TW202020538A - Shift register and gate driver circuit - Google Patents

Shift register and gate driver circuit Download PDF

Info

Publication number
TW202020538A
TW202020538A TW107142180A TW107142180A TW202020538A TW 202020538 A TW202020538 A TW 202020538A TW 107142180 A TW107142180 A TW 107142180A TW 107142180 A TW107142180 A TW 107142180A TW 202020538 A TW202020538 A TW 202020538A
Authority
TW
Taiwan
Prior art keywords
transistor
gate
signal
output
shift register
Prior art date
Application number
TW107142180A
Other languages
Chinese (zh)
Other versions
TWI718444B (en
Inventor
陳世烽
郭文瑜
Original Assignee
元太科技工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 元太科技工業股份有限公司 filed Critical 元太科技工業股份有限公司
Priority to TW107142180A priority Critical patent/TWI718444B/en
Publication of TW202020538A publication Critical patent/TW202020538A/en
Application granted granted Critical
Publication of TWI718444B publication Critical patent/TWI718444B/en

Links

Images

Landscapes

  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Shift Register Type Memory (AREA)

Abstract

A shift register and a gate driver circuit are provided. The shift register includes an input unit, an output unit, a reset unit, and an electrostatic discharge unit. The input unit provides an input signal. The output unit is coupled to the input unit and the gate output terminal. The output unit outputs an output signal via the gate output according to the input signal. The electrostatic discharge unit is coupled to the output unit. After the gate output terminal outputs the output signal, the electrostatic discharge unit pulls down a voltage of the gate output terminal according to an low gate voltage. The reset unit is coupled to the input unit and the output unit. After the electrostatic discharge unit pulls down the voltage of the gate output terminal, the reset unit resets a voltage of a bootstrap node.

Description

移位寄存器以及閘極驅動電路Shift register and gate drive circuit

本發明是有關於一種寄存器設計,且特別是有關於一種適用在陣列上閘極驅動電路(Gate driver on array, GOA)當中的移位寄存器及其閘極驅動電路。The present invention relates to a register design, and in particular to a shift register and its gate driving circuit suitable for a gate driver on array (GOA).

一般而言,在顯示器的驅動技術領域中,液晶顯示器(Liquid-crystal display, LCD)以及電泳顯示器(Electrophoretic Display, EPD)通常是利用源極驅動電路以及閘極驅動電路所提供驅動信號以及掃描信號來驅動顯示面板。並且,為了節省顯示器的製造成本,目前發展出陣列上閘極驅動電路(Gate driver on array, GOA)的技術。也就是說,閘極驅動電路可被直接製作在玻璃基板上,以代替由外接矽晶片製作的驅動晶片。然而,由於將閘極驅動電路直接製作在玻璃基板上,閘極驅動電路將會占用顯示面板的面積,進而導致顯示面板的顯示區域的限縮。因此,如何改善並增加陣列上閘極驅動電路的顯示面板的顯示區域,是本領域目前重要的課題之一。有鑑於此,以下將提出幾個解決方案。Generally speaking, in the field of display driving technology, liquid crystal displays (LCD) and electrophoretic displays (EPD) usually use driving signals and scanning signals provided by the source driving circuit and the gate driving circuit To drive the display panel. In addition, in order to save the manufacturing cost of the display, the technology of gate driver on array (GOA) is currently developed. In other words, the gate driving circuit can be directly fabricated on the glass substrate, instead of the driving chip made of the external silicon chip. However, since the gate driving circuit is directly fabricated on the glass substrate, the gate driving circuit will occupy the area of the display panel, which in turn leads to a reduction in the display area of the display panel. Therefore, how to improve and increase the display area of the display panel of the gate drive circuit on the array is one of the important topics in the art. In view of this, several solutions will be proposed below.

本發明提供一種適用於陣列上閘極驅動電路(Gate driver on array, GOA)的移位寄存器及其閘極驅動電路可有效增加顯示面板的顯示區域的面積。The invention provides a shift register suitable for a gate driver on array (GOA) and its gate driving circuit, which can effectively increase the area of the display area of the display panel.

本發明的一種移位寄存器包括輸入單元、輸出單元、靜電放電單元以及復位單元。所述輸入單元提供輸入信號。所述輸出單元耦接所述輸入單元以及閘極輸出端。所述輸出單元依據所述輸入信號而經由所述閘極輸出端輸出輸出信號。所述靜電放電單元耦接所述輸出單元。當所述閘極輸出端輸出所述輸出信號後,所述靜電放電單元依據閘極低電壓下拉所述閘極輸出端的電壓。所述復位單元耦接所述輸入單元以及所述輸出單元。當所述靜電放電單元下拉所述閘極輸出端的電壓後,所述復位單元復位自舉節點的電壓。A shift register of the present invention includes an input unit, an output unit, an electrostatic discharge unit, and a reset unit. The input unit provides an input signal. The output unit is coupled to the input unit and the gate output terminal. The output unit outputs an output signal through the gate output terminal according to the input signal. The electrostatic discharge unit is coupled to the output unit. After the gate output terminal outputs the output signal, the ESD unit pulls down the voltage at the gate output terminal according to the gate low voltage. The reset unit is coupled to the input unit and the output unit. After the electrostatic discharge unit pulls down the voltage at the output terminal of the gate, the reset unit resets the voltage at the bootstrap node.

本發明的一種閘極驅動電路包括多個如上述的移位寄存器。在一個驅動週期中,所述多個移位寄存器的所述輸出單元依據所述輸入信號來藉由第一時鐘信號上拉所述閘極輸出端的電壓,以使所述閘極輸出端輸出所述輸出信號,並且接著所述靜電放電單元下拉所述閘極輸出端的電壓。當所述靜電放電單元下拉所述閘極輸出端的電壓後,所述多個移位寄存器的所述復位單元依據第二時鐘信號來藉由所述閘極低電壓復位的所述自舉節點的電壓。所述第一時鐘信號的時鐘相位與所述第二時鐘信號相差兩個閘線導通時間。A gate drive circuit of the present invention includes a plurality of shift registers as described above. In a driving cycle, the output units of the plurality of shift registers pull up the voltage of the gate output terminal by the first clock signal according to the input signal, so that the gate output terminal outputs the voltage The output signal, and then the electrostatic discharge unit pulls down the voltage at the gate output terminal. After the electrostatic discharge unit pulls down the voltage at the output terminal of the gate, the reset unit of the plurality of shift registers resets the bootstrapping node by the gate low voltage according to the second clock signal Voltage. The clock phase of the first clock signal differs from the second clock signal by two gate line on-times.

基於上述,本發明的移位寄存器以及閘極驅動電路可藉由靜電放電單元來替代下拉電晶體或減小下拉電晶體在顯示面板上的佈局面積,以有效增加顯示面板的顯示區域的面積。Based on the above, the shift register and the gate driving circuit of the present invention can replace the pull-down transistor or reduce the layout area of the pull-down transistor on the display panel by the electrostatic discharge unit, so as to effectively increase the area of the display area of the display panel.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more obvious and understandable, the embodiments are specifically described below and described in detail in conjunction with the accompanying drawings.

為了使本發明之內容可以被更容易明瞭,以下特舉實施例做為本發明確實能夠據以實施的範例。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/步驟,係代表相同或類似部件。In order to make the content of the present invention easier to understand, the following specific embodiments are taken as examples on which the present invention can indeed be implemented. In addition, wherever possible, elements/components/steps using the same reference numbers in the drawings and embodiments represent the same or similar components.

