TW202018284A - Steel strip crease detection method including a preparation step, a measurement step, a conversion step, and a reading step - Google Patents
Steel strip crease detection method including a preparation step, a measurement step, a conversion step, and a reading step Download PDFInfo
- Publication number
- TW202018284A TW202018284A TW107138893A TW107138893A TW202018284A TW 202018284 A TW202018284 A TW 202018284A TW 107138893 A TW107138893 A TW 107138893A TW 107138893 A TW107138893 A TW 107138893A TW 202018284 A TW202018284 A TW 202018284A
- Authority
- TW
- Taiwan
- Prior art keywords
- stress
- steel strip
- curve
- axis
- crease
- Prior art date
Links
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
Description
本發明是有關於一種檢測方法,特別是指一種檢測鋼帶折痕的鋼帶折痕檢測方法。The invention relates to a detection method, in particular to a detection method of a steel strip crease.
鋼鐵工廠製造出鋼帶或鋼捲等材料時,製造過程中由於擠壓或是碰撞等因素,鋼帶可能會產生肉眼不易發現的折痕,因此,廠方交貨給客戶之前,需要進行品管檢驗。而檢驗人員欲針對鋼帶的折痕進行檢驗時,會先以油石研磨鋼帶表面,將表面的凸點磨去,增加反射率,使表面形成亮暗相間的紋路,此時檢驗人員再對照預先準備的標準化樣本,辨別紋路的明顯程度,藉此將折痕之嚴重程度區分為數級。When a steel factory manufactures materials such as steel belts or coils, due to factors such as extrusion or collision during the manufacturing process, the steel belt may produce creases that are not easily visible to the naked eye. Therefore, the factory needs to carry out Tube inspection. When the inspector wants to inspect the creases of the steel belt, he will first grind the surface of the steel belt with oil stone, remove the convex points of the surface, increase the reflectivity, and form a bright and dark texture on the surface. A standardized sample prepared in advance to distinguish the obvious degree of the lines, thereby dividing the severity of the crease into several levels.
然而,這種方法以人工判斷為主,從研磨鋼帶的方式、力度,油石的種類,到比對限度樣本時的基準不同,皆會影響折痕嚴重程度之判斷。也就是說,這種方法缺乏標準化,得到的結果可能因人而異,無法再現或是僅能隨機再現,假設將該等鋼帶交到客戶手中時,由於客戶研磨手法,或是油石種類的不同,而檢驗出不一樣的結果,導致雙方無法達到共識,則雙方都將蒙受其害。並且,僅靠檢驗人員的檢測,縱然不論個人主觀認定不同所造成的差異性,直接採用純人力的方式也將造成效率低落以及人力成本高昂的問題,且檢測人員的判斷力可能也會隨著精神力下降而受影響,進而影響檢測的結果。However, this method is mainly based on manual judgment, from the method and strength of grinding the steel belt, the type of oil stone, to the different benchmarks when comparing the limit samples, all will affect the judgment of the severity of the crease. That is to say, this method lacks standardization, and the results obtained may vary from person to person, and cannot be reproduced or can only be reproduced randomly. Assuming that the steel strip is delivered to the customer, due to the customer's grinding technique or the type of oil stone If the results are different and the two parties cannot reach a consensus, both parties will suffer. Moreover, relying solely on the inspection of the inspectors, even if the differences caused by individual subjective judgments are different, directly adopting the method of pure manpower will also cause problems of low efficiency and high labor costs, and the judgment of the inspectors may also follow Mental power is reduced and affected, which in turn affects the results of the test.
因此,本發明之目的,即在提供一種標準化、具有精確性及可行性,且可減少人力成本的鋼帶折痕檢測方法。Therefore, the purpose of the present invention is to provide a standardized method for detecting creases in steel belts that is accurate, accurate and feasible, and can reduce labor costs.
於是,本發明鋼帶折痕檢測方法,適用於檢測該鋼帶表面上的折痕,並包含一準備步驟、一量測步驟、一轉換步驟,及一讀取步驟。Therefore, the method for detecting the crease of the steel strip of the present invention is suitable for detecting the crease on the surface of the steel strip, and includes a preparation step, a measurement step, a conversion step, and a reading step.
進行該準備步驟時,將該鋼帶放置於一標準平面上,並在該鋼帶上設定一量測位置。When performing this preparation step, the steel belt is placed on a standard plane, and a measurement position is set on the steel belt.
