TW202011749A - Multimedia data recommending system and multimedia data recommending method - Google Patents

Multimedia data recommending system and multimedia data recommending method Download PDF

Info

Publication number
TW202011749A
TW202011749A TW108111842A TW108111842A TW202011749A TW 202011749 A TW202011749 A TW 202011749A TW 108111842 A TW108111842 A TW 108111842A TW 108111842 A TW108111842 A TW 108111842A TW 202011749 A TW202011749 A TW 202011749A
Authority
TW
Taiwan
Prior art keywords
multimedia data
storage unit
data
multimedia
processor
Prior art date
Application number
TW108111842A
Other languages
Chinese (zh)
Other versions
TWI696386B (en
Inventor
詹詩涵
柯兆軒
藍國誠
Original Assignee
台達電子工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台達電子工業股份有限公司 filed Critical 台達電子工業股份有限公司
Publication of TW202011749A publication Critical patent/TW202011749A/en
Application granted granted Critical
Publication of TWI696386B publication Critical patent/TWI696386B/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/40Information retrieval; Database structures therefor; File system structures therefor of multimedia data, e.g. slideshows comprising image and additional audio data
    • G06F16/43Querying
    • G06F16/435Filtering based on additional data, e.g. user or group profiles
    • G06F16/437Administration of user profiles, e.g. generation, initialisation, adaptation, distribution

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Multimedia (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Image Analysis (AREA)
  • Electrically Operated Instructional Devices (AREA)
  • Machine Translation (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

A multimedia data recommending system includes a storage device and a processor. The storage device includes a first storage unit and a second storage unit. The first storage unit is configured to store the multimedia data fragment. The first storage unit is coupled to at least one client electronic device via network. The first storage unit is configured to store the operating data generated by at least one client electronic device interacting with the multimedia data system. The processor is coupled to the storage device. The processor includes a response analysis unit and a timing unit. The processor is configured to analyze the multimedia data fragment in the first storage unit to generate a relevance link between the multimedia data fragment. The processor is also configured to analyze the operating data in the second storage unit to generate a recommended list according to the multimedia data fragment and the operating data, the recommended list includes the multimedia data fragment.

Description

多媒體資料推薦系統及多媒體資料推薦方法Multimedia data recommendation system and multimedia data recommendation method

本揭示文件係關於一種多媒體資料推薦系統及多媒體資料推薦方法,特別是一種根據使用者習慣及喜好的多媒體資料推薦系統及多媒體資料推薦方法。This disclosure document relates to a multimedia data recommendation system and multimedia data recommendation method, in particular to a multimedia data recommendation system and multimedia data recommendation method based on user habits and preferences.

隨著遠距教學的發展,突破了空間的界限,使用者能夠依照自己的喜好及方便性選擇如電視廣播或網際網路等方式學習。但課程資料繁多,使用者不易快速得知適合自己的課程資料。而常見的學習清單編排方法多為系統根據主題或管理者設定而有一定的預設順序,使用者無法確定當前的課程是否適合自己目前的喜好及需求。With the development of distance teaching, the boundaries of space are broken, and users can choose to study in ways such as TV broadcasting or the Internet according to their own preferences and convenience. However, there are so many course materials that it is not easy for users to quickly learn the suitable course materials. Most of the common learning list arrangement methods are that the system has a certain preset order according to the theme or administrator setting. The user cannot determine whether the current course is suitable for his current preferences and needs.

多媒體資料五花八門,每個人喜歡的課程種類、主題、方式、授課方法不盡相同,不同人對同一個課程的接受度也不同,課程資料必須契合使用者的喜好才能夠有好的學習成果。There are many kinds of multimedia materials. Everyone likes different types of courses, themes, methods, and teaching methods. Different people have different acceptances of the same course. Course materials must meet the preferences of users to have good learning results.

本揭示內容的一實施例中,一種多媒體資料推薦系統包含儲存裝置及處理器。儲存裝置包含第一儲存單元及第二儲存單元。第一儲存單元用以儲存多媒體資料段落。第二儲存單元透過網路與至少一使用者裝置連接,並用以儲存至少一使用者裝置與多媒體資料系統互動而產生的操作資料。處理器耦接該儲存裝置,處理器用以分析第一儲存單元中之多媒體資料以產生該些多媒體資料間的關聯性連結,以及分析第二儲存單元中之操作資料,並根據關聯性連結及操作資料產生對應推薦清單以供至少使用者裝置顯示推薦清單,推薦清單記載多媒體資料。處理器包含回應分析單元及計時單元,其中操作資料包含對多媒體資料段落的至少一回應,回應分析單元用以進行分析以取得對應於多媒體資料段落中的至少一問題的至少一回應,計時單元用以計算多媒體資料段落的播放時間。In an embodiment of the present disclosure, a multimedia data recommendation system includes a storage device and a processor. The storage device includes a first storage unit and a second storage unit. The first storage unit is used to store multimedia data paragraphs. The second storage unit is connected to at least one user device through a network, and is used to store operation data generated by at least one user device interacting with the multimedia data system. The processor is coupled to the storage device, and the processor is used to analyze the multimedia data in the first storage unit to generate a correlation link between the multimedia data, and analyze the operation data in the second storage unit, and connect and operate according to the correlation The data generates a corresponding recommendation list for at least the user device to display the recommendation list, and the recommendation list records multimedia data. The processor includes a response analysis unit and a timing unit. The operation data includes at least one response to the multimedia data segment. The response analysis unit is used to analyze to obtain at least one response corresponding to at least one question in the multimedia data segment. The timing unit is used To calculate the playing time of the multimedia data paragraph.

本揭示內容的另一實施例中, 多媒體資料推薦方法包含下列操作:透過第一儲存單元儲存多媒體資料;透過第二儲存單元儲存至少一使用者裝置與多媒體資料系統互動而產生的操作資料;分析第一儲存單元中之該些多媒體資料段落以產生多媒體資料段落間的關聯性連結;分析第二儲存單元中之操作資料,並根據關聯性連結及操作資料產生對應的推薦清單,推薦清單記載多媒體資料段落。In another embodiment of the present disclosure, the multimedia data recommendation method includes the following operations: storing multimedia data through the first storage unit; storing operation data generated by at least one user device interacting with the multimedia data system through the second storage unit; and analyzing The multimedia data segments in the first storage unit to generate the related links between the multimedia data segments; analyze the operation data in the second storage unit, and generate a corresponding recommendation list according to the related links and the operation data, the recommendation list records multimedia Information paragraph.

綜上所述, 多媒體資料系統透過第一儲存單元儲存多媒體資料,透過第二儲存單元儲存操作資料,並對第一儲存單元中的多媒體資料以及第二儲存單元中的操作資料進行分析及運算,並產生對應的推薦清單的資料。In summary, the multimedia data system stores multimedia data through the first storage unit, stores operation data through the second storage unit, and analyzes and calculates the multimedia data in the first storage unit and the operation data in the second storage unit, And generate the corresponding recommendation list data.

在本文中所使用的用詞『包含』、『具有』等等,均為開放性的用語,即意指『包含但不限於』。此外,本文中所使用之『及/或』,包含相關列舉項目中一或多個項目的任意一個以及其所有組合。The words "including", "having", etc. used in this article are all open terms, which means "including but not limited to". In addition, "and/or" used in this article includes any one or more of the items listed in the relevant list and all combinations thereof.

於本文中,當一元件被稱為『連結』或『耦接』時,可指『電性連接』或『電性耦接』。『連結』或『耦接』亦可用以表示二或多個元件間相互搭配操作或互動。此外,雖然本文中使用『第一』、『第二』、…等用語描述不同元件,該用語僅是用以區別以相同技術用語描述的元件或操作。除非上下文清楚指明,否則該用語並非特別指稱或暗示次序或順位,亦非用以限定本揭示文件。In this article, when an element is called "connected" or "coupled", it can be referred to as "electrically connected" or "electrically coupled." "Link" or "Coupling" can also be used to indicate the operation or interaction of two or more components. In addition, although terms such as "first", "second", etc. are used in this document to describe different elements, the terms are only used to distinguish elements or operations described in the same technical terms. Unless the context clearly dictates, the term does not specifically refer to or imply the order or order, nor is it intended to limit the present disclosure.