圖1是依照本發明的一實施例的移位寄存器的示意圖。參考圖1,本發明的移位寄存器(shift register)100包括輸入單元110、輸出單元120、復位單元130以及靜電放電單元140。在本實施例中,輸入單元110耦接輸出單元120,以提供輸入信號至輸出單元120。輸出單元120依據輸入信號而經由閘極輸出端輸出輸出信號。復位單元130耦接輸入單元110以及輸出單元120。靜電放電單元140耦接輸出單元120。在本實施例中,當輸出單元120透過閘極輸出端輸出輸出信號後,靜電放電單元140依據閘極低電壓(gate low voltage)下拉閘極輸出端的電壓。並且,當靜電放電單元140下拉閘極輸出端的電壓後,復位單元130復位自舉節點(bootstrap node)的電壓。FIG. 1 is a schematic diagram of a shift register according to an embodiment of the invention. Referring to FIG. 1, the shift register 100 of the present invention includes an input unit 110, an output unit 120, a reset unit 130 and an electrostatic discharge unit 140. In this embodiment, the input unit 110 is coupled to the output unit 120 to provide an input signal to the output unit 120. The output unit 120 outputs the output signal via the gate output terminal according to the input signal. The reset unit 130 is coupled to the input unit 110 and the output unit 120. The electrostatic discharge unit 140 is coupled to the output unit 120. In this embodiment, after the output unit 120 outputs an output signal through the gate output terminal, the ESD unit 140 pulls down the voltage at the gate output terminal according to the gate low voltage. Moreover, after the electrostatic discharge unit 140 pulls down the voltage at the gate output terminal, the reset unit 130 resets the voltage of the bootstrap node.

在本實施例中,移位寄存器100適配於顯示面板的陣列上閘極驅動電路(Gate driver on array, GOA)當中,並且透過閘極輸出端耦接顯示面板的閘極線(gate line)。移位寄存器100藉由輸出電路120提供輸出信號至顯示面板的閘極線,以作為掃描信號(scanning signal)。在本實施例中,輸出電路120提供一個高電壓位準的信號至閘極輸出端,並且當輸出電路120停止提供高電壓位準的信號至閘極輸出端時,靜電放電單元140放電閘極輸出端的電壓。也就是說,本實施例的靜電放電單元140用以提供下拉電壓的功能。接著,當靜電放電單元140放電閘極輸出端的電壓之後,復位單元130復位在移位寄存器100的電路中的自舉節點的電壓,以完成一個掃描信號的輸出工作。此外,本實施例的靜電放電單元140除了作為下拉電路,還可同時提供適於移位寄存器100以及顯示面板之間的靜電保護功能。In this embodiment, the shift register 100 is adapted to a gate driver on array (GOA) in the display panel, and is coupled to the gate line of the display panel through the gate output terminal . The shift register 100 provides an output signal to the gate line of the display panel through the output circuit 120 as a scanning signal. In this embodiment, the output circuit 120 provides a high voltage level signal to the gate output terminal, and when the output circuit 120 stops providing the high voltage level signal to the gate output terminal, the ESD unit 140 discharges the gate The voltage at the output. In other words, the ESD unit 140 of this embodiment is used to provide the function of pulling down the voltage. Next, after the electrostatic discharge unit 140 discharges the voltage at the gate output terminal, the reset unit 130 resets the voltage of the bootstrap node in the circuit of the shift register 100 to complete the output of one scan signal. In addition, the electrostatic discharge unit 140 of the present embodiment can not only serve as a pull-down circuit, but also provide an electrostatic protection function suitable for the shift register 100 and the display panel.

另外,在本實施例中,上述的顯示面板可例如是指配置在液晶顯示器(Liquid-crystal display, LCD)、有機發光顯示器(OLED)或電泳顯示器(Electrophoretic Display, EPD)當中的顯示面板,並且顯示面板可例如是玻璃或塑膠材質的薄膜電晶體(Thin Film Transistor, TFT)面板。In addition, in this embodiment, the above-mentioned display panel may refer to a display panel disposed in a liquid crystal display (LCD), an organic light emitting display (OLED) or an electrophoretic display (EPD), for example, and The display panel may be, for example, a thin film transistor (TFT) panel made of glass or plastic.

圖2是依照本發明的一實施例的移位寄存器的電路圖。參考圖2,移位寄存器200包括輸入單元210、輸出單元220、復位單元230以及靜電放電單元240。在本實施例中,輸入單元210包括第一電晶體211以及第二電晶體212。第一電晶體211的控制端接收第一控制信號CS1,並且第一電晶體211的第一端接收第一輸入信號IS1第二電晶體212的控制端接收第二控制信號CS2。第二電晶體212的第一端耦接第一電晶體211的第二端,並且第二電晶體212的第二端接收第二輸入信號IS2。第一電晶體211的第二端以及第二電晶體212的第一端耦接輸出單元220。第一電晶體211以及第二電晶體212分別用以週期性地(或選擇性地)提供輸入信號至輸出單元120。在本實施例中,第一輸入信號IS1可為正向輸入信號以及反向輸入信號的其中之一,並且第二輸入信號IS2可為正向輸入信號以及反向輸入信號的其中之另一。第一輸入信號IS1以及第二輸入信號IS2的信號類型可依據不同的驅動狀態而定,本發明並不加以限制。2 is a circuit diagram of a shift register according to an embodiment of the invention. Referring to FIG. 2, the shift register 200 includes an input unit 210, an output unit 220, a reset unit 230 and an electrostatic discharge unit 240. In this embodiment, the input unit 210 includes a first transistor 211 and a second transistor 212. The control terminal of the first transistor 211 receives the first control signal CS1, and the first terminal of the first transistor 211 receives the first input signal IS1. The control terminal of the second transistor 212 receives the second control signal CS2. The first end of the second transistor 212 is coupled to the second end of the first transistor 211, and the second end of the second transistor 212 receives the second input signal IS2. The second end of the first transistor 211 and the first end of the second transistor 212 are coupled to the output unit 220. The first transistor 211 and the second transistor 212 are used to periodically (or selectively) provide input signals to the output unit 120, respectively. In this embodiment, the first input signal IS1 may be one of the forward input signal and the reverse input signal, and the second input signal IS2 may be the other of the forward input signal and the reverse input signal. The signal types of the first input signal IS1 and the second input signal IS2 can be determined according to different driving states, and the invention is not limited thereto.

在本實施例中,輸出單元220包括第三電晶體221。第三電晶體221的控制端耦接第一電晶體211的第二端以及第二電晶體212的第一端,其中第三電晶體221的第一端接收第一時鐘信號CLK1,並且第三電晶體221的第二端耦接閘極輸出端Gout。在本實施例中,第三電晶體221用以依據輸入單元210提供的輸入信號來決定是否將第一時鐘信號CLK1作為輸出信號來輸出至閘極輸出端Gout。換言之,輸出單元220可視為一種上拉(pull-up)電路,並且用以上拉閘極輸出端Gout的電壓。在本實施例中,第三電晶體221的控制端與閘極輸出端Gout以及第三電晶體221的第二端之間包括電容器C1。電容器C1用以實現自舉(bootstrap)的目的,並且用以穩定閘極輸出端Gout的輸出信號的切斷電壓位準的特性,以保護顯示面板。In this embodiment, the output unit 220 includes a third transistor 221. The control terminal of the third transistor 221 is coupled to the second terminal of the first transistor 211 and the first terminal of the second transistor 212, wherein the first terminal of the third transistor 221 receives the first clock signal CLK1, and the third The second terminal of the transistor 221 is coupled to the gate output terminal Gout. In this embodiment, the third transistor 221 is used to determine whether to output the first clock signal CLK1 as the output signal to the gate output terminal Gout according to the input signal provided by the input unit 210. In other words, the output unit 220 can be regarded as a pull-up circuit and uses the voltage of the gate output terminal Gout. In this embodiment, a capacitor C1 is included between the control terminal of the third transistor 221 and the gate output terminal Gout and the second terminal of the third transistor 221. The capacitor C1 is used to achieve the purpose of bootstrap and to stabilize the characteristics of the cut-off voltage level of the output signal of the gate output terminal Gout to protect the display panel.

在本實施例中,復位單元230包括第四電晶體231。第四電晶體231的控制端接收第二時鐘信號CLK2。第四電晶體231的第一端耦接輸入單元210以及輸出單元220之間的信號線的自舉節點(bootstrap node)P。第四電晶體231的第二端接收閘極低電壓VGL。在本實施例中,第四電晶體231用以依據第二時鐘信號CLK2來週期性地復位(reset)自舉節點P的電壓至閘極低電壓VGL,以穩定移位寄存器200。In the present embodiment, the reset unit 230 includes the fourth transistor 231. The control terminal of the fourth transistor 231 receives the second clock signal CLK2. The first end of the fourth transistor 231 is coupled to the bootstrap node P of the signal line between the input unit 210 and the output unit 220. The second terminal of the fourth transistor 231 receives the gate low voltage VGL. In this embodiment, the fourth transistor 231 is used to periodically reset the voltage of the bootstrap node P to the gate low voltage VGL according to the second clock signal CLK2 to stabilize the shift register 200.

