間累積值T21及用餐頻率累積值F21。也就是說,經由濃縮單元130進行轉換後,可以直接從用餐濃縮區塊B21的兩側邊長度直覺地看出用餐狀態累積多久、以及用餐狀態的頻率。用餐濃縮區塊B21、睡眠濃縮區塊B22、工作濃縮區塊B23及開車濃縮區塊B24可依據指數累積值或時間累積值進行排序。此外,亦可透過視訊技術,將生活態樣視訊融入濃縮資訊S3中的某一時間區間。
請再參照第6圖,其繪示根據另一實施例之濃縮資訊S3的示意圖。以第6圖為例,濃縮資訊S3亦可呈現虛擬互動內容。虛擬互動內容例如是高興貼圖或生氣貼圖。濃縮單元130將時間區間T3內的高興貼圖或生氣貼圖轉換成濃縮資訊S3。濃縮資訊S3包含高興濃縮區塊B31及生氣濃縮區塊B32。高興濃縮區塊B31之兩側邊長度分別表示高興時間累積值T31及高興頻率累積值F31。也就是說,經由濃縮單元130進行轉換後,可以直接從高興濃縮區塊B31的兩側邊長度直覺地看出高興狀態累積多久、以及高興狀態的頻率。高興濃縮區塊B31及生氣濃縮區塊B32可依據指數累積值或時間累積值進行排序。此外,濃縮資訊S3亦可使用方塊圖、泡泡圖或其他可呈現出現累積頻率值與累積時間質之圖表來呈現。
請再參照第7圖,其繪示根據另一實施例之濃縮資訊S3的示意圖。以第7圖為例,濃縮資訊S3亦可以泡泡圖之方式呈現。濃縮資訊S3包含讀書濃縮區塊B41、開車濃縮區塊B42及運動濃縮區塊B43。讀書濃縮區塊B41之半徑表示讀書時間累積值,讀書濃縮區塊B41之圖案大小表示讀書頻率累積值。也就是說,經由濃縮單元130進行轉換後,可以直接從讀書濃縮區塊B41的半徑及圖案大小直覺地看出讀書狀態累積多久、以及讀書狀態的頻率。
在第3圖之步驟S140中,摘要單元140根據一優先摘要分數
Figure 02_image001
摘要濃縮資訊S3,以獲得一摘要資訊S4。優先摘要分數
Figure 02_image001
的計算方式如下式(1)所示,其中
Figure 02_image003
係為濃縮資訊S3之一資料特性,
Figure 02_image005
係為濃縮資訊S3之一查閱偏好,
Figure 02_image007
係為濃縮資訊S3之一類型偏好。
Figure 02_image009
………………………………..(1)
資料特性(即
Figure 02_image003
)例如是時間長度或頻率等。查閱偏好(即
Figure 02_image005
)例如是由瀏覽紀錄分析出之閱讀時間或閱讀頻率等。請參照第8圖,其繪示模糊歸屬函數
Figure 02_image011
之示意圖。第8圖之橫軸係為讀取比例x,縱軸係為模糊歸屬函數
Figure 02_image013
(又稱隸屬度(membership grade)),其為0到1之間的數值,表示讀取比例x屬於模糊集合的「真實程度」(degree of truth)。曲線C81為讀取之模糊歸屬函數
Figure 02_image011
,曲線C82為跳過之模糊歸屬函數
Figure 02_image011
。查閱偏好(即
Figure 02_image005
)之計算可以依據下式(2)進行:
Figure 02_image015
………(2)
如上述式(2)所示,當整個濃縮資訊S3未被查閱時,查閱偏好(即
Figure 02_image005
)為0。當濃縮資訊S3有被查閱,而部分之內容被讀取或點選時(如10筆資料點選了3筆),查閱偏好(即
Figure 02_image005
)為