請參考第1圖,第1圖繪示根據本揭示文件之一實施例的多媒體資料系統的功能方塊圖。多媒體資料系統100與使用者裝置200通訊連接,可以是經由有線或無線通訊的方式互相連接,藉以達到傳遞資料。於一實施例中,多媒體資料系統100可以是英語線上學習平台,使用者裝置200可以是個人桌上型電腦、筆記型電腦裝置、平板電腦裝置或智慧型行動通訊裝置等,多媒體資料可以是線上課程,包含影片、文章、聲音、投影片或其他具有學習資料的媒體。Please refer to FIG. 1, which illustrates a functional block diagram of a multimedia data system according to an embodiment of the present disclosure. The communication connection between the multimedia data system 100 and the user device 200 can be connected to each other via wired or wireless communication, so as to achieve data transmission. In an embodiment, the multimedia data system 100 may be an English online learning platform, the user device 200 may be a personal desktop computer, a notebook computer device, a tablet computer device, or a smart mobile communication device, etc. The multimedia data may be online Courses, including movies, articles, sounds, slides or other media with learning materials.

於一實施例中,多媒體資料系統100包含處理器120及儲存裝置140。處理器120及儲存裝置140與使用者裝置200通訊連接,處理器120藉以與使用者裝置200傳遞資料,並將資料儲存於儲存裝置140中或從儲存裝置140讀取資料。於一實施例中,處理器120可以是中央處理器、微處理器等或其他具有資料處理功能的元件。儲存裝置140可以是硬碟、磁碟陣列、磁帶機、非揮發性記憶體或其他電子儲存媒體。In one embodiment, the multimedia data system 100 includes a processor 120 and a storage device 140. The processor 120 and the storage device 140 are communicatively connected to the user device 200, and the processor 120 transmits data with the user device 200, and stores the data in the storage device 140 or reads the data from the storage device 140. In an embodiment, the processor 120 may be a central processing unit, a microprocessor, or other components with data processing functions. The storage device 140 may be a hard disk, a disk array, a tape drive, a non-volatile memory, or other electronic storage media.

於一實施例中,操作資料包含對多媒體資料段落的至少一回應,處理器120包含回應分析單元122及計時單元124,回應分析單元122用以進行分析以取得對應於多媒體資料段落中的至少一問題的至少一回應,例如取得使用者對於英文教學影片的線上測驗的答案。計時單元124用以計算多媒體資料段落的播放時間,例如使用者觀看一部英文教學影片的的播放時間。In one embodiment, the operation data includes at least one response to the multimedia data segment. The processor 120 includes a response analysis unit 122 and a timing unit 124. The response analysis unit 122 is used to analyze to obtain at least one corresponding to the multimedia data segment At least one response to a question, such as obtaining answers to online quizzes from users on English teaching videos. The timing unit 124 is used to calculate the playing time of the multimedia data paragraphs, for example, the playing time of the user watching an English teaching video.

於一實施例中,儲存裝置140包含第一儲存單元142及第二儲存單元144。使用者裝置200通訊連接第二儲存單元144,第二儲存單元144藉以儲存對應於使用者裝置200的資料。第一儲存單元142用以儲存多媒體資料段落。第二儲存單元144用以儲存使用者裝置200與多媒體系統100互動所產生的操作資料,例如log或日誌。處理器120用以對儲存於第一儲存單元142的多媒體資料段落及操作資料分析及運算,並產生對應的推薦清單資料以供使用者裝置200顯示推薦清單。In one embodiment, the storage device 140 includes a first storage unit 142 and a second storage unit 144. The user device 200 is communicatively connected to the second storage unit 144, and the second storage unit 144 stores data corresponding to the user device 200. The first storage unit 142 is used to store multimedia data paragraphs. The second storage unit 144 is used to store operation data generated by the interaction between the user device 200 and the multimedia system 100, such as logs or logs. The processor 120 is used to analyze and calculate the multimedia data segments and operation data stored in the first storage unit 142, and generate corresponding recommendation list data for the user device 200 to display the recommendation list.

於一實施例中,儲存裝置140更包含第三儲存單元(未繪示),第三儲存單元用以儲存對應於第一儲存單元142中多媒體資料段落(如:實際影片mp4檔和影片檔)上傳至多媒體資料系統100中雲端平台資料庫後的後設資料(meta data)。於一實施例中,第三儲存單元可以與第一儲存單元142及第二儲存單元144中任一者整合,在此不以上述為限。In an embodiment, the storage device 140 further includes a third storage unit (not shown). The third storage unit is used to store multimedia data segments corresponding to the first storage unit 142 (eg, actual video mp4 files and video files) Meta data after uploading to the cloud platform database in the multimedia data system 100. In an embodiment, the third storage unit may be integrated with any one of the first storage unit 142 and the second storage unit 144, which is not limited to the above.

於一實施例中,第一儲存單元142可以是儲存線上課程的課程資料庫,第二儲存單元144可以是儲存個人桌上型電腦於英語線上學習平台上之操作資料的後端資料庫。操作資料例如是使用者以滑鼠點擊欲觀看的線上課程資料時,後端資料庫會將被點擊的項目儲存為操作資料。In one embodiment, the first storage unit 142 may be a course database for storing online courses, and the second storage unit 144 may be a back-end database for storing operation data of a personal desktop computer on an English online learning platform. The operation data is, for example, when the user clicks the online course data to be viewed with the mouse, the back-end database will store the clicked item as operation data.

應注意到,上述多媒體資料系統100中的裝置及元件的實現方式不以上述實施例所揭露的為限,且連接關係亦不以上述實施例為限,凡足以令多媒體資料系統100實現下述技術內容的連接方式與實現方式皆可運用於本案。It should be noted that the implementation of the devices and components in the multimedia data system 100 is not limited to those disclosed in the above embodiments, and the connection relationship is not limited to the above embodiments. Anything sufficient to enable the multimedia data system 100 to achieve the following Both the connection and implementation of the technical content can be applied to this case.

請同時參考第1圖及第2圖。第2圖繪示根據本揭示文件之一實施例的多媒體資料處理方法的流程圖。在第2圖中的處理方法300,包含步驟S310、步驟S320、步驟S330及步驟S340。首先,步驟S310中,透過儲存裝置140中的第一儲存單元142,儲存多媒體資料段落。於一實施例中,多媒體資料段落包含未經過分段的多媒體資料,例如一部完整的影片或文章,或是經過分段處理的多個多媒體資料段落,例如依照主題分段後的文章段落。Please refer to Figure 1 and Figure 2 at the same time. FIG. 2 illustrates a flowchart of a multimedia data processing method according to an embodiment of the present disclosure. The processing method 300 in FIG. 2 includes step S310, step S320, step S330, and step S340. First, in step S310, the multimedia data segment is stored through the first storage unit 142 in the storage device 140. In one embodiment, the multimedia data segment includes non-segmented multimedia data, such as a complete movie or article, or multiple segmented multimedia data segments, such as an article segment segmented according to the theme.

接著,在步驟S320中,透過儲存裝置140中的第二儲存單元144,儲存使用者裝置200與多媒體系統100互動所產生的操作資料。Next, in step S320, through the second storage unit 144 in the storage device 140, the operation data generated by the interaction between the user device 200 and the multimedia system 100 is stored.

以下介紹多媒體資料系統100中操作資料的產生方法。於一實施例中,操作資料的產生方法可以是根據於討論區發問的次數。例如,使用者觀看英語線上學習平台中的多媒體資料時,該平台除了顯示多媒體資料內容的介面之外,更包含對應於該多媒體資料的討論區,討論區提供使用者對於內容提出問題或討論。例如使用者對影片內容有疑問時可於討論區發問,發問時可以標記影片時間以讓欲解答者更快速知道問題是出現在影片中的哪個段落。The following describes the method for generating operating data in the multimedia data system 100. In an embodiment, the method for generating the operation data may be based on the number of questions asked in the discussion area. For example, when a user views multimedia data in an English online learning platform, in addition to displaying an interface of the multimedia data content, the platform also includes a discussion area corresponding to the multimedia data. The discussion area provides users with questions or discussions about the content. For example, when the user has questions about the content of the video, he can ask questions in the discussion area, and when he asks, he can mark the time of the video to let the person who wants to answer more quickly know which paragraph of the video the problem appears in.