在本實施例中,靜電放電單元240包括第五電晶體241以及第六電晶體242。第五電晶體241的第一端耦接閘極輸出端Gout。第五電晶體241的控制端耦接第五電晶體241的第二端,並且第五電晶體的第二端接收閘極低電壓VGL。第六電晶體242的第一端接收閘極低電壓VGL。第六電晶體242的控制端耦接第六電晶體242的第二端,並且第六電晶體242的第二端耦接閘極輸出端Gout。第五電晶體241的第一端耦接第六電晶體242的第二端,並且第五電晶體241的第二端耦接第六電晶體242的第一端。在本實施例中,當閘極輸出端Gout的電壓與閘極低電壓VGL具有電壓差時,第五電晶體241以及第六電晶體242用以放電閘極輸出端Gout的電壓。換言之,靜電放電單元240可視為一種下拉(pull-down)電路,並且用以下拉閘極輸出端Gout的電壓。In this embodiment, the electrostatic discharge unit 240 includes a fifth transistor 241 and a sixth transistor 242. The first terminal of the fifth transistor 241 is coupled to the gate output terminal Gout. The control terminal of the fifth transistor 241 is coupled to the second terminal of the fifth transistor 241, and the second terminal of the fifth transistor 241 receives the gate low voltage VGL. The first terminal of the sixth transistor 242 receives the gate low voltage VGL. The control terminal of the sixth transistor 242 is coupled to the second terminal of the sixth transistor 242, and the second terminal of the sixth transistor 242 is coupled to the gate output terminal Gout. The first end of the fifth transistor 241 is coupled to the second end of the sixth transistor 242, and the second end of the fifth transistor 241 is coupled to the first end of the sixth transistor 242. In this embodiment, when the voltage at the gate output terminal Gout and the gate low voltage VGL have a voltage difference, the fifth transistor 241 and the sixth transistor 242 are used to discharge the voltage at the gate output terminal Gout. In other words, the electrostatic discharge unit 240 can be regarded as a pull-down circuit and used to pull down the voltage of the gate output terminal Gout.

然而,在一實施例中,移位寄存器200也可額外包括下拉電晶體。下拉電晶體的第一端耦接閘極輸出端Gout,下拉電晶體的第二端接收閘極低電壓VGL。下拉電晶體可對應於第三電晶體221來下拉閘極輸出端Gout的電壓。也就是說,在一實施例中,靜電放電單元240可結合下拉電晶體來同時下拉閘極輸出端Gout的電壓。因此,由於靜電放電單元240以及下拉電晶體同時放電閘極輸出端Gout,下拉電晶體的面積將可有效地縮小。However, in an embodiment, the shift register 200 may additionally include pull-down transistors. The first end of the pull-down transistor is coupled to the gate output terminal Gout, and the second end of the pull-down transistor receives the gate low voltage VGL. The pull-down transistor may pull the voltage of the gate output terminal Gout corresponding to the third transistor 221. That is to say, in one embodiment, the electrostatic discharge unit 240 can combine the pull-down transistor to pull down the voltage of the gate output terminal Gout at the same time. Therefore, since the electrostatic discharge unit 240 and the pull-down transistor discharge the gate output terminal Gout at the same time, the area of the pull-down transistor can be effectively reduced.

在本實施例中,移位寄存器200用於進行雙向驅動,輸入單元210的第一電晶體211以及第二電晶體212的控制端所接收的第一控制信號CS1以及第二控制信號CS2用以接收前級或後級的移位寄存器的輸出信號,以週期性地(或選擇性地)提供具有閘極高電壓的正向輸入信號或具有閘極低電壓的反向輸入信號至輸出單元220。在本實施例中,當輸出單元220接收到輸入單元210提供的輸入電壓後,輸出單元220輸出輸出信號至閘極輸出端Gout。並且,當輸出單元220停止接收到輸入單元210提供的輸入電壓時,靜電放電電路240放電閘極輸出端Gout的電壓。也就是說,輸出單元220上拉閘極輸出端Gout的電壓,並且靜電放電電路240下拉閘極輸出端Gout的電壓。輸出單元220以及靜電放電電路240可使閘極輸出端Gout輸出至顯示面板的閘極線的輸出信號為週期性變化的掃描信號(scanning signal)。最後,當靜電放電電路240完成下拉閘極輸出端Gout的電壓後,復位單元230將接著復位自舉節點P的電壓。因此,本實施例的移位寄存器200的電路架構無須大面積的下拉電路設計。本實施例的移位寄存器200可透過移位寄存器200與顯示面板之間的靜電放電電路240來有效地放電閘極輸出端Gout的電壓。In this embodiment, the shift register 200 is used for bidirectional driving. The first control signal CS1 and the second control signal CS2 received by the control terminals of the first transistor 211 and the second transistor 212 of the input unit 210 are used to Receive the output signal of the shift register of the previous stage or the subsequent stage to periodically (or selectively) provide a positive input signal with a high gate voltage or a reverse input signal with a low gate voltage to the output unit 220 . In this embodiment, when the output unit 220 receives the input voltage provided by the input unit 210, the output unit 220 outputs an output signal to the gate output terminal Gout. And, when the output unit 220 stops receiving the input voltage provided by the input unit 210, the electrostatic discharge circuit 240 discharges the voltage of the gate output terminal Gout. That is, the output unit 220 pulls up the voltage at the gate output terminal Gout, and the electrostatic discharge circuit 240 pulls down the voltage at the gate output terminal Gout. The output unit 220 and the electrostatic discharge circuit 240 can make the output signal of the gate output terminal Gout output to the gate line of the display panel be a scanning signal that periodically changes. Finally, after the electrostatic discharge circuit 240 finishes pulling down the voltage of the gate output terminal Gout, the reset unit 230 will then reset the voltage of the bootstrap node P. Therefore, the circuit architecture of the shift register 200 of this embodiment does not require a large-area pull-down circuit design. The shift register 200 of this embodiment can effectively discharge the voltage of the gate output terminal Gout through the electrostatic discharge circuit 240 between the shift register 200 and the display panel.

另外,在本實施例中,上述的各電晶體可例如是薄膜電晶體(Thin Film Transistor, TFT)、金屬氧化物薄膜電晶體(Metal Oxide Thin Film Transistor, MOTFT)、金氧半場效電晶體(Metal Oxide Semiconductor Field Effect Transistor, MOSFET)或接面場效電晶體(Junction Field Effect Transistor, JFET)等。In addition, in this embodiment, each of the above transistors may be, for example, a thin film transistor (Thin Film Transistor, TFT), a metal oxide thin film transistor (Metal Oxide Thin Film Transistor, MOTFT), or a metal oxide half field effect transistor ( Metal Oxide Semiconductor Field Effect Transistor (MOSFET) or Junction Field Effect Transistor (JFET) etc.

圖3是依照本發明的一實施例的閘極驅動電路的示意圖。圖4是依照圖3實施例的閘極驅動電路的驅動時序圖。參考圖3、圖4,閘極驅動電路300為一種陣列上閘極驅動電路。在本實施例中,閘極驅動電路300包括多個移位寄存器310~340,其中移位寄存器的數量不限於圖3所示,並且這些移位寄存器310~340可例如是上述圖1以及圖2實施例所述的移位寄存器。因此,關於本實施例的移位寄存器310~340的相關電路特徵以及實施細節可搭配上述圖1以及圖2實施例的說明而獲致足夠的教示、建議以及實施說明,因此不予贅述。3 is a schematic diagram of a gate driving circuit according to an embodiment of the invention. FIG. 4 is a driving timing diagram of the gate driving circuit according to the embodiment of FIG. 3. 3 and 4, the gate driving circuit 300 is a gate driving circuit on an array. In this embodiment, the gate driving circuit 300 includes a plurality of shift registers 310-340, wherein the number of shift registers is not limited to that shown in FIG. 3, and the shift registers 310-340 may be, for example, the above-described FIG. 1 and FIG. 2 The shift register described in the embodiment. Therefore, the relevant circuit features and implementation details of the shift registers 310-340 of this embodiment can be combined with the descriptions of the above-mentioned embodiments of FIG. 1 and FIG. 2 to obtain sufficient teachings, suggestions, and implementation descriptions, and thus will not be described in detail.