進行該量測步驟時,定義一通過該量測位置之軸線,運用一磁性應力量測裝置沿該軸線方向量測該鋼帶,獲得沿該軸線方向的多個應力值,並歸納一呈現複合波形的應力曲線圖。When performing the measurement step, an axis passing through the measurement position is defined, and a magnetic stress measurement device is used to measure the steel strip along the axis direction to obtain a plurality of stress values along the axis direction, and a composite Wave stress diagram.
而該轉換步驟是運用一頻譜分析法執行複合波形的分離,將該應力曲線圖轉換為彎折振幅與折痕缺陷間距的一轉換曲線圖。And the conversion step is to use a spectrum analysis method to perform the separation of the composite waveform, and convert the stress curve into a conversion curve of bending amplitude and crease defect spacing.
最後進行該讀取步驟,判斷該轉換曲線圖中該等應力分別對應到的多個折痕缺陷間距。Finally, the reading step is performed to determine the pitches of multiple crease defects corresponding to the stresses in the conversion curve.
本發明之功效在於:藉由該磁性應力量測裝置量測該鋼帶,並運用頻譜分析法將該等折痕以標準化的數據呈現,摒除人工判斷而可能造成的誤差,而具有精確性及可行性的同時,還能降低人力成本。The effect of the present invention is to measure the steel strip by the magnetic stress measuring device, and use the frequency spectrum analysis method to present the creases as standardized data, eliminating errors that may be caused by manual judgment, and having accuracy and At the same time as feasibility, it can also reduce labor costs.
參閱圖1,本發明鋼帶折痕檢測方法之一實施例,適用於檢測一鋼帶1表面上的折痕,並包含一準備步驟2、一量測步驟3、一轉換步驟4,及一讀取步驟5。要先行說明的是,在本實施例中,是以經過軋輥軋延的該鋼帶1為檢測對象,以利於說明本發明之功效,但實際實施時,本發明鋼帶折痕檢測方法亦得以量測其他種類的工件,例如鋼捲等。Referring to FIG. 1, an embodiment of the method for detecting the creases of the steel strip of the present invention is suitable for detecting the creases on the surface of a
參閱圖2,首先進行該準備步驟2,為了防止該鋼帶1因為放置於粗糙或歪斜的區域,而產生新的折痕,進而降低鋼帶品質並且影響量測結果,須將該鋼帶1放置於一標準平面11上。其中,該標準平面11是經過水平儀量測後之一水平的平面。確認該鋼帶1平整擺置後,即能如圖2所示地在該鋼帶1上設定出一欲量測之量測位置12。Referring to FIG. 2, the
接著進行該量測步驟3,由於折痕主要來自鋼帶在製造過程中所受到擠壓或是碰撞而承受的應力,而當鋼帶表面受到應力時,將會影響其導磁性。利用此一型態改變而導磁性隨之改變的特性,業界常使用一磁性應力量測裝置(圖中未繪示)來進行量測。Next, the measurement step 3 is performed. Since the creases mainly come from the stress that the steel strip is subjected to during the manufacturing process due to compression or collision, when the surface of the steel strip is stressed, its magnetic permeability will be affected. Taking advantage of this type of change and the corresponding change in permeability, the industry often uses a magnetic stress measurement device (not shown in the figure) for measurement.
進行量測之前,先定義一通過該量測位置12之軸線A,考慮到該磁性應力量測設備的技術限制及量測的精確性,較佳可沿平行該軸線A之方向每隔2毫米做一標記131,進而如圖2所示地形成一標記線13,再使用該磁性應力量測設備沿該標記131個別量測。需要注意的是,該每一標記131的間隔受到目前量測設備技術的限制,然而,隨著之後量測設備技術的突破,該每一標記131的間距將會有所改變,故不以2毫米為限。Before performing the measurement, an axis A passing through the
經過量測之後,將會獲得該鋼帶1之該標記線13的多個軸向磁通量,並可將該等磁通量分別轉換為多個應力值。定義F
為應力,分別代表X軸與Y軸之磁通量,分別代表X軸與Y軸之條件函數,其中,該等磁通量與該等應力值的關係式為。要特別說明的是,、皆為向量,得以同時呈現方向以及量值。After the measurement, a plurality of axial magnetic fluxes of the
值得說明的是,所述條件函數隨鋼帶導磁性不同而改變,例如碳含量、各種金屬成分含量,及焠火時間等等可能影響導磁性的參數,都會影響到函數的數值。因此,成分或是製程不同之鋼帶,將會有不同的條件函數。反言之,相同材質與製程之鋼帶的條件函數會是相同的。因此,廠方與客戶量測該鋼帶之該等磁通量後,藉由相同的條件函數可計算出相同的結果。It is worth noting that the condition function varies with the magnetic permeability of the steel strip. For example, the carbon content, the content of various metal components, and the quenching time and other parameters that may affect the magnetic permeability will affect the value of the function. Therefore, steel strips with different compositions or processes will have different conditional functions. Conversely, the conditional function of steel strips of the same material and manufacturing process will be the same. Therefore, after measuring the magnetic flux of the steel strip, the manufacturer and the customer can calculate the same result by the same condition function.
