TW202015004A - Analysis method for parking occupancy estimation - Google Patents

Analysis method for parking occupancy estimation Download PDF

Info

Publication number
TW202015004A
TW202015004A TW107135031A TW107135031A TW202015004A TW 202015004 A TW202015004 A TW 202015004A TW 107135031 A TW107135031 A TW 107135031A TW 107135031 A TW107135031 A TW 107135031A TW 202015004 A TW202015004 A TW 202015004A
Authority
TW
Taiwan
Prior art keywords
parking
vehicle
range
map database
score
Prior art date
Application number
TW107135031A
Other languages
Chinese (zh)
Other versions
TWI676971B (en
Inventor
鄭宇哲
Original Assignee
貼個夠有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 貼個夠有限公司 filed Critical 貼個夠有限公司
Priority to TW107135031A priority Critical patent/TWI676971B/en
Application granted granted Critical
Publication of TWI676971B publication Critical patent/TWI676971B/en
Publication of TW202015004A publication Critical patent/TW202015004A/en

Links

Images

Abstract

The present invention discloses an analysis method for parking occupancy estimation. The method analyzes a driver's behavior through the GPS and the driving mode. Sever record a driving path and turning angle of the driver's vehicle when the vehicle speed drops, then the server analyzes the parking occupancy estimation based on the driving path. In this way, the server can analyze the parking occupancy estimation through an intelligent device. The drivers can also get real-time parking status via mobile applications.

Description

停車格使用程度分析方法Analysis method of parking space usage

本發明關於一種尋找車位難易程度的評估方法,特別是指一種利用行動裝置的定位裝置分析駕駛者行車模式,進而推測停車格使用程度的分析方法。The invention relates to an evaluation method for the difficulty of finding a parking space, in particular to an analysis method for analyzing a driving pattern of a driver by using a positioning device of a mobile device, and then inferring the use degree of a parking space.

近年來,隨著科技進步以及生活水平的提高,汽車已經進入千家萬戶,成為人們出行、旅遊的代步工具。汽車在給人們帶來便利的同時,因應汽車的普及,各式各樣的輔助工具也隨之誕生,從車用智能螢幕、倒車輔助、抬頭顯示器,到衛星導航系統、車流量分析等等,大大便利了人們的生活。In recent years, with the advancement of science and technology and the improvement of living standards, automobiles have entered thousands of households and become a means of transportation for people to travel and travel. While cars bring convenience to people, in response to the popularity of cars, a variety of auxiliary tools are also born, from smart screens for cars, reversing assistance, head-up displays, to satellite navigation systems, traffic flow analysis, etc. Greatly facilitated people's lives.

由於都會區人口稠密,車流量相對較多,為了減少塞車之困擾,市面上已經出現許多道路車流量監測分析技術的系統及方法,使用者可以透過手機下載應用程式,輕易的了解到各個道路行車的情況,是否有堵車、車禍甚至交通管制等情形,進而更改行駛路線。Due to the dense population of the metropolitan area and the relatively large traffic volume, in order to reduce the congestion of traffic jams, many systems and methods of road traffic flow monitoring and analysis technology have appeared on the market. Users can easily download the application through the mobile phone to easily understand the various road traffic Situation, whether there are traffic jams, car accidents or even traffic control, and then change the driving route.

在駕駛者到達目的地後,由於不明白該路段的停車位的使用程度,駕駛者有可能需要反覆的在同一區域內持續兜圈找停車位,這段時間消耗的不只是汽車油耗及廢氣排放,更大大浪費了駕駛者的寶貴時間。After the driver arrives at the destination, because he does not understand the extent of the parking spaces on the road, the driver may need to repeatedly find parking spaces in the same area. This period of time consumes more than just car fuel consumption and exhaust emissions. , A greater waste of the driver’s precious time.

為了避免上述情況,除了在每個停車格建置偵測系統以求更精確的獲得停車位狀態外,部分都市管理者則透過停車收費人員的開單紀錄亦可了解特定路段的停車位狀態。例如中華民國專利第M332903號公開的一種停車位即時監控系統,即是透過於停車格設置RFID系統,判斷是否有車輛正停放於停車格內的技術。In order to avoid the above situation, in addition to installing a detection system in each parking bay to obtain a more accurate parking space status, some city managers can also understand the parking space status of specific road sections through the billing records of parking toll officers. For example, a real-time parking space monitoring system disclosed in Republic of China Patent No. M332903 is a technology that determines whether a vehicle is parked in a parking space by setting an RFID system in the parking space.

然而,在每個停車格建置偵測系統有建置成本過高的問題,透過收費人員的開單紀錄除了需要具有即時通訊能力的開單機外,開單人員的資訊更新不夠及時也是很大的問題。However, there is a problem that the installation cost of each parking grid installation detection system is too high. In addition to the need for a billing machine with instant messaging capabilities, the billing personnel’s billing record is also very large. The problem.

因此,如何讓駕駛者透過資訊系統在遠端了解一路段的停車位狀況,以減少尋找停車位造成的各項問題是一個相當重要課題Therefore, how to let the driver know the parking space status of a road section remotely through the information system to reduce the problems caused by finding parking spaces is a very important issue

本創作的目的在於提供一種停車格使用程度分析方法,利用智慧型裝置的定位模組,即可達到成本更低以及更即時的停車格使用程度分析。The purpose of this creation is to provide a method for analyzing the usage of parking spaces. Using the positioning module of a smart device, it is possible to achieve a lower cost and more immediate analysis of the usage of parking spaces.

為了達到上述目的,本創作係採取以下之技術手段予以達成,其中,本創作提供一種停車格使用程度分析方法,包括下列步驟:a提供一地圖資料庫、一定位裝置以及一應用程式,該地圖資料庫儲存有任意路段的一即時平均速度以及一難停車分數,該定位裝置可收集一車輛的定位、速度以及行進方向等資訊,該應用程式與該地圖資料庫以及該定位裝置電訊連接。b啟動該定位裝置以及該應用程式。c該定位裝置收集該車輛的定位、速度以及行進方向等資訊,並傳送至該應用程式。d該應用程式判斷該車輛的速度是否降低至前三分鐘平均速度的特定百分比以下或所行駛路段平均速度的特定百分比以下。e當判斷結果為是,開始紀錄該車輛的當下位置、移動距離、移動路徑以及轉向角度,該車輛的當下位置定義為一起始座標。f判斷該車輛是否於一第一範圍內停車。g當判斷結果為是,回傳一第一數據至該地圖資料庫更新該難停車分數,並結束分析。h當判斷結果為否,紀錄該車輛的總轉向角度與行駛時間,並判斷該車輛是否離開一第二範圍。i當判斷該車輛未離開該第二範圍以及於該第二範圍內停車,根據該總轉向角度的大小與該行駛時間計算並回傳一第二數據至該地圖資料庫更新該難停車分數。j  當判斷該車輛離開該第二範圍,則結束分析。In order to achieve the above purpose, this creation adopts the following technical means to achieve it. Among them, this creation provides a method for analyzing the usage of parking spaces, including the following steps: a provides a map database, a positioning device and an application, the map The database stores a real-time average speed and a difficult parking score of any road segment. The positioning device can collect information such as the location, speed, and direction of travel of a vehicle. The application is connected to the map database and the positioning device by telecommunications. b Start the positioning device and the application. c The positioning device collects information such as the vehicle's positioning, speed, and direction of travel, and transmits it to the application. d The app judges whether the speed of the vehicle has dropped below a certain percentage of the average speed of the previous three minutes or below a certain percentage of the average speed of the road section traveled. e When the judgment result is yes, start recording the current position, moving distance, moving path and steering angle of the vehicle. The current position of the vehicle is defined as a starting coordinate. f. Determine whether the vehicle stops within a first range. g When the judgment result is yes, return a first data to the map database to update the difficult parking score, and end the analysis. h When the judgment result is no, record the total steering angle and travel time of the vehicle, and judge whether the vehicle leaves a second range. i When it is judged that the vehicle does not leave the second range and stops in the second range, calculate and return a second data to the map database to update the difficult parking score according to the size of the total steering angle and the travel time. j When it is judged that the vehicle leaves the second range, the analysis is ended.

在本創作一實施例中,該步驟 e更包括:當判斷結果為否,重複執行步驟 c。In an embodiment of the present creation, the step e further includes: when the judgment result is no, repeat the step c.

在本創作一實施例中,所述第一範圍定義為以該起始座標為起點的一圓形區域範圍。In an embodiment of the present creation, the first range is defined as a circular area starting from the starting coordinate.

在本創作一實施例中,所述第二範圍定義為以該起始座標為中心的一圓形區域範圍。In an embodiment of the present creation, the second range is defined as a circular area range centered on the starting coordinate.

在本創作一實施例中,該第二範圍的尺寸大於該第一範圍的尺寸。In an embodiment of the present creation, the size of the second range is larger than the size of the first range.

在本創作一實施例中,該步驟 f更包括:該地圖資料庫收集一特定長度路段的一特定時間區間的全部該難停車分數,將全部該難停車分數剔除離群值或誤差值後再計算一平均數值,利用該平均數值更新該地圖資料庫的難停車分數。In an embodiment of the present invention, the step f further includes: the map database collects all the hard parking scores in a specific time interval of a road section of a specific length, and removes the outliers or error values of all the hard parking scores. An average value is calculated, and the average parking value is used to update the difficult parking score of the map database.

在本創作一實施例中,該步驟 h更包括:該地圖資料庫收集一特定長度路段的一特定時間區間的全部該難停車分數,將全部該難停車分數剔除離群值或誤差值後再計算一平均數值,利用該平均數值更新該地圖資料庫的難停車分數。In an embodiment of the present invention, the step h further includes: the map database collects all the hard parking scores in a specific time interval of a road section of a specific length, and removes all out of the hard parking scores after outliers or error values. An average value is calculated, and the average parking value is used to update the difficult parking score of the map database.

在本創作一實施例中,該難停車分數是根據該路段的停車格多寡、性質、車流量等因素給予的一預設數值。In an embodiment of the present invention, the difficult parking score is a preset value given according to factors such as the number of parking spaces, the nature, and the traffic volume of the road section.

在本創作一實施例中,該第二數據為該應用程式根據該總轉向角度的大小與該車輛行駛時間,給予該車輛所行駛過之路徑的一分數。In an embodiment of the invention, the second data is a score given by the application to the path traveled by the vehicle according to the size of the total steering angle and the driving time of the vehicle.

為達成上述目的及功效,本創作所採用之技術手段及構造,茲繪圖就本創作較佳實施例詳加說明其特徵與功能如下,俾利完全了解,但須注意的是,該等內容不構成本發明的限定。In order to achieve the above-mentioned purposes and effects, the technical means and structure adopted in this creation, the drawings and details of the preferred embodiment of this creation are described in detail below. Its features and functions are as follows. Poli fully understands, but it should be noted that these contents are not This constitutes a limitation of the present invention.

請同時參閱圖1至圖3所示,其為本創作停車格使用程度分析方法較佳實施例之方法流程圖、系統結構圖以及車輛路徑示意圖。本創作提供一種停車格使用程度分析方法,包括下列步驟:Please also refer to FIG. 1 to FIG. 3, which are the method flowchart, system structure diagram and vehicle path diagram of the preferred embodiment of the method for analyzing the usage degree of the parking space. This creation provides a method for analyzing the usage of parking spaces, including the following steps:

步驟100:提供一地圖資料庫 1、一定位裝置 2以及一應用程式 3。該地圖資料庫 1可以為一雲端伺服器,但不限於此,其儲存有任意路段的一即時平均速度以及一難停車分數。該即時平均速度可透過社群網站(例如Google Map)或網際網路取得,所述難停車分數是根據該路段的停車格多寡、性質(商業區、工業區或住宅區)、車流量等因素給予的一預設數值。該預設數值可以為分數指標或是顏色指標,舉例來說,本實施例使用分數指標,將該難停車分數區分為零分至一百分,分數越低代表越容易找到停車位,其可以供使用者尋找停車格時參考。該定位裝置 2可抓取一車輛 的定位、速度以及行進方向等資訊。該應用程式 3與該地圖資料庫 1以及該定位裝置 2電訊連接,該應用程式 3可從該地圖資料庫 1下載資料以及將該定位裝置 2收集的資訊上傳至該地圖資料庫 1。較佳的,該定位裝置 2以及該應用程式 3可整合至一智慧型手機或是行動裝置,使用者位於車輛上時可透過智慧型手機或是行動裝置,即時觀看該地圖資料庫 1儲存的資訊內容。Step 100: Provide a map database 1, a positioning device 2, and an application 3. The map database 1 may be a cloud server, but it is not limited to this, and it stores a real-time average speed of any road segment and a difficult parking score. The real-time average speed can be obtained through a community website (such as Google Map) or the Internet. The difficulty parking score is based on the number of parking lots, the nature (commercial area, industrial area or residential area), traffic flow and other factors A preset value given. The preset value may be a score indicator or a color indicator. For example, in this embodiment, a score indicator is used to distinguish the difficult parking score from zero to one hundred. The lower the score, the easier it is to find a parking space. For users to refer to when searching for parking spaces. The positioning device 2 can capture information such as a vehicle's positioning, speed, and direction of travel. The application 3 is in telecommunication connection with the map database 1 and the positioning device 2. The application 3 can download data from the map database 1 and upload the information collected by the positioning device 2 to the map database 1. Preferably, the positioning device 2 and the application 3 can be integrated into a smartphone or mobile device. When the user is on the vehicle, the smart phone or mobile device can be used to view the stored data in the map database 1 in real time. News content.

在本創作另一實施例中,該定位裝置 2為該車輛的定位模組,該應用程式 3為安裝智慧型手機上的系統程式,該應用程式 3可透過藍芽連線或無線網路連線方式與該車輛 4的定位模組電訊連接,以取得該車輛 4的定位、速度以及行進方向等資訊。In another embodiment of the present creation, the positioning device 2 is a positioning module of the vehicle, the application 3 is a system program installed on a smartphone, and the application 3 can be connected via a Bluetooth connection or a wireless network It is connected to the positioning module of the vehicle 4 by wire to obtain information such as the positioning, speed and traveling direction of the vehicle 4.

步驟110:啟動該定位裝置 2以及該應用程式 3。Step 110: Activate the positioning device 2 and the application 3.

步驟120:該定位裝置 2抓取一使用者所在位置一車輛 4的定位、速度以及行進方向等資訊。一使用者啟動該定位裝置 2以及該應用程式 3後,該定位裝置 2可抓取該使用者所在位置之車輛 4的定位、速度以及行進方向等資訊,並傳送至該應用程式 3。Step 120: The positioning device 2 captures information such as the location, speed and direction of travel of a vehicle 4 where a user is located. After a user activates the positioning device 2 and the application 3, the positioning device 2 can capture information such as the positioning, speed, and direction of travel of the vehicle 4 at the user's location, and send the information to the application 3.

步驟130:該應用程式 3判斷該車輛 4的速度是否降低至特定分鐘(例如:三分鐘)平均速度的特定百分比以下或所行駛路段平均速度的特定百分比以下。具體而言,可以為百分之二十至五十之間,較佳可為百分之二十、三十、四十或五十。當判斷結果為是,開始紀錄該車輛 4的當下位置、移動距離、移動路徑以及轉向角度。當判斷結果為否,重複執行步驟  120。Step 130: The application 3 determines whether the speed of the vehicle 4 is reduced below a certain percentage of the average speed of a specific minute (for example, three minutes) or below a certain percentage of the average speed of the road section traveled. Specifically, it may be between 20% and 50%, preferably 20%, 30, 40 or 50%. When the judgment result is yes, the current position, moving distance, moving path and steering angle of the vehicle 4 are started to be recorded. When the judgment result is no, step 120 is repeated.

步驟140:當該車輛 4持續轉彎造成車速明顯下降,可以判斷該車輛 4很有可能在找路或是正在尋找停車位,故該應用程式 3開始紀錄該車輛 4的當下位置、移動距離、移動路徑以及轉向角度,該車輛 4的當下位置定義為一起始座標 P。Step 140: When the vehicle 4 continues to turn and the speed of the vehicle drops significantly, it can be judged that the vehicle 4 is likely to find a way or is looking for a parking space, so the application 3 starts to record the current position, moving distance and movement of the vehicle 4 The path and the steering angle, the current position of the vehicle 4 is defined as a starting coordinate P.

步驟150:判斷該車輛 4是否於一第一範圍 91內停車。其中,所述第一範圍 91定義為以該起始座標 P為起點的一圓形區域範圍。在本創作一實施例中,該第一範圍 91可為五十公尺,代表該車輛 4於該起始座標 P為起點,行駛距離小於五十公尺的移動範圍。Step 150: Determine whether the vehicle 4 stops within a first range 91. Wherein, the first range 91 is defined as a circular area starting from the starting coordinate P. In an embodiment of the present creation, the first range 91 may be fifty meters, which represents the moving range of the vehicle 4 at the starting coordinate P as a starting point and a travel distance less than fifty meters.

步驟160:當判斷結果為是,回傳一第一數據至該地圖資料庫 1更新該難停車分數。該車輛 4於該第一範圍 91內停車完成,該應用程式 3分析該第一範圍 91為不擁擠,該難停車分數為零分,因此該應用程式 3將上述分析結果做為第一數據傳送至該地圖資料庫 1,以更新該路段的難停車分數,同時結束分析。Step 160: When the judgment result is yes, return a first data to the map database 1 to update the difficult parking score. The vehicle 4 finishes parking in the first range 91, the application 3 analyzes that the first range 91 is not crowded, and the difficult parking score is zero, so the application 3 transmits the above analysis result as the first data Go to the map database 1 to update the difficult parking score of the road section and end the analysis.

步驟170:當判斷結果為否,紀錄該車輛 4的總轉向角度,並判斷該車輛 4是否離開一第二範圍 92。該車輛 4並未於該第一範圍 91內停車完成,則該應用程式 3根據該定位裝置 2所收集之該車輛 4行進方向資訊計算該車輛 4的總轉向角度,同時判斷該車輛 4是否離開一第二範圍 92。其中,該第二範圍 92定義為以該起始座標 P為中心的一圓形區域範圍,且該第二範圍 92的大小大於該第一範圍 91。於本實施例中,該第二範圍 92的半徑為五百公尺。Step 170: When the judgment result is negative, record the total steering angle of the vehicle 4 and determine whether the vehicle 4 leaves a second range 92. If the vehicle 4 has not stopped in the first range 91, the application 3 calculates the total steering angle of the vehicle 4 based on the information about the direction of travel of the vehicle 4 collected by the positioning device 2, and determines whether the vehicle 4 has left One second range 92. The second range 92 is defined as a circular area centered on the starting coordinate P, and the size of the second range 92 is larger than the first range 91. In this embodiment, the radius of the second range 92 is 500 meters.

步驟180:當判斷該車輛未離開該第二範圍以及於該第二範圍內停車,根據該總轉向角度的大小與該行駛時間計算並回傳一第二數據至該地圖資料庫 1更新該難停車分數。該第二數據為該應用程式 3根據該車輛4行駛時間以及根據該總轉向角度的大小與該行駛時間計算並,給予該車輛 4所行駛過之路徑的一分數,並將其做為第二數據傳送至該地圖資料庫 1,以更新該路段的難停車分數。Step 180: When it is determined that the vehicle does not leave the second range and stops in the second range, calculate and return a second data to the map database 1 according to the total steering angle and the travel time to update the difficulty Parking score. The second data is calculated by the application 3 according to the driving time of the vehicle 4 and according to the magnitude of the total steering angle and the driving time, giving a score to the path traveled by the vehicle 4 and using it as the second The data is sent to the map database 1 to update the difficult parking score of the road section.

請更加參閱圖4所示,其為本創作停車格使用程度分析方法之第二數據分數示意圖。舉例來說,當該總轉向角度介於一百六十度至兩百度之間,判斷該車輛 4所行駛過之路徑的難停車分數介於一分至三十分之間;當該總轉向角度介於兩百五十度至兩百九十度之間,判斷該車輛 4所行駛過之路徑的難停車分數介於三十一分至五十分之間;當該總轉向角度介於三百四十度至三百八十度之間,判斷該車輛 4所行駛過之路徑的難停車分數介於五十一分至七十分之間;當該總轉向角度大於七百度,則判斷該車輛 4所行駛過之路徑的難停車分數介於七十一分至一百分之間。於圖3中,該應用程式 3起始座標 P開始記錄該車輛 4的行駛路徑,而該車輛 4經過三個轉彎(約兩百七十度)到達車位 X停好車子,故該應用程式 3將起始座標 P至車位 X之間的行駛路徑給予對應的分數(三十一分至五十分)。Please refer to FIG. 4 for more information, which is a schematic diagram of the second data score of the analysis method of the usage degree of the parking grid. For example, when the total steering angle is between one hundred and sixty degrees to two Baidu, it is determined that the difficult parking score of the path traveled by the vehicle 4 is between one minute and thirty. The angle is between two hundred and fifty degrees to two hundred and ninety degrees, and the difficult parking score of the path traveled by the vehicle 4 is determined to be between 31 points and 50 points; when the total steering angle is between Between 340 degrees and 380 degrees, the difficult parking score of the path traveled by the vehicle 4 is between 51 points and 70 points; when the total steering angle is greater than 70 Baidu, then The difficult parking score of the path traveled by the vehicle 4 is determined to be between 71 points and 1 percent. In FIG. 3, the starting coordinate P of the application 3 starts to record the driving path of the vehicle 4, and the vehicle 4 reaches the parking space X after three turns (about two hundred and seventy degrees) to park the car, so the application 3 The driving path from the starting coordinate P to the parking space X is given a corresponding score (31 points to 50 points).

步驟190:當判斷該車輛離開該第二範圍,則結束分析。當該車輛 4駛離該第二範圍 92,則該車輛可能不是在找車位,故停止追蹤程序,結束追蹤。Step 190: When it is determined that the vehicle leaves the second range, the analysis is ended. When the vehicle 4 drives away from the second range 92, the vehicle may not be looking for a parking space, so the tracking process is stopped and the tracking is ended.

值得一提的是,由於該使用者可能在找路或是很幸運馬上找到停車位,該地圖資料庫 1並不會根據單一筆數據資料做為評估停車格使用程度的依據。考慮到離群值(或誤差值)會影響到難停車分數的精準度,該地圖資料庫 1會加入統計的方法。故該步驟160可更包括:該地圖資料庫 1收集一特定長度路段(例如二十公尺)的一特定時間區間(如下午三點至下午四點)的全部難停車分數,將全部難停車分數剔除離群值(或誤差值)後再計算平均數值,利用該平均數值更新該地圖資料庫 1的難停車分數。透過上述方式可以更有效的評估停車格使用程度。It is worth mentioning that, because the user may be looking for a way or is lucky to find a parking space immediately, the map database 1 will not be based on a single piece of data as a basis for evaluating the use of parking spaces. Considering that outliers (or error values) will affect the accuracy of difficult parking scores, the map database 1 will add statistical methods. Therefore, the step 160 may further include: the map database 1 collects all difficult parking scores in a specific time interval (eg, 3 pm to 4 pm) of a road section of a specific length (for example, 20 meters), and all the hard parking spots After excluding the outliers (or error values), the average value is calculated, and the average value is used to update the difficult parking score of the map database 1. The use of parking spaces can be more effectively evaluated through the above methods.

同理,該步驟180可更包括:收集一特定長度路段的一特定時間區間的全部難停車分數,將全部難停車分數剔除離群值(或誤差值)後再計算平均數值,利用該平均數值更新該地圖資料庫 1的難停車分數。透過上述方式可以更有效的評估停車格使用程度。Similarly, the step 180 may further include: collecting all difficult parking scores in a specific time interval of a certain length of road section, removing all outlier parking scores after removing outliers (or error values), and then calculating an average value, using the average value Update the difficult parking score of the map database 1. The use of parking spaces can be more effectively evaluated through the above methods.

綜合上述,可以看出本發明提供了一種停車格使用程度分析方法,利用智慧型裝置的定位模組,即可達到成本更低以及更即時的停車格使用程度分析,讓駕駛者透過應用程式在遠端了解一路段的停車位狀況。此外,系統一旦發現車輛車速減慢或一直在轉彎,即可啟動分析機制,並在車輛移動的同時收集資訊並持續更新,可以更即時的將尋找停車格之難易度供使用者參考。Based on the above, it can be seen that the present invention provides a parking grid usage analysis method. Using a positioning module of a smart device, it is possible to achieve a lower cost and more real-time analysis of the parking grid usage. The far end knows the parking space status of a road section. In addition, once the system finds that the vehicle speed is slowing or has been turning, it can start the analysis mechanism, collect information and continuously update while the vehicle is moving, and can more easily find the difficulty of finding the parking grid for the user's reference.

經過上述的詳細說明,已充分顯示本創作具有實施的進步性,且為前所未見的新創作,完全符合發明專利要件,爰依法提出申請。惟以上所述僅為本創作的較佳實施例而已,當不能用以限定本創作實施的範圍,亦即依本創作專利範圍所作的均等變化與修飾,皆應屬於本發明專利涵蓋的範圍內。After the above detailed description, it has been fully shown that this creation is progressive in implementation, and is a new creation that has never been seen before, which fully meets the requirements of the invention patent, and the application is submitted according to law. However, the above is only the preferred embodiment of this creation, and it should not be used to limit the scope of implementation of this creation, that is, equal changes and modifications made according to the scope of this creative patent, should all fall within the scope of this invention patent .

1:地圖資料庫 2:定位裝置 3:應用程式 4:車輛 91:第一範圍 92:第二範圍 P:起始座標 X:車位 步驟 100:提供一地圖資料庫 、一定位裝置以及一應用程式 步驟 110:啟動該定位裝置 以及該應用程式 步驟 120:該定位裝置抓取一使用者所在位置一車輛的定位、速度以及行進方向等資訊 步驟 130:該應用程式判斷該車輛的速度是否降低至前三分鐘平均速度的特定百分比以下或所行駛路段平均速度的特定百分比以下 步驟 140:開始紀錄該車輛的當下位置、移動距離、移動路徑以及轉向角度 步驟 150:判斷該車輛是否於一第一範圍內停車 步驟 160:回傳一第一數據至該地圖資料庫更新該難停車分數 步驟 170:紀錄該車輛的總轉向角度與行駛時間,並判斷該車輛是否離開一第二範圍 步驟 180:根據該總轉向角度的大小與該行駛時間計算並回傳一第二數據至該地圖資料庫更新該難停車分數 步驟 190:結束分析1: Map database 2: positioning device 3: application 4: Vehicle 91: First range 92: Second range P: starting coordinate X: parking space Step 100: provide a map database, a positioning device and an application Step 110: Activate the positioning device and the application Step 120: The positioning device captures information such as a user's location, a vehicle's positioning, speed, and direction of travel Step 130: The application determines whether the speed of the vehicle has dropped below a certain percentage of the average speed of the first three minutes or below a certain percentage of the average speed of the road section traveled Step 140: Start recording the vehicle's current position, moving distance, moving path and steering angle Step 150: determine whether the vehicle stops within a first range Step 160: Return a first data to the map database to update the difficult parking score Step 170: Record the total steering angle and travel time of the vehicle, and determine whether the vehicle leaves a second range Step 180: Calculate and return a second data to the map database according to the total steering angle and the travel time to update the difficult parking score Step 190: end the analysis

圖1為本創作停車格使用程度分析方法之方法流程圖; 圖2為本創作停車格使用程度分析方法之系統結構圖; 圖3為本創作停車格使用程度分析方法之車輛路徑示意圖; 圖4為本創作停車格使用程度分析方法之第二數據分數示意圖。Figure 1 is a flowchart of a method for creating a parking grid usage analysis method; Figure 2 is a system structure for creating a parking grid usage analysis method; Figure 3 is a schematic diagram of a vehicle path for creating a parking grid usage analysis method; Figure 4 This is a schematic diagram of the second data score of the analysis method of the usage degree of the parking grid.

步驟100:提供一地圖資料庫、一定位裝置以及一應用程式 Step 100: Provide a map database, a positioning device and an application

步驟110:啟動該定位裝置以及該應用程式 Step 110: Activate the positioning device and the application

步驟120:該定位裝置抓取一使用者所在位置一車輛的定位、速度以及行進方向等資訊 Step 120: The positioning device captures information such as a user's location, a vehicle's positioning, speed, and direction of travel

步驟130:該應用程式判斷該車輛的速度是否降低至前三分鐘平均速度的特定百分比以下或所行駛路段平均速度的特定百分比以下 Step 130: The application determines whether the speed of the vehicle is reduced below a certain percentage of the average speed of the first three minutes or below a certain percentage of the average speed of the road section traveled

步驟140:開始紀錄該車輛的當下位置、移動距離、移動路徑以及轉向角度 Step 140: Start recording the current position, moving distance, moving path and steering angle of the vehicle

步驟150:判斷該車輛是否於一第一範圍內停車 Step 150: Determine whether the vehicle stops within a first range

步驟160:回傳一第一數據至該地圖資料庫更新該難停車分數 Step 160: Return a first data to the map database to update the difficult parking score

步驟170:紀錄該車輛的總轉向角度與行駛時間,並判斷該車輛是否離開一第二範圍 Step 170: Record the total steering angle and travel time of the vehicle, and determine whether the vehicle leaves a second range

步驟180:根據該總轉向角度的大小與該行駛時間計算並回傳一第二數據至該地圖資料庫更新該難停車分數 Step 180: Calculate and return a second data to the map database to update the difficult parking score based on the total steering angle and the travel time

步驟190:結束分析 Step 190: end analysis

Claims (9)

一種停車格使用程度分析方法,包括下列步驟: a 提供一地圖資料庫、一定位裝置以及一應用程式,該地圖資料庫儲存有任意路段的一即時平均速度以及一難停車分數,該定位裝置可收集一車輛的定位、速度以及行進方向等資訊,該應用程式與該地圖資料庫以及該定位裝置電訊連接; b 啟動該定位裝置以及該應用程式; c 該定位裝置收集該車輛的定位、速度以及行進方向等資訊,並傳送至該應用程式; d 該應用程式判斷該車輛的速度是否降低至前特定分鐘平均速度的特定百分比以下或所行駛路段平均速度的特定百分比以下; e 當判斷結果為是,開始紀錄該車輛的當下位置、移動距離、移動路徑以及轉向角度,該車輛的當下位置定義為一起始座標; f 判斷該車輛是否於一第一範圍內停車; g 當判斷結果為是,回傳一第一數據至該地圖資料庫更新該難停車分數,並結束分析; h 當判斷結果為否,紀錄該車輛的總轉向角度與行駛時間,並判斷該車輛是否離開一第二範圍; i 當判斷該車輛未離開該第二範圍以及於該第二範圍內停車,根據該總轉向角度的大小與該行駛時間計算並回傳一第二數據至該地圖資料庫更新該難停車分數; j 當判斷該車輛離開該第二範圍,則結束分析。A method for analyzing the usage of parking spaces includes the following steps: a Provide a map database, a positioning device and an application program, the map database stores a real-time average speed of any road segment and a difficult parking score, the positioning device can collect A vehicle's positioning, speed and direction of travel, etc., the application is in telecommunication connection with the map database and the positioning device; b launches the positioning device and the application; c the positioning device collects the vehicle's positioning, speed and travel Directions and other information, and sent to the application; d The application determines whether the speed of the vehicle has dropped below a certain percentage of the average speed of the previous specific minute or below a certain percentage of the average speed of the road section traveled; e When the judgment result is yes, Start recording the vehicle's current position, moving distance, moving path, and steering angle. The vehicle's current position is defined as a starting coordinate; f. Determine whether the vehicle stops within a first range; g. When the judgment result is yes, return A first data to the map database to update the difficult parking score, and end the analysis; h When the judgment result is no, record the vehicle's total steering angle and travel time, and determine whether the vehicle leaves a second range; i when Determine that the vehicle does not leave the second range and stop in the second range, calculate and return a second data to the map database to update the difficult parking score according to the total steering angle and the travel time; j when It is judged that the vehicle leaves the second range, and the analysis is ended. 如申請專利範圍第1項所述的停車格使用程度分析方法,其中該步驟 e更包括:當判斷結果為否,重複執行步驟 c。The method for analyzing the use degree of a parking grid as described in item 1 of the patent application scope, wherein the step e further includes: when the judgment result is no, repeat the step c. 如申請專利範圍第1項所述的停車格使用程度分析方法,其中所述第一範圍定義為以該起始座標為起點的一圓形區域範圍。The method for analyzing the usage degree of a parking grid as described in item 1 of the patent application scope, wherein the first range is defined as a circular area range starting from the starting coordinate. 如申請專利範圍第1項所述的停車格使用程度分析方法,其中所述第二範圍定義為以該起始座標為中心的一圓形區域範圍。The method for analyzing the usage degree of a parking grid as described in item 1 of the patent application scope, wherein the second range is defined as a circular area range centered on the starting coordinate. 如申請專利範圍第4項所述的停車格使用程度分析方法,其中該第二範圍的尺寸大於該第一範圍的尺寸。The method for analyzing the usage degree of a parking bay as described in item 4 of the patent application scope, wherein the size of the second range is larger than the size of the first range. 如申請專利範圍第1項所述的停車格使用程度分析方法,其中該步驟 g更包括:該地圖資料庫收集一特定長度路段的一特定時間區間的全部該難停車分數,將全部該難停車分數剔除離群值或誤差值後再計算一平均數值,利用該平均數值更新該地圖資料庫的難停車分數。The method for analyzing the use degree of parking spaces as described in item 1 of the patent application scope, wherein the step g further includes: the map database collects all the difficult parking scores in a specific time interval of a road section of a specific length, and converts all the parking difficulties After excluding the outliers or error values, an average value is calculated, and the average value is used to update the difficult parking score of the map database. 如申請專利範圍第1項所述的停車格使用程度分析方法,其中該步驟 i更包括:該地圖資料庫收集一特定長度路段的一特定時間區間的全部該難停車分數,將全部該難停車分數剔除離群值或誤差值後再計算一平均數值,利用該平均數值更新該地圖資料庫的難停車分數。The method for analyzing the use degree of parking spaces as described in item 1 of the patent application scope, wherein the step i further includes: the map database collects all the difficult parking scores in a specific time interval of a road section of a specific length, and converts all the parking difficulties After excluding the outliers or error values, an average value is calculated, and the average value is used to update the difficult parking score of the map database. 如申請專利範圍第1項所述的停車格使用程度分析方法,其中該難停車分數是根據該路段的停車格多寡、性質、車流量等因素給予的一預設數值。The method for analyzing the use degree of parking spaces as described in item 1 of the patent application scope, wherein the difficulty parking score is a preset value given according to factors such as the number of parking spaces, the nature, and the traffic volume of the road section. 如申請專利範圍第1項所述的停車格使用程度分析方法,其中該第二數據為該應用程式根據該總轉向角度的大小以及該車輛行駛時間,給予該車輛所行駛過之路徑的一分數。The method for analyzing the use degree of a parking grid as described in item 1 of the patent application scope, wherein the second data is a score given by the application to the path traveled by the vehicle according to the size of the total steering angle and the driving time of the vehicle .
TW107135031A 2018-10-04 2018-10-04 Analysis method for parking occupancy estimation TWI676971B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107135031A TWI676971B (en) 2018-10-04 2018-10-04 Analysis method for parking occupancy estimation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107135031A TWI676971B (en) 2018-10-04 2018-10-04 Analysis method for parking occupancy estimation

Publications (2)

Publication Number Publication Date
TWI676971B TWI676971B (en) 2019-11-11
TW202015004A true TW202015004A (en) 2020-04-16

Family

ID=69188726

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107135031A TWI676971B (en) 2018-10-04 2018-10-04 Analysis method for parking occupancy estimation

Country Status (1)

Country Link
TW (1) TWI676971B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI722740B (en) * 2019-12-26 2021-03-21 台灣新光保全股份有限公司 A parking space monitoring system for a parking space

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7834778B2 (en) * 2005-08-19 2010-11-16 Gm Global Technology Operations, Inc. Parking space locator
US9129524B2 (en) * 2012-03-29 2015-09-08 Xerox Corporation Method of determining parking lot occupancy from digital camera images
CN103680198B (en) * 2013-11-20 2016-01-27 苏州翊高科技有限公司 Parking stall usage frequency assay method and Analytical system thereof in parking lot
US9672741B2 (en) * 2015-06-08 2017-06-06 Inrix Inc. Parking occupancy estimation
CN205594901U (en) * 2016-03-15 2016-09-21 孙杰翔 Parking stall user state real -time monitoring system
TWM526154U (en) * 2016-04-15 2016-07-21 Microprogram Information Co Ltd Parking space estimation and management system

Also Published As

Publication number Publication date
TWI676971B (en) 2019-11-11

Similar Documents

Publication Publication Date Title
JP6736293B2 (en) Method and system for displaying enhanced turn-by-turn guidance on a personal navigation device
US9547984B2 (en) System for providing traffic data and driving efficiency data
CN109919347B (en) Road condition generation method, related device and equipment
CN106611497B (en) Traffic volume prediction system, traffic volume prediction method, vehicle display device, and vehicle
CN109084794B (en) Path planning method
CN101964941A (en) Intelligent navigation and position service system and method based on dynamic information
WO2010023571A1 (en) System and method for parking time estimations
CN105023428A (en) Road condition information assessment method and apparatus
US11237007B2 (en) Dangerous lane strands
WO2011162966A1 (en) System and method for providing road condition and congestion monitoring using smart messages
CN112767683B (en) Path induction method based on feedback mechanism
US20170075036A1 (en) Weather condition information based on magnetometers
CN110782656B (en) Road bottleneck point identification method and device, electronic equipment and storage medium
US20210326699A1 (en) Travel speed prediction
CN109637127B (en) Method and system for determining approximate duration of signal lamp
CN110741227A (en) Landmark assisted navigation
EP3742420B1 (en) Estimation of mobile device count
JP2014066655A (en) Route search device and route search method
CN106803353B (en) Method for determining a transformation rule of a traffic light and on-board system
US10916137B2 (en) Traffic mitigation system
TW202015004A (en) Analysis method for parking occupancy estimation
CN105654745A (en) Real-time traffic flow monitoring method based on intelligent handset
KR20180107892A (en) Telematics server and telematics server control method
US20230222905A1 (en) Method, apparatus, and system for traffic light signal phase and timing verification using sensor data and probe data
CN114528365A (en) Method and device for identifying parking area on highway, electronic equipment and medium