在本實施例中,閘極驅動電路300可透過時序控制的方式來增加移位寄存器310~340各別的靜電放電電路的放電時間,以有效減小移位寄存器310~340各別的靜電放電電路在顯示面板上的佈局面積。詳細而言,閘極驅動電路300可藉由四個參考時鐘信號CK1~CK4來驅動移位寄存器310~340,並且這四個參考時鐘信號CK1~CK4的時鐘相位依序相差一個閘線導通時間(如圖4所示)。在本實施例中,每一個移位寄存器310~340的第一時鐘信號為四個參考時鐘信號CK1~CK4的第一個或第二個,並且每一個移位寄存器310~340的第二時鐘信號為四個參考時鐘信號CK1~CK4的第三個或第四個。並且,每一個移位寄存器310~340所接收第一控制信號分別為前一級的移位寄存器的輸出信號,並且每一個移位寄存器310~340的第二控制信號分別為後一級的移位寄存器的輸出信號。In this embodiment, the gate driving circuit 300 can increase the discharge time of the electrostatic discharge circuits of the shift registers 310 to 340 through timing control, so as to effectively reduce the electrostatic discharge of the shift registers 310 to 340. The layout area of the circuit on the display panel. In detail, the gate driving circuit 300 can drive the shift registers 310 to 340 by four reference clock signals CK1 to CK4, and the clock phases of the four reference clock signals CK1 to CK4 are sequentially different by one gate line on-time (As shown in Figure 4). In this embodiment, the first clock signal of each shift register 310~340 is the first or second of the four reference clock signals CK1~CK4, and the second clock of each shift register 310~340 The signal is the third or fourth of the four reference clock signals CK1~CK4. Moreover, the first control signal received by each shift register 310-340 is the output signal of the shift register of the previous stage, and the second control signal of each shift register 310-340 is the shift register of the subsequent stage, respectively. Output signal.

詳細而言,如圖3所示,移位寄存器310、330接收參考時鐘信號CK1來作為輸出單元所接收的第一時鐘信號,並且移位寄存器310、330接收參考時鐘信號CK3來作為復位單元所接收的第二時鐘信號。移位寄存器320、340接收參考時鐘信號CK2來作為輸出單元所接收的第一時鐘信號,並且移位寄存器320、340接收參考時鐘信號CK4來作為復位單元所接收的第二時鐘信號。當移位寄存器310接收啟動信號STV後,移位寄存器310依據正向輸入信號FW以及反向輸入信號BW來輸出輸出信號Gout1。如圖3所示,移位寄存器320~340所接收的第一控制信號分別為前一級的移位寄存器310~340的輸出信號Gout1~Gout3,並且移位寄存器310~330的第二控制信號分別為後一級的移位寄存器320~340的輸出信號Gout2~Gout4。以此類推,移位寄存器310~340可依序正向輸入信號FW以及反向輸入信號BW來依序輸出輸出信號Gout1~Gout4。In detail, as shown in FIG. 3, the shift registers 310, 330 receive the reference clock signal CK1 as the first clock signal received by the output unit, and the shift registers 310, 330 receive the reference clock signal CK3 as the reset unit. The received second clock signal. The shift registers 320, 340 receive the reference clock signal CK2 as the first clock signal received by the output unit, and the shift registers 320, 340 receive the reference clock signal CK4 as the second clock signal received by the reset unit. After the shift register 310 receives the start signal STV, the shift register 310 outputs the output signal Gout1 according to the forward input signal FW and the reverse input signal BW. As shown in FIG. 3, the first control signals received by the shift registers 320 to 340 are the output signals Gout1 to Gout3 of the previous stage of the shift registers 310 to 340, and the second control signals of the shift registers 310 to 330 are respectively It is the output signals Gout2~Gout4 of the shift registers 320~340 of the latter stage. By analogy, the shift registers 310 to 340 can sequentially output the output signals Gout1 to Gout4 in the forward input signal FW and the reverse input signal BW.

也就是說,由於圖3的每一個移位寄存器310~340的輸出單元所接收的第一時鐘信號的時鐘相位與復位單元所接收的第二時鐘信號都相差兩個閘線導通時間,因此每一個移位寄存器310~340的靜電放電單元在復位單元復位自舉節點的電壓前,都具有足夠的放電時間。換句話說,本實施例的移位寄存器310~340的靜電放電單元無需大面積的電晶體設計,因此可有效減少移位寄存器310~340在顯示面板上所佔有的佈局面積。That is to say, since the clock phase of the first clock signal received by the output unit of each of the shift registers 310 to 340 in FIG. 3 differs from the second clock signal received by the reset unit by two gate-line on-times, each The electrostatic discharge unit of a shift register 310~340 has sufficient discharge time before the reset unit resets the voltage of the bootstrap node. In other words, the electrostatic discharge units of the shift registers 310-340 of this embodiment do not require a large-area transistor design, so the layout area occupied by the shift registers 310-340 on the display panel can be effectively reduced.

圖5是依照本發明的另一實施例的閘極驅動電路的示意圖。圖6是依照圖5實施例的閘極驅動電路的驅動時序圖。參考圖5、圖6,閘極驅動電路500為一種陣列上閘極驅動電路。在本實施例中,閘極驅動電路500包括多個移位寄存器510~540,其中移位寄存器的數量不限於圖5所示,並且這些移位寄存器510~540可例如是上述圖1以及圖2實施例所述的移位寄存器。因此,關於本實施例的移位寄存器510~540的相關電路特徵以及實施細節可搭配上述圖1以及圖2實施例的說明而獲致足夠的教示、建議以及實施說明,因此不予贅述。5 is a schematic diagram of a gate driving circuit according to another embodiment of the invention. 6 is a driving timing diagram of the gate driving circuit according to the embodiment of FIG. 5. 5 and 6, the gate driving circuit 500 is a gate driving circuit on an array. In this embodiment, the gate driving circuit 500 includes a plurality of shift registers 510-540, wherein the number of shift registers is not limited to that shown in FIG. 5, and the shift registers 510-540 may be, for example, the above-mentioned FIG. 1 and FIG. 2 The shift register described in the embodiment. Therefore, the relevant circuit features and implementation details of the shift registers 510-540 of this embodiment can be combined with the descriptions of the above-mentioned embodiments of FIG. 1 and FIG. 2 to obtain sufficient teachings, suggestions, and implementation descriptions, and thus will not be repeated.

在本實施例中,閘極驅動電路500可透過時序控制的方式來增加移位寄存器510~540各別的靜電放電電路的放電時間,以有效減小移位寄存器510~540各別的靜電放電電路在顯示面板上的佈局面積。詳細而言,閘極驅動電路500可藉由八個參考時鐘信號CK1’~CK8’來驅動移位寄存器510~540,並且這八個參考時鐘信號CK1’~CK8’的時鐘相位依序相差二分之一個閘線導通時間(如圖6所示)。在本實施例中,移位寄存器510~540分為奇數群以及偶數群,其中奇數群的移位寄存器510、530以及偶數群的移位寄存器520~540分開配置在顯示面板的兩側,以使本實施例的顯示面板可具有窄邊框的特性。In this embodiment, the gate driving circuit 500 can increase the discharge time of each of the electrostatic discharge circuits of the shift registers 510-540 through timing control, so as to effectively reduce the electrostatic discharge of each of the shift registers 510-540 The layout area of the circuit on the display panel. In detail, the gate driving circuit 500 can drive the shift registers 510-540 by eight reference clock signals CK1'~CK8', and the clock phases of the eight reference clock signals CK1'~CK8' differ by two in sequence One gate line conduction time (as shown in Figure 6). In this embodiment, the shift registers 510-540 are divided into odd-numbered groups and even-numbered groups, wherein the odd-numbered groups of shift registers 510, 530 and the even-numbered groups of shift registers 520-540 are separately arranged on both sides of the display panel to The display panel of this embodiment can have the characteristics of a narrow bezel.