參閱圖3、圖4,量測出該等應力值後,再以該磁性應力量測裝置沿該標記線13移動的距離為X軸,該距離對應到的該等應力值為Y軸,描繪出一如圖3所示之應力曲線圖,圖3中所呈現之一應力曲線6,可在細微的尺度下記錄該鋼帶1表面折痕變化。然而,鋼帶表面產生折痕的原因繁雜,有可能來自於擠壓、碰撞,或是刮傷等,而每一種因素都會以一波形訊號各自呈現,所以該應力曲線6將會呈一複合波形。對於廠方而言,找出折痕的位置之餘,也希望能從該應力曲線6分析找出折痕發生的原因,並作為改善製程與器材調校的依據。Referring to FIG. 3 and FIG. 4, after measuring the stress values, the distance moved by the magnetic stress measuring device along the
因此,在該轉換步驟4時,廠方可以運用快速傅立葉轉換法(Fast Fourier Transform, FFT)分析該應力曲線6,而將圖3所呈現的該應力曲線6,轉換為以X軸為折痕缺陷間距,Y軸為彎折振幅,並描繪一如圖4所示之轉換曲線7,以利於分析原本之複合波形所含的彎折資訊。Therefore, in this conversion step 4, the factory can use the Fast Fourier Transform (FFT) to analyze the stress curve 6, and convert the stress curve 6 shown in FIG. 3 into the X-axis as a crease For the defect spacing, the Y axis is the bending amplitude, and a
最後是進行該讀取步驟5,藉由判斷該轉換曲線7上的峰值所對應到的間距,可以瞭解該鋼帶1在該間距時有一折痕,再藉由經驗法則,從該間距大小數值,判斷該折痕對應的成因,且可從該峰值的大小判斷該折痕的嚴重性。舉例來說,如圖4所示,在間距10~16毫米時,具有一峰值P1,在間距23毫米時,具有一峰值P2,則可由該峰值P1、P2出現的間距位置,判斷對應之折痕可能的成因。Finally, the
然而,判斷方式依照鋼帶製程與材質不同,而有所差別,因此廠方與客戶可藉由該標準化的數據,約定一判斷基準,之後則可依據所約定的判斷基準,進行標準的交互檢核。However, the judgment method is different according to the steel belt process and material, so the factory and the customer can use the standardized data to agree on a judgment standard, and then can perform standard interactive inspection based on the agreed judgment standard nuclear.
