TW202014373A - 具幾何結構之二維半導體及形成方法 - Google Patents

具幾何結構之二維半導體及形成方法 Download PDF

Info

Publication number
TW202014373A
TW202014373A TW107135333A TW107135333A TW202014373A TW 202014373 A TW202014373 A TW 202014373A TW 107135333 A TW107135333 A TW 107135333A TW 107135333 A TW107135333 A TW 107135333A TW 202014373 A TW202014373 A TW 202014373A
Authority
TW
Taiwan
Prior art keywords
dimensional
layer
nano
geometric structure
dimensional semiconductor
Prior art date
Application number
TW107135333A
Other languages
English (en)
Other versions
TWI683786B (zh
Inventor
楊東翰
韓羽唯
張鋅權
陳奕彤
李奕賢
Original Assignee
國立清華大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立清華大學 filed Critical 國立清華大學
Priority to TW107135333A priority Critical patent/TWI683786B/zh
Priority to US16/594,217 priority patent/US11139371B2/en
Application granted granted Critical
Publication of TWI683786B publication Critical patent/TWI683786B/zh
Publication of TW202014373A publication Critical patent/TW202014373A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J19/00Details of vacuum tubes of the types covered by group H01J21/00
    • H01J19/02Electron-emitting electrodes; Cathodes
    • H01J19/24Cold cathodes, e.g. field-emissive cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1606Graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/22Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0676Nanowires or nanotubes oriented perpendicular or at an angle to a substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

在此揭露一種具幾何結構之二維半導體的形成方法,其包含下列步驟:形成奈米層;設置二維材料於一基板上;形成媒介層於二維材料上;自基板上轉移媒介層與二維材料至該奈米層;去除媒介層,使該二維材料留在該奈米層的表面上。透過具幾何結構之二維半導體的形成方法,利用奈米微結構來提升並控制二維材料在場發射效應及光子激發效率上。