在本實施例中,奇數群的每一個移位寄存器510、530的第一時鐘信號為八個參考時鐘信號CK1’~CK8’的第一個或第三個。偶數群的每一個移位寄存器520、540的第一時鐘信號為八個參考時鐘信號CK1’~CK8’的第二個或第四個。奇數群的每一個移位寄存器510、530的第二時鐘信號為八個參考時鐘信號CK1’~CK8’的第五個或第七個。偶數群的每一個移位寄存器520、540的第二時鐘信號為八個參考時鐘信號CK1’~CK8’的第六個或第八個。在本實施例中,每一個移位寄存器510~540所接收第一控制信號分別為前二級的移位寄存器的輸出信號,並且每一個移位寄存器510~540的第二控制信號分別為後二級的移位寄存器的輸出信號。In this embodiment, the first clock signal of each shift register 510, 530 of the odd-numbered group is the first or third of the eight reference clock signals CK1'~CK8'. The first clock signal of each shift register 520, 540 of the even group is the second or fourth of the eight reference clock signals CK1'~CK8'. The second clock signal of each shift register 510, 530 of the odd group is the fifth or seventh of the eight reference clock signals CK1'~CK8'. The second clock signal of each shift register 520, 540 of the even group is the sixth or eighth of the eight reference clock signals CK1' to CK8'. In this embodiment, the first control signal received by each shift register 510-540 is the output signal of the shift register of the first two stages, respectively, and the second control signal of each shift register 510-540 is the rear The output signal of the second-level shift register.

詳細而言,如圖5所示,移位寄存器510、530接收參考時鐘信號CK1’、CK3’來作為輸出單元所接收的第一時鐘信號,並且移位寄存器510、530接收參考時鐘信號CK5’、CK7’來作為復位單元所接收的第二時鐘信號。移位寄存器520、540接收參考時鐘信號CK2’、CK4’來作為輸出單元所接收的第一時鐘信號,並且移位寄存器520、540接收參考時鐘信號CK6’、CK8’來作為復位單元所接收的第二時鐘信號。當移位寄存器510接收啟動信號STV後,移位寄存器510依據正向輸入信號FW以及反向輸入信號BW來輸出輸出信號Gout1。如圖5所示,移位寄存器530、540所接收的第一控制信號分別為前二級的移位寄存器510、520的輸出信號Gout1’、Gout2’,並且移位寄存器510、520的第二控制信號分別為後二級的移位寄存器530、540的輸出信號Gout3’~Gout4’。以此類推,移位寄存器510~540可依序正向輸入信號FW以及反向輸入信號BW來依序輸出輸出信號Gout1’~Gout4’。In detail, as shown in FIG. 5, the shift registers 510 and 530 receive the reference clock signals CK1 ′ and CK3 ′ as the first clock signals received by the output unit, and the shift registers 510 and 530 receive the reference clock signal CK5 ′ , CK7' as the second clock signal received by the reset unit. The shift registers 520, 540 receive the reference clock signals CK2', CK4' as the first clock signal received by the output unit, and the shift registers 520, 540 receive the reference clock signals CK6', CK8' as the received by the reset unit The second clock signal. After the shift register 510 receives the start signal STV, the shift register 510 outputs the output signal Gout1 according to the forward input signal FW and the reverse input signal BW. As shown in FIG. 5, the first control signals received by the shift registers 530, 540 are the output signals Gout1', Gout2' of the shift registers 510, 520 of the first two stages, respectively, and the second of the shift registers 510, 520 The control signals are the output signals Gout3'~Gout4' of the shift registers 530, 540 of the second stage, respectively. By analogy, the shift registers 510-540 can sequentially output the output signals Gout1'~Gout4' according to the forward input signal FW and the reverse input signal BW.

也就是說,由於圖5的每一個移位寄存器510~540的輸出單元所接收的第一時鐘信號的時鐘相位與復位單元所接收的第二時鐘信號都相差兩個閘線導通時間,因此每一個移位寄存器510~540的靜電放電單元在復位單元復位自舉節點的電壓前,都具有足夠的放電時間。換句話說,本實施例的移位寄存器510~540的靜電放電單元無需大面積的電晶體設計,因此可有效減少移位寄存器510~540在顯示面板上所佔有的佈局面積。並且,本實施例的移位寄存器510~540分開配置在顯示面板的兩側,因此以使本實施例的顯示面板還具有窄邊框的特性。That is to say, since the clock phase of the first clock signal received by the output unit of each shift register 510 to 540 in FIG. 5 is different from the second clock signal received by the reset unit by two gate-line on-times, each The ESD cells of a shift register 510-540 have sufficient discharge time before the reset unit resets the voltage of the bootstrap node. In other words, the electrostatic discharge units of the shift registers 510-540 of this embodiment do not require a large-area transistor design, so the layout area occupied by the shift registers 510-540 on the display panel can be effectively reduced. Moreover, the shift registers 510 to 540 of this embodiment are separately arranged on both sides of the display panel, so that the display panel of this embodiment also has the characteristics of a narrow bezel.

圖7是依照本發明的又一實施例的閘極驅動電路的示意圖。圖8是依照圖7實施例的閘極驅動電路的驅動時序圖。參考圖7、圖8,閘極驅動電路700為一種陣列上閘極驅動電路。在本實施例中,閘極驅動電路700包括多個移位寄存器710~780,其中移位寄存器的數量不限於圖7所示,並且這些移位寄存器710~780可例如是上述圖1以及圖2實施例所述的移位寄存器200。因此,關於本實施例的移位寄存器710~780的相關電路特徵以及實施細節可搭配上述圖1以及圖2實施例的說明而獲致足夠的教示、建議以及實施說明,因此不予贅述。7 is a schematic diagram of a gate driving circuit according to yet another embodiment of the present invention. FIG. 8 is a driving timing diagram of the gate driving circuit according to the embodiment of FIG. 7. 7 and 8, the gate driving circuit 700 is a gate driving circuit on an array. In this embodiment, the gate driving circuit 700 includes a plurality of shift registers 710-780, wherein the number of shift registers is not limited to that shown in FIG. 7, and the shift registers 710-780 may be, for example, the above-mentioned FIG. 1 and FIG. 2 Examples of shift register 200. Therefore, the relevant circuit features and implementation details of the shift registers 710-780 of this embodiment can be combined with the descriptions of the above-mentioned embodiments of FIG. 1 and FIG. 2 to obtain sufficient teachings, suggestions, and implementation descriptions, and thus will not be repeated.

在本實施例中,閘極驅動電路700可透過時序控制的方式來增加移位寄存器710~780各別的靜電放電電路的放電時間,以有效減小移位寄存器710~780各別的靜電放電電路在顯示面板上的佈局面積。舉例而言,閘極驅動電路700可藉由七個參考時鐘信號CK1”~CK7”來驅動移位寄存器710~780,並且這七個參考時鐘信號CK1”~CK7”的時鐘相位依序相差二分之一個閘線導通時間(如圖8所示)。在本實施例中,每一個移位寄存器710~780的第一時鐘信號依序選自這七個參考時鐘信號CK1”~CK7”的其中之一個,並且每一個移位寄存器710~780的第二時鐘信號依序選自這七個參考時鐘信號CK1”~CK7”的其中之另一個。值得注意的是,每一個移位寄存器710~780的第一時鐘信號以及第二時鐘信號相差兩個閘線導通時間。並且,每一個移位寄存器710~780所接收第一控制信號分別為前一級的移位寄存器710~780的輸出信號,並且每一個移位寄存器710~780的第二控制信號分別為後一級的移位寄存器的輸出信號。In this embodiment, the gate driving circuit 700 can increase the discharge time of each of the electrostatic discharge circuits of the shift registers 710-780 through timing control, so as to effectively reduce the electrostatic discharge of each of the shift registers 710-780. The layout area of the circuit on the display panel. For example, the gate driving circuit 700 can drive the shift registers 710~780 by seven reference clock signals CK1"~CK7", and the clock phases of the seven reference clock signals CK1"~CK7" are sequentially different by two One of the gate line conduction time (as shown in Figure 8). In this embodiment, the first clock signal of each shift register 710~780 is sequentially selected from one of the seven reference clock signals CK1"~CK7", and the first The two clock signals are sequentially selected from one of the seven reference clock signals CK1"~CK7". It is worth noting that the first clock signal and the second clock signal of each shift register 710-780 differ by two gate-line on-times. Moreover, the first control signal received by each shift register 710~780 is the output signal of the shift register 710~780 of the previous stage, and the second control signal of each shift register 710~780 is the latter stage of the The output signal of the shift register.