以下,將說明本發明鋼帶折痕檢測方法之再現性,並以現行人工檢測的鋼帶試片14、無折痕之基準鋼帶15,以及影像比對鋼帶16,以上三者相互比較,檢驗本發明鋼帶折痕檢測方法的可執行性及檢測的準確性。In the following, the reproducibility of the steel strip crease detection method of the present invention will be described, and the steel
參閱圖2、圖5,使用該磁性應力量測裝置沿該標記線13重複量測如圖2所示的該鋼帶1三次,並可分別描繪出如圖5所示的三條應力曲線。分別是一採用實線表示之第一應力曲線61、一採用虛線表示之第二應力曲線62,及一採用一點鏈線表示之第三應力曲線63。由圖5可知,三次量測出的應力曲線變化趨於一致,可見多次量測會得到相同的趨勢結果,測量的再現性佳。而該等應力曲線分別轉換出如圖6所示的三條轉換曲線,分別為一採用實線表示之第一轉換曲線71、一採用虛線表示之第二轉換曲線72,及一採用一點鏈線表示之第三轉換曲線73。如圖6所示,該等轉換曲線變化趨勢大致相同,故可證明本發明鋼帶折痕檢測方法具有再現性。Referring to FIGS. 2 and 5, the magnetic stress measuring device is used to repeatedly measure the
參閱圖7、圖8,及圖9,圖7中的鋼帶試片14折痕間距S為10~15毫米,使用該磁性應力量測裝置量測該鋼帶試片14,並如圖8所示地描繪一試片應力曲線64。而該試片應力曲線64經過快速傅立葉轉換後得到一如圖9所示的試片轉換曲線74,由圖9可知間距11~15毫米的位置有一峰值P3,表示該鋼帶試片14在間距11~15毫米時有磁力變化,由此可知在該位置具有折痕,和巨觀尺度下觀測的結果相同。Referring to FIGS. 7, 8 and 9, the crease spacing S of the steel
參閱圖10、圖11,設定圖10中之無折痕的基準鋼帶15作為對照組,運用本發明鋼帶折痕檢測方法分析該基準鋼帶15而描繪一如圖11所示之基準鋼帶轉換曲線75,可以看到並無特別突出之間距訊號,且訊號振幅相當微弱,以此說明該基準鋼帶15表面的導磁性變化不大。而該基準鋼帶15由於沒有折痕,表示其表面未受應力影響,導磁性不會出現明顯的峰谷變化,與該基準鋼帶轉換曲線75所述相同。Referring to FIGS. 10 and 11, the
參閱圖12與圖13,現行之一檢測方法為研磨使明暗程度更加明顯後,再以肉眼依據預備的參考圖來判斷比對。為了確認使用本發明鋼帶折痕檢測方法與該現行檢測方法之對應性,先使用該磁性應力量測裝置,軸向量測一影像比對鋼帶16而描繪一影像比對應力曲線65,之後研磨該影像比對鋼帶16,並拍一照片8作為記錄,再將該照片8轉為灰階,可見該影像比對鋼帶16表面折痕分為較亮及較暗的痕跡。初步比對該圖12與圖13,可見該影像比對應力曲線65的起伏轉折處,波峰對應到該較亮的痕跡,波谷則對應到該較暗的痕跡。與該照片8中亮暗痕跡相吻合。再將該照片8軸向依照色調深淺轉成一個0~255灰階曲線81,再與該影像比對應力曲線65一同比對。為方便比對,將該灰階曲線81與該影像比對應力曲線65一同放置,形成一如圖13所示之灰階-應力曲線比對圖。經過比對結果,可更清楚地看出該影像比對應力曲線65與該灰階曲線81的起伏趨勢幾乎相同。綜合前兩段所述,以此可確認使用本發明鋼帶折痕檢測方法,確實可以描述折痕型態,而具有可行性。Referring to FIG. 12 and FIG. 13, one of the current detection methods is to judge the comparison with the naked eye according to the prepared reference map after grinding to make the lightness and darkness more obvious. In order to confirm the correspondence between the detection method of the steel strip crease of the present invention and the current detection method, first use the magnetic stress measuring device, the axial vector measures an image
綜上所述,本發明鋼帶折痕檢測方法藉由導磁性與折痕間的關係,只要使用該磁性應力量測裝置,即可提供標準化、結果精確,且可說明表面折痕之應力曲線,並可運用快速傅立葉轉換法,分析該等應力曲線來探討該等折痕的成因與嚴重性。更重要的是,本發明鋼帶折痕檢測方法不需經過研磨,足以摒除研磨手法不同或判斷基準不一可能造成的誤差,同時還能降低人力成本。故確實能達成本發明之目的。In summary, the method for detecting the crease of the steel strip according to the present invention can provide standardized, accurate results and can explain the stress curve of the surface crease by using the magnetic stress measurement device as long as the magnetic stress measurement device is used And, the fast Fourier transform method can be used to analyze the stress curves to explore the cause and severity of the creases. More importantly, the steel strip crease detection method of the present invention does not need to be ground, which is enough to eliminate errors that may be caused by different grinding methods or different judgment standards, and at the same time reduce labor costs. Therefore, the purpose of cost invention can indeed be achieved.
惟以上所述者,僅為本發明之實施例而已,當不能以此限定本發明實施之範圍,凡是依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。However, the above are only examples of the present invention, and should not be used to limit the scope of the present invention. Any simple equivalent changes and modifications made according to the scope of the patent application of the present invention and the content of the patent specification are still classified as This invention covers the patent.