例如,使用者對於影片中的1:00處有疑問,可於討論區發問並標記影片1:00處。其他使用者觀看此影片時可以一併看到討論區的此問題,並可以於下方解答。往後觀看此影片的人對於影片中的1:00處有相同疑問時能夠查找討論區是否有相同的問題已被解答。For example, if the user has questions about the 1:00 in the video, he can ask questions in the discussion area and mark the 1:00 in the video. Other users can see this question in the discussion board when watching this video, and can answer it below. People who watch this movie in the future can find out whether the same question has been answered in the discussion board if they have the same question at 1:00 in the movie.

於一實施例中,操作資料的產生方法可以是根據標記的數量。例如,使用者觀看多媒體資料段落時,可以於內容中增加標記,標記可以進一步增加註解。除了使用者自行增加的註解外,也能夠經由設定觀看其他使用者增加的標記或套用經由專業人士使用的標記及註解。例如使用者觀看影片時,認為影片3:00處為重點,可直接於影片3:00處加上標記,並附上註解內容將此處標註為重點。其他使用者可以經由設定觀看其他使用者的標記及註解,系統也能夠統計最多人使用者標記以提供使用者套用。In an embodiment, the method of generating the operation data may be based on the number of marks. For example, when viewing a paragraph of multimedia data, a user may add a mark to the content, and the mark may further add a comment. In addition to the annotations added by the users themselves, they can also view the marks added by other users or apply the marks and annotations used by professionals through settings. For example, when watching a video, the user thinks that the video is at 3:00, and he can directly mark it at 3:00 and attach a comment to mark it as the key. Other users can view the marks and comments of other users through the settings, and the system can also count the most user marks to provide user application.

於一實施例中,操作資料的產生方法可以是根據觀看紀錄。例如,處理器120計算使用者的觀看多媒體資料段落的紀錄時,也就是統計觀看紀錄。統計結果中影片的比例最高而文章的比例最低,表示該使用者較喜歡使用影片學習、對影片的接收度較高或想增進英語聽力能力,而較不喜歡閱讀文字或較不需要增進英語閱讀能力。處理器120藉由分析使用者觀看過的線上學習課程得知使用者較喜歡的學習方式及主題。例如使用者的觀看紀錄多為旅遊類型的英文文章,表示使用者對旅遊的主題較感興趣,並且較喜歡閱讀或想要增進閱讀能力,將此分析結果儲存於第二儲存單元144為操作資料。In an embodiment, the method for generating the operation data may be based on the viewing record. For example, when the processor 120 calculates the user's record of viewing multimedia data paragraphs, that is, statistical viewing records. The statistical results have the highest percentage of videos and the lowest percentage of articles, indicating that the user prefers to use videos for learning, has a higher acceptance of the videos, or wants to improve English listening skills, but does not like to read text or need to improve English reading ability. The processor 120 learns the user's preferred learning method and theme by analyzing the online learning course that the user has viewed. For example, the user’s viewing records are mostly travel-type English articles, indicating that the user is more interested in the subject of travel and prefers to read or wants to improve reading ability. This analysis result is stored in the second storage unit 144 as operation data .

於一實施例中,操作資料的產生方法可以是根據線上測驗的表現或問題的回應之分析結果。換言之,前述操作資料包含使用者操作時對前述多媒體資料段落的回應。如多媒體資料段落中包括問題問卷時,回應是「答案」。再例如,藉由線上測驗讓使用者了解自身的學習成果,線上測驗的方式可以是是非題、選擇題、申論題、作文或口試等等。除了線上測驗的分數之外,答題的時間及速度都是處理器120中的回應分析單元122評估使用者學習成果的參數之一,處理器120分析上述參數以產生分析結果,並將分析結果儲存為操作資料。例如,線上測驗時,分析結果可以是使用者進行線上測驗時的答案的正確與否,分析結果會有正確及錯誤兩種結果。In one embodiment, the method for generating the operation data may be based on the performance of the online test or the analysis result of the response to the question. In other words, the aforementioned operation data includes the user's response to the aforementioned multimedia data paragraph during operation. If the questionnaire is included in the paragraph of the multimedia data, the response is "answer". For another example, the online quiz allows users to understand their own learning results. The online quiz can be true or false, multiple choice, essay, essay or oral test. In addition to the online test scores, the time and speed of answering questions are one of the parameters of the response analysis unit 122 in the processor 120 to evaluate the user's learning results. The processor 120 analyzes the above parameters to generate an analysis result and stores the analysis result For operation information. For example, during the online test, the analysis result may be the correctness of the user's answer when performing the online test, and the analysis result will have both correct and incorrect results.

於一實施例中,操作資料的產生方法可以是根據觀看線上影片時的操作,例如多媒體資料的實際播放時間。當使用者觀看不同難度的英語線上課程時,會有不同的操作。例如,英語初學者(例如全民英檢初級程度)觀看程度較難的英語線上課程時(例如全民英檢中級),會需要花費較多時間觀看,如反覆觀看特定段落或是暫停影片,實際播放時間會大於影片本身的時間,處理器120中的計時單元124會計算使用者實際播放的時間,第二儲存單元144會將這些紀錄及實際播放時間儲存為操作資料,處理器120可以判斷重複觀看的線上課程為使用者有興趣或需要加強的學習主題。In an embodiment, the method for generating the operation data may be based on the operation when watching the online video, such as the actual playing time of the multimedia data. When users watch English online courses of different difficulty, they will have different operations. For example, English beginners (e.g. NBC Elementary Level) who have difficulty viewing English online courses (e.g. NFL Intermediate Level) will need to spend more time to watch, such as repeatedly watching specific passages or pausing videos, actually playing The time will be greater than the time of the movie itself. The timing unit 124 in the processor 120 will calculate the actual playback time of the user. The second storage unit 144 will store these records and the actual playback time as operation data. The processor 120 can determine to watch repeatedly Of online courses are learning topics that users are interested in or need to strengthen.

例如,線上測驗的表現包含測驗分數或測驗時間。處理器120可以參考播放時間、參考答題時間及參考分數。藉由計算使用者觀看線上課程時的播放時間或線上測驗的分數及答題時間來判斷使用者的學習程度。當播放時間高於參考播放時間時判斷該線上課程對於使用者的是困難的,播放時間低於參考播放時間時判斷對於使用者是簡單的。當答題時間大於參考答題時間或當分數低於參考分數時判斷線上測驗對於使用者的來說是困難的,當答題時間低於參考答題時間或當測驗分數高於參考分數時判斷該線上課程對於使用者是簡單的。因此,處理器120藉由上述判斷方式即可得知當前的多媒體資料段落或線上測驗對於使用者的難度如何。在此實施例中,多媒體資料段落的性質可以是多媒體資料段落的難度。參考分數的設定方式可以是所有經過測驗的使用者的平均分數,參考答題時間的設定方式可以是所有經過測驗的使用者的平均花費時間,設定的方式不以上述為限,也可以是其他的設定方式。For example, online quiz performance includes quiz score or quiz time. The processor 120 may refer to the playing time, the reference answer time, and the reference score. Judging the user's learning level by calculating the playing time when the user watches the online course or the score and answer time of the online quiz. When the playing time is higher than the reference playing time, it is difficult for the user to judge the online course, and when the playing time is lower than the reference playing time, the judgment is simple for the user. It is difficult for the user to judge the online test when the answer time is longer than the reference answer time or when the score is lower than the reference score. When the answer time is lower than the reference answer time or when the test score is higher than the reference score The user is simple. Therefore, the processor 120 can know how difficult the current multimedia data segment or online test is for the user through the above determination method. In this embodiment, the nature of the multimedia data paragraph may be the difficulty of the multimedia data paragraph. The setting method of the reference score can be the average score of all users who have passed the test. The setting method of the reference answer time can be the average time spent by all users who have passed the test. The setting method is not limited to the above, but can also be other Setting method.

本揭示文件的操作資料產生方法不以上述為限,上述是以舉例說明操作資料的產生方法,凡是使用者藉由使用者裝置200於多媒體系統100上的操作皆包含於本揭示文件所述之操作資料。操作資料代表使用者的使用習慣及行為,後續藉由分析操作資料產生評估資料,處理器120藉由評估資料能夠進一步得知使用者的喜好或程度等。The method for generating the operation data of the present disclosure is not limited to the above. The above is an example of the method for generating the operation data. All operations performed by the user on the multimedia system 100 by the user device 200 are included in the description of the present disclosure. Operating information. The operation data represents the user's usage habits and behaviors, and subsequent evaluation data is generated by analyzing the operation data, and the processor 120 can further know the user's preference or degree through the evaluation data.