詳細而言,如圖7所示,移位寄存器710接收參考時鐘信號CK1”來作為輸出單元所接收的第一時鐘信號,並且移位寄存器710接收參考時鐘信號CK4”來作為復位單元所接收的第二時鐘信號。因此,移位寄存器710接收的第一時鐘信號以及第二時鐘信號相差兩個閘線導通時間。移位寄存器720接收參考時鐘信號CK2”來作為輸出單元所接收的第一時鐘信號,並且移位寄存器720接收參考時鐘信號CK5”來作為復位單元所接收的第二時鐘信號。因此,移位寄存器720接收的第一時鐘信號以及第二時鐘信號相差兩個閘線導通時間。以此類推,移位寄存器730~780依序選擇相差兩個閘線導通時間的兩個參考時鐘信號來分別作為第一時鐘信號以及第二時鐘信號。In detail, as shown in FIG. 7, the shift register 710 receives the reference clock signal CK1″ as the first clock signal received by the output unit, and the shift register 710 receives the reference clock signal CK4″ as the received clock signal by the reset unit The second clock signal. Therefore, the first clock signal and the second clock signal received by the shift register 710 differ by two gate line on-times. The shift register 720 receives the reference clock signal CK2" as the first clock signal received by the output unit, and the shift register 720 receives the reference clock signal CK5" as the second clock signal received by the reset unit. Therefore, the first clock signal and the second clock signal received by the shift register 720 differ by two gate line on-times. By analogy, the shift registers 730-780 sequentially select two reference clock signals that differ by two gate line on-times as the first clock signal and the second clock signal, respectively.

更詳細而言,當移位寄存器710接收啟動信號STV後,移位寄存器710依據正向輸入信號FW以及反向輸入信號BW來輸出輸出信號Gout1”。如圖7所示,移位寄存器720~780所接收的第一控制信號分別為前一級的移位寄存器710~770的輸出信號Gout1”~Gout7”,並且移位寄存器710~770的第二控制信號分別為後一級的移位寄存器720~780的輸出信號Gout2”~Gout8”。以此類推,移位寄存器710~780可依序正向輸入信號FW以及反向輸入信號BW來依序輸出輸出信號Gout1”~Gout8”。In more detail, after the shift register 710 receives the start signal STV, the shift register 710 outputs the output signal Gout1" according to the forward input signal FW and the reverse input signal BW. As shown in FIG. 7, the shift register 720~ The first control signals received by 780 are the output signals Gout1"~Gout7" of the shift registers 710~770 of the previous stage, and the second control signals of the shift registers 710~770 are the shift registers 720~ of the latter stage, respectively. The output signals Gout2"~Gout8" of 780. By analogy, the shift registers 710~780 can sequentially output the output signals Gout1"~Gout8" according to the forward input signal FW and the reverse input signal BW.

也就是說,由於圖7的每一個移位寄存器710~780的輸出單元所接收的第一時鐘信號的時鐘相位與復位單元所接收的第二時鐘信號都相差兩個閘線導通時間,因此每一個移位寄存器710~780的靜電放電單元在復位單元復位自舉節點的電壓前,都具有足夠的放電時間。換句話說,本實施例的移位寄存器710~740的靜電放電單元無需大面積的電晶體設計,因此可有效減少移位寄存器710~740在顯示面板上所佔有的佈局面積。That is to say, since the clock phase of the first clock signal received by the output unit of each shift register 710 to 780 in FIG. 7 is different from the second clock signal received by the reset unit by two gate-line on-times, each The electrostatic discharge unit of a shift register 710~780 has sufficient discharge time before the reset unit resets the voltage of the bootstrap node. In other words, the ESD cells of the shift registers 710-740 of this embodiment do not require a large-area transistor design, so the layout area occupied by the shift registers 710-740 on the display panel can be effectively reduced.

然而,在一實施例中,閘極驅動電路700的參考時鐘信號的數量可不限於圖7所示,並且其第一時鐘信號以及第二時鐘信號的選擇方式也不限於圖7所示。舉例來說,若閘極驅動電路700的每一個移位寄存器710~780各別接收的第一時鐘信號以及第二時鐘信號欲相差M個閘極導通時間,則參考時鐘信號的數量N可至少設計為3M+1個(N=3M+1),其中N與M為大於零的正整數。並且,移位寄存器720~780所接收的第一控制信號分別為前一級的輸出信號,並且移位寄存器710~770的第二控制信號分別為後一級的輸出信號。However, in an embodiment, the number of reference clock signals of the gate driving circuit 700 may not be limited to that shown in FIG. 7, and the manner of selecting the first clock signal and the second clock signal is not limited to that shown in FIG. 7. For example, if the first clock signal and the second clock signal received by each of the shift registers 710-780 of the gate driving circuit 700 want to differ by M gate-on times, the number N of reference clock signals may be at least The design is 3M+1 (N=3M+1), where N and M are positive integers greater than zero. Moreover, the first control signals received by the shift registers 720-780 are output signals of the previous stage, respectively, and the second control signals of the shift registers 710-770 are output signals of the latter stage, respectively.

綜上所述,本發明的移位寄存器以及閘極驅動電路可藉由靜電放電單元來作為下拉電路,以有效地下拉閘極輸出端的電壓。因此,本發明的移位寄存器以及閘極驅動電路可有效地減少下拉電晶體在顯示面板上所佔的面積,或用靜電放電單元來直接替代下拉電晶體。並且,本發明的移位寄存器以及閘極驅動電路還可藉由時鐘信號的設計,來增加靜電放電單元的放電時間,而可進一步有效地縮小靜電放電單元的電晶體面積。In summary, the shift register and the gate driving circuit of the present invention can use an electrostatic discharge unit as a pull-down circuit to effectively pull down the voltage at the output end of the gate. Therefore, the shift register and the gate driving circuit of the present invention can effectively reduce the area occupied by the pull-down transistor on the display panel, or directly replace the pull-down transistor with an electrostatic discharge unit. In addition, the shift register and the gate driving circuit of the present invention can also increase the discharge time of the ESD unit through the design of the clock signal, which can further effectively reduce the transistor area of the ESD unit.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed as above with the embodiments, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be subject to the scope defined in the appended patent application.

100、200:移位寄存器110、210:輸入單元120、220:輸出單元130、230:復位單元140、240:靜電放電單元211、212、221、231、241、242:電晶體300、500、700:閘極驅動電路310~340、510~540、710~780:移位寄存器C1:電容器P:自舉節點CS1、CS2:控制信號BW、FW:輸入信號CLK1、CLK2:時鐘信號VGL:閘極低電壓Gout:閘極輸出端STV:啟動信號CK1~CK4、CK1’~CK8’、CK1”~CK7”:參考時鐘信號Gout1~Gout4、Gout1’~Gout4’、Gout1”~Gout8”:輸出信號100, 200: shift register 110, 210: input unit 120, 220: output unit 130, 230: reset unit 140, 240: electrostatic discharge unit 211, 212, 221, 231, 241, 242: transistor 300, 500, 700: gate drive circuit 310~340, 510~540, 710~780: shift register C1: capacitor P: bootstrap node CS1, CS2: control signal BW, FW: input signal CLK1, CLK2: clock signal VGL: gate Very low voltage Gout: gate output STV: start signal CK1~CK4, CK1'~CK8', CK1"~CK7": reference clock signal Gout1~Gout4, Gout1'~Gout4', Gout1"~Gout8": output signal

圖1是依照本發明的一實施例的移位寄存器的示意圖。 圖2是依照本發明的一實施例的移位寄存器的電路圖。 圖3是依照本發明的一實施例的閘極驅動電路的示意圖。 圖4是依照圖3實施例的閘極驅動電路的驅動時序圖。 圖5是依照本發明的另一實施例的閘極驅動電路的示意圖。 圖6是依照圖5實施例的閘極驅動電路的驅動時序圖。 圖7是依照本發明的又一實施例的閘極驅動電路的示意圖。 圖8是依照圖7實施例的閘極驅動電路的驅動時序圖。FIG. 1 is a schematic diagram of a shift register according to an embodiment of the invention. 2 is a circuit diagram of a shift register according to an embodiment of the invention. 3 is a schematic diagram of a gate driving circuit according to an embodiment of the invention. FIG. 4 is a driving timing diagram of the gate driving circuit according to the embodiment of FIG. 3. 5 is a schematic diagram of a gate driving circuit according to another embodiment of the invention. 6 is a driving timing diagram of the gate driving circuit according to the embodiment of FIG. 5. 7 is a schematic diagram of a gate driving circuit according to yet another embodiment of the present invention. FIG. 8 is a driving timing diagram of the gate driving circuit according to the embodiment of FIG. 7.