1:鋼帶11:標準平面12:量測位置13:標記線131:標記14:鋼帶試片15:基準鋼帶16:影像比對鋼帶2:準備步驟3:量測步驟4:轉換步驟5:讀取步驟6:應力曲線61:第一應力曲線62:第二應力曲線63:第三應力曲線64:試片應力曲線65:影像比對應力曲線7:轉換曲線71:第一轉換曲線72:第二轉換曲線73:第三轉換曲線74:試片轉換曲線75:基準鋼帶轉換曲線8:照片81:灰階曲線A:軸線P1:峰值P2:峰值P3:峰值S:間距 1: steel strip 11: standard plane 12: measurement position 13: mark line 131: mark 14: steel strip test piece 15: reference steel strip 16: image comparison steel strip 2: preparation step 3: measurement step 4: conversion Step 5: Reading step 6: Stress curve 61: First stress curve 62: Second stress curve 63: Third stress curve 64: Test piece stress curve 65: Image comparison stress curve 7: Conversion curve 71: First conversion Curve 72: Second conversion curve 73: Third conversion curve 74: Test piece conversion curve 75: Reference steel strip conversion curve 8: Photo 81: Gray scale curve A: Axis P1: Peak P2: Peak P3: Peak S: Spacing
本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一方塊流程圖,說明本發明鋼帶折痕檢測方法之一實施例; 圖2是一示意圖,說明該實施例的一準備步驟; 圖3是一曲線圖,說明量測該鋼帶而描繪出之一應力曲線圖; 圖4是一曲線圖,說明該應力曲線圖經由快速傅立葉轉換而描繪出之一轉換曲線圖; 圖5是一類似於圖3之曲線圖,說明重複量測該鋼帶三次而分別描繪出之三條應力曲線; 圖6是一類似於圖4之曲線圖,說明該等應力曲線經由快速傅立葉轉換而描繪出之三條轉換曲線; 圖7是一局部正視圖,說明一鋼帶試片的表面折痕型態; 圖8是一類似於圖3之曲線圖,說明量測該鋼帶試片而描繪出之一試片應力曲線圖; 圖9是一類似於圖4之曲線圖,說明該試片應力曲線圖經由快速傅立葉轉換而描繪出之一試片轉換曲線圖; 圖10是一局部正視圖,說明一基準鋼帶的表面折痕型態; 圖11是一類似於圖4之曲線圖,說明該基準鋼帶經由本實施例描繪出之一基準鋼帶轉換曲線圖; 圖12是一局部正視圖,說明一影像比對鋼帶的表面折痕型態;及 圖13是一曲線圖,說明一灰階曲線與一影像比對應力曲線之比較。Other features and effects of the present invention will be clearly presented in the embodiment with reference to the drawings, in which: FIG. 1 is a block flow diagram illustrating an embodiment of the method for detecting the crease of the steel strip of the present invention; FIG. 2 is a A schematic diagram illustrating a preparation step of the embodiment; FIG. 3 is a graph illustrating a stress curve drawn by measuring the steel strip; FIG. 4 is a graph illustrating the stress curve through fast Fourier transform One conversion curve is depicted; FIG. 5 is a graph similar to FIG. 3, illustrating the three stress curves respectively depicted by repeatedly measuring the steel strip three times; FIG. 6 is a graph similar to FIG. 4, illustrating The three transformation curves are depicted by the fast Fourier transformation of these stress curves; FIG. 7 is a partial front view illustrating the surface crease pattern of a steel strip test piece; FIG. 8 is a graph similar to FIG. 3, illustrating Measuring the steel strip test piece and drawing a stress curve of one test piece; FIG. 9 is a graph similar to FIG. 4, illustrating that the stress curve of the test piece depicts a test piece conversion curve through fast Fourier transform Fig. 10 is a partial front view illustrating the surface crease pattern of a reference steel strip; FIG. 11 is a graph similar to FIG. 4 illustrating that the reference steel strip depicts a reference steel strip through this embodiment Conversion graph; FIG. 12 is a partial front view illustrating the surface crease pattern of an image comparison steel strip; and FIG. 13 is a graph illustrating the comparison of a gray scale curve and an image comparison stress curve.