在步驟S330中,對第一儲存單元142中之多媒體資料段落以及第二儲存單元144中之操作資料進行分析及運算。在一實施例中,步驟S330包含更進一步的步驟S331及步驟S332。步驟S331中,對第一儲存單元142中的多媒體資料段落的內容進行關聯性連結。步驟S332中根據第二儲存單元中的操作資料產生評估資料。In step S330, the multimedia data segment in the first storage unit 142 and the operation data in the second storage unit 144 are analyzed and calculated. In one embodiment, step S330 includes further steps S331 and S332. In step S331, the content of the multimedia data segment in the first storage unit 142 is relatedly linked. In step S332, evaluation data is generated according to the operation data in the second storage unit.

以下介紹在步驟S330中,多媒體資料段落內容之間的關聯性的分析方法。多媒體資料段落的內容以影片為例,更包含影片字幕、討論區內容及影片標記等等。不同多媒體資料段落的內容之間的關聯性可能是因為主題、字幕、課程描述或難易度相近,而有高相似度。除此之外,以影片為例,兩部不同主題的影片也可能是存在部分內容有關連性,例如旅遊主題的A影片的2:00~3:00處與食物主題的B影片的5:00~6:00內容有關連性,內容可能都為描述同一國家的旅遊方式及食物文化。因此需要針對不同影片的內容分段,並建立有關連性的段落之間的關聯性連結。The following describes the analysis method of the correlation between the content of the multimedia data paragraphs in step S330. The content of the multimedia data paragraph takes a video as an example, and also includes video subtitles, discussion board content, video tags, and so on. The relevance of the content of different multimedia data paragraphs may be due to the similarity of topics, subtitles, course descriptions or difficulty, and high similarity. In addition, taking the film as an example, two films with different themes may also have some content relatedness, such as the 2:00~3:00 of the A film of the travel theme and the 5 of the B film of the food theme: From 00 to 6:00, the content is related, and the content may all describe the travel mode and food culture of the same country. Therefore, it is necessary to segment the content of different videos and establish related links between related paragraphs.

以下說明在步驟S331中,關聯性連結的建立方法,請參考第3圖,第3圖繪示根據本揭示文件之一實施例的多媒體資料段落內容關聯性的示意圖。第3圖中包含多媒體資料A1、多媒體資料B1及多媒體資料C1,以及對應的段落A11~ A14、段落B11~B13及段落C11~C14。於此實施例中,以A1為影片、B1為文章及C1為影片作為範例說明,以下說明分析線上課程內容之間關聯性的方式。The following describes the method for establishing the relevance link in step S331. Please refer to FIG. 3, which is a schematic diagram illustrating the relevance of the content of multimedia data paragraphs according to an embodiment of the present disclosure. Figure 3 contains multimedia data A1, multimedia data B1 and multimedia data C1, and corresponding paragraphs A11~A14, paragraphs B11~B13 and paragraphs C11~C14. In this embodiment, A1 is a movie, B1 is an article, and C1 is a movie as an example. The following describes how to analyze the correlation between online course content.

多媒體資料A1當中,處理器120可以先分析A1的影片內容,以影片內容作為分段參考來分成複數個單元段落。這邊以分成4個段落A11、A12、A13及A14來做為例子說明,本揭示文件的多媒體資料分段數量不以4個為限,可以根據實際情況分成其他數量的單元段落。而分析影片內容的分段方法可以是根據多媒體資料A1中的影片字幕、討論區、影片標記等能夠獲知影片內容的方式來進行分析,分析分段的方式可以例如是針對關鍵字,像是以影片中說話者常用的開頭句或結尾句來區分不同的單元段落。除了經由處理器120分析,也可以藉由製作多媒體資料A1的人或具有相當知識的專家進行分段。處理器120可以藉由前述也提及的標記方式將不同段落分段,讓使用者觀看多媒體資料A1時能夠直接點擊標記或藉由觀看註解,跳到欲觀看的段落,使操作上更為方便,其他不同類型的多媒體資料也能夠應用相同的標記方式。In the multimedia data A1, the processor 120 may first analyze the video content of A1 and use the video content as a segment reference to divide into a plurality of unit segments. Here, taking four paragraphs A11, A12, A13, and A14 as examples, the number of multimedia data segments of the disclosed document is not limited to four, and can be divided into other number of unit paragraphs according to the actual situation. The method of analyzing the segmentation of the video content can be analyzed according to the way that the video subtitles, discussion forums, video tags, etc. in the multimedia data A1 can know the video content. The method of analyzing the segmentation can be, for example, for keywords, such as The beginning or ending sentences commonly used by speakers in the film to distinguish different unit paragraphs. In addition to the analysis by the processor 120, it can also be segmented by the person who makes the multimedia data A1 or an expert with considerable knowledge. The processor 120 can segment different paragraphs by the above-mentioned marking method, allowing the user to directly click on the marking when viewing the multimedia data A1 or jump to the paragraph to be viewed by viewing the annotation, which makes the operation more convenient , Other different types of multimedia data can also apply the same marking method.

在多媒體資料B1中,以分析文章的內容及段落的方式來做為區分不同單元段落的參考,通常文章內容中不同的段落會以段落開頭空兩格作為區分不同段落的方式,因此可以以偵測文字段落有空兩格處作為不同單元段落的起始處。於此實施例中,以分成3個段落B11、B12及B13作為例子。多媒體資料C1的分段方式與多媒體資料A1相似,這邊以分成4個段落C11、C12、C13及C14作為例子。In the multimedia data B1, the method of analyzing the content and paragraphs of the article is used as a reference to distinguish different paragraphs of the unit. Generally, different paragraphs in the article content will be separated by two spaces at the beginning of the paragraph as a way to distinguish different paragraphs. The test text paragraph has two empty spaces as the beginning of the paragraphs of different units. In this embodiment, taking three paragraphs B11, B12, and B13 as an example. The segmentation method of the multimedia data C1 is similar to that of the multimedia data A1. Here, the example is divided into four paragraphs C11, C12, C13, and C14.

處理器120將不同的多媒體資料A1、B1及C1依照內容各自分好段落後,接著分析多媒體資料A1、B1及C1之間的關聯性。不同多媒體資料中的不同段落內容之間可能有關連性,於此實施例中,多媒體資料A1中的段落A12與多媒體資料B1中的段落B12及多媒體資料C1中的段落C11有關連性,處理器120將段落A12、段落B12及段落C11之間建立關聯性連結,如第3圖的曲線箭號所示。例如觀看完段落A12的影片內容後,除了按照預設順序接續段落A13,也適合接著看段落B12的文章內容,再觀看段落C11的影片內容。段落B12的文章內容可能為說明段落A12的影片內容的文章段落,並且為段落C11的知識基礎之一,於此情況下,不一定要如傳統觀看影片的方式按照多媒體資料A1的順序將段落A11、A12、A13及A14整個看完再觀看多媒體資料B1。The processor 120 divides the different multimedia data A1, B1, and C1 into sections according to the content, and then analyzes the correlation between the multimedia data A1, B1, and C1. There may be a correlation between the content of different paragraphs in different multimedia data. In this embodiment, the paragraph A12 in the multimedia data A1 is related to the paragraph B12 in the multimedia data B1 and the paragraph C11 in the multimedia data C1. The processor 120 establishes an associative connection between paragraph A12, paragraph B12 and paragraph C11, as shown by the curved arrows in FIG. 3. For example, after watching the movie content of paragraph A12, in addition to continuing paragraph A13 in the preset order, it is also suitable to continue to read the article content of paragraph B12, and then watch the movie content of paragraph C11. The article content of paragraph B12 may be an article paragraph describing the movie content of paragraph A12, and is one of the knowledge bases of paragraph C11. In this case, it is not necessary to follow paragraph A11 in the order of multimedia data A1 as the traditional way of watching movies , A12, A13, and A14 after watching the multimedia material B1.

於一實施例中,多媒體資料段落之間的關聯性連結也可以是在上傳多媒體資料時就預先建立好,例如製作影片的專業人士於上傳完成後就先將不同影片中有關聯性的內容之間建立關聯性連結。例如,英文講師上傳自己製作的多個英文教學影片後,就先將內容有關聯的部分建立關聯性連結。In one embodiment, the related links between the multimedia data segments can also be established in advance when uploading the multimedia data. For example, after the uploading is completed, the professional who makes the video will first associate the related content in different videos. To establish associative links. For example, after an English lecturer uploads multiple English teaching videos that he has made, he will first establish a related link to the related parts of the content.