100:移位寄存器 100: shift register

110:輸入單元 110: input unit

120:輸出單元 120: output unit

130:復位單元 130: reset unit

140:靜電放電單元 140: Electrostatic discharge unit

Claims (10)

一種移位寄存器,包括: 一輸入單元,提供一輸入信號; 一輸出單元,耦接所述輸入單元以及一閘極輸出端,所述輸出單元依據所述輸入信號而經由所述閘極輸出端輸出一輸出信號; 一靜電放電單元,耦接所述輸出單元,當所述閘極輸出端輸出所述輸出信號後,所述靜電放電單元依據一閘極低電壓下拉所述閘極輸出端的電壓;以及 一復位單元,耦接所述輸入單元以及所述輸出單元,當所述靜電放電單元下拉所述閘極輸出端的電壓後,所述復位單元復位一自舉節點的電壓。A shift register includes: an input unit providing an input signal; an output unit coupled to the input unit and a gate output terminal, the output unit passing the gate output terminal according to the input signal Output an output signal; an electrostatic discharge unit, coupled to the output unit, when the gate output terminal outputs the output signal, the electrostatic discharge unit pulls down the voltage at the gate output terminal according to a gate low voltage And a reset unit, coupled to the input unit and the output unit, when the electrostatic discharge unit pulls down the voltage at the output terminal of the gate, the reset unit resets the voltage of a bootstrap node. 如申請專利範圍第1項所述的移位寄存器,其中所述輸入單元包括: 一第一電晶體,其中所述第一電晶體的一控制端接收一第一控制信號,並且所述第一電晶體的一第一端接收一第一輸入信號;以及 一第二電晶體,其中所述第二電晶體的一控制端接收一第二控制信號,其中所述第二電晶體的一第一端耦接所述第一電晶體的一第二端,並且所述第二電晶體的一第二端接收一第二輸入信號, 其中所述第一電晶體的所述第二端以及所述第二電晶體的所述第一端耦接所述輸出單元。The shift register according to item 1 of the patent application scope, wherein the input unit includes: a first transistor, wherein a control terminal of the first transistor receives a first control signal, and the first A first terminal of the transistor receives a first input signal; and a second transistor, wherein a control terminal of the second transistor receives a second control signal, wherein a first of the second transistor Is coupled to a second end of the first transistor, and a second end of the second transistor receives a second input signal, wherein the second end of the first transistor and the second The first end of the second transistor is coupled to the output unit. 如申請專利範圍第2項所述的移位寄存器,其中所述輸出單元包括: 一第三電晶體,其中所述第三電晶體的一控制端耦接所述第一電晶體的所述第二端以及所述第二電晶體的所述第一端,其中所述第三電晶體的一第一端接收一第一時鐘信號,並且所述第三電晶體的一第二端耦接所述閘極輸出端。The shift register according to item 2 of the patent application scope, wherein the output unit includes: a third transistor, wherein a control terminal of the third transistor is coupled to the first transistor Two ends and the first end of the second transistor, wherein a first end of the third transistor receives a first clock signal, and a second end of the third transistor is coupled to the Describe the gate output. 如申請專利範圍第3項所述的移位寄存器,其中所述復位單元包括: 一第四電晶體,其中所述第四電晶體的一控制端接收一第二時鐘信號,其中所述第四電晶體的一第一端耦接所述自舉節點,並且所述第四電晶體的一第二端接收所述閘極低電壓。The shift register of claim 3, wherein the reset unit includes: a fourth transistor, wherein a control terminal of the fourth transistor receives a second clock signal, wherein the fourth A first end of the transistor is coupled to the bootstrap node, and a second end of the fourth transistor receives the gate low voltage. 如申請專利範圍第4項所述的移位寄存器,其中所述第一時鐘信號的一時鐘相位與所述第二時鐘信號相差兩個閘線導通時間,並且所述第一輸入信號為前一級或前二級的移位寄存器提供的一輸出信號,所述第二輸入信號為後一級或後二級的移位寄存器提供的一輸出信號。The shift register according to item 4 of the patent application scope, wherein a clock phase of the first clock signal differs from the second clock signal by two gate-line on-times, and the first input signal is the previous stage Or an output signal provided by the shift register of the previous stage, and the second input signal is an output signal provided by the shift register of the latter stage or the second stage. 如申請專利範圍第1項所述的移位寄存器,其中所述靜電放電單元包括: 一第五電晶體,其中所述第五電晶體的一第一端耦接所述閘極輸出端,其中所述第五電晶體的一控制端耦接所述第五電晶體的一第二端,並且所述第五電晶體的所述第二端接收所述閘極低電壓;以及 一第六電晶體,其中所述第六電晶體的一第一端接收所述閘極低電壓,其中所述第六電晶體的一控制端耦接所述第六電晶體的一第二端,並且所述第六電晶體的所述第二端耦接所述閘極輸出端, 其中所述第五電晶體的所述第一端耦接所述第六電晶體的所述第二端,並且所述第五電晶體的所述第二端耦接所述第六電晶體的所述第一端。The shift register according to item 1 of the patent application scope, wherein the electrostatic discharge unit includes: a fifth transistor, wherein a first end of the fifth transistor is coupled to the gate output terminal, wherein A control terminal of the fifth transistor is coupled to a second terminal of the fifth transistor, and the second terminal of the fifth transistor receives the gate low voltage; and a sixth circuit A crystal, wherein a first terminal of the sixth transistor receives the gate low voltage, wherein a control terminal of the sixth transistor is coupled to a second terminal of the sixth transistor, and the The second terminal of the sixth transistor is coupled to the gate output terminal, wherein the first terminal of the fifth transistor is coupled to the second terminal of the sixth transistor, and the The second end of the fifth transistor is coupled to the first end of the sixth transistor. 一種閘極驅動電路,包括: 多個如申請專利範圍第1項所述的移位寄存器, 其中,在一個驅動週期中,所述多個移位寄存器的所述輸出單元依據所述輸入信號來藉由一第一時鐘信號上拉所述閘極輸出端的電壓,以使所述閘極輸出端輸出所述輸出信號,並且接著所述靜電放電單元下拉所述閘極輸出端的電壓,其中當所述靜電放電單元下拉所述閘極輸出端的電壓後,所述多個移位寄存器的所述復位單元依據一第二時鐘信號來藉由所述閘極低電壓復位所述自舉節點的電壓, 其中所述第一時鐘信號的一時鐘相位與所述第二時鐘信號相差兩個閘線導通時間。A gate drive circuit, including: a plurality of shift registers as described in item 1 of the patent application range, wherein, in a drive cycle, the output units of the plurality of shift registers are based on the input signal The voltage at the gate output terminal is pulled up by a first clock signal, so that the gate output terminal outputs the output signal, and then the electrostatic discharge unit pulls down the voltage at the gate output terminal, where After the electrostatic discharge unit pulls down the voltage at the output terminal of the gate, the reset unit of the plurality of shift registers resets the voltage of the bootstrap node by the low voltage of the gate according to a second clock signal, Wherein, a clock phase of the first clock signal differs from the second clock signal by two gate line on-times. 如申請專利範圍第7項所述的閘極驅動電路,其中所述閘極驅動電路藉由四個參考時鐘信號來驅動所述多個移位寄存器,並且所述四個參考時鐘信號的時鐘相位依序相差一個閘線導通時間, 其中所述多個移位寄存器的所述第一時鐘信號為所述四個參考時鐘信號的第一個或第二個,並且所述多個移位寄存器的所述第二時鐘信號為所述四個參考時鐘信號的第三個或第四個, 其中所述多個移位寄存器的一第一控制信號為前一級的移位寄存器的一輸出信號,並且所述多個移位寄存器的一第二控制信號為後一級的移位寄存器的一輸出信號。The gate drive circuit according to item 7 of the patent application range, wherein the gate drive circuit drives the plurality of shift registers with four reference clock signals, and the clock phases of the four reference clock signals A gate line conduction time differs in sequence, wherein the first clock signals of the multiple shift registers are the first or second of the four reference clock signals, and the multiple shift registers have The second clock signal is the third or fourth of the four reference clock signals, wherein a first control signal of the plurality of shift registers is an output signal of the shift register of the previous stage, and A second control signal of the plurality of shift registers is an output signal of the shift register of the subsequent stage. 如申請專利範圍第7項所述的閘極驅動電路,其中所述閘極驅動電路藉由八個參考時鐘信號來驅動所述多個移位寄存器,並且所述八個參考時鐘信號的時鐘相位依序相差二分之一個閘線導通時間,其中所述多個移位寄存器分為一奇數群以及一偶數群, 其中所述奇數群的所述多個移位寄存器的所述第一時鐘信號為所述八個參考時鐘信號的第一個或第三個,並且所述偶數群的所述多個移位寄存器的所述第一時鐘信號為所述多個參考時鐘信號的第二個或第四個, 其中所述奇數群的所述多個移位寄存器的所述第二時鐘信號為所述多個參考時鐘信號的第五個或第七個,並且所述偶數群的所述多個移位寄存器的所述第二時鐘信號為所述多個參考時鐘信號的第六個或第八個, 其中所述多個移位寄存器的一第一控制信號為前二級的移位寄存器的一輸出信號,並且所述多個移位寄存器的一第二控制信號為後二級的移位寄存器的一輸出信號。The gate drive circuit as described in item 7 of the patent application range, wherein the gate drive circuit drives the plurality of shift registers with eight reference clock signals, and the clock phases of the eight reference clock signals The gate-on time differs by half in sequence, wherein the multiple shift registers are divided into an odd group and an even group, wherein the first clocks of the multiple shift registers of the odd group The signal is the first or third of the eight reference clock signals, and the first clock signal of the multiple shift registers of the even group is the second of the multiple reference clock signals Or a fourth, wherein the second clock signal of the multiple shift registers of the odd group is the fifth or seventh of the multiple reference clock signals, and the The second clock signals of the multiple shift registers are the sixth or eighth of the multiple reference clock signals, wherein a first control signal of the multiple shift registers is the shift of the first two stages An output signal of the register, and a second control signal of the plurality of shift registers is an output signal of the shift register of the second stage. 如申請專利範圍第7項所述的閘極驅動電路,其中所述閘極驅動電路藉由多個參考時鐘信號來驅動所述多個移位寄存器,並且所述多個參考時鐘信號的時鐘相位依序相差二分之一個閘線導通時間, 其中所述多個移位寄存器各別的所述第一時鐘信號依序選自所述多個參考時鐘信號的其中的一個,並且所述多個移位寄存器各別的所述第二時鐘信號依序選自所述多個參考時鐘信號的其中的另一個,其中所述多個參考時鐘信號的其中的一個與所述多個參考時鐘信號的其中的另一個之間相差兩個閘線導通時間, 其中所述多個移位寄存器的一第一控制信號為前一級的移位寄存器的一輸出信號,並且所述多個移位寄存器的一第二控制信號為後一級的移位寄存器的一輸出信號。The gate drive circuit according to item 7 of the patent application range, wherein the gate drive circuit drives the plurality of shift registers by a plurality of reference clock signals, and the clock phases of the plurality of reference clock signals The gate line conduction time differs by half in sequence, wherein the respective first clock signals of the plurality of shift registers are sequentially selected from one of the multiple reference clock signals, and the multiple The second clock signals of each shift register are sequentially selected from the other of the multiple reference clock signals, wherein one of the multiple reference clock signals and the multiple reference clock signals The other of the two differs by the conduction time of the two gate lines, where a first control signal of the plurality of shift registers is an output signal of the shift register of the previous stage, and the A second control signal is an output signal of the shift register of the subsequent stage.
TW107142180A 2018-11-27 2018-11-27 Shift register and gate driver circuit TWI718444B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107142180A TWI718444B (en) 2018-11-27 2018-11-27 Shift register and gate driver circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107142180A TWI718444B (en) 2018-11-27 2018-11-27 Shift register and gate driver circuit