Description

具幾何結構之二維半導體及形成方法
本發明係有關於一種具幾何結構之二維半導體及形成方法,特別是有關於可以提高電子場發射效應及提升光子激發效應的具幾何結構之二維半導體及形成方法。
當電子在高電場的加速作用下,從物體表面射出稱之為電子場發射效應,而這種效應能應用於光電元件上。另一方面,雖然二維半導體具有非常高的光電轉換效率,能夠應用在下一個世代的光電元件,但二維半導體對於電子場發射效應的效率非常低,且只有在材料的邊緣才會觀察到此現象,因此無法實際應用場發射效應。此外,因為二維材料之不同的凹陷部位會影響材料的均勻程度,進而使光子激發的特性難以被控制,這也是業界所一直無法克服的難題。
在目前的習知技術中,並沒有辦法控制二維半導體材料之場發射效應發生位置,只能隨機觀察的在二維半導體材料之邊緣或特定位置,才能觀察到場發射的效應,且特性及穩定度未具有商業價值。
在專利合作條約申請之專利(WO2017/195118),揭示一種結構,其包含與過渡金屬二硫族化合物層接觸的化合物半導體,其中所述金屬二硫族化物層與金屬基材接觸,半導體化合物包含奈米線,化合物半導體包含SiC或ZnO,過渡金屬二硫族化合物包含MoS2 、MoSe2 等。該專利是用於改善化合物半導體的量子效率,其製造方法並無法提高電子場發射效應的效率。
在中國申請之專利(CN106477621A),揭示一種層狀氫氧化鋅奈米錐的製備方法,其特徵在於,包括以下步驟:步驟1:將金屬鋅鹽、鹼源和陰離子表面活性劑在以純水為反應溶劑的體系中混合;步驟2:將步驟1的混勻液水浴加熱反應得到。該專利揭示可合成不同形貌的層狀氫氧化鋅奈米片、奈米帶、奈米錐,以及氧化鋅奈米棒、奈米顆粒等,並揭示鹼源(六亞甲基四胺)和十二烷基硫酸鈉共同作用得到層狀氫氧化鋅奈米錐。但該專利為層狀氫氧化鋅、氧化鋅納米錐的製備及剝離方法,且該專利並非用於改善電子場發射效應的效率。
另外,在中國申請之專利(CN104947070A),揭示一種二硫化鉬薄膜的製備方法,其特徵在於,包括以下步驟:a、在矽襯底上鍍上一層與二硫化鉬晶格大小相匹配的氧化物緩衝層;b、使用CVD法在其表面生長二硫化鉬薄膜。然而,該專利是為了在鍍有氧化物緩衝層的矽襯底上直接生長大面積、高質量、低缺陷的硫化鉬(MoS2 )薄膜,並非用於改善電子場發射效應的效率。
在美國申請之專利(US2014/0245946A1),揭示一種在轉移基底上生產過渡金屬二硫族化物層的方法,包括:在生長基質的表面上接種芳香族分子;通過化學氣相沉積在生長基底表面上生長一層金屬二硫族化合物,接種有芳香族分子;和使接種的芳族分子與從生長底物釋放過渡金屬二硫族化合物的溶劑接觸。然而,該專利是揭示過渡金屬二硫化物層在不同表面的合成與轉移,並非用於改善電子場發射效應的效率。
由上述可以明顯看出,在習知技術中,並未有任何文獻或專利針對改善電子場發射效應的效率,提出有效的製程方法。而且,大部分的研究指出,所觀察出的場致發射性能主要歸因於層狀二維材料的隨機以及尖銳突出“邊緣”的存在。很難以理想地均勻控制垂直於基板之二維材料的邊緣,這會增加具可接受再生性的大面積電子發射體的生成困難。
因此,存在一種需求,設計一種在具幾何結構之二維半導體及形成方法,利用奈米微結構來提升並控制二維材料在場發射效應上的結果,同時亦能提升光子激發效應,改善習知技術的缺失。
本發明的目的在提供一種具幾何結構之二維半導體的形成方法,透過該方法以提高二維半導體對於電子場發射效應及光子激發效應的效率。