2:準備步驟 2: preparation steps
3:量測步驟 3: Measurement steps
4:轉換步驟 4: Conversion steps
5:讀取步驟 5: Reading steps
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107138893A TWI663395B (en) | 2018-11-02 | 2018-11-02 | Steel strip crease detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107138893A TWI663395B (en) | 2018-11-02 | 2018-11-02 | Steel strip crease detection method |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI663395B TWI663395B (en) | 2019-06-21 |
TW202018284A true TW202018284A (en) | 2020-05-16 |
Family
ID=67764641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107138893A TWI663395B (en) | 2018-11-02 | 2018-11-02 | Steel strip crease detection method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI663395B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI744991B (en) * | 2020-07-20 | 2021-11-01 | 中國鋼鐵股份有限公司 | Method for evaluating roughening macroscopic defect of surface of formed steel material |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6057684A (en) * | 1995-10-31 | 2000-05-02 | Yoshihiro Murakami | Magnetic flaw detection apparatus using an E-shaped magnetic sensor and high-pass filter |
JP5186837B2 (en) * | 2007-08-23 | 2013-04-24 | Jfeスチール株式会社 | Method and apparatus for detecting minute irregular surface defects |
KR101482347B1 (en) * | 2012-12-27 | 2015-01-13 | 주식회사 포스코 | Apparatus and method of detecting inner defect of steel plate |
CN103499636B (en) * | 2013-10-11 | 2016-04-13 | 中国科学院大学 | Based on the lossless detection method of microdefect in the thin plate class ferromagnetic material of the magnetostatic power of survey |
CN106404900A (en) * | 2016-11-02 | 2017-02-15 | 中国计量大学 | Device for detecting steel plate surface defect |
CN206161591U (en) * | 2016-11-02 | 2017-05-10 | 中国计量大学 | Steel sheet surface defect detection device |
-
2018
- 2018-11-02 TW TW107138893A patent/TWI663395B/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI744991B (en) * | 2020-07-20 | 2021-11-01 | 中國鋼鐵股份有限公司 | Method for evaluating roughening macroscopic defect of surface of formed steel material |
Also Published As
Publication number | Publication date |
---|---|
TWI663395B (en) | 2019-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6658711B2 (en) | Surface defect detection method and surface defect detection device | |
US7817845B2 (en) | Multi-frequency image processing for inspecting parts having complex geometric shapes | |
US20050246108A1 (en) | Method and system for characterizing structural damage from observing surface distortions | |
KR0169985B1 (en) | Automatic package inspection method | |
CN110243922B (en) | ACFM visual imaging method for irregular cracks of ferromagnetic material | |
JPH05240840A (en) | Method for inspecting component | |
EP2482067A1 (en) | A non-destructive test method for automatic fastener inspection | |
JPH11108759A (en) | Defect inspecting method and device therefor | |
CN110308043A (en) | Increasing material manufacturing product earlier damage evaluation method based on metal magnetic memory test | |
JP4479877B2 (en) | Defect inspection method by image recognition | |
CN108335310B (en) | Portable grain shape and granularity detection method and system | |
JP2008256699A (en) | Method and algorithm for elongated defect in eddy current inspection system | |
CN117969601A (en) | Machine tool accessory casting quality defect detection method | |
JP5347661B2 (en) | Belt surface inspection apparatus, surface inspection method, and program | |
TW202018284A (en) | Steel strip crease detection method including a preparation step, a measurement step, a conversion step, and a reading step | |
CN102914479A (en) | Automatic Brinell hardness testing method | |
CN109030132B (en) | Preparation method of creep damage reference block, damage detection method and system | |
JP7207386B2 (en) | Surface defect inspection method, surface defect inspection device, steel sheet manufacturing method, steel sheet quality control method, and steel sheet manufacturing equipment | |
US10024775B2 (en) | Method and device for determining the abrasion properties of a coated flat product | |
CN117367516A (en) | Aluminum-plastic composite board performance detection system based on multidimensional test | |
JP4288325B2 (en) | Defect inspection method by image recognition | |
KR102434224B1 (en) | Inspection apparatus and method by magnetic resonance inspection method including elliptical algorithm | |
KR20110111751A (en) | Quantitative evaluation of scratch-induced damages on polymeric and coating materials | |
JPS60143769A (en) | Particle size and second phase fraction measuring apparatus | |
CN115496706A (en) | Surface corrosion ratio measuring method based on digital image processing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |