TW202020140A - Method of improving production yield of isoprene by cyanobacteria by gene transferring and encoding carbon fixation genes - Google Patents

Method of improving production yield of isoprene by cyanobacteria by gene transferring and encoding carbon fixation genes Download PDF

Info

Publication number
TW202020140A
TW202020140A TW107141788A TW107141788A TW202020140A TW 202020140 A TW202020140 A TW 202020140A TW 107141788 A TW107141788 A TW 107141788A TW 107141788 A TW107141788 A TW 107141788A TW 202020140 A TW202020140 A TW 202020140A
Authority
TW
Taiwan
Prior art keywords
gene
transgenic
blue
seq
isoprene
Prior art date
Application number
TW107141788A
Other languages
Chinese (zh)
Inventor
周德珍
蘇翔筵
周祥蕙
鄭文熙
李澤民
張嘉修
Original Assignee
輔英科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 輔英科技大學 filed Critical 輔英科技大學
Priority to TW107141788A priority Critical patent/TW202020140A/en
Publication of TW202020140A publication Critical patent/TW202020140A/en

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention provides a method of improving production yield of isoprene by transgenic cyanobacteria, which improves the production yield of isoprene by cyanobacteria through gene transferring and encoding carbon fixation genes such as bicarbonate transporter and carbonic anhydrase. The present invention also provides a transgenic cyanobacterium, and an incubating method of the transgenic cyanobacteria for producing isoprene.

Description

提升藍綠菌生產異戊二烯產率之方法Method for improving yield of isoprene produced by blue-green fungus

本發明係有關一種提升基因轉殖藍綠菌生產異戊二烯產率之方法。本發明另涉及一種基因轉殖藍綠菌,以及培養該基因轉殖藍綠菌生產異戊二烯之方法。The invention relates to a method for increasing the yield of isoprene produced by transgenic blue-green bacteria. The invention also relates to a genetically transformed blue-green bacteria and a method for cultivating the genetically transformed blue-green bacteria to produce isoprene.

異戊二烯(Isoprene) 為合成橡膠之基本原料,並為新興之替代生物燃料。考量現行異戊二烯之製造仍採行化學合成方法,例如:藉由石油高溫裂解產生,除有高耗能、高汙染及高技術複雜性之問題外,亦有低生產效率及石油原料屬不可再生資源之本質上困境。因此,藉由生物技術來生產異戊二烯之方法逐步發展中。Isoprene is the basic raw material for synthetic rubber and an emerging alternative biofuel. In consideration of the current isoprene manufacturing, chemical synthesis methods are still used, for example: generated by pyrolysis of petroleum, in addition to the problems of high energy consumption, high pollution and high technical complexity, there are also low production efficiency and petroleum raw materials. The inherent dilemma of non-renewable resources. Therefore, the method of producing isoprene by biotechnology is gradually developing.

自然界中生物合成異戊二烯之途徑有二:甲基赤蘚糖醇磷酸鹽途徑(Methylerythritol phosphate pathway,以下簡稱MEP途徑)和甲羥戊酸途徑(Mevalonic acid pathway,以下簡稱MVA途徑),前者多存於細菌、藍綠菌、綠藻及高等植物之葉綠體,後者則主要存於真核生物、古細菌及高等植物。There are two pathways for biosynthesis of isoprene in nature: Methylerythritol phosphate pathway (hereinafter referred to as MEP pathway) and mevalonic acid pathway (hereinafter referred to as MVA pathway), the former Mostly exist in the chloroplasts of bacteria, blue-green bacteria, green algae and higher plants, the latter mainly in eukaryotes, archaea and higher plants.

2003年馬丁(Martin)等人發表使用基改大腸桿菌來生產異戊二烯,2011年趙(Zhou)等人發表將來自枯草桿菌之dxs 基因和dxr 基因,以基因轉殖方式嵌入大腸桿菌進行大量之外源性基因表現,並發現相較於大腸桿菌內生性之dxs 基因和dxr 基因大量表現之組別,該具外源性基因之組別生產異戊二烯之產能高出2.3倍。In 2003, Martin and others published the use of GM Escherichia coli to produce isoprene. In 2011, Zhao and others published that the dxs and dxr genes from Bacillus subtilis were inserted into E. coli by gene transfer. A large number of exogenous gene expression, and found that compared with the endogenous group of E. coli dxs gene and dxr gene mass expression, the group with exogenous gene production capacity of isoprene is 2.3 times higher.

在轉殖藍綠菌之發展上,2010年林柏格(Lindberg)等人發表對藍綠菌轉殖來自山葛(Pueraria montana )之異戊二烯合成酶基因(isoprene synthase gene,以下簡稱IspS ),並進行外源性基因表達者,其異戊二烯之產量有50μg/ biomass/day。最後,班特力(Bentley)等人則於2014年對藍綠菌進行基因轉殖,藉由導入外源性MVA途徑之7種基因:AtoBHmgSHmgRMKPMKPMDFni ,並配合IspS 基因之轉殖,來提升異戊二烯之產能,但藉由基因轉殖而內嵌MVA途徑之7種基因與IspS 基因之組別,其產能僅較單純內嵌IspS 基因之組別高2.5倍,且異戊二烯之產量亦僅約為125μg/ biomass/day,故如何有效提升生物體之異戊二烯生產效率,仍屬一待解決之問題。Turn in the development of blue-green bacteria colonization of 2010, Lin Boge (Lindberg) et al to turn blue-green bacteria colonization isoprene synthase gene from Pueraria montana (Pueraria montana) of (isoprene synthase gene, hereinafter referred to as IspS ), and for exogenous gene expression, the production of isoprene is 50μg/biomass/day. Finally, Bentley et al. carried out the genetic transformation of blue-green bacteria in 2014 by introducing 7 genes from the exogenous MVA pathway: AtoB , HmgS , HmgR , MK , PMK , PMD and Fni , and Cooperate with the transformation of IspS gene to increase the production capacity of isoprene, but the group of 7 genes embedded in MVA pathway and IspS gene through gene transformation, its production capacity is only more than the group of pure embedded IspS gene It is 2.5 times higher, and the output of isoprene is only about 125μg/biomass/day, so how to effectively improve the production efficiency of isoprene in the organism is still a problem to be solved.

為了利用生物體來有效生產異戊二烯,本發明提供一種提升基因轉殖藍綠菌生產異戊二烯產率之方法,特別是藉由基因轉殖之方式,來提升基因轉殖藍綠菌生產異戊二烯之產率。In order to use organisms to efficiently produce isoprene, the present invention provides a method for increasing the yield of isoprene produced by transgenic blue-green bacteria, in particular by transgenic methods to enhance transgenic blue-green The yield of isoprene produced by bacteria.

本發明之另一態樣為提供一種基因轉殖藍綠菌,以及培養該基因轉殖藍綠菌生產異戊二烯之方法。Another aspect of the present invention is to provide a genetically transformed blue-green bacteria and a method for cultivating the genetically transformed blue-green bacteria to produce isoprene.

本發明提供一種提升基因轉殖藍綠菌(cyanobacteria)生產異戊二烯產率之方法,其特徵在於將一表現載體轉型至該基因轉殖藍綠菌,所述表現載體具有一編碼碳酸氫鹽運轉子(Bicarbonate transporter)基因之核苷酸序列,並具有與SEQ ID NO:1至少90%的序列相似度,與一編碼碳酸酐酶(carbonic anhydrase) 基因之核苷酸序列,並具有與SEQ ID NO:2至少90%的序列相似度;並於該基因轉殖藍綠菌中表現或過度表現該等基因。The invention provides a method for improving the yield of isoprene produced by genetically transformed cyanobacteria, characterized in that a expression vector is transformed into the genetically transformed cyanobacteria, and the expression vector has a coding bicarbonate The nucleotide sequence of the salt transporter (Bicarbonate transporter) gene has a sequence similarity of at least 90% to SEQ ID NO: 1, and a nucleotide sequence encoding a carbonic anhydrase gene, and has a SEQ ID NO: 2 at least 90% sequence similarity; and express or overexpress these genes in the transgenic blue-green bacteria.

較佳地,上述表現載體所具有之編碼碳酸氫鹽運轉子基因之核苷酸序列,係具有與SEQ ID NO:1至少95%或至少99%的序列相似度;更佳地,上述表現載體所具有之編碼碳酸氫鹽運轉子基因之核苷酸序列係如SEQ ID NO:1所示。Preferably, the nucleotide sequence encoding the bicarbonate operator gene possessed by the above expression vector has a sequence similarity of at least 95% or at least 99% with SEQ ID NO: 1; more preferably, the above expression vector The nucleotide sequence encoding the bicarbonate operator gene is shown in SEQ ID NO:1.

較佳地,上述如SEQ ID NO:1所示之編碼碳酸氫鹽運轉子基因係篩選自細長聚球藻(Synechococcus elongatus PCC7942),該Synechococcus elongatus PCC7942係購自法國巴期德藍綠藻種源中心(The Pasteur Culture Collection of Cyanobacteria)。Preferably, the above-mentioned bicarbonate operator gene line as shown in SEQ ID NO: 1 is selected from Synechococcus elongatus PCC7942. The Synechococcus elongatus PCC7942 is purchased from the French blue-green algae provenance Center (The Pasteur Culture Collection of Cyanobacteria).

較佳地,上述表現載體所具有之與編碼碳酸酐酶(carbonic anhydrase) 基因之核苷酸序列,係具有與SEQ ID NO:2至少95%或至少99%的序列相似度;更佳地,上述表現載體所具有之碼碳酸酐酶基因之核苷酸序列係如SEQ ID NO:2所示。Preferably, the nucleotide sequence of the expression vector and the gene encoding carbonic anhydrase has a sequence similarity to SEQ ID NO: 2 of at least 95% or at least 99%; more preferably, The nucleotide sequence of the code carbonic anhydrase gene possessed by the above expression vector is shown in SEQ ID NO: 2.

較佳地,上述如SEQ ID NO:2所示之編碼碳酸酐酶基因亦係篩選自細長聚球藻(Synechococcus elongatus PCC7942)。Preferably, the above-mentioned gene encoding carbonic anhydrase as shown in SEQ ID NO: 2 is also selected from Synechococcus elongatus PCC7942.

本發明所稱之「序列相似度」係指不同之核苷酸序列鹼基相比的相同程度,其可藉由公知軟體加以比對而獲得相似度比值,所述公知軟體較常見者有:BLAST,網址為:http://blast.ncbi.nlm.nih.gov/Blast.cgi。序列相似度愈高者,通常表示其將具有相似之功能或生物活性,抑或是在演化學上具有較相近之親緣關係。The "sequence similarity" referred to in the present invention refers to the same degree of comparison of bases of different nucleotide sequences, which can be compared by a known software to obtain a similarity ratio. The known software is more common: BLAST at http://blast.ncbi.nlm.nih.gov/Blast.cgi. The higher the sequence similarity, it usually means that it will have a similar function or biological activity, or it will have a close kinship in evolution.

本發明所述之序列相似度至少90%、95%或99%之核苷酸序列,係指將本發明所揭示之核苷酸序列鹼基經增加、刪除及/或置換後,仍與本發明所揭示之序列具有至少90%、95%或99%之相同程度,且仍維持相同之功能或生物活性者。因此,只要一基因與本發明所揭示之核苷酸序列具有至少90%、95%或99%之相似程度,且該序列之功能或生物活性未改變者,即包含於本發明之中。A nucleotide sequence having a sequence similarity of at least 90%, 95%, or 99% according to the present invention refers to the nucleotide sequence disclosed in the present invention is added, deleted, and/or replaced after being added, deleted, and/or substituted. The sequences disclosed in the invention have at least 90%, 95% or 99% of the same degree, and still maintain the same function or biological activity. Therefore, as long as a gene is at least 90%, 95%, or 99% similar to the nucleotide sequence disclosed in the present invention, and the function or biological activity of the sequence is not changed, it is included in the present invention.

在本發明之一實施態樣中,上述基因轉殖藍綠菌具有複數外源性基因,其包含一編碼異戊烯基二磷酸異構酶(isopentenyl-diphosphate Delta-isomerase I)基因之核苷酸序列,並具有與SEQ ID NO:3至少90%的序列相似度,和一編碼異戊二烯合成酶 (isoprene synthase)基因之核苷酸序列,並具有與SEQ ID NO:4至少90%的序列相似度;並於該基因轉殖藍綠菌中表現或過度表現該等基因。In one embodiment of the present invention, the above-mentioned gene-transforming blue-green bacteria has a plurality of exogenous genes, which includes a nucleoside encoding an isopentenyl-diphosphate Delta-isomerase I gene Acid sequence, and at least 90% sequence similarity to SEQ ID NO: 3, and a nucleotide sequence encoding an isoprene synthase (isoprene synthase) gene, and at least 90% to SEQ ID NO: 4 Sequence similarity; and express or overexpress these genes in the transgenic blue-green bacteria.

本發明所稱之「外源性基因」(exogenous gene),又譯為「異源基因」,係指非來自於宿主細胞或目標細胞本身所具有之内生性基因组,而是取自於其他物種或細胞之一基因或一核苷酸片段,並藉由基因工程技術,導入宿主細胞或目標細胞。「外源性基因」亦可為人工合成之一段基因或一核苷酸片段。The "exogenous gene" (exogenous gene) referred to in the present invention, also translated as "heterologous gene", refers to the endogenous genome not from the host cell or the target cell itself, but from other species Or a gene or a nucleotide fragment of a cell, and introduced into the host cell or target cell by genetic engineering technology. The "exogenous gene" can also be a synthetic gene or a nucleotide fragment.

本發明所稱之「共轉殖」,係指將複數且各自載有不同待表現基因之表現載體分次或依序轉型至同一宿主細胞或同一目標細胞。本發明所稱之「共轉殖株」,係指經分次轉型步驟後,而於其本身之基因組不同區段內嵌有不同待表現基因之細胞株或菌株,並進行各該不同基因之表現或過度表現。The term "co-transplantation" as used in the present invention refers to the transformation of a plurality of expression vectors each carrying a different gene to be expressed into the same host cell or the same target cell in a sequential or sequential manner. The "co-transgenic strain" referred to in the present invention refers to a cell strain or strain in which different genes to be expressed are embedded in different segments of its own genome after the step of transformation, and each of the different genes is processed. Performance or excessive performance.

較佳地,上述編碼異戊烯基二磷酸異構酶基因之核苷酸序列,係具有與SEQ ID NO:3至少95%或至少99%的序列相似度;更佳地,該編碼異戊烯基二磷酸異構酶基因之核苷酸序列係如SEQ ID NO:3所示。Preferably, the above nucleotide sequence encoding the isopentenyl diphosphate isomerase gene has a sequence similarity of at least 95% or at least 99% with SEQ ID NO: 3; more preferably, the encoding isopentenyl The nucleotide sequence of the alkenyl diphosphate isomerase gene is shown in SEQ ID NO:3.

較佳地,上述編碼異戊二烯合成酶基因之核苷酸序列,係具有與SEQ ID NO:4至少95%或至少99%的序列相似度;更佳地,該編碼異戊二烯合成酶基因之核苷酸序列係如SEQ ID NO:4所示。Preferably, the nucleotide sequence encoding the isoprene synthase gene has a sequence similarity of at least 95% or at least 99% to SEQ ID NO: 4; more preferably, the isoprene encoding The nucleotide sequence of the enzyme gene is shown in SEQ ID NO:4.

在本發明另一實施態樣中,上述基因轉殖藍綠菌進一步經轉型而內嵌有一編碼1,5-二磷酸核酮糖羧化酶/加氧酶(Rubisco)大次單元和小次單元基因之核苷酸序列,並具有與SEQ ID NO:5至少90%的序列相似度;並於該基因轉殖藍綠菌中表現或過度表現該基因。In another embodiment of the present invention, the above-mentioned gene-transforming blue-green bacteria are further transformed to embed a large subunit and a small subunit encoding ribulose 1,5-diphosphate carboxylase/oxygenase (Rubisco) The nucleotide sequence of the unit gene, and has a sequence similarity of at least 90% with SEQ ID NO: 5; and express or overexpress the gene in the transgenic blue-green bacteria of the gene.

較佳地,上述編碼1,5-二磷酸核酮糖羧化酶/加氧酶(Rubisco)大次單元和小次單元基因之核苷酸序列,係具有與SEQ ID NO:5至少95%或至少99%的序列相似度;更佳地,該編碼1,5-二磷酸核酮糖羧化酶/加氧酶(Rubisco)大次單元和小次單元基因之核苷酸序列係如SEQ ID NO:5所示。Preferably, the nucleotide sequence of the gene encoding ribulose 1,5-diphosphate carboxylase/oxygenase (Rubisco) large and small subunits has at least 95% of SEQ ID NO: 5 Or at least 99% sequence similarity; more preferably, the nucleotide sequence of the gene encoding ribulose 1,5-diphosphate carboxylase/oxygenase (Rubisco) large and small subunits is such as SEQ ID NO: 5 shows.

在本發明之一實施態樣中,上述基因之任一轉型至該基因轉殖藍綠菌所用之表現載體係選自pAM1573轉殖載體、pAM1303轉殖載體、pNS3轉殖載體或其組合;較佳地,將編碼碳酸氫鹽運轉子基因及編碼碳酸酐酶基因轉型至基因轉殖藍綠菌所用之表現載體為pAM1573轉殖載體及/或上述外源性基因係使用pAM1303轉殖載體轉型至該基因轉殖藍綠菌。In one embodiment of the present invention, the expression vector used to transform any of the above genes into the blue-green bacteria transgenic gene is selected from pAM1573 transfection vector, pAM1303 transfection vector, pNS3 transfection vector or a combination thereof; Preferably, the expression vector used to transform the gene encoding the bicarbonate operator and the gene encoding the carbonic anhydrase into the transgenic blue-green bacteria is the pAM1573 transfection vector and/or the above exogenous gene line is transformed using the pAM1303 transgenic vector to The gene transfects blue-green bacteria.

在本發明之一實施態樣中,將上述編碼1,5-二磷酸核酮糖羧化酶/加氧酶(Rubisco)大次單元和小次單元基因之核苷酸序列轉型至該基因轉殖藍綠菌所用之表現載體為pNS3轉殖載體;較佳地,該pNS3轉殖載體係帶有rbcL啟動子(promoter)的轉殖載體:pNS3-PrbcL轉殖載體。In one embodiment of the present invention, the nucleotide sequence of the gene encoding the ribulose 1,5-diphosphate carboxylase/oxygenase (Rubisco) large subunit and small subunit is transformed into the gene transfer The expression vector used by Chlorocyanobacterium is a pNS3 transfer vector; preferably, the pNS3 transfer vector is a transfer vector with an rbcL promoter: pNS3-PrbcL transfer vector.

在本發明之一實施態樣中,上述之表現載體包括限制酶切位,其係選自:Bma HI、Sma I、Pme I、Zra I、Xba I、Sal I、Eco RV、Sac I、Spe I、Eco RI、Hind III、Apa I、Kpn I、Xho I、Sac II、Xma I、Not I、Nde I、Nhe I、Pvu II、Sca I、Pst I、Hinc II或Dra I之任一或其等之組合;較佳地為BmaH I、Sma I、Pme I、Zra I、Xba I、Sal I或Eco RV之任一或其等之組合。In one embodiment of the present invention, the above-mentioned expression vector includes restriction sites, which are selected from: Bma HI, Sma I, Pme I, Zra I, Xba I, Sal I, Eco RV, Sac I, Spe I, Eco RI, Hind III, Apa I, Kpn I, Xho I, Sac II, Xma I, Not I, Nde I, Nhe I, Pvu II, Sca I, Pst I, Hinc II or Dra I or A combination of these; preferably any one or a combination of BmaH I, Sma I, Pme I, Zra I, Xba I, Sal I or Eco RV.

在本發明之一實施態樣中,上述之表現載體包括啟動子,其係1,5-二磷酸核酮糖羧化酶/加氧酶大次單元(PrbcL)啟動子,並具有與SEQ ID NO:6至少90%、95%或99%的序列相似度;更佳地,其核苷酸序列係如SEQ ID NO:6所示。In one embodiment of the present invention, the above expression vector includes a promoter, which is a ribulose 1,5-diphosphate carboxylase/oxygenase large subunit (PrbcL) promoter, and has a SEQ ID NO: 6 has a sequence similarity of at least 90%, 95% or 99%; more preferably, its nucleotide sequence is shown in SEQ ID NO: 6.

在本發明之一實施態樣中,該基因轉殖藍綠菌係選自聚球藻屬 (Synechococcus sp. )、集胞藻屬(Synechocystis sp. )、嗜熱藍綠藻屬(Thermosynechococcus sp. )、單胞藍藻屬(Cyanothece sp. ) 、魚腥藻屬(Anabaena sp. )及念珠藻屬 (Nostoc sp.) 所組成之群組之任一或其組合。較佳地,該基因轉殖藍綠菌為細長聚球藻(Synechococcus elongatus )。In one embodiment of the present invention, the gene-transforming blue-green fungus strain is selected from Synechococcus sp . , Synechocystis sp . , Thermosynechococcus sp . ), any one of a group of unicellular cyanobacteria genus (Cyanothece sp.), Anabaena (Anabaena sp.) and Nostoc (Nostoc sp.) composed of a combination thereof. Preferably, the genetically transformed blue-green bacteria is Synechococcus elongatus .

本發明另提供一種基因轉殖藍綠菌,其基因組經轉型而內嵌有一編碼碳酸氫鹽運轉子基因,並具有與SEQ ID NO:1至少90%、至少95%或至少99%的序列相似度,一編碼碳酸酐酶基因,並具有與SEQ ID NO:2至少90%、至少95%或至少99%的序列相似度、一編碼外源性異戊烯基二磷酸異構酶基因,並具有與SEQ ID NO:3至少90%、至少95%或至少99%的序列相似度,以及一編碼外源性異戊二烯合成酶基因,並具有與SEQ ID NO:4至少90%、至少95%或至少99%的序列相似度;並於該基因轉殖藍綠菌中表現或過度表現該等基因。The present invention also provides a gene-transforming blue-green fungus whose genome is transformed with a gene encoding a bicarbonate operator embedded therein and has a sequence similar to SEQ ID NO: 1 of at least 90%, at least 95%, or at least 99% Degree, a gene encoding carbonic anhydrase, and having a sequence similarity to SEQ ID NO: 2 of at least 90%, at least 95%, or at least 99%, a gene encoding exogenous isopentenyl diphosphate isomerase, and Has a sequence similarity to SEQ ID NO: 3 of at least 90%, at least 95%, or at least 99%, and a gene encoding an exogenous isoprene synthase, and has a sequence similar to SEQ ID NO: 4 of at least 90%, at least 95% or at least 99% sequence similarity; and express or overexpress these genes in the transgenic blue-green bacteria.

較佳地,該基因轉殖藍綠菌之基因組內嵌之編碼碳酸氫鹽運轉子基因如SEQ ID NO:1所示,編碼碳酸酐酶基因如SEQ ID NO:2所示,編碼外源性異戊烯基二磷酸異構酶基因如SEQ ID NO:3所示,以及編碼外源性異戊二烯合成酶基因如SEQ ID NO:4所示。Preferably, the gene encoding the bicarbonate operator embedded in the genome of the transgenic blue-green bacteria is shown in SEQ ID NO: 1, and the gene encoding carbonic anhydrase is shown in SEQ ID NO: 2, encoding exogenous The isoprenyl diphosphate isomerase gene is shown in SEQ ID NO: 3, and the gene encoding the exogenous isoprene synthase is shown in SEQ ID NO: 4.

在本發明另一實施態樣中,該基因轉殖藍綠菌經轉型而內嵌至少一個1,5-二磷酸核酮糖羧化酶/加氧酶大次單元(PrbcL)啟動子,且該編碼碳酸氫鹽運轉子基因與編碼碳酸酐酶基因兩者各自嵌於一1,5-二磷酸核酮糖羧化酶/加氧酶大次單元(PrbcL)啟動子之下游,及/或編碼外源性異戊烯基二磷酸異構酶基因與編碼外源性異戊二烯合成酶基因兩者共同嵌於一1,5-二磷酸核酮糖羧化酶/加氧酶大次單元(PrbcL)啟動子之下游。In another embodiment of the present invention, the gene-transforming blue-green bacteria is transformed with at least one ribulose 1,5-diphosphate carboxylase/oxygenase large subunit (PrbcL) promoter embedded therein, and The gene encoding the bicarbonate operator and the gene encoding the carbonic anhydrase are each embedded in the downstream of a ribulose 1,5-diphosphate carboxylase/oxygenase large subunit (PrbcL) promoter, and/or The gene encoding exogenous isoprenyl diphosphate isomerase and the gene encoding exogenous isoprene synthase are both embedded in a 1,5-diphosphate ribulose carboxylase/oxygenase major Unit (PrbcL) downstream of the promoter.

在本發明另一實施態樣中,該基因轉殖藍綠菌進一步經轉型而內嵌有編碼 1,5-二磷酸核酮糖羧化酶/加氧酶(Rubisco)大次單元和小次單元基因之核苷酸序列,並具有與SEQ ID NO:5至少90%、至少95%或至少99%的序列相似度;並於該基因轉殖藍綠菌中表現或過度表現該基因。較佳地,該編碼 1,5-二磷酸核酮糖羧化酶/加氧酶(Rubisco)大次單元和小次單元基因之核苷酸序列如SEQ ID NO:5所示。In another embodiment of the present invention, the gene-transformed blue-green bacteria is further transformed to embed large subunits and small subunits encoding ribulose 1,5-diphosphate carboxylase/oxygenase (Rubisco) The nucleotide sequence of the unit gene has a sequence similarity to SEQ ID NO: 5 of at least 90%, at least 95%, or at least 99%; and expresses or overexpresses the gene in the transgenic blue-green bacteria. Preferably, the nucleotide sequence of the gene encoding ribulose 1,5-diphosphate carboxylase/oxygenase (Rubisco) large and small subunits is shown in SEQ ID NO:5.

在本發明另一實施態樣中,編碼 1,5-二磷酸核酮糖羧化酶/加氧酶(Rubisco)大次單元和小次單元基因係嵌於一1,5-二磷酸核酮糖羧化酶/加氧酶大次單元(PrbcL)啟動子之下游。In another embodiment of the present invention, the genes encoding ribulose 1,5-diphosphate carboxylase/oxygenase (Rubisco) large and small subunits are embedded in a ribonone 1,5-diphosphate Downstream of the sugar carboxylase/oxygenase large subunit (PrbcL) promoter.

前述之酶及編碼該酶之基因名稱與來源如表1所示。The names and sources of the aforementioned enzymes and the genes encoding the enzymes are shown in Table 1.

表1

Figure 107141788-A0304-0001
Table 1
Figure 107141788-A0304-0001

本發明另提供一種生產異戊二烯之方法,其特徵在於培養上述之基因轉殖藍綠菌。較佳地,培養該基因轉殖藍綠菌之步驟包括添加至少30毫莫耳濃度(mM)以上之碳酸氫鹽或碳酸鹽至培養液。較佳地,該碳酸氫鹽或碳酸鹽濃度為40毫莫耳濃度(mM)至60mM,更佳地為添加50mM碳酸氫鹽或碳酸鹽。The invention also provides a method for producing isoprene, which is characterized by cultivating the above-mentioned gene-transgenic blue-green bacteria. Preferably, the step of cultivating the transgenic blue-green bacteria includes adding at least 30 millimoles (mM) of bicarbonate or carbonate to the culture solution. Preferably, the bicarbonate or carbonate concentration is 40 millimolar (mM) to 60 mM, and more preferably 50 mM bicarbonate or carbonate is added.

較佳地,該碳酸氫鹽或該碳酸鹽為碳酸鈣、碳酸鎂、碳酸銫、碳酸鉀、碳酸鈉、碳酸氫鈣、碳酸氫鎂、碳酸氫鉀、碳酸氫鈉、碳酸氫銨或碳酸氫三鈉(sodium sesquicarbonate);更佳地,該碳酸氫鹽或碳酸鹽為碳酸氫鈉。Preferably, the bicarbonate or the carbonate is calcium carbonate, magnesium carbonate, cesium carbonate, potassium carbonate, sodium carbonate, calcium bicarbonate, magnesium bicarbonate, potassium bicarbonate, sodium bicarbonate, ammonium bicarbonate or bicarbonate Sodium sesquicarbonate; more preferably, the bicarbonate or carbonate is sodium bicarbonate.

最後,如圖11所示,相較於先前技術直接針對自然界中生物合成異戊二烯之途徑進行改良,本發明則從細胞固碳之循環途徑著手,並發現轉殖外源性idi 基因與外源性ispS 基因之藍綠菌組別,經進一步轉殖及過量表現(over expression)固碳基因:ictB 基因及ecaA 基因時,可明顯提升該藍綠菌生產異戊二烯之產率達至少60倍以上,且異戊二烯之產量達1209.8μg/ biomass/day,明顯高於前述林柏格所揭示之藍綠菌轉殖株產量:50μg/ biomass/day,以及班特力所揭示之藍綠菌轉殖株產量:125μg/ biomass/day。Finally, as shown in FIG. 11, compared with the prior art directly improving the pathway of biosynthesis of isoprene in nature, the present invention starts from the cycle of carbon fixation in cells and finds that the exogenous idi gene and The blue-green fungus group of exogenous ispS gene can further increase the yield of isoprene produced by the blue-green fungus after further colonization and over expression of carbon-fixing genes: ictB gene and ecaA gene. At least 60 times more, and the production of isoprene reaches 1209.8μg/biomass/day, which is significantly higher than the output of the blue-green fungus transgenic plants disclosed by Linberg: 50μg/biomass/day, and that revealed by Bentley Production of blue-green bacteria transgenic plants: 125μg/biomass/day.

此外,轉殖1,5-二磷酸核酮糖羧化酶/加氧酶(Rubisco)大次單元rbcL 和1,5-二磷酸核酮糖羧化酶/加氧酶(Rubisco)小次單元rbcS 之藍綠菌組別,其異戊二烯之產量為0.91μg/ biomass/hr,相較於轉殖ictB 基因及ecaA 基因之藍綠菌組別,其異戊二烯之產量為50.41μg/ biomass/hr。可知,雖然兩組別轉殖之基因皆同為編碼碳循環途徑相關之催化酶基因,但轉殖ictB 基因及ecaA 基因之藍綠菌組別之產率提升效果明顯較高,且高達55倍。因此,藉由表現載體將ictBecaA 兩固碳基因轉型至具異戊二烯生產能力之藍綠菌,將可有效提升藍綠菌生產異戊二烯之產率,且該優異之提升效果非可合理預期者。In addition, the ribulose 1,5-diphosphate carboxylase/oxygenase (Rubisco) large subunit rbcL and the ribulose 1,5-diphosphate carboxylase/oxygenase (Rubisco) small subunit were transferred. In the blue-green fungus group of rbcS , the yield of isoprene is 0.91 μg/biomass/hr. Compared with the blue-green fungus group transfecting the ictB gene and the ecaA gene, the yield of isoprene is 50.41 μg. / biomass/hr. It can be seen that although the genes transferred by the two groups are the same as the catalytic enzyme genes encoding the carbon cycle pathway, the productivity of the blue-green bacteria group that transferred the ictB gene and the ecaA gene is significantly higher, and up to 55 times . Therefore, by transforming the two carbon-fixing genes of ictB and ecaA into blue-green bacteria with isoprene production capacity through expression vectors, the yield of isoprene production by blue-green bacteria can be effectively improved, and the excellent improvement effect Unreasonable expectations.

實施例1:生產異戊二烯之細長聚球藻轉殖株(含idi -ispS 基因)之製備Example 1: Preparation of isoprene-producing S. sphaeroides transgenic strain (containing idi - ispS gene)

1.idi 基因之獲得1. Acquisition of idi gene

異戊烯基二磷酸異構酶(isopentenyl-diphosphate Delta-isomerase I)基因(即idi 基因)係來自胡楊(Populus euphratica ),依據Populus euphratica 的編碼異戊烯基二磷酸異構酶(isopentenyl diphosphate isomerase)序列(GeneID: 105112811),並依照S. elongatus PCC7942 DNA序列進行密碼子優化,獲得優化的idi 基因的核苷酸序列後,以化學合成方式取得優化的idi 基因,並置於pUC57載體中,成為pUC57-Fragment 1質體 ,前述基因之優化與化學合成均委託美國Genewiz進行。The isopentenyl-diphosphate Delta-isomerase I gene ( idi gene) is derived from Populus euphratica and is based on Populus euphratica 's encoding isopentenyl diphosphate isomerase ) sequences (GeneID: after 105,112,811), and codon optimized in accordance with the S. elongatus PCC7942 DNA sequence, obtain nucleotide sequences optimized idi gene, obtained through chemical synthesis optimization idi gene, and placed in a pUC57 vector, becomes pUC57-Fragment 1 plastid, the optimization and chemical synthesis of the aforementioned genes were entrusted to Genewiz of the United States.

2.ispS 基因之獲得2. Obtaining the ispS gene

異戊二烯合成酶 (isoprene synthase) 基因(即ispS 基因)係來自黑楊(Populus nigra ),依據Populus nigra 的編碼異戊二烯合成酶(ispS)序列(GenBank accession No. HQ684728.1)刪除N端信號肽後,依照S. elongatus PCC7942 DNA序列進行密碼子優化,獲得優化的ispS 基因的核苷酸序列後,以化學合成方式取得優化的ispS 基因,並置於pUC57載體中,成為pUC57-Fragment 2質體 ,前述基因之優化與化學合成均委託美國Genewiz進行。The isoprene synthase gene (i.e. ispS gene) is derived from Populus nigra ( Populus nigra ), deleted based on the Populus nigra encoding isoprene synthase (ispS) sequence (GenBank accession No. HQ684728.1) After the N-terminal signal peptide, codon optimization was performed according to the S. elongatus PCC7942 DNA sequence to obtain the optimized ispS gene nucleotide sequence, and then the optimized ispS gene was obtained by chemical synthesis and placed in the pUC57 vector to become pUC57-Fragment 2 Plastids, optimization and chemical synthesis of the aforementioned genes were commissioned by Genewiz of the United States.

PrbcL-idi-PrbcL-ispS基因轉殖載體之建構Construction of PrbcL-idi-PrbcL-ispS gene transfer vector

將轉殖載體pAM1303(Andersson et al., 2000)以限制酶BamH I作用後,以Alkaline Phosphatase (New England Biolabs, USA)進行處理,以防止DNA自行黏合。再以限制酶BamH I (New England Biolabs, USA)將pUC57-Fragment 1質體中的idi 基因片段切下後,透過接合作用(ligation)將該整段基因片段插入Synechococcus elongatus PCC7942的轉殖載體pAM1303的BamH I切位中,以熱休克方式將接合後的質體DNA轉型進入E. coli 菌株DH5α,得到Synechococcus elongatus PCC7942的idi基因轉殖載體:pAM1303-idi。The transfection vector pAM1303 (Andersson et al., 2000) was treated with the restriction enzyme BamH I and then treated with Alkaline Phosphatase (New England Biolabs, USA) to prevent the DNA from self-adhesion. After cutting the idi gene fragment in pUC57-Fragment 1 plastid with restriction enzyme BamH I (New England Biolabs, USA), the entire gene fragment was inserted into the transgenic vector pAM1303 of Synechococcus elongatus PCC7942 through ligation. In the BamH I cut position, the conjugated plastid DNA was transformed into E. coli strain DH5α by heat shock to obtain the idi gene transfer vector of Synechococcus elongatus PCC7942: pAM1303-idi.

將前述pAM1303-idi基因轉殖載體以限制酶Sma I作用後,以Alkaline Phosphatase (New England Biolabs, USA)進行處理,防止DNA自行黏合。再以限制酶Sma I (New England Biolabs, USA)將pUC57-Fragment 2中的ispS 基因片段切下後,以接合作用將該整段基因片段插入pAM1303-idi基因轉殖載體的Sma I切位中,以熱休克方式將接合後的質體DNA轉型進入E. coli 菌株 DH5α,得到Synechococcus elongatus PCC7942的idi-ispS基因轉殖載體:pAM1303-idi-ispS。After transfecting the aforementioned pAM1303-idi gene with the restriction enzyme Sma I, it was treated with Alkaline Phosphatase (New England Biolabs, USA) to prevent the DNA from adhering to itself. After cutting the ispS gene fragment in pUC57-Fragment 2 with restriction enzyme Sma I (New England Biolabs, USA), the entire gene fragment was inserted into the Sma I cleavage site of the pAM1303-idi gene transfer vector by conjugation , The conjugated plastid DNA was transformed into E. coli strain DH5α by heat shock to obtain the idi-ispS gene transfer vector of Synechococcus elongatus PCC7942: pAM1303-idi-ispS.

將前述pAM1303-idi-ispS基因轉殖載體以限制酶Pme I作用後,以Alkaline Phosphatase (New England Biolabs, USA)進行處理,防止DNA自行黏合。再以限制酶Sma I (New England Biolabs, USA)將pYT&A-rbcL質體(Te-Jin Chow, Fooyin University)中的Synechococcus elongatus PCC7942 rbcL promoter基因片段(如SEQ ID NO:6所示)以限制酶切下後,以接合作用將該整段基因片段插入前述pAM1303-idi-ispS基因轉殖載體的Pme I切位中,以熱休克方式將接合後的質體DNA轉型進入E. coli 菌株DH5α,得到Synechococcus elongatus PCC7942的PrbcL-idi-ispS的基因轉殖載體:pAM1303-PrbcL-idi-ispS。After transfecting the aforementioned pAM1303-idi-ispS gene vector with the restriction enzyme Pme I, it was treated with Alkaline Phosphatase (New England Biolabs, USA) to prevent DNA self-adhesion. Then use the restriction enzyme Sma I (New England Biolabs, USA) to synthesize the Synechococcus elongatus PCC7942 rbcL promoter gene fragment (as shown in SEQ ID NO: 6) in pYT&A-rbcL plastid (Te-Jin Chow, Fooyin University) After excision, the entire gene fragment was inserted into the Pme I cleavage site of the aforementioned pAM1303-idi-ispS gene transfer vector by conjugation, and the conjugated plastid DNA was transformed into E. coli strain DH5α by heat shock. The gene transfer vector of PrbcL-idi-ispS of Synechococcus elongatus PCC7942 was obtained: pAM1303-PrbcL-idi-ispS.

將前述pAM1303-PrbcL-idi-ispS基因轉殖載體以限制酶Zra I作用後,以Alkaline Phosphatase (New England Biolabs, USA)進行處理,防止DNA自行黏合。再以限制酶Sma I (New England Biolabs, USA)將pYT&A-rbcL質體(Te-Jin Chow, Fooyin University)中的Synechococcus elongatus PCC7942 rbcL promoter基因片段以限制酶切下後,以接合作用將該整段基因片段插入前述pAM1303-PrbcL-idi-ispS基因轉殖載體的Zra I切位中,以熱休克方式將接合後的質體DNA轉型進入E. coli 菌株DH5α,得到Synechococcus elongatus PCC7942的PrbcL-idi-PrbcL-ispS基因轉殖載體:pPrbcL-idi-PrbcL-ispS,其部份結構如圖1所示。After transfecting the aforementioned pAM1303-PrbcL-idi-ispS gene vector with the restriction enzyme Zra I, it was treated with Alkaline Phosphatase (New England Biolabs, USA) to prevent DNA self-adhesion. Then, the restriction enzyme Sma I (New England Biolabs, USA) was used to cut the Synechococcus elongatus PCC7942 rbcL promoter gene fragment in pYT&A-rbcL plastid (Te-Jin Chow, Fooyin University) to remove the restriction enzyme, and the whole was ligated for conjugation. The gene fragment was inserted into the Zra I cleavage site of the aforementioned pAM1303-PrbcL-idi-ispS gene transfer vector, and the joined plastid DNA was transformed into E. coli strain DH5α by heat shock to obtain PrbcL-idi of Synechococcus elongatus PCC7942 -PrbcL-ispS gene transfer vector: pPrbcL-idi-PrbcL-ispS, part of its structure is shown in Figure 1.

4.Synechococcus elongatus PCC7942 isoprene (idi-ispS)轉殖株之製備4. Preparation of Synechococcus elongatus PCC7942 isoprene (idi-ispS) transgenic plants

將前述pPrbcL-idi-PrbcL-ispS轉殖載體藉轉型而轉殖於Synechococcus elongatus PCC7942 野生型細胞(wild type),並以觀黴素(Spectinomycin)抗生素篩選轉殖之細長聚球藻。首先,離心收集10 mLSynechococcus elongatus PCC7942野生型細胞,去除培養液後,加入5 mL 10 mM NaCl 溶液,混合均勻後,以3,980 rpm離心10分鐘後,去除上清液,再以1 mL添加10 mM EPPS之BG-11液體培養基來懸浮藻細胞,並加入1.5 μg之pPrbcL-idi-PrbcL-ispS質體DNA,置於 28℃黑暗震盪培養過夜後,隔天照光培養6小時後,以14,000rpm 離心 2分鐘收集藻細胞,再以300 μL添加10 mM EPPS之BG-11液體培養基來懸浮藻細胞後,進行連續10倍稀釋,各取100 μL塗於添加10 mM EPPS及含Spectinomycin ( 20 μg mL-1 ) 之BG-11固體培養基,置於28℃,照光培養,直到藻菌落生長。將固體培養基上長出之藻菌落以無菌牙籤挑選至添加10 M EPPS及含Spectinomycin ( 20 μg mL-1 ) 之BG-11固體培養基上,照光培養後,將生長較好之藻株培養於添加Spectinomycin ( 20 μg mL-1 ) 之液體培養基。The aforementioned pPrbcL-idi-PrbcL-ispS transfection vector was transformed into Synechococcus elongatus PCC7942 wild type cells by transformation, and the transgenic Synechococcus sp. was selected with Spectinomycin antibiotic. First, collect 10 mL of Synechococcus elongatus PCC7942 wild-type cells by centrifugation. After removing the culture solution, add 5 mL of 10 mM NaCl solution. After mixing, centrifuge at 3,980 rpm for 10 minutes. After removing the supernatant, add 1 mL of 10 mM. BG-11 liquid medium of EPPS was used to suspend algae cells, and 1.5 μg of pPrbcL-idi-PrbcL-ispS plastid DNA was added, and cultured at 28°C in the dark with shaking overnight. After 6 hours of incubation, the cells were centrifuged at 14,000 rpm. algal cells collected 2 minutes, then add 300 μL of 10 mM EPPS BG-11 liquid medium for suspending the algal cells, diluted 10-fold in a row, from each added 100 μL 10 mM EPPS applied and containing Spectinomycin (20 μg mL - 1 ) The BG-11 solid medium is placed at 28°C and irradiated until the algal colonies grow. The algal colonies grown on the solid medium are selected with a sterile toothpick to the BG-11 solid medium supplemented with 10 M EPPS and Spectinomycin (20 μg mL -1 ). After irradiating the culture, the algae strains that grow well are cultured in the supplement Spectinomycin (20 μg mL -1 ) liquid medium.

將該等經轉殖之藻株培養於含抗生素之培養基。刮取約一個菌環(loop)或1.5 mL的藻菌量,先以菌落(colony) 聚合酶鏈反應(Polymerase chain reaction, PCR)檢測細長聚球藻是否具有idiispS 基因。取藻菌落以TE-triton solution (TE, pH 8.0 + 1% Triton X-100 ) 懸浮藻細胞後,以95℃處理3.5分鐘,再以氯仿(chloroform)萃取兩次後,取上清液並分別以idi及ispS引子對(如下表2所示)進行PCR反應,檢測經轉殖後之細長聚球藻是否具有idiispS 基因,經檢測確認具有idiispS 基因者,即為生產異戊二烯細長聚球藻之成功轉殖株。The transformed algal strains are cultured in antibiotic-containing medium. Scrape about one loop or 1.5 mL of algal bacteria, and first use colony polymerase chain reaction (Polymerase chain reaction, PCR) to detect whether Synechococcus elongatus has the idi and ispS genes. Take algae colonies and suspend algae cells with TE-triton solution (TE, pH 8.0 + 1% Triton X-100), then treat them at 95℃ for 3.5 minutes, and then extract them twice with chloroform, then take the supernatant and separate Perform PCR reaction with the idi and ispS primer pairs (as shown in Table 2 below) to detect whether the transgenic S. sphaeroides has the idi and ispS genes. Those who are confirmed to have the idi and ispS genes by the test are the production of isoprene. The successful transgenic strain of Synechococcus elongatus.

idiispS 基因表現載體嵌入細長聚球藻基因組第一中性位(NSI)之示意圖如圖1,其檢測結果如圖2所示,其中編號1之組別係以無菌水作為負對照組,編號2之組別係以質體DNA作為正對照組,編號3之組別則為轉殖株。The schematic diagram of the idi and ispS gene expression vectors embedded in the first neutral position (NSI) of Synechococcus elongatus genome is shown in Figure 1, and the test results are shown in Figure 2. The group No. 1 uses sterile water as a negative control group. The group No. 2 uses plastid DNA as a positive control group, and the group No. 3 is a transgenic plant.

表2、idi及ispS引子對

Figure 107141788-A0304-0002
Table 2. Idi and ispS primer pairs
Figure 107141788-A0304-0002

5.Synechococcus elongatus PCC7942-idi-ispS轉殖株生產異戊二烯5. Synechococcus elongatus PCC7942-idi-ispS transgenic plants produce isoprene

將PCC7942-idi-ispS轉殖株以200 μmol m-2 s-1 光強,50mM NaHCO3 培養五天後,以氣相層析儀測定異戊二烯,分析結果如圖3所示,其顯示在1.660分鐘時出現的訊號與異戊二烯相符,而對照組野生型(wild type)在1.660分鐘時,則未出現訊號。因此,由以上結果來確認獲得可生產異戊二烯之細長聚球藻PCC7942-idi-ispS轉殖株。After transfecting PCC7942-idi-ispS with 200 μmol m -2 s -1 light intensity and 50 mM NaHCO 3 for five days, the isoprene was measured by gas chromatography, and the analysis results are shown in Figure 3. The signal that appeared at 1.660 minutes was consistent with that of isoprene, while the wild type of the control group did not appear at 1.660 minutes. Therefore, it was confirmed from the above results that a transgenic strain of Synechococcus elongatus PCC7942-idi-ispS capable of producing isoprene was obtained.

實施例2:生產異戊二烯之細長聚球藻轉殖株(含idi-ispS及ictB-ecaA基因)之製備Example 2: Preparation of isoprene-producing S. sphaeroides transgenic strains (containing idi-ispS and ictB-ecaA genes)

1.ictB 基因之獲得1. Acquisition of ictB gene

碳酸氫鹽運轉子(Bicarbonate transporter) 基因(即ictB 基因)係選殖自Synechococcus elongatus PCC7942,設計ictB 基因引子對(如下表3所示),以Synechococcus elongatus PCC7942之染色體基因(chromosomal DNA)為模板,以ictB 基因引子對進行聚合酶鏈反應(Polymerase chain reaction, PCR),PCR反應液中含有1X PCR緩衝溶液、0.4 mM dNTP、2 mM MgCl2 、1 unit Takara ex Taq DNA聚合酶(polymerase),0.5 μM引子(ictB-f、ictB-r),總體積50 μL,反應條件為95℃ 3分鐘;32 循環(cycle):95℃ 1分鐘,55℃ 1分鐘,72℃ 2分鐘;最後延長72℃ 10分鐘,4℃維持,進行PCR擴增ictB 基因片段,將擴增所得之ictB 基因以T4 DNA連接酶(ligase)黏合於yT&A (Yeastern Biotech Co., Ltd.)質體中,以獲得具有ictB 基因之pyT&A-ictB質體(plasmid)。The bicarbonate transporter gene (that is, the ictB gene) was selected from Synechococcus elongatus PCC7942, and a pair of ictB gene primers was designed (as shown in Table 3 below), using the chromosomal DNA of Synechococcus elongatus PCC7942 as a template, Perform polymerase chain reaction (PCR) with the ictB gene primer pair. The PCR reaction solution contains 1X PCR buffer solution, 0.4 mM dNTP, 2 mM MgCl 2 , 1 unit Takara ex Taq DNA polymerase (polymerase), 0.5 μM primers (ictB-f, ictB-r), total volume 50 μL, reaction conditions at 95°C for 3 minutes; 32 cycles: 95°C for 1 minute, 55°C for 1 minute, 72°C for 2 minutes; finally extended by 72°C After maintaining at 4°C for 10 minutes, PCR was performed to amplify the ictB gene fragment, and the amplified ictB gene was bound to the yT&A (Yeastern Biotech Co., Ltd.) plastid with T4 DNA ligase (ligase) to obtain ictB. The pyT&A-ictB plasmid of the gene.

表3、ictB 引子對

Figure 107141788-A0304-0003
Table 3. ictB primer pair
Figure 107141788-A0304-0003

2.ecaA 基因之獲得2. Acquisition of ecaA gene

碳酸酐酶 (carbonic anhydrase) 基因(簡稱ecaA 基因)係選殖自Synechococcus elongatus PCC7942,設計ecaA 基因引子對(如下表4所示),以Synechococcus elongatus PCC7942之染色體基因為模板,以ecaA 基因引子對進行聚合酶鏈反應,PCR反應液中含有1X PCR緩衝溶液、0.4 mM dNTP、2 mM MgCl2、1 unit Takara ex Taq DNA聚合酶,0.5 μM引子(ecaA-f、ecaA-r),總體積50 μL,反應條件為95℃ 3分鐘;32 循環:95℃ 1分鐘,55℃ 1分鐘,72℃ 1分鐘;最後延長72℃ 10分鐘,4℃維持,進行PCR擴增ecaA基因片段,將擴增所得之ecaA 基因以T4 DNA連接酶黏合於yT&A (Yeastern Biotech Co.,Ltd.)質體中,以獲得具有ecaA 基因之pyT&A-ecaA質體。The carbonic anhydrase gene ( ecaA gene for short) was selected from Synechococcus elongatus PCC7942, and the ecaA gene primer pair was designed (shown in Table 4 below). Using the chromosome gene of Synechococcus elongatus PCC7942 as a template, the ecaA gene primer pair was used Polymerase chain reaction, PCR reaction solution contains 1X PCR buffer solution, 0.4 mM dNTP, 2 mM MgCl2, 1 unit Takara ex Taq DNA polymerase, 0.5 μM primers (ecaA-f, ecaA-r), total volume 50 μL, The reaction conditions were 95°C for 3 minutes; 32 cycles: 95°C for 1 minute, 55°C for 1 minute, 72°C for 1 minute; finally extended 72°C for 10 minutes, maintained at 4°C, PCR was performed to amplify the ecaA gene fragment, and the amplified The ecaA gene was bound to yT&A (Yeastern Biotech Co., Ltd.) plastid with T4 DNA ligase to obtain pyT&A-ecaA plastid with ecaA gene.

表4、ecaA 引子對

Figure 107141788-A0304-0004
Table 4. ecaA primer pairs
Figure 107141788-A0304-0004

3.    PrbcL-ictB-ecaA基因轉殖載體建構3. Construction of PrbcL-ictB-ecaA gene transfer vector

將帶有rbcL promoter的轉殖載體pAM1573-PrbcL (Te-Jin Chow, Fooyin University)以限制酶Xba I作用後,以DNA Polymerase I, Large (Klenow) Fragment進行處理,將DNA兩端修飾成平端後,以Alkaline Phosphatase (New England Biolabs, USA)進行處理,防止DNA自行黏合。After transfection vector pAM1573-PrbcL (Te-Jin Chow, Fooyin University) with rbcL promoter was treated with restriction enzyme Xba I, it was treated with DNA Polymerase I, Large (Klenow) Fragment, and both ends of DNA were modified into blunt ends , Treated with Alkaline Phosphatase (New England Biolabs, USA) to prevent the DNA from adhering to itself.

再以限制酶BamH I (New England Biolabs, USA)將pyT&A-ictB質體中的ictB基因片段切下後,以DNA Polymerase I, Large (Klenow) Fragment進行處理,將DNA兩端修飾成平端後,以接合作用把該整段基因片段插入Synechococcus elongatus PCC7942的轉殖載體pAM1573-PrbcL的Xba I切位中,以熱休克方式將接合後的質體DNA轉型進入E. coli 菌株DH5α,得到Synechococcus elongatus PCC7942的ictB基因轉殖載體。After cutting the ictB gene fragment in the pyT&A-ictB plastid with the restriction enzyme BamH I (New England Biolabs, USA), it was treated with DNA Polymerase I, Large (Klenow) Fragment, and the two ends of the DNA were modified to blunt ends. The whole gene fragment was inserted into the Xba I cleavage site of the transgenic vector pAM1573-PrbcL of Synechococcus elongatus PCC7942 by conjugation, and the conjugated plastid DNA was transformed into E. coli strain DH5α by heat shock to obtain Synechococcus elongatus PCC7942 The ictB gene transfer vector.

將pAM1573-PrbcL-ictB轉殖載體以限制酶Sal I作用後,以DNA Polymerase I, Large (Klenow) Fragment進行處理,將DNA兩端修飾成平端後,以Alkaline Phosphatase (New England Biolabs, USA)進行處理,防止DNA自行黏合。After transfecting the pAM1573-PrbcL-ictB vector with the restriction enzyme Sal I, it was treated with DNA Polymerase I, Large (Klenow) Fragment. After modifying both ends of the DNA to blunt ends, it was performed with Alkaline Phosphatase (New England Biolabs, USA) Treatment to prevent DNA from sticking to itself.

將pAM1573-PrbcL-ictB轉殖載體再以限制酶BamH I (New England Biolabs, USA)將pyT&A-ecaA中的ecaA 基因片段切下後,以接合作用將該整段基因片段插入pAM1573-PrbcL-ictB轉殖載體的Sal I切位中,以熱休克方式將接合後的DNA轉型進入E. coli 菌株DH5α,得到Synechococcus elongatus PCC7942的ictB-ecaA基因轉殖載體:pPrbcL-ictB-ecaA,其部分結構如圖4所示。The pAM1573-PrbcL-ictB transfection vector was then cut with the restriction enzyme BamH I (New England Biolabs, USA) to cut the ecaA gene fragment in pyT&A-ecaA, and the entire gene fragment was inserted into pAM1573-PrbcL-ictB for conjugation. In the Sal I cut position of the transfer vector, the conjugated DNA was transformed into E. coli strain DH5α by heat shock to obtain the ictB-ecaA gene transfer vector of Synechococcus elongatus PCC7942: pPrbcL-ictB-ecaA, and its partial structure is as follows Figure 4 shows.

4.Synechococcus elongatus PCC7942 isoprene (idi-ispS)菌株共轉殖碳酸氫鹽運轉子(ictB)與碳酸酐酶(ecaA)基因轉殖株之製備4. Preparation of Synechococcus elongatus PCC7942 isoprene (idi-ispS) strain co-transformed bicarbonate operator (ictB) and carbonic anhydrase (ecaA) gene transgenic strains

將前述pPrbcL-ictB-ecaA轉殖載體藉轉型而轉殖於Synechococcus elongatus PCC7942 isoprene (idi-ispS)菌株,以觀黴素(Spectinomycin)/氯黴素(Chloramphenicol)抗生素篩選轉殖藻。離心收集10 mLSynechococcus elongatus PCC7942 isoprene (idi-ispS) 菌細胞,去除培養液後,加入5 mL 10 mM NaCl 溶液,混合均勻後,以3,980 rpm離心10分鐘後,去除上清液,再以1 mL 添加10 mM EPPS之BG-11液體培養基懸浮藻細胞,並加入1.5 μg之pPrbcL-ictB-ecaA質體DNA,置於 28℃黑暗震盪培養過夜後,隔天照光培養6小時後,以14,000rpm 離心 2分鐘收集藻細胞,再以300 μL添加10 mM EPPS之BG-11液體培養基懸浮藻細胞後,進行連續10倍稀釋,各取100 μL塗於添加10 mM EPPS及含觀黴素/氯黴素( 20 μg mL-1 /15 μg mL-1 ) 之BG-11固體培養基,置於28℃,照光培養,直到藻菌落生長。將固體培養基上長出之藻菌落以無菌牙籤挑選至添加10 M EPPS及含觀黴素/氯黴素 ( 20 μg mL-1 /15 μg mL-1 ) 之BG-11固體培養基上,照光培養後,將生長較好之藻株培養至添加觀黴素/氯黴素( 20 μg mL-1 /15 μg mL-1 ) 之液體培養基培養。The aforementioned pPrbcL-ictB-ecaA transfection vector was transformed into Synechococcus elongatus PCC7942 isoprene (idi-ispS) strain by transformation, and the transgenic algae were screened with Spectinomycin/Chloramphenicol antibiotics. Collect 10 mL of Synechococcus elongatus PCC7942 isoprene (idi-ispS) bacterial cells by centrifugation. After removing the culture medium, add 5 mL of 10 mM NaCl solution, mix well, and centrifuge at 3,980 rpm for 10 minutes. Remove the supernatant and then 1 mL Add 10 mM EPPS in BG-11 liquid medium to suspend algae cells, and add 1.5 μg of pPrbcL-ictB-ecaA plastid DNA, incubate at 28°C in the dark and shake overnight. After 6 hours of incubation on the next day, centrifuge at 14,000 rpm After collecting algae cells for 2 minutes, and then suspending the algae cells in 300 μL of BG-11 liquid medium supplemented with 10 mM EPPS, make a serial 10-fold dilution, and take 100 μL each for the addition of 10 mM EPPS and ophthalmicin/chloramphenicol (20 μg mL -1 /15 μg mL -1 ) of BG-11 solid medium, placed at 28 ℃, light culture, until algae colonies grow. The algal colonies grown on the solid medium were selected with a sterile toothpick to the BG-11 solid medium supplemented with 10 M EPPS and containing spectinomycin/chloramphenicol (20 μg mL -1 /15 μg mL -1 ) and cultured under light. After that, the algae strain with good growth is cultivated to the liquid medium supplemented with guanycin/chloramphenicol (20 μg mL -1 /15 μg mL -1 ).

培養該等轉殖株於含抗生素之培養基。刮取約一個菌環或1.5 mL的細長聚球藻量,先以菌落(colony) PCR檢測細長聚球藻是否具有ictB與ecaA的基因。取藻菌落以TE-triton solution (TE, pH 8.0 + 1% Triton X-100 ) 懸浮細胞後,以95℃處理3.5分鐘,再以氯仿萃取兩次後,取上清液並以test-PrbcL-for、ecaA-rev 引子對(如下表5所示)進行PCR反應,檢測經轉殖後之細長聚球藻是否具有ictBecaA 的基因,經檢測確認具有ictB與ecaA基因者,即為成功之轉型株。Cultivate these transformed strains on antibiotic-containing medium. Scrape about one fungus ring or 1.5 mL of Synechococcus elongatus, and first use colony PCR to detect whether Synechococcus elongatus has genes for ictB and ecaA. Take algae colonies and suspend the cells with TE-triton solution (TE, pH 8.0 + 1% Triton X-100), then treat them at 95°C for 3.5 minutes, and then extract them twice with chloroform. Take the supernatant and test-PrbcL- For, ecaA-rev primer pair (shown in Table 5 below) PCR reaction to detect whether the transgenic S. sclerotiorum has the genes of ictB and ecaA. Those who have confirmed that they have the genes of ictB and ecaA by the test are considered successful. Transformation strain.

表5、test-PrbcL-for、ecaA -rev引子對

Figure 107141788-A0304-0005
Table 5. Test-PrbcL-for, ecaA -rev primer pairs
Figure 107141788-A0304-0005

ictBecaA 基因表現載體嵌入細長聚球藻基因組第二中性位(NSII)之示意圖如圖4,其檢測結果如圖5所示,其中編號1之組別係以無菌水作為負對照組,編號2之組別係以質體DNA作為正對照組,編號3之組別則為轉殖株。 The schematic diagram of the ictB and ecaA gene expression vectors embedded in the second neutral position (NSII) of Synechococcus elongatus genome is shown in FIG. 4, and the detection results are shown in FIG. 5, wherein the group No. 1 uses sterile water as a negative control group. The group No. 2 uses plastid DNA as a positive control group, and the group No. 3 is a transgenic plant.

實施例3:細長聚球藻轉殖株(含idi-ispS及rbcL&S基因)之製備Example 3: Preparation of a transgenic strain of Synechococcus elongatus (containing idi-ispS and rbcL&S genes)

1.rbcL&S 基因之獲得1. Acquisition of rbcL&S gene

1,5-二磷酸核酮糖羧化酶/加氧酶(Rubisco)大次單元和小次單元基因(即rbcL&S 基因)係選殖自Synechococcus elongatus PCC7942,設計rbcL&S 基因引子對(如下表6所示),以Synechococcus elongatus PCC7942之染色體基因(chromosomal DNA)為模板,以rbcL&S 基因引子對進行聚合酶鏈反應(PCR),PCR反應液中含有1X PCR緩衝溶液、0.4 mM dNTP、2 mM MgCl2、1 unit Takara ex Taq DNA聚合酶,0.5 μM引子(rbcL&S-f、rbcL&S-r),總體積50 μL,反應條件為95℃ 3分鐘;32循環:95℃ 1分鐘,55℃ 1分鐘,72℃ 1分鐘;最後延長72℃ 10分鐘,4℃維持,進行PCR擴增rbcL&S 基因片段,將擴增所得之rbcL&S 基因以T4 DNA連接酶黏合於yT&A (Yeastern Biotech Co., Ltd.)質體中,以獲得具有rbcL&S 基因之pyT&A-rbcL&S質體(plasmid)。The ribulose 1,5-diphosphate carboxylase/oxygenase (Rubisco) large and small subunit genes (ie, rbcL&S genes) were selected from Synechococcus elongatus PCC7942, and the rbcL&S gene primer pairs were designed (see Table 6 below) (Shown), using Chromosomal DNA of Synechococcus elongatus PCC7942 as template, and polymerase chain reaction (PCR) using rbcL&S gene primer pairs. The PCR reaction solution contains 1X PCR buffer solution, 0.4 mM dNTP, 2 mM MgCl2, 1 unit Takara ex Taq DNA polymerase, 0.5 μM primers (rbcL&S-f, rbcL&S-r), total volume 50 μL, reaction conditions 95°C 3 minutes; 32 cycles: 95°C 1 minute, 55°C 1 minute, 72°C 1 Minutes; lastly extend 72℃ for 10 minutes, maintain at 4℃, perform PCR to amplify rbcL&S gene fragments, and bind the amplified rbcL&S gene to yT&A (Yeastern Biotech Co., Ltd.) plastid with T4 DNA ligase, to A pyT&A-rbcL&S plasmid with rbcL&S gene was obtained.

表6、rbcL&S 引子對

Figure 107141788-A0304-0006
Table 6. rbcL&S primer pair
Figure 107141788-A0304-0006

2. PrbcL-rbcL&S基因轉殖載體建構2. Construction of PrbcL-rbcL&S gene transfer vector

將帶有rbcL promoter的轉殖載體pNS3-PrbcL (Te-Jin Chow, Fooyin University)以限制酶BamH I作用後,以DNA Polymerase I, Large (Klenow) Fragment進行處理,將DNA兩端修飾成平端後,以Alkaline Phosphatase ( New England Biolabs, USA )進行處理,防止DNA自行黏合。After transfection vector pNS3-PrbcL (Te-Jin Chow, Fooyin University) with rbcL promoter was treated with restriction enzyme BamH I, it was treated with DNA Polymerase I, Large (Klenow) Fragment, and both ends of DNA were modified into blunt ends. , Treated with Alkaline Phosphatase (New England Biolabs, USA) to prevent DNA self-adhesion.

再以限制酶Eco RV ( New England Biolabs, USA )將pyT&A-rbcL&S質體中的rbcL&S 基因片段切下後,以接合作用把該整段基因片段插入Synechococcus elongatus PCC7942的轉殖載體pNS3-PrbcL的BamH I切位中,以熱休克方式將接合後的質體DNA轉型進入E. coli 菌株 DH5α ,得到Synechococcus elongatus PCC7942的rbcL&S 基因轉殖載體:pNS3-PrbcL-rbcL&S,其部分結構如圖6所示。The rbcL&S gene fragment in the pyT&A-rbcL&S plastid was cut with the restriction enzyme Eco RV (New England Biolabs, USA), and the entire gene fragment was inserted into Synechococcus elongatus PCC7942 transgenic vector pNS3-PrbcL BamH by conjugation. In the I-cut position, the conjugated plastid DNA was transformed into E. coli strain DH5α by heat shock to obtain the rbcL&S gene transfer vector of Synechococcus elongatus PCC7942: pNS3-PrbcL-rbcL&S, and its partial structure is shown in FIG. 6.

3.Synechococcus elongatus PCC7942 isoprene (idi-ispS)菌株共轉殖 Rubisco大次單元和小次單元基因 (rbcL&S)轉殖株之製備3. Synechococcus elongatus PCC7942 isoprene (idi-ispS) strain co-transformed Rubisco large subunit and small subunit gene (rbcL&S) transgenic strains

將前述pNS3-PrbcL-rbcL&S轉殖載體藉轉型而轉殖於Synechococcus elongatus PCC7942 isoprene (idi-ispS)菌株,以觀黴素(Spectinomycin)/卡那黴素(Kanamycin)抗生素篩選轉殖藻。離心收集10 mLSynechococcus elongatus PCC7942菌細胞,去除培養液後,加入5 mL 10 mM NaCl 溶液,混合均勻後,以3,980 rpm離心10分鐘後,去除上清液,再以1 mL 添加10mM EPPS之BG-11液體培養基懸浮藻細胞,並加入1.5 μg之pNS3-PrbcL-rbcL&S質體DNA,置於 28℃黑暗震盪培養過夜後,隔天照光培養6小時後,以14,000rpm 離心 2分鐘收集藻細胞,再以300 μL添加10 mM EPPS之BG-11液體培養基懸浮藻細胞後,進行連續10倍稀釋,各取100 μL塗於添加10 mM EPPS及含觀黴素/卡那黴素( 20 μg mL-1 /15 μg mL-1 ) 之BG-11固體培養基,置於28℃,照光培養,直到藻菌落生長。將固體培養基上長出之藻菌落以無菌牙籤挑選至添加10 M EPPS及含觀黴素/卡那黴素( 20 μg mL-1 /15 μg mL-1 ) 之BG-11固體培養基,照光培養後,將生長較好之藻株培養至添加觀黴素/卡那黴素( 20 μg mL-1 /15 μg mL-1 ) 之液體培養基培養。The aforementioned pNS3-PrbcL-rbcL&S transfection vector was transformed into Synechococcus elongatus PCC7942 isoprene (idi-ispS) strain by transformation, and the transgenic algae were screened with Spectinomycin/Kanamycin antibiotics. Collect 10 mL of Synechococcus elongatus PCC7942 bacterial cells by centrifugation. After removing the culture solution, add 5 mL of 10 mM NaCl solution. After mixing, centrifuge at 3,980 rpm for 10 minutes. Remove the supernatant and add 1 mL of 10 mM EPPS BG- 11 Suspend the algae cells in liquid medium and add 1.5 μg of pNS3-PrbcL-rbcL&S plastid DNA, incubate at 28°C in the dark and shake overnight. After cultivating for 6 hours on the next day, centrifuge at 14,000 rpm for 2 minutes to collect algae cells. After suspending the algae cells in 300 μL of BG-11 liquid medium supplemented with 10 mM EPPS, make a serial 10-fold dilution. Take 100 μL each and apply to 10 mM EPPS supplemented with Kanamycin/Kanamycin (20 μg mL -1 /15 μg mL -1 ) of BG-11 solid medium, placed at 28 ℃, light culture, until algae colonies grow. The algal colonies grown on the solid medium were selected with a sterile toothpick to add 10 M EPPS and BG-11 solid medium containing komycin/kanamycin (20 μg mL -1 /15 μg mL -1 ), and cultured under light. Afterwards, the algae strains with good growth are cultured to liquid medium supplemented with komycin/kanamycin (20 μg mL -1 /15 μg mL -1 ).

培養該等轉殖株於含抗生素之培養基。刮取約一個菌環或1.5 mL的細長聚球藻量,先以菌落(colony) PCR檢測細長聚球藻是否具有rbcL&S 的基因。取藻菌落以TE-triton solution (TE, pH 8.0 + 1% Triton X-100 ) 懸浮細胞後,以95℃處理3.5分鐘,再以氯仿萃取兩次後,取上清液並分別以test-PrbcL-for、rbcL&S-rev引子對(如下表7所示)進行PCR反應,檢測經轉殖後之細長聚球藻是否具有rbcL&S 的基因,經檢測確認具有rbcL&S 基因者,即為成功之轉型株。Cultivate these transformed strains on antibiotic-containing medium. Scrape about one fungus ring or 1.5 mL of Synechococcus elongatus, and first check whether Synechococcus elongatus has the rbcL&S gene by colony PCR. Take algae colonies and suspend the cells with TE-triton solution (TE, pH 8.0 + 1% Triton X-100), then treat them at 95℃ for 3.5 minutes, and then extract twice with chloroform, take the supernatant and test-PrbcL respectively -For, rbcL&S-rev primer pairs (shown in Table 7 below) perform PCR reaction to detect whether the transformed Synechococcus elongatus has the rbcL&S gene, and the person confirmed to have the rbcL&S gene by the test is the successful transformed strain.

表7、rbcL&S 引子對

Figure 107141788-A0304-0007
Table 7. rbcL&S primer pair
Figure 107141788-A0304-0007

rbcL&S 基因表現載體嵌入細長聚球藻基因組第三中性位(NSIII)之示意圖如圖6,其檢測結果如圖7所示,其中編號1之組別係以無菌水作為負對照組,編號2之組別係以質體DNA作為正對照組,編號3之組別則為轉殖株。The schematic diagram of the rbcL&S gene expression vector embedded in the third neutral position (NSIII) of Synechococcus elongatus genome is shown in Figure 6, and the test results are shown in Figure 7, where the group No. 1 uses sterile water as a negative control group, No. 2 The plastid DNA was used as a positive control group, and the group No. 3 was a transgenic plant.

實施例4:細長聚球藻轉殖株(含idi-ispS、ictB-ecaA及rbcL&S基因)之製備Example 4: Preparation of a transgenic strain of Synechococcus elongatus (containing idi-ispS, ictB-ecaA and rbcL&S genes)

將前述pNS3-PrbcL-rbcL&S轉殖載體藉轉型而轉殖於Synechococcus elongatus PCC7942 isoprene (idi-ispS) 共轉殖 Bicarbonate transporter與carbonic anhydrase基因 (ictB-ecaA)菌株,以觀黴素(Spectinomycin)/ 氯黴素(Chloramphenicol)/卡那黴素(Kanamycin)抗生素篩選轉殖藻。離心收集10 mLSynechococcus elongatus PCC7942 isoprene (idi-ispS) 共轉殖 ictB-ecaA菌細胞,去除培養液後,加入5 mL 10 mM NaCl 溶液,混合均勻後,以3,980 rpm離心10分鐘後,去除上清液,再以1 mL 添加10mM EPPS之BG-11液體培養基懸浮藻細胞,並加入1.5 μg之pNS3-PrbcL-rbcL&S質體DNA,置於 28℃黑暗震盪培養過夜後,隔天照光培養6小時後,以14,000rpm離心2分鐘收集藻細胞,再以300μL添加10 mM EPPS之BG-11液體培養基懸浮藻細胞後,進行連續10倍稀釋,各取100 μL塗於添加10 mM EPPS及含觀黴素/氯黴素/卡那黴素( 20 μg mL-1 /15 μg mL-1 /15 μg mL-1 ) 之BG-11固體培養基,置於28℃,照光培養,直到藻菌落生長。將固體培養基上長出之藻菌落以無菌牙籤挑選至添加10 M EPPS及含觀黴素/氯黴素/卡那黴素 ( 20 μg mL-1 /15 μg mL-1 /15 μg mL-1 )之BG-11固體培養基上,照光培養後,將生長較好之藻株培養至添加觀黴素/氯黴素/卡那黴素( 20 μg mL-1 /15 μg mL-1 /15 μg mL-1 ) 之液體培養基培養。The aforementioned pNS3-PrbcL-rbcL&S transgenic vector was transformed into Synechococcus elongatus PCC7942 isoprene (idi-ispS) to co-transform the Bicarbonate transporter and the carbonic anhydrase gene (ictB-ecaA) strain, using Spectinomycin/ Chlorine Chloramphenicol/Kanamycin antibiotics are used to screen transgenic algae. Centrifuge 10 mL of Synechococcus elongatus PCC7942 isoprene (idi-ispS) to co-transform ictB-ecaA cells. After removing the culture medium, add 5 mL of 10 mM NaCl solution, mix well, and centrifuge at 3,980 rpm for 10 minutes to remove the supernatant. Suspend the algae cells in 1 mL of BG-11 liquid medium supplemented with 10 mM EPPS, and add 1.5 μg of pNS3-PrbcL-rbcL&S plastid DNA, incubate at 28°C in the dark and shake overnight, then incubate for 6 hours on the next day. , Collect algae cells by centrifuging at 14,000 rpm for 2 minutes, and then suspend algae cells in 300 μL of BG-11 liquid medium supplemented with 10 mM EPPS, then make a serial 10-fold dilution, and take 100 μL each for 10 mM EPPS and guanycin-containing / Chloramphenicol/Kanamycin (20 μg mL -1 /15 μg mL -1 /15 μg mL -1 ) BG-11 solid medium, placed at 28 ℃, light culture, until algae colonies grow. The algae colonies grown on the solid medium were selected with a sterile toothpick to add 10 M EPPS and containing guanycin/chloramphenicol/kanamycin (20 μg mL -1 /15 μg mL -1 /15 μg mL -1 ) On the BG-11 solid medium, after illuminating the culture, the algae with good growth is cultivated to add guanycin/chloramphenicol/kanamycin (20 μg mL -1 /15 μg mL -1 /15 μg mL -1 ) of liquid culture medium.

培養該等轉殖株於含抗生素之培養基。刮取約一個菌環或1.5 mL的細長聚球藻量,先以菌落(colony) PCR檢測細長聚球藻是否具有rbcL&S的基因。取藻菌落以TE-triton solution (TE, pH 8.0 + 1% Triton X-100 ) 懸浮細胞後,以95℃處理3.5分鐘,再以氯仿萃取兩次後,取上清液並分別以test-PrbcL-for、rbcL&S-rev引子對進行PCR反應,檢測經轉殖後之細長聚球藻是否具有rbcL&S 的基因,經檢測確認具有rbcL&S 基因者,即為成功之轉型株。其檢測結果如圖8所示,其中編號1之組別係以無菌水作為負對照組,編號2之組別係以質體DNA作為正對照組,編號3之組別則為轉殖株。Cultivate these transformed strains on antibiotic-containing medium. Scrape about one fungus ring or 1.5 mL of Synechococcus elongatus, and first check whether Synechococcus elongatus has the rbcL&S gene by colony PCR. Take algae colonies and suspend the cells with TE-triton solution (TE, pH 8.0 + 1% Triton X-100), then treat them at 95℃ for 3.5 minutes, and then extract twice with chloroform, take the supernatant and test-PrbcL respectively -For and rbcL&S-rev primer pairs perform PCR reaction to detect whether the transgenic S. sphaeroides has the rbcL&S gene. Those who have confirmed the rbcL&S gene after testing are successful transformed strains. The test results are shown in Figure 8. The group No. 1 uses sterile water as a negative control group, the group No. 2 uses plastid DNA as a positive control group, and the group No. 3 is a transgenic plant.

實施例5:轉殖株之生長及光合作用比較實驗Example 5: Comparative experiment on growth and photosynthesis of transgenic plants

將靜置培養約3週之轉殖株藻液接種於含觀黴素/氯黴素( 20 μg mL-1 /15 μg mL-1 )的100 ml BG11+EPPS培養液。以含5%二氧化碳(CO2 )/空氣(Air) 的氣體進行培養,通氣速度為0.1 vvm,培養温度為28℃,光強度200 μmol m-2 s-1 ,以 24小時光照週期培養。以新鮮的BG-11培養液作為空白對照組,實驗組則分別為idi-ispS 轉殖株、idi-ispS-ictB-ecaA共轉殖株、idi-ispS-rbcL&S共轉殖株與idi-ispS-ictB-ecaA-rbcL&S共轉殖株。每日定時用紫外可見分光光度計(CT-5600, ChromTech, USA)測定培養液在波長750 nm的OD值。根據OD750吸光值,繪製Synechococcus elongatus PCC7942生長於5%二氧化碳/空氣之培養條件下的生長曲線,如圖9所示。The algae fluid of the transformed strains, which had been cultured for about 3 weeks, was inoculated into 100 ml of BG11+EPPS broth containing spectinomycin/chloramphenicol (20 μg mL -1 /15 μg mL -1 ). The culture was carried out with a gas containing 5% carbon dioxide (CO 2 )/air (Air), the aeration rate was 0.1 vvm, the culture temperature was 28° C., the light intensity was 200 μmol m -2 s -1 , and the culture was carried out in a 24-hour light cycle. The fresh BG-11 culture medium was used as a blank control group, and the experimental group was id i-ispS transgenic plant, idi-ispS-ictB-ecaA co-transformed plant, idi-ispS-rbcL&S co-transformed plant and idi- ispS-ictB-ecaA-rbcL&S co-transformed strain. The OD value of the culture solution at a wavelength of 750 nm was measured daily with an ultraviolet-visible spectrophotometer (CT-5600, ChromTech, USA). According to the OD750 absorbance value, the growth curve of Synechococcus elongatus PCC7942 grown under the culture condition of 5% carbon dioxide/air is plotted, as shown in FIG. 9.

從圖9可發現,idi-ispS-ictB-ecaA共轉殖株、idi-ispS-rbcL&S共轉殖株與idi-ispS-ictB-ecaA-rbcL&S共轉殖株三者因具有固碳基因之過量表現(over expression),故相較於idi-ispS轉殖株有較佳之生長情況,其中idi-ispS-ictB-ecaA共轉殖株與idi-ispS-ictB-ecaA-rbcL&S共轉殖株的OD750可達到4.96與5.36,相較於idi-ispS轉殖株之OD750僅為3.39,分別提高了1.46倍與1.58倍。As can be seen from Fig. 9, the three co-transgenic plants of idi-ispS-ictB-ecaA, co-transgenic plants of idi-ispS-rbcL&S and co-transgenic plants of idi-ispS-ictB-ecaA-rbcL&S co-transformed due to excessive carbon sequestration genes Performance (over expression), so it has better growth compared to the idi-ispS transgenic plant, in which the OD750 of the idi-ispS-ictB-ecaA co-transformed plant and the idi-ispS-ictB-ecaA-rbcL&S co-transformed plant It can reach 4.96 and 5.36, compared with the OD750 of the idi-ispS transgenic plant is only 3.39, which is an increase of 1.46 times and 1.58 times.

光合作用及呼吸作用係以Hansatech Inc (DW1, Hansatech, Norfolk, England) 之氧電極測水體氧氣含量之變化。取10ml藻液於氧氣電極室(O2 electrode chamber),光照強度為100 E m-2 s-1 ,測定時再加入碳酸氫鈉,使最終濃度為3mM,光照(Halogen Deko-Lampen , SYLVANIA, Tokyo, Japan)1至2分鐘後,測定其單位內釋出的氧氣量,此為淨光合作用速率(net photosynthetic rate);隨後,換新的藻體待其氧氣消耗速率穩定後(約需5至10分鐘),在不照光下計算其單位時間內消耗的氧氣量,此為呼吸作用速率(respiration rate),兩者相加值為總光合作用速率(gross photosynthetic rate),其結果如圖10所示。Photosynthesis and respiration are measured by the oxygen electrode of Hansatech Inc (DW1, Hansatech, Norfolk, England). Take 10ml of algae fluid in an oxygen electrode chamber (O 2 electrode chamber), the light intensity is 100 E m -2 s -1 , and then add sodium bicarbonate during the measurement to make the final concentration 3mM, light (Halogen Deko-Lampen, SYLVANIA, Tokyo, Japan) After 1 to 2 minutes, measure the amount of oxygen released in the unit, which is the net photosynthetic rate; then, replace the algae with a new one after the oxygen consumption rate stabilizes (about 5 To 10 minutes), calculate the amount of oxygen consumed per unit time without light, this is the respiration rate (respiration rate), the sum of the two is the total photosynthesis rate (gross photosynthetic rate), the result is shown in Figure 10 Shown.

從圖10可知,idi-ispS-ictB-ecaA共轉殖株、idi-ispS-rbcL&S共轉殖株與idi-ispS-ictB-ecaA-rbcL&S共轉殖株三者的總光合作用速率亦有明顯提高,其中idi-ispS-ictB-ecaA共轉殖株、idi-ispS-rbcL&S與idi-ispS-ictB-ecaA-rbcL&S共轉殖株的總光合作用速率可達到387.6、355.1與435.4,相較於idi-ispS轉殖株之總光合作用速率僅為293.7,分別提高了1.32倍、1.21與1.48倍。As can be seen from Figure 10, the total photosynthesis rate of the three co-transgenic plants idi-ispS-ictB-ecaA, co-transgenic plants idi-ispS-rbcL&S and co-transgenic plants idi-ispS-ictB-ecaA-rbcL&S is also obvious The total photosynthesis rate of the co-transgenic plants of idi-ispS-ictB-ecaA, idi-ispS-rbcL&S and idi-ispS-ictB-ecaA-rbcL&S can reach 387.6, 355.1 and 435.4, compared with The total photosynthesis rate of idi-ispS transgenic plants was only 293.7, which was increased by 1.32 times, 1.21 and 1.48 times, respectively.

實施例6:轉殖株之異戊二烯產率比較實驗Example 6: Comparative experiment on the yield of isoprene in transgenic plants

將靜置培養約3週之轉殖株藻液接種於含觀黴素/氯黴素(20 μg mL-1/15 μg mL-1 )的100 ml BG11+EPPS含有50 mM NaHCO3 培養液。震盪速率為100 rpm,培養温度為28℃,光強度200 μmol m-2 s-1 ,以 24小時光照週期培養。培養三天後,以氣相層析儀/火焰離子偵測器(Agilent 6890N GC/FID) 分析異戊二烯濃度。The algae fluid of the transformed strains cultured for about 3 weeks was inoculated into 100 ml of BG11+EPPS containing 50 mM NaHCO 3 culture fluid containing spectinomycin/chloramphenicol (20 μg mL-1/15 μg mL-1 ). The shaking rate was 100 rpm, the incubation temperature was 28°C, the light intensity was 200 μmol m -2 s -1 , and the cultivation period was 24 hours. After three days of incubation, the isoprene concentration was analyzed with a gas chromatograph/flame ion detector (Agilent 6890N GC/FID).

從圖11所示異戊二烯生產結果可發現,idi-ispS轉植株、idi-ispS-ictB-ecaA共轉殖株、idi-ispS-rbcL&S共轉殖株與idi-ispS-ictB-ecaA-rbcL&S共轉殖株培養3天的異戊二烯產量分別為0.79、50.41、0.91與53.29 µg/g biomass/hr。因此,共轉殖ictB與ecaA 基因或是共轉殖ictB、ecaA與rbcL&S基因後,異戊二烯之產量分別提高了63倍與67倍,且其每日產量分別為1209.8與1278.96 µg/g biomass/day。From the isoprene production results shown in Figure 11, it can be found that the idi-ispS transplants, the idi-ispS-ictB-ecaA co-transplants, the idi-ispS-rbcL&S co-transplants and the idi-ispS-ictB-ecaA- The 3-day isoprene yield of rbcL&S co-transformed plants was 0.79, 50.41, 0.91 and 53.29 µg/g biomass/hr, respectively. Therefore, after co-transformation of ictB and ecaA genes or co-transformation of ictB, ecaA and rbcL&S genes, the production of isoprene increased by 63-fold and 67-fold, respectively, and their daily production was 1209.8 and 1278.96 µg/g, respectively. biomass/day.

綜上可知,本發明藉由轉殖ictB與ecaA兩固碳基因,其異戊二烯產率提升效果明顯優於其生長與光合作用之提升效果,故轉殖ictB與ecaA兩固碳基因亦意外地高度專一地提升異戊二烯之合成,而非藉由提升基因轉殖藍綠菌之生長數量來提升產量。此外,基因轉殖藍綠菌亦未於合成異戊二烯時,因競爭碳源而有害於基因轉殖藍綠菌本身之生長,故轉殖ictB與ecaA兩固碳基因至基因轉殖藍綠菌具有雙重優點:「高度專一地提升轉殖藍綠菌合成異戊二烯」及「促進轉殖藍綠菌之生長」。To sum up, it can be seen that by transposing the two carbon-fixing genes of ictB and ecaA in the present invention, the effect of increasing the yield of isoprene is significantly better than that of the growth and photosynthesis, so the two carbon-fixing genes of ictB and ecaA are also transgenic It is unexpectedly highly specific to increase the synthesis of isoprene, rather than increasing the production of genetically transformed blue-green bacteria. In addition, the transgenic blue-green bacteria were not harmful to the growth of the transgenic blue-green bacteria due to the competition of carbon source during the synthesis of isoprene. Therefore, the two carbon-fixing genes of ictB and ecaA were transferred to the transgenic blue. Chlorella has two advantages: "Highly specific promotion of the synthesis of isoprene by transgenic blue-green bacteria" and "Promotion of the growth of transgenic blue-green bacteria."

(無)(no)

圖1係含外源性idi 基因與外源性ispS 基因表現載體之部分示意圖及該表現載體內嵌進細長聚球藻基因組之部分示意圖。FIG. 1 is a partial schematic diagram of an expression vector containing an exogenous idi gene and an exogenous ispS gene and a partial schematic diagram of the expression vector embedded in the Synechococcus elongatus genome.

圖2為外源性idi 基因與外源性ispS 基因轉殖成果之PCR檢測確認圖。Fig. 2 is a PCR detection confirmation diagram of the transfer of exogenous idi gene and exogenous ispS gene.

圖3為對照組細長聚球藻野生型細胞與細長聚球藻idi +ispS 基因轉殖株產物之氣相層析儀分析結果。FIG. 3 is a gas chromatograph analysis result of a product of a wild type cell of Synechococcus elongatus and a transgenic strain of Synechococcus elongatus idi + ispS in a control group.

圖4係含ictB 基因與ecaA 基因表現載體之部分示意圖及該表現載體內嵌進細長聚球藻基因組之部分示意圖。FIG. 4 is a partial schematic diagram of an expression vector containing the ictB gene and ecaA gene and a partial schematic diagram of the expression vector embedded in the Synechococcus elongatus genome.

圖5為idiispSictBecaA 基因轉殖成果之PCR檢測確認圖。Fig. 5 is a PCR detection confirmation diagram of the transfer results of the idi , ispS , ictB and ecaA genes.

圖6係含rbcL&S 基因表現載體之部分示意圖及該表現載體內嵌進細長聚球藻基因組之部分示意圖。6 is a partial schematic diagram of an expression vector containing the rbcL&S gene and a partial schematic diagram of the expression vector embedded in the Synechococcus elongatus genome.

圖7係idiispSrbcL&S 基因轉殖成果之PCR檢測確認圖。Fig. 7 is a PCR detection confirmation diagram of the transfer results of the idi , ispS and rbcL&S genes.

圖8係idiispSictBecaArbcL&S 基因轉殖成果之PCR檢測確認圖。Figure 8 is a PCR detection confirmation diagram of the results of the gene transfer of idi , ispS , ictB , ecaA and rbcL&S .

圖9係4種細長聚球藻轉殖株之生長曲線圖。Fig. 9 is a graph showing the growth curves of four species of Synechococcus elongatus.

圖10係4種細長聚球藻轉殖株之光合作用比較圖。Figure 10 is a comparison chart of photosynthesis of four species of Synechococcus elongatus.

圖11係4種細長聚球藻轉殖株之異戊二烯產率比較圖。Fig. 11 is a graph comparing the yield of isoprene in four strains of Synechococcus elongatus.

(無)(no)

<110>  輔英科技大學  <120> 提升藍綠菌生產異戊二烯產率之方法 <160>  17   <170>  PatentIn version 3.5   <210>  1 <211>  1404 <212>  DNA <213>  細長聚球藻(Synechococcus elongatus PCC7942)   <400>  1 atgactgtct ggcaaactct gacttttgcc cattaccaac cccaacagtg gggccacagc       60 agtttcttgc atcggctgtt tggcagcctg cgagcttggc gggcctccag ccagctgttg      120 gtttggtctg aggcactggg tggcttcttg cttgctgtcg tctacggttc ggctccgttt      180 gtgcccagtt ccgccctagg gttggggcta gccgcgatcg cggcctattg ggccctgctc      240 tcgctgacag atatcgatct gcggcaagca acccccattc actggctggt gctgctctac      300 tggggcgtcg atgccctagc aacgggactc tcacccgtac gcgctgcagc tttagttggg      360 ctagccaaac tgacgctcta cctgttggtt tttgccctag cggctcgggt tctccgcaat      420 ccccgtctgc gatcgctgct gttctcggtc gtcgtgatca catcgctttt tgtcagtgtc      480 tacggcctca accaatggat ctacggcgtt gaagagctgg cgacttgggt ggatcgcaac      540 tcggttgccg acttcacctc acgggtttac agctatctgg gcaaccccaa cctgctggct      600 gcttatctgg tgccgacgac tgccttttct gcagcagcga tcggggtgtg gcgcggctgg      660 ctccccaagc tgctggcgat cgctgcgaca ggtgcgagca gcttatgtct gatcctcacc      720 tacagtcgcg gtggctggct gggttttgtc gccatgattt ttgtctgggc gttattaggg      780 ctctactggt ttcaaccccg tctacccgca ccctggcgac gctggctatt cccagtcgta      840 ttgggtggac tagtcgcggt gctcttggtg gcggtgcttg gacttgagcc gttgcgcgtg      900 cgcgtgttga gcatctttgt ggggcgtgaa gacagcagca acaacttccg gatcaatgtc      960 tggctggcgg tgctgcagat gattcaagat cggccttggc tgggcatcgg ccccggcaat     1020 accgccttta acctggttta tcccctctat caacaggcgc gctttacggc gttgagcgcc     1080 tactccgtcc cgctggaagt cgcggttgag ggcggactac tgggcttgac ggccttcgct     1140 tggctgctgc tggtcacggc ggtgacggcg gtgcggcagg tgagccgact gcggcgcgat     1200 cgcaatcccc aagccttttg gttgatggct agcttggccg gtttggcagg aatgctgggt     1260 cacggtctgt ttgataccgt gctctatcga ccggaagcca gtacgctctg gtggctctgt     1320 attggagcga tcgcgagttt ctggcagccc caaccttcca agcaactccc tccagaagcc     1380 gagcattcag acgaaaaaat gtag                                                                   1404   <210>  2 <211>  714 <212>  DNA <213>  細長聚球藻(Synechococcus elongatus PCC7942)   <400>  2 atgcgccggc gatcgctcct agcagctctt ggcggcagct gcatcggttg gttgggcagc       60 agtcaacccg tctgggccag tgcagactgg gactatagtc gccgccgagg tcctcgccag      120 tgggccaagc ttgatccggc ctatgccatt tgtcagcagg gtcgtcaaca atccccaatt      180 aacctgacgg gtcagcctga cagaacacca ctggattacc gcgatcgccc gtttaagggc      240 attctgcagc aggctcccca ttccctccgc attgactgtc cagctgggaa tggtttctgg      300 gaagctggca ccttctatga gctgctgcaa tttcacttcc acacgcccag tgagcaccag      360 caccaaggcc aacgtttccc agcagaaatt catttcgtcc atcgcagcga tcgcgatcag      420 ctcgctgtgg ttggtgtttt tctggcagcg ggcgatcgcc cccttccgat tctggacacc      480 ctcttagccg tgccaccgtc aactgacaat caactgcttt caacagccat tcaaccgaca      540 gacctcatgc cccgcgatcg caccgtctgg cgctactctg ggtctctaac aaccccaccc      600 tgctctgaac ccgttctctg gcgggtctgc gatcgcccac tgtttgtagc tcggcaacaa      660 ctccggcagc tccggcaacg gttgggtatg aatgctcgac cactgcaagc ctaa            714   <210>  3 <211>  945 <212>  DNA <213>  胡楊(Populus euphratica )   <400>  3 atgagcctga cctcgcgcat cctgtttacc cccccgacca ccattaaact gtcgccgagc       60 ctgccccccc ccagcgcctt ttgtccgctg aaaacgccca gcctgtcgtt tatcagcccc      120 caccccagca ttctgcgctt cacccacatc accaagagcc ccagcagcct ctttgcccgc      180 gtgtttagca gctttaaccc caccgccacc accaccccgc ccaccatggg tgatgccccc      240 gatgcgggta tggatgcggt ccaacgccgc ctcatgtttg gcgacgaatg catcctggtc      300 gatgagaacg atcgcgtggt gggccacgac agcaagtata actgccacct gtgggaaaac      360 atcctgaagg gcaacgccct gcaccgcgcc tttagcgtct ttctcttcaa cagcaagcac      420 gagctgctcc tgcagcaacg cagcgcgacc aaagtcacct tccccctggt ctggaccaat      480 acctgctgca gccacccgct gtaccgcgag agcgaactga ttgacgaaga tgccctgggt      540 gtccgcaatg ccgcccagcg caaactgttt gatgaactgg gcatcccggc cgaagatgtg      600 cccgtggatc agtttagccc cctgggccgt attttataca aggcccccag cgatggcaaa      660 tggggcgagc acgagctcga ttacctgctc ttcattgtcc gcgatgtcag cgtgaacccg      720 aaccccgatg aggtggccga cattaagtac gtcaaccagg atgagctgaa ggagctgctg      780 cgcaaagcgg atgcgggcga agaaggcctg aaactgagcc cctggttccg cctggtcgtg      840 gataacttcc tgttcaagtg gtgggatcac gtggagaagg gcacgctgga agaagcggcc      900 gatatgaagg cgatccataa gctgcatcac caccatcacc actag                                   945   <210>  4 <211>  1647 <212>  DNA <213>  黑楊(Populus nigra )   <400>  4 atgcgccgca gcgcgaacta cgagccgaac agctgggact atgactacct gctgtcgtcg       60 gacaccgacg agtcgatcga ggtgtacaag gacaaagcga agaagctgga agcggaagtg      120 cggcgcgaga tcaacaacga aaaggccgaa ttcctgaccc tgcccgaact catcgataac      180 gtccaacgcc tgggcctggg ctatcgcttc gagagcgata tccggcgggc cctggatcgc      240 ttcgtctcga gcggtggctt tgatgccgtc accaagacca gcctgcacgc caccgccctc      300 agcttccgcc tgctgcgcca acacggcttc gaagtcagcc aggaggcctt cagcggcttc      360 aaggaccaga acggcaactt cctgaagaac ctgaaggagg acattaaggc catcctgagc      420 ctctacgagg cctcgtttct ggccctcgag ggcgagaaca ttctggacga ggcgaaagtc      480 tttgcgatca gccacctgaa ggaactgagc gaggaaaaga tcggcaagga tctggcggaa      540 caggtgaacc acgccctgga actcccgctg catcgccgca cccaacgcct cgaggccgtc      600 tggtcgatcg aggcctatcg caagaaggaa gatgccgacc aggtcctgct ggagctcgcc      660 atcctcgact acaacatgat ccaatcggtc taccagcgcg atctccgcga aacgagccgc      720 tggtggcgcc gggtcggtct cgccaccaaa ctgcatttcg cccgcgaccg cctgattgaa      780 agcttttact gggccgtggg cgtggccttc gaaccccaat acagcgactg ccgcaatagc      840 gtcgccaaga tgttctcgtt cgtgaccatc atcgatgaca tctacgacgt gtacggcacc      900 ctggatgaac tggaactctt cacggatgcc gtggagcgct gggatgtcaa tgccatcgat      960 gatctgcccg actacatgaa gctgtgcttc ctggccctct acaacaccat caacgagatc     1020 gcgtacgata atctgaagga caaaggcgaa aacattctgc cctacctcac gaaggcctgg     1080 gcggacctgt gcaatgcgtt cctgcaggag gcgaagtggc tgtacaacaa aagcaccccc     1140 acgttcgacg agtacttcgg caacgcgtgg aaaagcagca gcggccccct gcaactcgtc     1200 tttgcgtact tcgcggtggt gcagaacatc aaaaaggagg agatcgataa cctccagaag     1260 taccacgaca ttatcagccg gcccagccac atctttcgcc tgtgtaacga cctggccagc     1320 gcgagcgccg aaatcgcgcg cggtgagacc gccaactcgg tgagctgcta catgcgcacg     1380 aagggcatca gcgaggagct cgcgacggag tcggtgatga acctgatcga tgagacctgg     1440 aagaagatga acaaagagaa gctgggcggc agcctgttcg cgaagccctt tgtggaaacc     1500 gccatcaatc tggcgcgcca gagccattgc acctaccata acggcgatgc ccataccagc     1560 ccggatgagc tcacccgcaa acgcgtgctg agcgtcatca ccgaacccat cctcccgttc     1620 gaacgccacc atcatcacca ccactag                                                                1647   <210>  5 <211>  1845 <212>  DNA <213>  細長聚球藻(Synechococcus elongatus PCC7942)   <400>  5 ttagtagcgg ccgggacgat gaacgatgaa gctcacggtt tggcactgct tgatgttgtc       60 gaagccagcg acacggatgt agcaatcacc gtattcgctg cggcactcac gcacttcatc      120 gaggacttgc tgagggctct tgcagtcaaa cagggggagc ttccacatcg tccagtagaa      180 ctcttccgga ttcgagtgct cgttgaactc gatcaagggg tggaagcctt gctcgatcat      240 gtactcgatt tgtgcagcga tttggcgatc gctgagggga ggcaggtacg agaaagtctc      300 gaaacgacgc tctttgggca gagttttcat gctcatgatt cagaaatcct gaaaggttaa      360 gtcgaaaggc tggggagaaa gctttacgca gcaacgctca ctcccccagc gatagtcaga      420 ggctccttag agcttgtcca tcgtttcgaa ttcgaacttg atctctttcc agaggtcgag      480 ggcagcagcc agttcaggcg accacttgcc agcttcacga aggatgtcgc cgccttcacg      540 gtagaggtcg cgaccttcgt tccgagcttg gacgcaagct tccaaggcaa cacggttcgc      600 ggttgcacca ggagcattac cccaggggtg acccaaggtg ccgccaccga actggagaac      660 ggagtcatca ccgaagattt ccaccagtgc gggcatgtgc cacacgtgga taccaccgga      720 agcaaccggc agcacgcccg gcatcgacgc ccaatcttgg gtgaagaaga ccccacggct      780 gcggtcagct tcgatgtggt cttcgcgcat caagtcaaca aagcccaagg tcgaagcttt      840 gtcgccttcc agtttgccga cgacggtgcc ggagtggagg tggtcaccac cggacagacg      900 caaacacttg gccaagacac ggaagtgaat cccgtggtta cgctgacggt cgatcaccgc      960 gtgcattgca cggtggatgt gcagcaggac gccgttgtcg cggcaccatt ttgccaaggt     1020 ggtgttggcg gtgaaaccag ccgtcaagaa gtcatgcatg atgatcggca tgccgagttc     1080 tttagcgaac tcagcccgtt tcatcatttc ttcgcaggtc ggcgcggtca cgttcaggta     1140 gtgacctttg atttcaccgg tttctgcttg cgatttgtgg attgcatcag ccacaaacag     1200 gaagcgatcg cgccagcgtt ggaacggctg cgagttgatg ttttcgtcgt ctttggtgaa     1260 gtccagaccg ccgcgcagac attcgtagac ggcacgaccg tagtttttcg ccgacagacc     1320 gagttttggt ttgatcgtgc aacccagcat cggacggccg tacttgttca gcaggtcgcg     1380 ctcgacttgg ataccgtggg gaggaccttg gaaggttttg accaaggcga cggggaagcg     1440 gatgtcttcc agacgcagcg aacggatagc tttgaagcca aacacgttac cgacgatcga     1500 ggtcaggatg ttggtgaccg acccttcttc aaacaggtcg agcgggtaag cgatgaacgc     1560 aaagtaggag ttctcttcgc cttgcaccgg ctcgatgtgg tagcacttgc ctttgtaccg     1620 atccatgtcg gtcagcaagt cggtccacac ggtggtccag gtaccggtcg aagattcagc     1680 cgcgatcgcc gcaccagctt cgtcagcagg gacacccggc tgagggctga agcggaaagc     1740 cgccagcagg tcagtgtctt tgggggtgta atcgggggtg taataggtga gtttgtagtc     1800 cttcaccccg gccttatagc ctgcggcaga ttgcgtcttg ggcat                     1845   <210>  6 <211>  361 <212>  DNA <213>  細長聚球藻(Synechococcus elongatus PCC7942)   <400>  6 gcggctgaaa gtttcggact cagtagacct aagtacagag tgatgtcaac gccttcaagc       60 tagacgggag gcggcttttg ccatggttca gcgatcgctc ctcatcttca ataagcaggg      120 catgagccag cgttaagcaa atcaaatcaa atctcgcttc tgggcttcaa taaatggttc      180 cgattgatga taggttgatt catgaggaat ctaaggctta attctccaca aaagaattaa      240 gcgtccgtcg caacggaatg ctccgctgga cttgcgctgt gggactgcag ctttacaggc      300 tccccctgcc agaaatcctg aatcgtcgag catatctgac atatctctag ggagagacga      360 c                                                                      361   <210>  7 <211>  25 <212>  DNA <213>  人工序列   <400>  7 atgagcctga cctcgcgcat cctgt                                             25   <210>  8 <211>  25 <212>  DNA <213>  人工序列   <400>  8 cagcttatgg atcgccttca tatcg                                             25   <210>  9 <211>  25 <212>  DNA <213>  人工序列   <400>  9 atgcgccgca gcgcgaacta cgagc                                             25   <210>  10 <211>  25 <212>  DNA <213>  人工序列   <400>  10 gcgttcgaac gggaggatgg gttcg                                             25   <210>  11 <211>  60 <212>  DNA <213>  人工序列   <400>  11 aattgatatc tttaagaagg agatatacat atgactgtct ggcaaactct gacttttgcc       60   <210>  12 <211>  40 <212>  DNA <213>  人工序列   <400>  12 aattgatatc ctacattttt tcgtctgaat gctcggcttc                             40   <210>  13 <211>  60 <212>  DNA <213>  人工序列   <400>  13 aattggatcc tttaagaagg agatatacat atgcgccggc gatcgctcct agcagctctt       60   <210>  14 <211>  40 <212>  DNA <213>  人工序列   <400>  14 aattggatcc ttaggcttgc agtggtcgag cattcatacc                             40   <210>  15 <211>  30 <212>  DNA <213>  人工序列   <400>  15 gactgcagct ttacaggctc cccctgccag                                        30   <210>  16 <211>  52 <212>  DNA <213>  人工序列   <400>  16 aattgatatc tttaagaagg agatatacat atgcccaaga cgcaatctgc cg               52   <210>  17 <211>  32 <212>  DNA <213>  人工序列   <400>  17 aattgatatc ttagtagcgg ccgggacgat ga                                     32<110> Fuying University of Science and Technology<120> Method for improving the yield of isoprene produced by blue-green fungi<160> 17 <170> PatentIn version 3.5 <210> 1 <211> 1404 <212> DNA <213> Slender poly alga (Synechococcus elongatus PCC7942) <400> 1 atgactgtct ggcaaactct gacttttgcc cattaccaac cccaacagtg gggccacagc 60 agtttcttgc atcggctgtt tggcagcctg cgagcttggc gggcctccag ccagctgttg 120 gtttggtctg aggcactggg tggcttcttg cttgctgtcg tctacggttc ggctccgttt 180 gtgcccagtt ccgccctagg gttggggcta gccgcgatcg cggcctattg ggccctgctc 240 tcgctgacag atatcgatct gcggcaagca acccccattc actggctggt gctgctctac 300 tggggcgtcg atgccctagc aacgggactc tcacccgtac gcgctgcagc tttagttggg 360 ctagccaaac tgacgctcta cctgttggtt tttgccctag cggctcgggt tctccgcaat 420 ccccgtctgc gatcgctgct gttctcggtc gtcgtgatca catcgctttt tgtcagtgtc 480 tacggcctca accaatggat ctacggcgtt gaagagctgg cgacttgggt ggatcgcaac 540 tcggttgccg acttcacctc acgggtttac agctatctgg gcaaccccaa cctgctggct 600 gcttatctgg tgccgacgac tgccttttct gcagcagcga tcggggtgtg gcgcggctgg 660 ctccccaagc tgctggcgat cgctgcg aca ggtgcgagca gcttatgtct gatcctcacc 720 tacagtcgcg gtggctggct gggttttgtc gccatgattt ttgtctgggc gttattaggg 780 ctctactggt ttcaaccccg tctacccgca ccctggcgac gctggctatt cccagtcgta 840 ttgggtggac tagtcgcggt gctcttggtg gcggtgcttg gacttgagcc gttgcgcgtg 900 cgcgtgttga gcatctttgt ggggcgtgaa gacagcagca acaacttccg gatcaatgtc 960 tggctggcgg tgctgcagat gattcaagat cggccttggc tgggcatcgg ccccggcaat 1020 accgccttta acctggttta tcccctctat caacaggcgc gctttacggc gttgagcgcc 1080 tactccgtcc cgctggaagt cgcggttgag ggcggactac tgggcttgac ggccttcgct 1140 tggctgctgc tggtcacggc ggtgacggcg gtgcggcagg tgagccgact gcggcgcgat 1200 cgcaatcccc aagccttttg gttgatggct agcttggccg gtttggcagg aatgctgggt 1260 cacggtctgt ttgataccgt gctctatcga ccggaagcca gtacgctctg gtggctctgt 1320 attggagcga tcgcgagttt ctggcagccc caaccttcca agcaactccc tccagaagcc 1380 gagcattcag acgaaaaaat gtag 1404 <210> 2 <211> 714 <212> DNA <213 > Synechococcus elongatus ( Sy nechococcus elongatus PCC7942) <400> 2 atgcgccggc gatcgctcct agcagctctt ggcggcagct gcatcggttg gttgggcagc 60 agtcaacccg tctgggccag tgcagactgg gactatagtc gccgccgagg tcctcgccag 120 tgggccaagc ttgatccggc ctatgccatt tgtcagcagg gtcgtcaaca atccccaatt 180 aacctgacgg gtcagcctga cagaacacca ctggattacc gcgatcgccc gtttaagggc 240 attctgcagc aggctcccca ttccctccgc attgactgtc cagctgggaa tggtttctgg 300 gaagctggca ccttctatga gctgctgcaa tttcacttcc acacgcccag tgagcaccag 360 caccaaggcc aacgtttccc agcagaaatt catttcgtcc atcgcagcga tcgcgatcag 420 ctcgctgtgg ttggtgtttt tctggcagcg ggcgatcgcc cccttccgat tctggacacc 480 ctcttagccg tgccaccgtc aactgacaat caactgcttt caacagccat tcaaccgaca 540 gacctcatgc cccgcgatcg caccgtctgg cgctactctg ggtctctaac aaccccaccc 600 tgctctgaac ccgttctctg gcgggtctgc gatcgcccac tgtttgtagc tcggcaacaa 660 ctccggcagc tccggcaacg gttgggtatg aatgctcgac cactgcaagc ctaa 714 <210> 3 <211> 945 <212> DNA <213> Populus euphratica <400> 3 atg agcctga cctcgcgcat cctgtttacc cccccgacca ccattaaact gtcgccgagc 60 ctgccccccc ccagcgcctt ttgtccgctg aaaacgccca gcctgtcgtt tatcagcccc 120 caccccagca ttctgcgctt cacccacatc accaagagcc ccagcagcct ctttgcccgc 180 gtgtttagca gctttaaccc caccgccacc accaccccgc ccaccatggg tgatgccccc 240 gatgcgggta tggatgcggt ccaacgccgc ctcatgtttg gcgacgaatg catcctggtc 300 gatgagaacg atcgcgtggt gggccacgac agcaagtata actgccacct gtgggaaaac 360 atcctgaagg gcaacgccct gcaccgcgcc tttagcgtct ttctcttcaa cagcaagcac 420 gagctgctcc tgcagcaacg cagcgcgacc aaagtcacct tccccctggt ctggaccaat 480 acctgctgca gccacccgct gtaccgcgag agcgaactga ttgacgaaga tgccctgggt 540 gtccgcaatg ccgcccagcg caaactgttt gatgaactgg gcatcccggc cgaagatgtg 600 cccgtggatc agtttagccc cctgggccgt attttataca aggcccccag cgatggcaaa 660 tggggcgagc acgagctcga ttacctgctc ttcattgtcc gcgatgtcag cgtgaacccg 720 aaccccgatg aggtggccga cattaagtac gtcaaccagg atgagctgaa ggagctgctg 780 cgcaaagcgg atgcgggcga agaaggcctg aaactgag cc cctggttccg cctggtcgtg 840 gataacttcc tgttcaagtg gtgggatcac gtggagaagg gcacgctgga agaagcggcc 900 gatatgaagg cgatccataa gctgcatcac caccatcacc actag 945 <210> 4 <211> 1647 <212> DNA <213> black poplar (Populus nigra) <400> 4 atgcgccgca gcgcgaacta cgagccgaac agctgggact atgactacct gctgtcgtcg 60 gacaccgacg agtcgatcga ggtgtacaag gacaaagcga agaagctgga agcggaagtg 120 cggcgcgaga tcaacaacga aaaggccgaa ttcctgaccc tgcccgaact catcgataac 180 gtccaacgcc tgggcctggg ctatcgcttc gagagcgata tccggcgggc cctggatcgc 240 ttcgtctcga gcggtggctt tgatgccgtc accaagacca gcctgcacgc caccgccctc 300 agcttccgcc tgctgcgcca acacggcttc gaagtcagcc aggaggcctt cagcggcttc 360 aaggaccaga acggcaactt cctgaagaac ctgaaggagg acattaaggc catcctgagc 420 ctctacgagg cctcgtttct ggccctcgag ggcgagaaca ttctggacga ggcgaaagtc 480 tttgcgatca gccacctgaa ggaactgagc gaggaaaaga tcggcaagga tctggcggaa 540 caggtgaacc acgccctgga actcccgctg catcgccgca cccaacgcct cgaggccgtc 600 t ggtcgatcg aggcctatcg caagaaggaa gatgccgacc aggtcctgct ggagctcgcc 660 atcctcgact acaacatgat ccaatcggtc taccagcgcg atctccgcga aacgagccgc 720 tggtggcgcc gggtcggtct cgccaccaaa ctgcatttcg cccgcgaccg cctgattgaa 780 agcttttact gggccgtggg cgtggccttc gaaccccaat acagcgactg ccgcaatagc 840 gtcgccaaga tgttctcgtt cgtgaccatc atcgatgaca tctacgacgt gtacggcacc 900 ctggatgaac tggaactctt cacggatgcc gtggagcgct gggatgtcaa tgccatcgat 960 gatctgcccg actacatgaa gctgtgcttc ctggccctct acaacaccat caacgagatc 1020 gcgtacgata atctgaagga caaaggcgaa aacattctgc cctacctcac gaaggcctgg 1080 gcggacctgt gcaatgcgtt cctgcaggag gcgaagtggc tgtacaacaa aagcaccccc 1140 acgttcgacg agtacttcgg caacgcgtgg aaaagcagca gcggccccct gcaactcgtc 1200 tttgcgtact tcgcggtggt gcagaacatc aaaaaggagg agatcgataa cctccagaag 1260 taccacgaca ttatcagccg gcccagccac atctttcgcc tgtgtaacga cctggccagc 1320 gcgagcgccg aaatcgcgcg cggtgagacc gccaactcgg tgagctgcta catgcgcacg 1380 aagggcatca gcgaggagct cgcgacggag tcggtg atga acctgatcga tgagacctgg 1440 aagaagatga acaaagagaa gctgggcggc agcctgttcg cgaagccctt tgtggaaacc 1500 gccatcaatc tggcgcgcca gagccattgc acctaccata acggcgatgc ccataccagc 1560 ccggatgagc tcacccgcaa acgcgtgctg agcgtcatca ccgaacccat cctcccgttc 1620 gaacgccacc atcatcacca ccactag 1647 <210> 5 <211> 1845 <212> DNA <213> Synechococcus elongatus (of Synechococcus elongatus PCC7942) <400> 5 ttagtagcgg ccgggacgat gaacgatgaa gctcacggtt tggcactgct tgatgttgtc 60 gaagccagcg acacggatgt agcaatcacc gtattcgctg cggcactcac gcacttcatc 120 gaggacttgc tgagggctct tgcagtcaaa cagggggagc ttccacatcg tccagtagaa 180 ctcttccgga ttcgagtgct cgttgaactc gatcaagggg tggaagcctt gctcgatcat 240 gtactcgatt tgtgcagcga tttggcgatc gctgagggga ggcaggtacg agaaagtctc 300 gaaacgacgc tctttgggca gagttttcat gctcatgatt cagaaatcct gaaaggttaa 360 gtcgaaaggc tggggagaaa gctttacgca gcaacgctca ctcccccagc gatagtcaga 420 ggctccttag agcttgtcca tcgtttcgaa ttcgaacttg atctctttcc agaggtcgag 480 ggcagcagcc agttcaggcg accacttgcc agcttcacga aggatgtcgc cgccttcacg 540 gtagaggtcg cgaccttcgt tccgagcttg gacgcaagct tccaaggcaa cacggttcgc 600 ggttgcacca ggagcattac cccaggggtg acccaaggtg ccgccaccga actggagaac 660 ggagtcatca ccgaagattt ccaccagtgc gggcatgtgc cacacgtgga taccaccgga 720 agcaaccggc agcacgcccg gcatcgacgc ccaatcttgg gtgaagaaga ccccacggct 780 gcggtcagct tcgatgtggt cttcgcgcat caagtcaaca aagcccaagg tcgaagcttt 840 gtcgccttcc agtttgccga cgacggtgcc ggagtggagg tggtcaccac cggacagacg 900 caaacacttg gccaagacac ggaagtgaat cccgtggtta cgctgacggt cgatcaccgc 960 gtgcattgca cggtggatgt gcagcaggac gccgttgtcg cggcaccatt ttgccaaggt 1020 ggtgttggcg gtgaaaccag ccgtcaagaa gtcatgcatg atgatcggca tgccgagttc 1080 tttagcgaac tcagcccgtt tcatcatttc ttcgcaggtc ggcgcggtca cgttcaggta 1140 gtgacctttg atttcaccgg tttctgcttg cgatttgtgg attgcatcag ccacaaacag 1200 gaagcgatcg cgccagcgtt ggaacggctg cgagttgatg ttttcgtcgt ctttggtgaa 1260 gtccag accg ccgcgcagac attcgtagac ggcacgaccg tagtttttcg ccgacagacc 1320 gagttttggt ttgatcgtgc aacccagcat cggacggccg tacttgttca gcaggtcgcg 1380 ctcgacttgg ataccgtggg gaggaccttg gaaggttttg accaaggcga cggggaagcg 1440 gatgtcttcc agacgcagcg aacggatagc tttgaagcca aacacgttac cgacgatcga 1500 ggtcaggatg ttggtgaccg acccttcttc aaacaggtcg agcgggtaag cgatgaacgc 1560 aaagtaggag ttctcttcgc cttgcaccgg ctcgatgtgg tagcacttgc ctttgtaccg 1620 atccatgtcg gtcagcaagt cggtccacac ggtggtccag gtaccggtcg aagattcagc 1680 cgcgatcgcc gcaccagctt cgtcagcagg gacacccggc tgagggctga agcggaaagc 1740 cgccagcagg tcagtgtctt tgggggtgta atcgggggtg taataggtga gtttgtagtc 1800 cttcaccccg gccttatagc ctgcggcaga ttgcgtcttg ggcat 1845 <210> 6 <211> 361 <212> DNA <213> Synechococcus elongatus (Synechococcus elongatus PCC7942) <400> 6 gcggctgaaa gtttcggact cagtagacct aagtacagag tgatgtcaac gccttcaagc 60 tagacgggag gcggcttttg ccatggttca gcgatcgctc ctcatcttca ataagcaggg 120 catgagccag cgttaagcaa atcaaatcaa a tctcgcttc tgggcttcaa taaatggttc 180 cgattgatga taggttgatt catgaggaat ctaaggctta attctccaca aaagaattaa 240 gcgtccgtcg caacggaatg ctccgctgga cttgcgctgt gggactgcag ctttacaggc 300 tccccctgcc agaaatcctg aatcgtcgag catatctgac atatctctag ggagagacga 360 c 361 <210> 7 <211> 25 <212> DNA <213> Artificial Sequence <400> 7 atgagcctga cctcgcgcat cctgt 25 <210> 8 <211> 25 <212> DNA <213> artificial sequence <400> 8 cagcttatgg atcgccttca tatcg 25 <210> 9 <211> 25 <212> DNA <213> artificial sequence <400> 9 atgcgccgca gcgcgaacta cgagc 25 <210> 10 <211> 25 <212> DNA <213> artificial sequence <400> 10 gcgttcgaac gggaggatgg gttcg 25 <210> 11 <211> 60 <212> DNA <213> artificial sequence <400> 11 aattgatatc tttaagaagg agatatacat atgactgtct ggcaaactct gacttttgcc 60 <210> 12 <211> 40 <212> DNA <213> Artificial sequence<400> 12 aattga tatc ctacattttt tcgtctgaat gctcggcttc 40 <210> 13 <211> 60 <212> DNA <213> artificial sequence <400> 13 aattggatcc tttaagaagg agatatacat atgcgccggc gatcgctcct agcagctctt 60 <210> 14 <211> 40 <212><211> 40 <212><400> 14 aattggatcc ttaggcttgc agtggtcgag cattcatacc 40 <210> 15 <211> 30 <212> DNA <213> artificial sequence <400> 15 gactgcagct ttacaggctc cccctgccag 30 <210> 16 <211> 52 <212> DNA <213> artificial Sequence <400> 16 aattgatatc tttaagaagg agatatacat atgcccaaga cgcaatctgc cg 52 <210> 17 <211> 32 <212> DNA <213> Artificial sequence <400> 17 aattgatatc ttagtagcgg ccgggacgat ga 32

(無)(no)

Claims (10)

一種提升基因轉殖藍綠菌生產異戊二烯產率之方法,其特徵在於將一表現載體轉型至基因轉殖藍綠菌,所述表現載體具有一編碼碳酸氫鹽運轉子基因之核苷酸序列,並具有與SEQ ID NO:1至少90%的序列相似度,與一編碼碳酸酐酶基因之核苷酸序列,並具有與SEQ ID NO:2至少90%的序列相似度;並於該基因轉殖藍綠菌中表現該等基因。A method for improving the yield of isoprene produced by transgenic blue-green bacteria, which is characterized by transforming an expression vector into genetically transformed blue-green bacteria, the expression vector having a nucleoside encoding a bicarbonate operator gene Acid sequence, and at least 90% sequence similarity to SEQ ID NO:1, and a nucleotide sequence encoding a carbonic anhydrase gene, and at least 90% sequence similarity to SEQ ID NO:2; and These genes are expressed in the transgenic blue-green bacteria. 如請求項1所述之方法,其中該基因轉殖藍綠菌具有複數外源基因,其包含一編碼異戊烯基二磷酸異構酶基因之核苷酸序列,並具有與SEQ ID NO:3至少90%的序列相似度,和一編碼異戊二烯合成酶基因之核苷酸序列,並具有與SEQ ID NO:4至少90%的序列相似度;並於該基因轉殖藍綠菌中表現該等基因。The method according to claim 1, wherein the transgenic blue-green bacteria has a plurality of foreign genes, which includes a nucleotide sequence encoding a prenyl diphosphate isomerase gene, and has the same sequence as SEQ ID NO: 3 At least 90% sequence similarity, and a nucleotide sequence encoding the isoprene synthase gene, and having at least 90% sequence similarity to SEQ ID NO: 4; In the performance of these genes. 如請求項1所述之方法,其中該基因轉殖藍綠菌進一步經轉型而內嵌有一編碼 1,5-二磷酸核酮糖羧化酶/加氧酶大次單元和小次單元基因之核苷酸序列,並具有與SEQ ID NO:5至少90%的序列相似度;並於該基因轉殖藍綠菌中表現該基因。The method according to claim 1, wherein the transgenic blue-green bacteria is further transformed to embed a gene encoding ribulose 1,5-diphosphate carboxylase/oxygenase large and small subunits Nucleotide sequence, and has at least 90% sequence similarity with SEQ ID NO: 5; and express the gene in the transgenic blue-green bacteria. 如請求項1至3任一所述之方法,其中所述基因之任一轉型至該基因轉殖藍綠菌所用之表現載體係選自pAM1573轉殖載體、pAM1303轉殖載體、pNS3轉殖載體或其組合。The method according to any one of claims 1 to 3, wherein the expression vector used to transform any of the genes into the blue-green bacteria transgenic gene is selected from pAM1573 transfection vector, pAM1303 transfection vector, pNS3 transfection vector Or a combination thereof. 如請求項1之方法,其中該基因轉殖藍綠菌係選自聚球藻屬、集胞藻屬、嗜熱藍綠藻屬、單胞藍藻屬、魚腥藻屬及念珠藻屬所組成之群組之任一或其組合。The method of claim 1, wherein the transgenic blue-green bacteria is selected from Synechococcus, Synechocystis, Thermophilic Blue-green Algae, Unicellular Cyanobacteria, Anabaena and Candida Any one or combination of groups. 一種基因轉殖藍綠菌,其基因組經轉型而內嵌有一編碼碳酸氫鹽運轉子基因,並具有與SEQ ID NO:1至少90%的序列相似度,一編碼碳酸酐酶基因,並具有與SEQ ID NO:2至少90%的序列相似度、一編碼外源性異戊烯基二磷酸異構酶基因,並具有與SEQ ID NO:3至少90%的序列相似度,以及一編碼外源性異戊二烯合成酶基因,並具有與SEQ ID NO:4至少90%的序列相似度;並於該基因轉殖藍綠菌中表現該等基因。A genetically transformed cyanobacterium, whose genome has been transformed and embedded with a gene encoding a bicarbonate operator and having a sequence similarity of at least 90% to SEQ ID NO: 1, a gene encoding carbonic anhydrase and having SEQ ID NO: 2 at least 90% sequence similarity, a gene encoding exogenous isopentenyl diphosphate isomerase, and having at least 90% sequence similarity to SEQ ID NO: 3, and a coding exogenous Sex isoprene synthase gene, and it has at least 90% sequence similarity with SEQ ID NO: 4; and express these genes in the transgenic blue-green bacteria. 如請求項6所述之基因轉殖藍綠菌,其進一步經轉型而內嵌有一編碼 1,5-二磷酸核酮糖羧化酶/加氧酶大次單元和小次單元基因之核苷酸序列,並具有與SEQ ID NO:5至少90%的序列相似度;並於該基因轉殖藍綠菌中表現該基因。The transgenic blue-green bacteria as described in claim 6, which is further transformed with a nucleoside encoding a gene encoding ribulose 1,5-diphosphate carboxylase/oxygenase large and small subunits The acid sequence has a sequence similarity of at least 90% with SEQ ID NO: 5; and the gene is expressed in the transgenic blue-green bacteria. 如請求項2或6所述之基因轉殖藍綠菌,其經轉型而內嵌至少一個1,5-二磷酸核酮糖羧化酶/加氧酶大次單元(PrbcL)啟動子,且該編碼碳酸氫鹽運轉子基因與編碼碳酸酐酶基因兩者各自嵌於一1,5-二磷酸核酮糖羧化酶/加氧酶大次單元(PrbcL)啟動子之下游,及/或編碼外源性異戊烯基二磷酸異構酶基因與編碼外源性異戊二烯合成酶基因兩者共同嵌於一1,5-二磷酸核酮糖羧化酶/加氧酶大次單元(PrbcL)啟動子之下游。The transgenic blue-green bacteria according to claim 2 or 6, which has been transformed and embedded with at least one ribulose 1,5-diphosphate carboxylase/oxygenase large subunit (PrbcL) promoter, and The gene encoding the bicarbonate operator and the gene encoding the carbonic anhydrase are each embedded in the downstream of a ribulose 1,5-diphosphate carboxylase/oxygenase large subunit (PrbcL) promoter, and/or The gene encoding exogenous isoprenyl diphosphate isomerase and the gene encoding exogenous isoprene synthase are both embedded in a 1,5-diphosphate ribulose carboxylase/oxygenase major Unit (PrbcL) downstream of the promoter. 一種生產異戊二烯之方法,其特徵在於培養如請求項6所述之基因轉殖藍綠菌。A method for producing isoprene, characterized by cultivating the transgenic blue-green bacteria as described in claim 6. 如請求項9所述之方法,其中該培養步驟包括添加至少30mM碳酸氫鹽或碳酸鹽至培養液。The method according to claim 9, wherein the culturing step includes adding at least 30 mM bicarbonate or carbonate to the culture solution.
TW107141788A 2018-11-23 2018-11-23 Method of improving production yield of isoprene by cyanobacteria by gene transferring and encoding carbon fixation genes TW202020140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107141788A TW202020140A (en) 2018-11-23 2018-11-23 Method of improving production yield of isoprene by cyanobacteria by gene transferring and encoding carbon fixation genes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107141788A TW202020140A (en) 2018-11-23 2018-11-23 Method of improving production yield of isoprene by cyanobacteria by gene transferring and encoding carbon fixation genes

Publications (1)

Publication Number Publication Date
TW202020140A true TW202020140A (en) 2020-06-01

Family

ID=72175636

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107141788A TW202020140A (en) 2018-11-23 2018-11-23 Method of improving production yield of isoprene by cyanobacteria by gene transferring and encoding carbon fixation genes

Country Status (1)

Country Link
TW (1) TW202020140A (en)

Similar Documents

Publication Publication Date Title
US8367392B2 (en) Genetic transformation of algal and cyanobacteria cells by microporation
TWI591178B (en) Algae with increased productivity of photosynthate and use thereof
US9580728B2 (en) Methods for isoprene and pinene production in cyanobacteria
CN103014053B (en) Synechocystis efficient double homologous recombinant vector as well as construction method and application thereof
TW201224145A (en) Expression vector and method for producing oils by using microalgae
CN111527101A (en) Photosynthetic organism gene regulation for improved growth
US8940508B2 (en) Enhancement of biomass production by disruption of light energy dissipation pathways
WO2010027505A2 (en) Decreasing rubisco content of algae and cyanobacteria cultivated in high carbon dioxide
TW202020140A (en) Method of improving production yield of isoprene by cyanobacteria by gene transferring and encoding carbon fixation genes
US10280428B2 (en) Molecular biology tools for algal engineering
KR102358538B1 (en) Method for gene editing in microalgae using particle bombardment
JP7236161B2 (en) Transformant and Method for Detecting Presence or Absence of Reduced Phosphorus Compound Using Transformant
JP2013198473A (en) Method for producing useful material such as biofuel by using cyanobacterium having autobacterolytic ability
CN116426448B (en) Visualized zymomonas mobilis, construction method and application
KR102575348B1 (en) Method for preparing microorganism with improved lipid productivity into which fatty acid desaturase presumed gene is introduced, and method for manufacturing lipids using the same
KR102575346B1 (en) Method for preparing microorganism with improved lipid productivity into which fasciclin domain containing protein gene is introduced, and method for manufacturing lipids using the same
CN110029092B (en) 3-glyceraldehyde phosphate dehydrogenase and application thereof
KR20230151310A (en) Microorganism with improved lipid productivity into which glutathione peroxidase presumed gene is introduced, and method for manufacturing lipids using the same
TW201600602A (en) Alga, method for producing thereof and method for producing biomass by using the alga
CN116848228A (en) Recombinant algae with high lipid productivity
KR20240055933A (en) Microorganisms with increased lipid content encoding ADP/ATP carrier protein-like proteins
Ponomarenko Algae cells with deletion of the segment D210-R226 in γ subunit from chloroplast ATP synthase have lower transmembrane proton gradient and grow slowly
CN116496965A (en) Ethanol-producing zymomonas mobilis and application thereof
Braun Galleani Exploring the potential for recombinant protein production in microalgae
OA19169A (en) Increased triacylglycerol production in microalgae.