根據上述的目的,本發明提供一種具幾何結構之二維半導體的形成方法,其包含下列步驟:  形成奈米層;  設置二維材料於基板上;  形成媒介層於二維材料上;  自基板上轉移媒介層與二維材料至奈米層上;以及  去除媒介層,使二維材料留在奈米層表面。
本發明的另一目的在提供一種具幾何結構之二維半導體,透過該具幾何結構之二維半導體,奈米微結構來提升並控制二維材料在場發射效應及光子激發效應上的結果。
根據上述的目的,本發明提供一種具幾何結構之二維半導體,包含:  二維材料;以及  奈米層,具有一幾何結構,且該二維材料放置於該奈米層之該幾何結構上;  其中該奈米層之該幾何結構的間距為50-100奈米。
透過本發明的具幾何結構之二維半導體及形成方法,將二維過渡金屬二硫族化物單層轉移到垂直排列的一維氧化鋅奈米陣列上以誘導半導體單層的幾何調變,並進一步增強其電子發射。使用具有尖銳的一維奈米陣列的半導體單層,以實現在低導通電場中具有優異的長期發射穩定性的有效場發射。
以下將詳述本發明之實施例,其細節亦呈現於相關之圖式,不同圖式中相同之編號或標記表示相同之元件或概念。本發明實施例之說明將配合相關之圖式進行。
圖1顯示本發明的具幾何結構之二維半導體的形成方法的步驟流程圖,圖2顯示本發明的具幾何結構之二維半導體的形成示意圖。如圖1與圖2所示,本發明之具幾何結構之二維半導體20的形成方法包含下列步驟,在步驟S101中,形成奈米層。在該步驟中,奈米層較佳為具幾何結構的奈米層,而在本發明的較佳實施例中,將六水合亞硝酸鋅((Zn(NO2 )2 .6H2 O))與六亞甲基四胺(C6 H12 N4 )溶於去離子水溶液中,並且將欲合成氧化鋅奈米陣列的基板放入此溶液中加熱,以形成奈米層204,而且該基板為較佳摻雜鎵的氧化鋅(GZO)/矽(Si)基板。
在步驟S102中,將二維材料設置於基板上。於本發明之一實施例中,係透過例如化學氣相沉積法(Chemical Vapor Deposition,CVD)將二維材料生長於一矽基板上。在本發明中,二維材料202較佳為二維(2D)過渡金屬二硫族化物(Transition Metal Dichalcogenide,TMD),且過渡金屬二硫族化物較佳為硫化鉬(MoS2 )或二硒化鉬(MoSe2 ),但在此並不侷限。進一步來說,在矽基板201上,用環境壓力化學氣相沉積法(CVD)合成了大面積和高度結晶的二維材料202的原子層(包括硫化鉬(MoS2 )和二硒化鉬(MoSe2 ))。
在步驟S103中,形成媒介層於二維材料上。於本發明之一實施例中,媒介層203包括具有高分子的材料,並透過例如旋轉塗佈法、水轉移法或者熱解膠法在該矽基板201上的該二維材料202形成一高分子層。舉例來說,在二維過渡金屬二硫族化物(氧化鉬(MoS2 )或二硒化鉬(MoSe2 ))的樣品上以1000rpm的速度旋轉塗佈聚甲基丙烯酸甲酯(poly(methyl methacrylate),PMMA)或者聚二甲基矽氧烷(Polydimethylsiloxane,PDMS)。
在步驟S104中,自基板上轉移媒介層與二維材料至奈米層上。轉移的方法包括蝕刻,於本發明中並不限定。於本發明之一實施例中,透過蝕刻的方式將高分子層連帶二維材料202轉移至奈米層204上,二維材料202與奈米層204接觸之接觸點由於應力不同產生形變。
進一步來說,使用聚甲基丙烯酸甲酯輔助方法將二維過渡金屬二硫族202單層從矽(SiO2 /Si)基板201轉移到一維氧化鋅奈米陣列基板(奈米棒205陣列(ZnOnanorods,ZNRs)或奈米錐206陣列(ZnO nanotubes,ZNTs))。在烘烤後,將聚甲基丙烯酸甲酯塗覆的二維材料202完全浸入氫氧化鉀(KOH)溶液(1M)中以蝕刻基板(SiO2 /Si)(剝離過程),直到具有二維材料202(MoS2 或MoSe2 )的聚甲基丙烯酸甲酯漂浮在氫氧化鉀溶液中。用去離子水反覆沖洗去除氫氧化鉀殘留物後,捕獲塗有聚甲基丙烯酸甲酯的二維材料202。
最後,在步驟S105,去除媒介層,使得二維材料留在奈米層的表面上。於本發明之一實施例中,去除該高分子層使該二維材料202留在該奈米層204的表面上,通過使用丙酮溶解聚甲基丙烯酸甲酯以使二維材料202樣品留在奈米層204的表面上。
依舊參閱圖2,具幾何結構的二維半導體20主要包含二維材料202以及奈米層204。該二維材料202設置於具幾何結構的二維半導體20上,並將該二維材料202放置於奈米層204上,且二維材料202與奈米層204接觸之接觸點由於應力不同產生形變。其中,奈米層204的幾何結構包括以陣列形式排列,而奈米層204的幾何結構的間距為50-100奈米之間,且較佳為50奈米,奈米陣列的密度為2×109 /cm2 。本發明的奈米層204可為一維奈米陣列,如圖2所示,一維奈米陣列可以是一維奈米錐陣列或一維奈米棒陣列,在此並不侷限。一維奈米陣列可以是一維氧化鋅奈米陣列,或者奈米層204的材料可以是矽、貴金屬、氧化矽、氧化鋁、氧化鉿或氧化鈦,當奈米層204的材料為貴金屬時,該貴金屬可以是金、銀、鉑或鈀等。而且,一維奈米錐之錐狀突起的高度為347 ± 25 nm。將二維材料202鋪上後,其二維材料202最高處與最低處的距離為80 ± 30 nm。
二維材料202可以是二維過渡金屬二硫族化物、石墨烯或氮化硼所構成。奈米層204幾何結構的形狀可為尖錐狀、圓錐狀、三角錐狀、四角錐狀、五角錐狀、六角錐狀、多角錐狀或子彈型。當奈米層204為角錐狀時,其尖錐角度小於2°。另外,在不同實施例中,奈米層301可以是相互平行的奈米結構,如圖3a所示。當奈米層302為圓錐狀時,其頂部為具有曲率的圓柱體,且半圓曲率較佳小於10奈米,而且奈米層302之表面的截面積較佳小於100奈米,如圖3b所示。在本發明的實施例中,在該奈米層302上更可以鍍上一層材料層,而該材料層較佳為貴金屬材料層,貴金屬可以是金、銀、鉑或鈀等材料。在該奈米層204上鍍上一層材料層,其功效可引發表面電漿共振(Plasmonic)的特性,材料層之金屬內的自由電子有機會能與二維材料202中的電子互動,有機會可以增加二維材料202的光電特性。
進一步來說,在合成具幾何材料的二維半導體過程中,二維過渡金屬二硫族化物、一維氧化鋅奈米結構及其雜化物(2D-1D異質結構)的合成可在2×2 cm2 的半導體面積內高度均勻地擴展。二維過渡金屬二硫族化物的幾何形狀是利用所提供的奈米結構,包括氧化鋅(ZnO)奈米棒(ZNR)和氧化鋅(ZnO)奈米錐(ZNT)來調變。
通過水熱反應在濺射之摻雜鎵的氧化鋅(GZO,Ga 0.01以及Zn 0.99)籽晶層上合成氧化鋅奈米棒(ZNR)。摻雜鎵的氧化鋅薄膜顯示出良好的導電性,並為垂直取向良好的奈米棒生長提供了合適的表面。在掃描電子顯微鏡(scanning electron microscope,SEM)圖像中顯示了鈍角奈米棒401沿著c軸結晶並具有六個棱柱面,如圖4a所示。
此外,奈米棒的頂點曲率,如鈍頭和圓錐形尖端,可以通過控制蝕刻處理精確製造。在圖4b中,奈米錐402的電子顯微鏡圖像在蝕刻過程之後顯示出完全對齊的圓錐形尖端,並且奈米錐402(347±25nm)的長度僅略短於奈米棒401的長度。
二維過渡金屬二硫族化物(MoS2 )單層可以均勻支撐在奈米棒501的棒狀上(圖5a~5c),並導致波紋形態。相比之下,二維過渡金屬二硫族化物(MoS2 )單層被緊密覆蓋在奈米錐601的錐狀上(圖6a~圖6c),並導致類似帳篷的形態,這表明二維過渡金屬二硫族化物單層的形態可以通過幾何控制垂直排列的一維陣列明顯地調節。對於一維奈米棒,二維過渡金屬二硫族化物單層顯示更多的沿著尖銳一維陣列的空間分佈取向的波紋,這可視為是在二維過渡金屬二硫族化物單層上形成尖銳的突起。用二維過渡金屬二硫族化物單層可以獲得類似的2D-1D異質結構並表現出類似的表面形態。在從丙酮溶液中單層去除聚甲基丙烯酸甲酯期間,拉伸應力將與支撐的一維陣列的頂點幾何形狀相關,並且進一步產生具有二維單層和一維陣列的空間對準的漣漪。
圖7為量測本發明之具幾何結構的二維半導體量測場發射的示意圖,圖8為應用本發明之具幾何結構的二維半導體的場發射J-E特性曲線圖。為了研究具幾何結構的二維半導體的性能,電子場發射實驗在高真空系統中5×10-7 托(torr)的基礎壓力下進行,如圖8所示。將二維半導體70安裝在不銹鋼支架71上作為陰極,而陽極是鉬探針(直徑1mm)。通過在二維半導體和陽極上施加直流電壓來進行電流 - 電壓關係。圖8顯示了各種具幾何結構的二維半導體的場發射電流密度 - 場強特性。正如預期,二維半導體80 (具有MoS2 或MoSe2 )的可檢測電子場發射超過可檢測的極限,直到最大施加≈20Vμm-1 的電場。
以上該僅是本發明的較佳實施例而已,並非對本發明做任何形式上的限制,雖然本發明已以較佳實施例揭露如上,然而並非用以限定本發明,任何熟悉本發明的技術人員,在不脫離本發明技術方案的範圍內,當可利用上述揭示的技術內容作出些許更動或修飾為等同變化的等效實施例,但凡是未脫離本發明技術方案的內容,依據本發明的技術實質對以上實施例所作的任何簡單修改、等同變化與修飾,均仍屬於本發明技術方案的範圍內。
S101~S105:步驟 20:具幾何結構的二維半導體 201:矽基板 202:二維材料 203:媒介層 204:奈米層 205:奈米棒 206:奈米錐 301:奈米層 302:奈米層 401:奈米棒 402:奈米錐 501:奈米棒 601:奈米錐 70:二維半導體 71:不鏽鋼支架 80:二維半導體
圖1為本發明的具幾何結構之二維半導體的形成方法的步驟流程圖;  圖2為本發明的具幾何結構之二維半導體的形成示意圖;  圖3a與圖3b為本發明之相互平行的奈米結構示意圖;  圖4a為本發明的一維氧化鋅奈米陣列基板(奈米棒)的電子顯微鏡圖像;  圖4b為本發明的一維氧化鋅奈米陣列基板(奈米錐)的電子顯微鏡圖像;  圖5a~圖5c為本發明的二維過渡金屬二硫族化物單層在奈米棒上的電子顯微鏡圖像;  圖6a~圖6c為本發明的二維過渡金屬二硫族化物單層覆蓋在奈米錐的電子顯微鏡圖像;  圖7為量測本發明之具幾何結構的二維半導體量測場發射的示意圖;  圖8為應用本發明之具幾何結構的二維半導體的場發射J-E特性曲線圖。
S101~S105:步驟

Claims (20)

  1. 一種具幾何結構之二維半導體的形成方法,其包含下列步驟:  形成一奈米層;  設置一二維材料於一基板上;  形成一媒介層於該二維材料上;  自該基板上轉移該媒介層與該二維材料至該奈米層上;以及  去除該媒介層,使該二維材料留在該奈米層的表面上。
  2. 如請求項1所述之具幾何結構之二維半導體的形成方法,其中在形成該奈米層的該步驟中,係將六水合亞硝酸鋅((Zn(NO2 )2 .6H2 O))與六亞甲基四胺(C6 H12 N4 )溶於去離子水的溶液中,並將一維氧化鋅奈米陣列之基板放入該溶液中加熱,以形成該奈米層。
  3. 如請求項1所述之具幾何結構之二維半導體的形成方法,其中該二維材料為過渡金屬二硫族化物。
  4. 如請求項3所述之具幾何結構之二維半導體的形成方法,其中在該二維材料透過一化學氣相沉積法設置於該基板的該步驟中,係採用具高溫穩定性的苝-3,4,9,10-四羧酸四鉀鹽(PTAS)作為接種促進劑以增強生長,並將化學氣相沉積系統加熱,並且在大氣壓下合成該二維材料單層。
  5. 如請求項1所述之具幾何結構之二維半導體的形成方法,其中在形成該媒介層於該二維材料的該步驟中,係以1000rpm的速度旋轉塗佈聚甲基丙烯酸甲酯(poly(methyl methacrylate),PMMA) 在該二維材料上。
  6. 如請求項5所述之具幾何結構之二維半導體的形成方法,其中在自該基板上轉移該媒介層與該二維材料至該奈米層上的該步驟中,進一步將該聚甲基丙烯酸甲酯塗覆的該奈米層完全浸入氫氧化鉀(KOH)溶液中,以蝕刻該媒介層與該二維材料,直到具有該二維材料的該聚甲基丙烯酸甲酯漂浮在該KOH溶液中,用去離子水反覆沖洗去除該KOH溶液的殘留物後,捕獲塗有該聚甲基丙烯酸甲酯的該奈米層。
  7. 如請求項5所述之具幾何結構之二維半導體的形成方法,其中在去除該媒介層使該二維材料留在該奈米層的表面上的該步驟中,使用丙酮溶解該聚甲基丙烯酸甲酯以去除該媒介層,使該二維材料留在該奈米層的表面上。
  8. 一種具幾何結構之二維半導體,包含:  一二維材料;以及  一奈米層,具有一幾何結構,且該二維材料放置於該奈米層之該幾何結構上;  其中該奈米層的該幾何結構之間距為50-100奈米。
  9. 如請求項8所述之具幾何結構之二維半導體,其中該二維材料為二維過渡金屬二硫族化物、石墨烯或氮化硼。
  10. 如請求項8所述之具幾何結構之二維半導體,其中該奈米層之該幾何結構為一維氧化鋅奈米陣列基板。
  11. 如請求項8所述之具幾何結構之二維半導體,其中該奈米層之該幾何結構以陣列形式排列。
  12. 如請求項11所述之具幾何結構之二維半導體,其中該陣列形式排列的密度為2×109 /cm2
  13. 如請求項8所述之具幾何結構之二維半導體,其中該奈米層的材料為矽、貴金屬、氧化矽、氧化鋁、氧化鉿或氧化鈦。
  14. 如請求項8所述之具幾何結構之二維半導體,其中該奈米層之該幾何結構為圓錐狀、三角錐狀、四角錐狀、五角錐狀、六角錐狀、多角錐狀或子彈型。
  15. 如請求項8所述之具幾何結構之二維半導體,其中該奈米層之表面的截面積小於100奈米。
  16. 如請求項8所述之具幾何結構之二維半導體,其中該奈米層之該幾何結構為相互平行的奈米結構。
  17. 如請求項16所述之具幾何結構之二維半導體,其中該奈米結構的間距為50奈米。
  18. 如請求項8所述之具幾何結構之二維半導體,其中該奈米層上更鍍上一材料層。
  19. 如請求項18所述之具幾何結構之二維半導體,其中該材料層為一貴金屬材料層。
  20. 如請求項19所述之具幾何結構之二維半導體,其中該貴金屬材料層包括金、銀、鉑或鈀材料層。
TW107135333A 2018-10-08 2018-10-08 具幾何結構之二維半導體及形成方法 TWI683786B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW107135333A TWI683786B (zh) 2018-10-08 2018-10-08 具幾何結構之二維半導體及形成方法
US16/594,217 US11139371B2 (en) 2018-10-08 2019-10-07 Two-dimensional semiconductor with geometry structure and generating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107135333A TWI683786B (zh) 2018-10-08 2018-10-08 具幾何結構之二維半導體及形成方法

Publications (2)

Publication Number Publication Date
TWI683786B TWI683786B (zh) 2020-02-01
TW202014373A true TW202014373A (zh) 2020-04-16

Family

ID=70051840

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107135333A TWI683786B (zh) 2018-10-08 2018-10-08 具幾何結構之二維半導體及形成方法

Country Status (2)

Country Link
US (1) US11139371B2 (zh)
TW (1) TWI683786B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11705535B2 (en) * 2019-08-05 2023-07-18 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Nano-indent process for creating single photon emitters in a two-dimensional materials platform
TWI736389B (zh) * 2020-08-06 2021-08-11 國立臺灣大學 生成過渡金屬硫化物的方法
CN113205987B (zh) * 2021-04-07 2022-06-17 清华大学 基于多层二维材料的平面光致电子发射源

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102714137B (zh) * 2009-10-16 2015-09-30 康奈尔大学 包括纳米线结构的方法和装置
WO2014134524A1 (en) 2013-03-01 2014-09-04 Massachusetts Institute Of Technology Synthesis of transition metal disulfide layers
EP3455875A1 (en) * 2016-05-10 2019-03-20 King Abdullah University Of Science And Technology Light emitters on transition metal dichalcogenides directly converted from thermally and electrically conductive substrates and method of making the same
CN106477621B (zh) 2016-10-21 2018-04-13 中南大学 层状氢氧化锌、氧化锌纳米锥的制备及剥离方法
US20190189840A1 (en) * 2017-12-18 2019-06-20 National Cheng Kung University Method of transferring nanostructures and device having the nanostructures

Also Published As

Publication number Publication date
US20200111868A1 (en) 2020-04-09
TWI683786B (zh) 2020-02-01
US11139371B2 (en) 2021-10-05

Similar Documents

Publication Publication Date Title
TWI683786B (zh) 具幾何結構之二維半導體及形成方法
TWI307908B (en) Gate controlled filed emission triode and process for fabricating the same
Tang et al. Controlled growth of ZnO nanoflowers on nanowall and nanorod networks via a hydrothermal method
Zhang Growth of ZnO nanowires on modified well-aligned carbon nanotube arrays
Hong et al. Shape‐Controlled Nanoarchitectures Using Nanowalls
CN102024637B (zh) 用以制备氧化锌纳米柱阵列场发射组件的方法
CN113109370B (zh) 一种多孔透射电镜支撑膜及超平整石墨烯电镜载网及其制备方法
Yao et al. Nanotip fabrication of zinc oxide nanorods and their enhanced field emission properties
CN104952987B (zh) 发光二极管
CN109161850A (zh) 一种生长在Si衬底上的(In)GaN纳米管及其制备方法与应用
CN111009452B (zh) 具几何结构的二维半导体及形成方法
TWI762150B (zh) 石墨烯奈米帶複合結構及其製備方法
Le Shim et al. Large enhancement of field emission from ZnO nanocone arrays via patterning process
Burke-Govey et al. The influence of polyethylenimine molecular weight on hydrothermally-synthesised ZnO nanowire morphology
CN113355649A (zh) 一种基于纳米球模板无光刻制备周期性垂直定向多壁碳纳米管阵列的方法
Kim et al. Simply heating to remove the sacrificial core TeO2 nanowires and to generate tubular nanostructures of metal oxides
CN107424912B (zh) 一种氮化镓基纳米柱阵列的制备方法
CN106531851B (zh) 一种生长在LiGaO2衬底上的非极性GaN纳米柱及其制备方法
Zhang et al. Pressure-induced growth evolution of different ZnO nanostructures by a pulsed laser ablation method
Song et al. Field electron emission of ZnO nanowire pyramidal bundle arrays
Yu et al. The controllable growth of superhydrophobic SiC nanowires by tailoring the cooling rate
김희훈 Fabricataion of Flexible UV Photodetector Array Using ZnO Nanotubes Grown on Graphene Films
Zhang et al. Synthesis and photoluminescence property of silicon carbide nanowires thin film by HF-PECVD system
CN111217320B (zh) 一种在硅片表面生长硫化镉纳米线阵列的方法
Li et al. Preparation of well-aligned carbon nanotubes/silicon nanowires core-sheath composite structure arrays in porous anodic aluminum oxide templates