Publications (2)

Publication Number Publication Date
TW202020538A true TW202020538A (en) 2020-06-01
TWI718444B TWI718444B (en) 2021-02-11

Family

ID=72175752

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107142180A TWI718444B (en) 2018-11-27 2018-11-27 Shift register and gate driver circuit

Country Status (1)

Country Link
TW (1) TWI718444B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI736314B (en) * 2020-06-05 2021-08-11 大陸商深超光電(深圳)有限公司 Shift register and display apparatus thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101340197B1 (en) * 2011-09-23 2013-12-10 하이디스 테크놀로지 주식회사 Shift register and Gate Driving Circuit Using the Same
CN105047172A (en) * 2015-09-15 2015-11-11 京东方科技集团股份有限公司 Shift register, gate driving circuit, display screen and driving method of display screen
CN105047127B (en) * 2015-09-21 2017-12-22 京东方科技集团股份有限公司 Shift register cell and driving method, line-scanning drive circuit, display device
CN106504719A (en) * 2017-01-03 2017-03-15 合肥京东方光电科技有限公司 Shift register cell, driving method, gate driver circuit and display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI736314B (en) * 2020-06-05 2021-08-11 大陸商深超光電(深圳)有限公司 Shift register and display apparatus thereof

Also Published As

Publication number Publication date
TWI718444B (en) 2021-02-11

Similar Documents

Publication Publication Date Title
JP6328153B2 (en) Shift register, display device, gate drive circuit, and drive method
TWI491175B (en) A shift register
US9779680B2 (en) Shift register unit, gate driving circuit and display apparatus
US20180151148A1 (en) Shift register, gate driving circuit, display panel and driving method
US8724406B2 (en) Bidirectional shift register and the driving method thereof
WO2017118014A1 (en) Shift register unit, gate drive circuit and display device
TWI425771B (en) Shift register circuit
WO2014166251A1 (en) Shift register unit and gate drive circuit
WO2013131425A1 (en) Shifting register, gate driver and display device
CN108538335B (en) Shifting register and driving method thereof, grid driving circuit and display device
JP2011060411A (en) Shift register unit and gate driving device for liquid crystal display
WO2014172965A1 (en) Shift register unit, gate driving circuit, and array substrate
US11783743B2 (en) Shifting register, driving method thereof, driving circuit and display device
JP2014067065A (en) Gate driver and display device equipped with the same
WO2014173025A1 (en) Shift register unit, gate drive circuit, and display device
WO2021232871A1 (en) Gate drive circuit, display substrate, display apparatus, and gate drive method
WO2020093796A1 (en) Shift register, method for driving same, gate drive circuit, and display device
WO2013037157A2 (en) Liquid crystal display and gate driving circuit
US11557359B2 (en) Shift register and gate driver circuit
US8836633B2 (en) Display driving circuit and display panel using the same
WO2020220480A1 (en) Goa circuit
WO2018161527A1 (en) Shift register, gate-driver circuit, display panel, and driving method
US20190164465A1 (en) Shift register unit, method for driving the same, gate driving circuit and display device
US10818259B2 (en) Scanning trigger unit, gate driving circuit and method for driving the same and display apparatus
KR20070095585A (en) Gate driving circuit and display apparatus having the same