Figure 02_image017
。當濃縮資訊S3有被查閱,而部分的內容被跳過時(如10筆資料中跳過了7筆),查閱偏好(即
Figure 02_image005
)為
Figure 02_image019
。當濃縮資訊S3重複被查閱時,各次的查閱偏好(即
Figure 02_image021
)將被加總為
Figure 02_image023
類型偏好(即
Figure 02_image007
)可以權重來代表,其計算方式如下式(3):
Figure 02_image025
………………………………………….(3)
其中,
Figure 02_image027
為權重,
Figure 02_image029
為資料,
Figure 02_image031
為資料數量,
Figure 02_image033
為歷史權重,
Figure 02_image035
為調整參數,i為資料類型。
Figure 02_image037
表示對第i資料類型之重視程度,其作為歷史權重(即
Figure 02_image027
)之調整參數,以獲得更新之權重(
Figure 02_image027
)。
優先摘要分數
Figure 02_image001
例如是根據下式(4)進行計算:
Figure 02_image039
Figure 02_image041
Figure 02_image043
……………..(4) 其中
Figure 02_image045
Figure 02_image047
Figure 02_image049
之關係例如是
Figure 02_image051
,但不以此為限。
其中,
Figure 02_image045
為類型優先參數,
Figure 02_image047
為頻率優先參數,
Figure 02_image049
為長度優先參數。
Figure 02_image053
Figure 02_image055
為頻率,
Figure 02_image057
為長度。
如上所述,透過摘要單元140的摘要,摘要資訊S4可以反映出使用者的閱讀習慣與偏好,以提供切合使用者需要的資訊。
然後,在第3圖之步驟S150中,顯示單元150顯示摘要資訊S4。顯示單元150顯示摘要資訊S4時,係以一虛擬內容呈現一隱喻資訊。舉例來說,使用者可以自行選擇虛擬化或隱喻化的多媒體來傳達呈現。例如:可以利用人物表情(喜、怒、哀或樂等)及/或動作(吃飯、睡覺或運動等)來進行分類,透過機器學習或深度學習的方式來進行訓練後,針對分類的內容進行一對一轉換。例如將睡覺者對應到在下棋虛擬角色,將運動者對應到正在打電腦之虛擬角色。此外,根據多媒體聲音的內容,亦可以透過調整音高及/或振福,讓聲音轉變成另一種聲音。舉例來說,語音轉換成機器人聲,男聲變女聲等。也可以透過語音轉文字(speech to text, STT)技術將語音內容轉成文字後,再透過文字轉語音(text to speech, TTS)技術再轉回聲音,藉此達到虛擬化與隱喻化之效果。
透過上述實施例,社群網路9000能夠在非接觸與無干擾的情況下,主動的偵測社群成員的狀況,並透過濃縮資訊S3、摘要資訊S4於社群網路9000進行呈現。虛擬人物在虛擬場景中透過多媒體呈現社群成員的活動記錄,使用者可自行設定虛擬化、隱喻化的多媒體來傳達呈現。
然後,在第3圖之步驟S160中,修正單元160依據一回饋資訊FB,判斷狀態資訊S2是否需要修正。接著,在第3圖之步驟S170中,修正單元160依據回饋資訊FB修正分析單元120所輸出之狀態資訊S2。舉例來說,每個人的基本反應狀況皆不同,因此自動化偵測先以普羅大眾的反應狀況為基礎進行判斷。當使用者欲針對狀態資訊S2進行回饋時,可以透過觸控、語音、 圖片、影像或文字輸入回饋資訊FB。例如使用者發現被關注之社群成員有「奶奶和小美通完電話後,情緒轉由中性轉為『怒』」之情緒事件的發生,由於奶奶平常說話就比較大聲,且說話的關鍵語詞包含「不小心」與「又忘記」等詞,因此被分析單元120判斷為「怒」的狀態資訊S2。此時使用者可以點選該情緒事件瞭解細節,經使用者聽過對話語音之後,判斷此應為奶奶一般中性的情緒,使用者可於輸入單元180點選「怒」同時說出「修改為中性」。
請參照第9圖,其繪示根據另一實施例之社群網路之控制方法的流程圖。在此實施例中,社群網路9000之控制方法包括步驟S110、S120、S130、S140、S150。依序在步驟S110獲得偵測資訊S1,在步驟S120分析出狀態資訊S2,在步驟S130獲得濃縮資訊S3,並在步驟S140獲得摘要資訊S4,以於步驟S150顯示摘要資訊S4。
透過上述各種實施例,社群網路9000可以虛擬人物在虛擬場景中透過多媒體呈現社群成員的活動記錄(包括心情狀態、生活樣態、特殊事件、成員交談及/或虛擬互動等)。此些活動紀錄可以非線性縮放之時間軸來呈現其濃縮資訊,並且可依據使用者之偏好提供摘要資訊。
綜上所述,雖然本揭露已以實施例揭露如上,然其並非用以限定本揭露。本揭露所屬技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作各種之更動與潤飾。因此,本揭露之保護範圍當視後附之申請專利範圍所界定者為準。
100:控制系統 110:偵測單元 120:分析單元 130:濃縮單元 140:摘要單元 150:顯示單元 160:修正單元 170:儲存單元 180:輸入單元 9000:社群網路 B11:高興濃縮區塊 B12:驚訝濃縮區塊 B21:用餐濃縮區塊 B22:睡眠濃縮區塊 B23:工作濃縮區塊B24:開車濃縮區塊B31:高興濃縮區塊B32:生氣濃縮區塊B41:讀書濃縮區塊B42:開車濃縮區塊B43:運動濃縮區塊C11:高興指數曲線C12:驚訝指數曲線C81、C82:曲線F21:用餐頻率累積值F31:高興頻率累積值FB:回饋資訊I11:高興指數累積值I12:驚訝指數累積值S1:偵測資訊S2:狀態資訊S3:濃縮資訊S4:摘要資訊S110、S120、S121、S122、S130、S140、S150、S160、S170:步驟
Figure 02_image001
:優先摘要分數T1、T2、T3:時間區間T11:高興時間累積值T12:驚訝時間累積值T21:用餐時間累積值T31:高興時間累積值TH1、TH2:閥值P1~P5:社群成員x:讀取比例
Figure 02_image011
:模糊歸屬函數
第1圖繪示根據一實施例之社群網路的示意圖。 第2圖繪示根據一實施例之社群網路之控制系統之示意圖。 第3圖繪示根據一實施例之社群網路之控制方法的流程圖。 第4圖繪示根據一實施例之濃縮資訊之示意圖。 第5圖繪示根據另一實施例之濃縮資訊的示意圖。 第6圖繪示根據另一實施例之濃縮資訊的示意圖。 第7圖繪示根據另一實施例之濃縮資訊的示意圖。 第8圖繪示模糊歸屬函數之示意圖。 第9圖繪示根據另一實施例之社群網路之控制方法的流程圖。
S110、S120、S121、S122、S130、S140、S150、S160、S170:步驟

Claims (24)

  1. 一種社群網路之控制方法,包括: 獲得一偵測資訊; 依據該偵測資訊,分析至少一社群成員之一狀態資訊; 依據一時間區間,濃縮該狀態資訊,以獲得一濃縮資訊; 依據一優先摘要分數,摘要該濃縮資訊,以獲得一摘要資訊;以及 顯示該摘要資訊。
  2. 如申請專利範圍第1項所述之社群網路之控制方法,其中該偵測資訊係為一心跳頻率、一呼吸頻率、一一氧化碳濃度、一移動路徑、一體溫、一影像、一語音、一環境聲音、一濕度或一空氣品質。
  3. 如申請專利範圍第1項所述之社群網路之控制方法,其中該偵測資訊係藉由一接觸式偵測器進行偵測。
  4. 如申請專利範圍第1項所述之社群網路之控制方法,其中該偵測資訊係藉由一非接觸式偵測器進行偵測。
  5. 如申請專利範圍第1項所述之社群網路之控制方法,其中該狀態資訊係為一心理狀態、一生理狀態或一特殊事件。
  6. 如申請專利範圍第1項所述之社群網路之控制方法,其中該濃縮資訊係記錄於非線性縮放之一時間軸上。
  7. 如申請專利範圍第1項所述之社群網路之控制方法,其中該濃縮資訊依據一發生頻率或一持續時間呈現於一時間軸上。
  8. 如申請專利範圍第1項所述之社群網路之控制方法,其中該優先摘要分數係根據一資料特性、一查閱偏好及一類型偏好獲得。
  9. 如申請專利範圍第8項所述之社群網路之控制方法,其中該資料特性係根據一頻率及一長度決定。
  10. 如申請專利範圍第8項所述之社群網路之控制方法,其中該類型偏好係依據一資料類型之重視程度決定。
  11. 如申請專利範圍第1項所述之社群網路之控制方法,其中顯示該摘要資訊之步驟係以一虛擬內容呈現一隱喻資訊。
  12. 如申請專利範圍第1項所述之社群網路之控制方法,更包括: 依據一回饋資訊,修正該狀態資訊。
  13. 一種社群網路之控制系統,包括: 一偵測單元,獲得一偵測資訊; 一分析單元,用以依據該偵測資訊,分析至少一社群成員之一狀態資訊; 一濃縮單元,用以依據一時間區間,濃縮該狀態資訊,以獲得一濃縮資訊; 一摘要單元,用以依據一優先摘要分數,摘要該濃縮資訊,以獲得一摘要資訊;以及 一顯示單元,用以顯示該摘要資訊。
  14. 如申請專利範圍第13項所述之社群網路之控制系統,其中該偵測資訊係為一心跳頻率、一呼吸頻率、一一氧化碳濃度、一移動路徑、一體溫、一影像、一語音、一環境聲音、一濕度或一空氣品質。
  15. 如申請專利範圍第13項所述之社群網路之控制系統,其中該偵測單元係為一接觸式偵測器。
  16. 如申請專利範圍第13項所述之社群網路之控制系統,其中該偵測單元係為一非接觸式偵測器。
  17. 如申請專利範圍第13項所述之社群網路之控制系統,其中該狀態資訊係為一心理狀態、一生理狀態或一特殊事件。
  18. 如申請專利範圍第13項所述之社群網路之控制系統,其中該濃縮資訊係記錄於非線性縮放之一時間軸上。
  19. 如申請專利範圍第13項所述之社群網路之控制系統,其中該濃縮資訊依據一發生頻率或一持續時間呈現於一時間軸上。
  20. 如申請專利範圍第13項所述之社群網路之控制系統,其中該優先摘要分數係根據一資料特性、一查閱偏好及一類型偏好獲得。
  21. 如申請專利範圍第20項所述之社群網路之控制系統,其中該資料特性係根據一頻率及一長度決定。
  22. 如申請專利範圍第20項所述之社群網路之控制系統,其中該類型偏好係依據一資料類型之重視程度決定。
  23. 如申請專利範圍第13項所述之社群網路之控制系統,其中該顯示單元係以一虛擬內容呈現一隱喻資訊。
  24. 如申請專利範圍第13項所述之社群網路之控制系統,更包括: 一修正單元,用以依據一回饋資訊,修正該狀態資訊。
TW107143479A 2018-12-04 2018-12-04 社群網路之控制系統與控制方法 TW202022647A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW107143479A TW202022647A (zh) 2018-12-04 2018-12-04 社群網路之控制系統與控制方法
CN201811561570.2A CN111274419A (zh) 2018-12-04 2018-12-20 社群网络的控制系统与控制方法
US16/557,774 US20200177537A1 (en) 2018-12-04 2019-08-30 Control system and control method for social network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107143479A TW202022647A (zh) 2018-12-04 2018-12-04 社群網路之控制系統與控制方法

Publications (1)

Publication Number Publication Date
TW202022647A true TW202022647A (zh) 2020-06-16

Family

ID=70850751

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107143479A TW202022647A (zh) 2018-12-04 2018-12-04 社群網路之控制系統與控制方法

Country Status (3)

Country Link
US (1) US20200177537A1 (zh)
CN (1) CN111274419A (zh)
TW (1) TW202022647A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI846528B (zh) * 2023-06-29 2024-06-21 英業達股份有限公司 具主動聊天應答的客製化設定及更新下載系統及其方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107736874B (zh) * 2017-08-25 2020-11-20 百度在线网络技术(北京)有限公司 一种活体检测的方法、装置、设备和计算机存储介质
CN114005164A (zh) * 2021-11-11 2022-02-01 深圳市云海易联电子有限公司 一种5g通信防溺水人脸识别一体机
US20230351142A1 (en) * 2022-04-28 2023-11-02 Theai, Inc. Relationship graphs for artificial intelligence character models

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101072535A (zh) * 2004-10-29 2007-11-14 杨章民 身心健康状况监测及分析并自动回馈的方法以及相应的服饰系统
AU2006217448A1 (en) * 2005-02-22 2006-08-31 Health-Smart Limited Methods and systems for physiological and psycho-physiological monitoring and uses thereof
CN101374274A (zh) * 2007-08-24 2009-02-25 深圳富泰宏精密工业有限公司 虚拟社群定位系统及方法
TWI463839B (zh) * 2011-10-26 2014-12-01 Univ Nat Taiwan 透過社群網站使用者介面的狀態追蹤系統及方法
TWI440862B (zh) * 2011-11-21 2014-06-11 國立交通大學 Electrical detection method and system based on user feedback information
TWI691929B (zh) * 2016-02-17 2020-04-21 原相科技股份有限公司 互動式服務平台及其運作方法
CN107257362B (zh) * 2017-05-27 2020-01-17 苏州全民供求网络科技有限公司 随时间关注度在地图动态显示事件和撮合聊天方法及系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI846528B (zh) * 2023-06-29 2024-06-21 英業達股份有限公司 具主動聊天應答的客製化設定及更新下載系統及其方法

Also Published As

Publication number Publication date
US20200177537A1 (en) 2020-06-04
CN111274419A (zh) 2020-06-12

Similar Documents

Publication Publication Date Title
JP6777201B2 (ja) 情報処理装置、情報処理方法及びプログラム
US11503197B2 (en) Retrieving and displaying key words from prior conversations
US10058290B1 (en) Monitoring device with voice interaction
US9993166B1 (en) Monitoring device using radar and measuring motion with a non-contact device
TW202022647A (zh) 社群網路之控制系統與控制方法
US20190220933A1 (en) Presence Granularity with Augmented Reality
US10032233B2 (en) Social context in augmented reality
JPWO2016072117A1 (ja) 情報処理装置、制御方法、および記憶媒体
JP7347414B2 (ja) 情報処理システム、情報処理方法、および記録媒体
US20180316900A1 (en) Continuous Capture with Augmented Reality
JP2005110869A (ja) 記録装置、及び記録方法
JP2016177483A (ja) コミュニケーション支援装置、コミュニケーション支援方法及びプログラム
CN107809674A (zh) 一种基于视频的用户反应获取、处理方法、终端及服务器
US20140108529A1 (en) Person Filtering in Augmented Reality
US20140188876A1 (en) Information processing device, information processing method and computer program
US11544968B2 (en) Information processing system, information processingmethod, and recording medium
WO2017175447A1 (ja) 情報処理装置、情報処理方法、及びプログラム
TWI659429B (zh) 互動式健康狀態評估系統及其方法
US20220217442A1 (en) Method and device to generate suggested actions based on passive audio
US20240169319A1 (en) Information processing system, activity sensor, and non-transitory recording medium
CN115065747A (zh) 提醒方法、智能终端及存储介质
US20210110846A1 (en) Information processing apparatus, information processing method, and program
TW201413598A (zh) 具影像擷取之個別化數位管理裝置