於一實施例中,多媒體資料系統100沒有將多媒體資料分段,直接根據多媒體資料A1、多媒體資料B1及多媒體資料C1的內容產生關連性連結。In an embodiment, the multimedia data system 100 does not segment the multimedia data, and directly generates related links according to the contents of the multimedia data A1, the multimedia data B1, and the multimedia data C1.

在步驟S332中,操作資料包含評估資料,處理器120藉由分析在步驟S320所產生的操作資料及對應於各個多媒體資料段落的難度,進一步產生對應於當前使用者的評估資料,評估資料包含評估對應於使用者對於多媒體資料段落的程度,以判斷適合該使用者的多媒體資料段落。換句話說,處理器120藉由評估資料能夠判斷使用者的程度。例如操作資料中統計使用者觀看的多媒體資料的比例是以全民英檢初級的比例最高,則處理器120判斷對應於該使用者的程度為全民英檢初級並產生對應的評估資料,將該使用者的程度評估為全民英檢初級,評估的方式不以上述為限,也能夠是其他統計方法及判斷方法。In step S332, the operation data includes evaluation data, and the processor 120 further generates evaluation data corresponding to the current user by analyzing the operation data generated in step S320 and the difficulty corresponding to each multimedia data segment. The evaluation data includes evaluation Corresponding to the user's degree of the multimedia data paragraph, the multimedia data paragraph suitable for the user is judged. In other words, the processor 120 can judge the degree of the user by evaluating the data. For example, in the operation data, the proportion of the multimedia data watched by the user is the highest in the national primary examination, then the processor 120 judges that the level corresponding to the user is the national primary examination and generates corresponding evaluation data, and then uses the The assessment of the degree of the person is the first level of the British national inspection. The assessment method is not limited to the above, and it can also be other statistical methods and judgment methods.

例如,評估資料的產生方法可以是根據分析上述實施例中各種方法所產生的操作資料進一步評估的結果。例如,線上測驗的表現在全民英檢中級的測驗分數低於平均分數,則產生當前使用者的程度評估為全民英檢初級的評估資料,處理器120藉由評估資料就能得知當前使用者的程度。For example, the method for generating the evaluation data may be a result of further evaluation based on analyzing the operation data generated by the various methods in the above embodiments. For example, if the performance of the online quiz is lower than the average score of the Intermediate National Examination Intermediate Test, the current user’s assessment is generated as the primary evaluation data of the National General Examination. The processor 120 can learn the current user through the evaluation data. Degree.

於其他實施例中,在使用者裝置200與多媒體系統100連線存取多媒體資料段落的情形下,多媒體資料系統100中會產生使用者的操作紀錄,且上述操作紀錄會儲存於第二儲存單元144中。操作紀錄包含使用者使用第一儲存單元142中的多媒體資料段落時所產生的紀錄,操作紀錄代表使用者使用過的多媒體資料段落歷史紀錄,分析操作紀錄的結果能夠得知使用者較喜歡的多媒體資料段落種類或使用者的程度。藉由分析操作紀錄,處理器120會進行操作紀錄的評估,評估對應於操作紀錄的多媒體資料段落喜好及程度,以判斷適合該使用者的多媒體資料。In other embodiments, in the case where the user device 200 and the multimedia system 100 are connected to access the multimedia data segment, the multimedia data system 100 generates a user operation record, and the operation record is stored in the second storage unit 144. The operation record includes the record generated when the user uses the multimedia data segment in the first storage unit 142. The operation record represents the historical record of the multimedia data segment used by the user. Analyzing the result of the operation record can know the user's favorite multimedia The type of data paragraph or the degree of user. By analyzing the operation record, the processor 120 will evaluate the operation record, evaluate the preferences and degree of the multimedia data segments corresponding to the operation record, so as to determine the multimedia data suitable for the user.

最後在步驟S340中,根據步驟S330中的關聯性連結及操作資料,產生對應的推薦清單資料供使用者裝置200顯示推薦清單,並根據更新的關聯性連結及操作資料以改變推薦清單的內容,下述以一實施例為例來進行說明。Finally, in step S340, the corresponding recommendation list data is generated for the user device 200 to display the recommendation list according to the related links and operation data in step S330, and the content of the recommendation list is changed according to the updated related links and operation data. The following description uses an embodiment as an example.

請參考第4圖,第4圖繪示根據本揭示文件之一實施例的推薦清單之學習路徑的示意圖。第4圖包含多媒體資料A2~F2,藉由上述的關聯性連結及操作資料,處理器120會產生對應的推薦清單。於此實施例中,初始推薦清單包含多媒體資料A2及B2。當使用者觀看多媒體資料A2及B2後,會產生對應的關聯性連結及操作資料,再次藉由關聯性連結及操作資料,處理器120判斷多媒體資料C2及多媒體資料E2中,使用者較適合接著觀看多媒體資料C2,並將多媒體資料C2加入到推薦清單中,接著再次判斷多媒體資料D2及多媒體資料F2,判斷結果多媒體資料D2比多媒體資料F2較適合。因此最後學習路徑為多媒體資料A2、B2、C2及D2。Please refer to FIG. 4, which is a schematic diagram of a learning path of a recommendation list according to an embodiment of the present disclosure. Figure 4 contains multimedia data A2~F2. With the above-mentioned related links and operation data, the processor 120 generates a corresponding recommendation list. In this embodiment, the initial recommendation list includes multimedia data A2 and B2. After the user views the multimedia data A2 and B2, corresponding connection and operation data will be generated. Again, through the connection and operation data, the processor 120 judges that the multimedia data C2 and the multimedia data E2, the user is more suitable to continue View the multimedia data C2, and add the multimedia data C2 to the recommendation list, and then judge the multimedia data D2 and the multimedia data F2 again. The judgment result is that the multimedia data D2 is more suitable than the multimedia data F2. Therefore, the final learning path is multimedia data A2, B2, C2 and D2.

例如,多媒體資料A2及C2為全民英檢初級程度的課程影片,多媒體資料B2及E2為全民英檢中級程度的課程影片。使用者觀看多媒體資料A2時,沒有暫停影片也沒有討論區發問的操作,線上測驗的分數高於平均分數。觀看多媒體資料B2時,暫停5次,討論區發問2次,線上測驗的分數低於平均分數並且花費時間高於平均時間,處理器120產生上述操作的操作資料。處理器120判斷於多媒體資料B2與多媒體資料C2及E2的內容有關聯性並建立關聯性連結。而藉由上述操作資料,處理器120產生將當前使用者的程度判斷為全民英檢初級程度而非全民英檢中級程度的評估資料,進而將學習路徑改為接續多媒體資料C2而非接續多媒體資料E2。多媒體資料D2及F2的情況與上述相似,處理器120判斷當前使用者較適合多媒體資料D2而非多媒體資料F2。經過上述操作,最後推薦清單顯示的多媒體資料為多媒體資料A2~D2,推薦給使用者的學習路徑為多媒體資料A2到多媒體資料D2。For example, multimedia materials A2 and C2 are the first-level course videos of the British National Examination, and multimedia materials B2 and E2 are the intermediate-level course videos of the British National Examination. The user did not pause the video or ask questions in the discussion area when viewing the multimedia data A2. The online test score was higher than the average score. When viewing multimedia data B2, pause 5 times, and post 2 times in the discussion forum. The score of the online test is lower than the average score and the time is higher than the average time. The processor 120 generates the operation data for the above operation. The processor 120 determines that the content of the multimedia data B2 and the multimedia data C2 and E2 are related and establishes a related link. With the above-mentioned operation data, the processor 120 generates evaluation data that judges the current user's level as the primary level of the UK national inspection rather than the intermediate level of the UK national inspection, and then changes the learning path to connect the multimedia data C2 instead of the multimedia data E2. The situation of the multimedia data D2 and F2 is similar to the above. The processor 120 determines that the current user is more suitable for the multimedia data D2 than the multimedia data F2. After the above operations, the multimedia data displayed in the recommended list at the end are multimedia data A2~D2, and the recommended learning path for the user is multimedia data A2 to multimedia data D2.

於一實施例中,除了上述於推薦清單中改變多媒體資料的順序外,也可以於推薦清單中新增或移除多媒體資料以改變推薦清單的內容。例如,於上述實施例中,當使用者觀看完多媒體資料D2後,處理器120根據使用者觀看完多媒體資料D2後的操作資料,並產生對應的評估資料以判斷多媒體資料D2對於當前使用者來說難易度是簡單的,則可以新增並推薦與多媒體資料D2有關連性連結且難度更高的其他多媒體資料。In an embodiment, in addition to changing the order of the multimedia data in the recommendation list, it is also possible to add or remove multimedia data in the recommendation list to change the content of the recommendation list. For example, in the above embodiment, after the user has watched the multimedia data D2, the processor 120 generates corresponding evaluation data according to the user's operation data after viewing the multimedia data D2 to determine the multimedia data D2 for the current user. Said the difficulty is simple, you can add and recommend other multimedia data related to the multimedia data D2 and more difficult to connect.

在一實施例中,儲存裝置140更包含分析端資料庫,用以儲存推薦清單及學習路徑變化的結果,並即時儲存使用者使用後的結果,處理器120進一步分析分析端資料庫中的推薦清單資料及學習路徑並更新推薦清單。因此,推薦清單的資料是隨著使用者的行為及使用多媒體資料後的結果即時或定時更新。例如,處理器120可以設定一間隔時間更新推薦清單,例如每隔1小時就更新一次,設定間隔時間的方式不以上述為限。In one embodiment, the storage device 140 further includes an analysis database to store the recommendation list and the results of the learning path change, and to store the user's results in real time. The processor 120 further analyzes the recommendations in the analysis database List materials and learning paths and update recommended lists. Therefore, the data of the recommendation list is updated in real time or regularly with the user's behavior and the result after using the multimedia data. For example, the processor 120 may set an interval to update the recommendation list, for example, update every hour, and the manner of setting the interval is not limited to the above.

綜上所述,多媒體資料系統分析多媒體資料段落內容之間的關聯性並建立關聯性連結,分析使用者裝置與多媒體資料系統互動的操作資料產生評估資料,藉由使用者多媒體資料段落內容之間的關聯性連結及評估資料,產生適合使用者的推薦清單,並隨著使用者使用推薦清單上的多媒體資料段落及使用的行為即時或定期更新推薦清單,並將使用者所選擇的學習路徑結果儲存,做為之後更新推薦清單的依據之一。In summary, the multimedia data system analyzes the correlation between the content of the multimedia data segments and establishes a correlation link, and analyzes the operation data of the interaction between the user device and the multimedia data system to generate evaluation data. Related links and evaluation data to generate a recommendation list suitable for the user, and update the recommendation list in real time or periodically as the user uses the multimedia data paragraphs and usage behaviors on the recommendation list, and the result of the learning path selected by the user Save as one of the basis for updating the recommendation list later.

100:多媒體資料系統 120:處理器 140:儲存裝置 142:第一儲存單元 144:第二儲存單元 200:使用者裝置 300:資料處理方法 S310、S320、S330、S331、S332、S340:步驟 A1、B1、C1、A2、B2、C2、D2、E2、F2:多媒體資料 A11~A14、B11~B13、C11~C14:段落100: Multimedia data system 120: processor 140: storage device 142: First storage unit 144: Second storage unit 200: user device 300: data processing method S310, S320, S330, S331, S332, S340: steps A1, B1, C1, A2, B2, C2, D2, E2, F2: multimedia data A11~A14, B11~B13, C11~C14: paragraph

第1圖繪示根據本揭示文件之一實施例的多媒體資料系統的功能方塊圖。 第2圖繪示根據本揭示文件之一實施例的多媒體資料處理方法的流程圖。 第3圖繪示根據本揭示文件之一實施例的多媒體資料內容關聯性的示意圖。 第4圖繪示根據本揭示文件之一實施例的推薦清單之學習路徑的示意圖。FIG. 1 is a functional block diagram of a multimedia data system according to an embodiment of the present disclosure. FIG. 2 illustrates a flowchart of a multimedia data processing method according to an embodiment of the present disclosure. FIG. 3 is a schematic diagram of multimedia data content relevance according to an embodiment of the present disclosure. FIG. 4 is a schematic diagram of a learning path of a recommendation list according to an embodiment of the disclosed document.

100:多媒體資料系統 100: Multimedia data system

120:處理器 120: processor

122:回應分析單元 122: Response analysis unit

124:計時單元 124: timing unit

140:儲存裝置 140: storage device

142:第一儲存單元 142: First storage unit

144:第二儲存單元 144: Second storage unit

200:使用者裝置 200: user device

Claims (14)

一種多媒體資料推薦系統,包含: 一儲存裝置,包含: 一第一儲存單元,用以儲存複數個多媒體資料段落;以及 一第二儲存單元,透過網路與至少一使用者裝置連接,並用以儲存該至少一使用者裝置與該多媒體資料系統互動而產生的操作資料;以及 一處理器,耦接該儲存裝置,用以分析該第一儲存單元中之該些多媒體資料段落以產生該些多媒體資料段落間的複數個關聯性連結,以及分析該第二儲存單元中之該些操作資料,並根據該些關聯性連結及該些操作資料產生對應的一推薦清單,其中該推薦清單記載該些多媒體資料段落。A multimedia data recommendation system, including: A storage device, including: A first storage unit for storing a plurality of multimedia data segments; and A second storage unit connected to at least one user device via a network and used to store operation data generated by the interaction of the at least one user device with the multimedia data system; and A processor, coupled to the storage device, is used to analyze the multimedia data segments in the first storage unit to generate a plurality of related links between the multimedia data segments, and to analyze the second storage unit in the second storage unit Some operation data, and generate a corresponding recommendation list according to the related links and the operation data, wherein the recommendation list records the paragraphs of multimedia data. 如請求項1所述之多媒體資料推薦系統,其中該處理器係用以對至少一多媒體資料的內容進行分段,產生該些多媒體資料段落,並根據該些多媒體資料段落產生該些多媒體資料段落之間的該些關聯性連結。The multimedia data recommendation system according to claim 1, wherein the processor is used to segment the content of at least one multimedia data, generate the multimedia data segments, and generate the multimedia data segments according to the multimedia data segments These related links between. 如請求項2所述之多媒體資料推薦系統,其中該處理器係用以計算該些多媒體資料段落之間的相似度,並根據計算結果對該些多媒體資料段落中內容相關的部分產生該些關聯性連結。The multimedia data recommendation system according to claim 2, wherein the processor is used to calculate the similarity between the multimedia data segments, and generate the correlations for the content-related parts of the multimedia data segments according to the calculation result Sexual connection. 如請求項1所述之多媒體資料推薦系統,其中該處理器包含: 一回應分析單元,其中該些操作資料包含對該些多媒體資料段落的至少一回應,該回應分析單元用以進行分析以取得對應於該些多媒體資料段落中的至少一問題的該至少一回應,其中該些操作資料更包含該回應分析單元分析對應該些多媒體資料段落的該至少一問題及該至少一回應的分析結果。The multimedia data recommendation system according to claim 1, wherein the processor includes: A response analysis unit, wherein the operation data includes at least one response to the multimedia data segments, the response analysis unit is used to analyze to obtain the at least one response corresponding to at least one question in the multimedia data segments, The operation data further includes the response analysis unit analyzing the at least one question corresponding to the multimedia data paragraphs and the analysis result of the at least one response. 如請求項1所述之多媒體資料推薦系統,其中該處理器包含: 一計時單元,用以計算該些多媒體資料段落的一播放時間,其中該些操作資料包括該些多媒體資料段落的該播放時間。The multimedia data recommendation system according to claim 1, wherein the processor includes: A timing unit is used to calculate a playing time of the multimedia data segments, wherein the operation data includes the playing time of the multimedia data segments. 如請求項5所述之多媒體資料推薦系統,其中該些多媒體資料段落各別對應一性質,並根據該性質以更新該些操作資料。The multimedia data recommendation system according to claim 5, wherein the multimedia data paragraphs each correspond to a property, and the operation data is updated according to the property. 如請求項6所述之多媒體資料推薦系統,其中該處理器根據更新的該些操作資料及該些關聯性連結,以改變提供給該至少一使用者裝置之該推薦清單的內容。The multimedia data recommendation system according to claim 6, wherein the processor changes the content of the recommendation list provided to the at least one user device according to the updated operation data and the related links. 一種多媒體資料推薦方法,包含: 透過一第一儲存單元,儲存複數個多媒體資料段落; 透過一第二儲存單元,儲存至少一使用者裝置與一多媒體資料系統互動而產生的操作資料; 分析該第一儲存單元中之該些多媒體資料段落之間的複數個關聯性連結;以及 分析該第二儲存單元中之該些操作資料,並根據該些關聯性連結及該些操作資料產生對應的一推薦清單,其中該推薦清單記載該些多媒體資料段落。A multimedia data recommendation method, including: Through a first storage unit, a plurality of multimedia data segments are stored; Through a second storage unit, storing operation data generated by at least one user device interacting with a multimedia data system; Analyzing a plurality of related links between the multimedia data segments in the first storage unit; and Analyze the operation data in the second storage unit, and generate a corresponding recommendation list according to the association links and the operation data, where the recommendation list records the multimedia data paragraphs. 如請求項8所述之多媒體資料推薦方法,更包含: 對至少一多媒體資料的內容進行分段,產生該些多媒體資料段落,並根據該些多媒體資料段落產生該些多媒體資料段落之間的該些關聯性連結。The multimedia data recommendation method described in claim 8 further includes: The content of at least one multimedia data is segmented to generate the multimedia data segments, and the related links between the multimedia data segments are generated according to the multimedia data segments. 如請求項9所述之多媒體資料推薦方法,更包含: 計算該些多媒體資料段落之間的相似度,並依據計算結果對該些多媒體資料段落中內容相關的部分產生該些關聯性連結。The multimedia data recommendation method described in claim 9 further includes: Calculate the similarity between the multimedia data segments, and generate the related links for the content-related parts of the multimedia data segments according to the calculation result. 如請求項8所述之多媒體資料推薦方法,其中分析該第二儲存單元中之該些操作資料,並根據該些關聯性連結及該些操作資料產生對應的該推薦清單的步驟包含: 分析該些多媒體資料段落中對應至少一問題的至少一回應以產生一分析結果。The multimedia data recommendation method according to claim 8, wherein the steps of analyzing the operation data in the second storage unit and generating a corresponding recommendation list according to the related links and the operation data include: Analyze at least one response corresponding to at least one question in the multimedia data paragraphs to generate an analysis result. 如請求項8所述之多媒體資料推薦方法,其中分析該第二儲存單元中之該些操作資料,並根據該些關聯性連結及該些操作資料產生對應的該推薦清單的步驟更包含: 計算該些多媒體資料段落的一播放時間。The multimedia data recommendation method according to claim 8, wherein the step of analyzing the operation data in the second storage unit and generating the corresponding recommendation list according to the related links and the operation data further includes: Calculate a playing time of the multimedia data paragraphs. 如請求項12所述之多媒體資料推薦方法,更包含: 根據對應該些多媒體資料段落的一性質,以更新該些操作資料。The multimedia data recommendation method described in claim 12, further includes: According to the nature of the paragraphs corresponding to the multimedia data, the operation data is updated. 如請求項13所述之多媒體資料推薦方法,其中分析該第二儲存單元中之該些操作資料,並根據該些關聯性連結及該些操作資料產生對應的該推薦清單的步驟包含: 在產生該推薦清單後,根據更新的該些操作資料及該些關聯性連結,以改變提供給該至少一使用者裝置之該推薦清單的內容。The multimedia data recommendation method according to claim 13, wherein the steps of analyzing the operation data in the second storage unit and generating a corresponding recommendation list according to the related links and the operation data include: After generating the recommendation list, the content of the recommendation list provided to the at least one user device is changed according to the updated operation data and the related links.
TW108111842A 2018-09-07 2019-04-03 Multimedia data recommending system and multimedia data recommending method TWI696386B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862728082P 2018-09-07 2018-09-07
US62/728,082 2018-09-07

Publications (2)

Publication Number Publication Date
TW202011749A true TW202011749A (en) 2020-03-16
TWI696386B TWI696386B (en) 2020-06-11

Family

ID=69745778

Family Applications (5)

Application Number Title Priority Date Filing Date
TW108104065A TWI709905B (en) 2018-09-07 2019-02-01 Data analysis method and data analysis system thereof
TW108104097A TWI699663B (en) 2018-09-07 2019-02-01 Segmentation method, segmentation system and non-transitory computer-readable medium
TW108104107A TWI725375B (en) 2018-09-07 2019-02-01 Data search method and data search system thereof
TW108104105A TWI700597B (en) 2018-09-07 2019-02-01 Segmentation method, segmentation system and non-transitory computer-readable medium
TW108111842A TWI696386B (en) 2018-09-07 2019-04-03 Multimedia data recommending system and multimedia data recommending method

Family Applications Before (4)

Application Number Title Priority Date Filing Date
TW108104065A TWI709905B (en) 2018-09-07 2019-02-01 Data analysis method and data analysis system thereof
TW108104097A TWI699663B (en) 2018-09-07 2019-02-01 Segmentation method, segmentation system and non-transitory computer-readable medium
TW108104107A TWI725375B (en) 2018-09-07 2019-02-01 Data search method and data search system thereof
TW108104105A TWI700597B (en) 2018-09-07 2019-02-01 Segmentation method, segmentation system and non-transitory computer-readable medium

Country Status (4)

Country Link
JP (3) JP6829740B2 (en)
CN (5) CN110889034A (en)
SG (5) SG10201905236WA (en)
TW (5) TWI709905B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI756703B (en) * 2020-06-03 2022-03-01 南開科技大學 Digital learning system and method thereof
US12099537B2 (en) 2020-09-21 2024-09-24 Samsung Electronics Co., Ltd. Electronic device, contents searching system and searching method thereof
CN114595854A (en) * 2020-11-19 2022-06-07 英业达科技有限公司 Method for tracking and predicting product quality based on social information
CN117351794B (en) * 2023-10-13 2024-06-04 浙江上国教育科技有限公司 Online course management system based on cloud platform

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07311539A (en) * 1994-05-17 1995-11-28 Hitachi Ltd Teaching material edition supporting system
KR100250540B1 (en) * 1996-08-13 2000-04-01 김광수 Studying method of foreign language dictation with apparatus of playing caption video cd
JP2002041823A (en) * 2000-07-27 2002-02-08 Nippon Telegr & Teleph Corp <Ntt> Information distributing device, information receiving device and information distributing system
JP3685733B2 (en) * 2001-04-11 2005-08-24 株式会社ジェイ・フィット Multimedia data search apparatus, multimedia data search method, and multimedia data search program
JP2002341735A (en) * 2001-05-16 2002-11-29 Alice Factory:Kk Broadband digital learning system
CN1432932A (en) * 2002-01-16 2003-07-30 陈雯瑄 English examination and score estimation method and system
TW200411462A (en) * 2002-12-20 2004-07-01 Hsiao-Lien Wang A method for matching information exchange on network
KR101109023B1 (en) * 2003-04-14 2012-01-31 코닌클리케 필립스 일렉트로닉스 엔.브이. Method and apparatus for summarizing a music video using content analysis
JP4471737B2 (en) * 2003-10-06 2010-06-02 日本電信電話株式会社 Grouping condition determining device and method, keyword expansion device and method using the same, content search system, content information providing system and method, and program
JP4426894B2 (en) * 2004-04-15 2010-03-03 株式会社日立製作所 Document search method, document search program, and document search apparatus for executing the same
JP2005321662A (en) * 2004-05-10 2005-11-17 Fuji Xerox Co Ltd Learning support system and method
JP2006003670A (en) * 2004-06-18 2006-01-05 Hitachi Ltd Educational content providing system
WO2006123261A2 (en) * 2005-03-31 2006-11-23 Koninklijke Philips Electronics, N.V. Augmenting lectures based on prior exams
US9058406B2 (en) * 2005-09-14 2015-06-16 Millennial Media, Inc. Management of multiple advertising inventories using a monetization platform
JP5167546B2 (en) * 2006-08-21 2013-03-21 国立大学法人京都大学 Sentence search method, sentence search device, computer program, recording medium, and document storage device
TW200825900A (en) * 2006-12-13 2008-06-16 Inst Information Industry System and method for generating wiki by sectional time of handout and recording medium thereof
JP5010292B2 (en) * 2007-01-18 2012-08-29 株式会社東芝 Video attribute information output device, video summarization device, program, and video attribute information output method
JP5158766B2 (en) * 2007-10-23 2013-03-06 シャープ株式会社 Content selection device, television, content selection program, and storage medium
TW200923860A (en) * 2007-11-19 2009-06-01 Univ Nat Taiwan Science Tech Interactive learning system
CN101382937B (en) * 2008-07-01 2011-03-30 深圳先进技术研究院 Multimedia resource processing method based on speech recognition and on-line teaching system thereof
US8140544B2 (en) * 2008-09-03 2012-03-20 International Business Machines Corporation Interactive digital video library
CN101453649B (en) * 2008-12-30 2011-01-05 浙江大学 Key frame extracting method for compression domain video stream
JP5366632B2 (en) * 2009-04-21 2013-12-11 エヌ・ティ・ティ・コミュニケーションズ株式会社 Search support keyword presentation device, method and program
JP5493515B2 (en) * 2009-07-03 2014-05-14 富士通株式会社 Portable terminal device, information search method, and information search program
BR112012017226A8 (en) * 2010-01-15 2018-06-26 Apollo Group Inc dynamic learning recommendation methods and computer readable non-transient storage media
JP2012038239A (en) * 2010-08-11 2012-02-23 Sony Corp Information processing equipment, information processing method and program
US8839110B2 (en) * 2011-02-16 2014-09-16 Apple Inc. Rate conform operation for a media-editing application
CN102222227B (en) * 2011-04-25 2013-07-31 中国华录集团有限公司 Video identification based system for extracting film images
CN102348049B (en) * 2011-09-16 2013-09-18 央视国际网络有限公司 Method and device for detecting position of cut point of video segment
CN102509007A (en) * 2011-11-01 2012-06-20 北京瑞信在线系统技术有限公司 Method, system and device for multimedia teaching evaluation and multimedia teaching system
JP5216922B1 (en) * 2012-01-06 2013-06-19 Flens株式会社 Learning support server, learning support system, and learning support program
US9846696B2 (en) * 2012-02-29 2017-12-19 Telefonaktiebolaget Lm Ericsson (Publ) Apparatus and methods for indexing multimedia content
US20130263166A1 (en) * 2012-03-27 2013-10-03 Bluefin Labs, Inc. Social Networking System Targeted Message Synchronization
US9058385B2 (en) * 2012-06-26 2015-06-16 Aol Inc. Systems and methods for identifying electronic content using video graphs
TWI513286B (en) * 2012-08-28 2015-12-11 Ind Tech Res Inst Method and system for continuous video replay
CN102937972B (en) * 2012-10-15 2016-06-22 上海外教社信息技术有限公司 A kind of audiovisual subtitle making system and method
WO2014100893A1 (en) * 2012-12-28 2014-07-03 Jérémie Salvatore De Villiers System and method for the automated customization of audio and video media
JP6205767B2 (en) * 2013-03-13 2017-10-04 カシオ計算機株式会社 Learning support device, learning support method, learning support program, learning support system, and server device
TWI549498B (en) * 2013-06-24 2016-09-11 wu-xiong Chen Variable audio and video playback method
CN104572716A (en) * 2013-10-18 2015-04-29 英业达科技有限公司 System and method for playing video files
KR101537370B1 (en) * 2013-11-06 2015-07-16 주식회사 시스트란인터내셔널 System for grasping speech meaning of recording audio data based on keyword spotting, and indexing method and method thereof using the system
US20150206441A1 (en) * 2014-01-18 2015-07-23 Invent.ly LLC Personalized online learning management system and method
CN104123332B (en) * 2014-01-24 2018-11-09 腾讯科技(深圳)有限公司 The display methods and device of search result
US9892194B2 (en) * 2014-04-04 2018-02-13 Fujitsu Limited Topic identification in lecture videos
US9253511B2 (en) * 2014-04-14 2016-02-02 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for performing multi-modal video datastream segmentation
US20160239155A1 (en) * 2015-02-18 2016-08-18 Google Inc. Adaptive media
JP6334431B2 (en) * 2015-02-18 2018-05-30 株式会社日立製作所 Data analysis apparatus, data analysis method, and data analysis program
CN104978961B (en) * 2015-05-25 2019-10-15 广州酷狗计算机科技有限公司 A kind of audio-frequency processing method, device and terminal
CN105047203B (en) * 2015-05-25 2019-09-10 广州酷狗计算机科技有限公司 A kind of audio-frequency processing method, device and terminal
TWI571756B (en) * 2015-12-11 2017-02-21 財團法人工業技術研究院 Methods and systems for analyzing reading log and documents corresponding thereof
CN105978800A (en) * 2016-07-04 2016-09-28 广东小天才科技有限公司 Method, system and server for pushing questions to mobile terminal
CN106202453B (en) * 2016-07-13 2020-08-04 网易(杭州)网络有限公司 Multimedia resource recommendation method and device
CN106231399A (en) * 2016-08-01 2016-12-14 乐视控股(北京)有限公司 Methods of video segmentation, equipment and system
CN106331893B (en) * 2016-08-31 2019-09-03 科大讯飞股份有限公司 Real-time caption presentation method and system
CN108122437A (en) * 2016-11-28 2018-06-05 北大方正集团有限公司 Adaptive learning method and device
CN107256262B (en) * 2017-06-13 2020-04-14 西安电子科技大学 Image retrieval method based on object detection
CN107623860A (en) * 2017-08-09 2018-01-23 北京奇艺世纪科技有限公司 Multi-medium data dividing method and device

Also Published As

Publication number Publication date
JP2020042770A (en) 2020-03-19
CN110895654A (en) 2020-03-20
JP2020042777A (en) 2020-03-19
CN110895654B (en) 2024-07-02
TW202011222A (en) 2020-03-16
CN110888994A (en) 2020-03-17
SG10201907250TA (en) 2020-04-29
SG10201906347QA (en) 2020-04-29
CN110888896A (en) 2020-03-17
TWI709905B (en) 2020-11-11
JP6829740B2 (en) 2021-02-10
SG10201905532QA (en) 2020-04-29
TW202011221A (en) 2020-03-16
TW202011231A (en) 2020-03-16
SG10201905236WA (en) 2020-04-29
CN110891202A (en) 2020-03-17
TWI699663B (en) 2020-07-21
TWI696386B (en) 2020-06-11
CN110891202B (en) 2022-03-25
TWI700597B (en) 2020-08-01
TWI725375B (en) 2021-04-21
JP2020042771A (en) 2020-03-19
CN110889034A (en) 2020-03-17
SG10201905523TA (en) 2020-04-29
TW202011232A (en) 2020-03-16
CN110888896B (en) 2023-09-05

Similar Documents

Publication Publication Date Title
TWI696386B (en) Multimedia data recommending system and multimedia data recommending method
Castillo et al. Social media-driven customer engagement and movie performance: Theory and empirical evidence
Van Es YouTube’s operational logic:“The view” as pervasive category
US20180082313A1 (en) Systems and methods for prioritizing user reactions to content for response on a social-media platform
US11128904B2 (en) System and method for recommending multimedia data
Bosch et al. Measurement reliability, validity, and quality of slider versus radio button scales in an online probability-based panel in Norway
US10013492B1 (en) Categorization based on user questionnaire
US20240330355A1 (en) Methods and systems generating curated playlists
Powers How students access, filter and evaluate digital news: choices that shape what they consume and the implications for news literacy education
US12118022B2 (en) Method and system for initiating a location-based topic
US11017682B2 (en) Generating customized learning paths
Faix Teaching Online Research in the" Fake News" Era.
Xu et al. An information-processing model for audiences’ selections of movies
Martins et al. Effects of interactive video annotations on students' browsing behavior and perceived workload
TW201348988A (en) Self-assessment feedback audio and video learning method and system thereof
US20120124058A1 (en) System and method for rating items within the arts
Van Rijnsoever et al. Perceived technology clusters and ownership of related technologies: The case of consumer electronics
Goh Social media advertising: An exploration of marketing technique and tools to combat ad-blocking and ad-avoidance
Salim et al. Improving the learning effectiveness of educational videos
US11756096B1 (en) Expert methods and system recommendations activating consumer fingerprint and footprint to handshake with experts and walk-through product/service options
Jackson et al. Data Curation and the Arts: How Do Musicians Curate Their Data?
Vissenberg et al. Report on the role of critical information skills in recognising mis-and disinformation
Bjursten et al. How Real-Time Marketing Affects Social Media Engagement
US20230377058A1 (en) Musicians world
Harrison Examining the Influential Relationship Between Social Media Content and Social Media Engagement in Higher Education