TW202010410A - A microbial agent for controlling transmission of mosquito-borne diseases - Google Patents

A microbial agent for controlling transmission of mosquito-borne diseases Download PDF

Info

Publication number
TW202010410A
TW202010410A TW107131752A TW107131752A TW202010410A TW 202010410 A TW202010410 A TW 202010410A TW 107131752 A TW107131752 A TW 107131752A TW 107131752 A TW107131752 A TW 107131752A TW 202010410 A TW202010410 A TW 202010410A
Authority
TW
Taiwan
Prior art keywords
protein
gene
mosquito
toxin
polypeptide chain
Prior art date
Application number
TW107131752A
Other languages
Chinese (zh)
Other versions
TWI728264B (en
Inventor
鄭添祿
黃建喬
林文瑋
Original Assignee
高雄醫學大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高雄醫學大學 filed Critical 高雄醫學大學
Priority to TW107131752A priority Critical patent/TWI728264B/en
Publication of TW202010410A publication Critical patent/TW202010410A/en
Application granted granted Critical
Publication of TWI728264B publication Critical patent/TWI728264B/en

Links

Images

Landscapes

  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention provides a polypeptide which comprises an amino acid sequence with trypsin like protease cutting site for digesting in larval gut, and short peptides of N- and C- terminus for stabling the amino acid sequence, in which, the amino acid sequence comprises at least one lysine (K) cutting site or arginine (R). The present invention is also related to a microbial agent for controlling transmission of mosquito borne diseases, which expresses a mosquito killing protein on cell membrane of bacterial carrier by using the polypeptide of present invention, comprising a bacterial carrier, the peptide, and a mosquitocidal toxin.

Description

控制蚊媒傳染疾病傳播之微生物製劑 Microbial preparation for controlling the spread of mosquito-borne diseases

本發明涉及一種微生物製劑,尤其係指一種用於控制蚊媒傳染疾病傳播之微生物製劑。 The invention relates to a microbial preparation, in particular to a microbial preparation for controlling the spread of mosquito-borne diseases.

臺灣、中國、東南亞國家或其他地處熱帶及亞熱帶氣候區的國家,因蚊蟲肆虐而容易造成如日本腦炎、茲卡病毒或登革熱等蚊媒傳染疾病之流行。以登革熱為例,我國已於民國93年就將登革熱列為第二類傳染病,在過去10年中,我國每年都有800件到10000件不等的登革熱確診病例,而在2015年,登革熱確診病例更上升到4萬多件,雖現今醫療發達,加上政策實施得當,登革熱病例正在逐漸減少中,但隨著全球暖化的影響,蚊蟲得以大量繁殖的區域正在逐漸擴散,以我國疾病管制署公告之統計表顯示,2017年開始,大臺北地區登革熱確診的病例數已經開始高於臺南及高雄了。 Taiwan, China, Southeast Asian countries, or other countries located in tropical and subtropical climate regions are prone to mosquito-borne diseases such as Japanese encephalitis, Zika virus, or dengue fever due to mosquitoes. Taking dengue fever as an example, China has listed dengue fever as the second type of infectious disease in the Republic of China in 1993. In the past 10 years, there have been 800 to 10,000 confirmed cases of dengue fever each year in our country. In 2015, dengue fever The number of confirmed cases has risen to more than 40,000. Although the current medical development and the proper implementation of policies, dengue fever cases are gradually decreasing, but with the impact of global warming, the areas where mosquitoes can multiply are gradually spreading. According to the statistics published by the Control Department, the number of confirmed cases of dengue fever in the Greater Taipei area has begun to be higher than that of Tainan and Kaohsiung since 2017.

針對環境驅蚊的方式大多採用大範圍噴藥的方式,一者,殺蟲藥劑為化學產物,對環境影響甚大;二者,孑孓好生長於水中,噴灑殺蟲藥劑間接污染了水質,民眾的生活用水品質及健康影響堪慮,開發環境友善的殺蚊方法自是當務之急。目前全世界皆致力於生物防治工作,主張以生物的食物鏈及天敵的相對關係來防治害蟲,本發明便係以食物鏈的概 念設計一種可以讓孑孓於攝食當中,將蚊蟲毒殺蛋白一併攝入,並達到殺滅蚊蟲的效果。 Most of the mosquito repellent methods for the environment use large-scale spraying. One is that the insecticide is a chemical product, which has a great impact on the environment; both, the insecticide grows well in the water, and spraying the insecticide indirectly pollutes the water quality. The quality of domestic water and health impacts are worrying, and developing environmentally friendly mosquito killing methods is a top priority. At present, the whole world is committed to biological control work, advocating the use of the biological food chain and the relative relationship between natural enemies to control pests. The present invention is based on the concept of the food chain to design a kind of food that can be eaten by the mosquitoes. And to achieve the effect of killing mosquitoes.

過去研究已經指出,芽孢桿菌屬的蘇雲金芽孢桿菌(Bacillus thuringiensis)及球形芽孢桿菌(Bacillus sphaericus)本身具有可殺死蚊蟲的蚊蟲毒殺蛋白,也有一些利用蘇雲金芽孢桿菌作成的的殺蟲劑,但其缺點在於1.蘇雲金芽孢桿菌並非環境益生菌,2.蘇雲金芽孢桿菌僅在孢期才具有殺蚊的特性、3.蘇雲金芽孢桿菌製劑本身沒有複製的能力,故,本發明提供了一個新的構想,利用一段可被孑孓腸道酵素消化之多肽鏈,將蚊蟲毒殺蛋白表現在環境益生菌的細胞膜的胞膜結合蛋白上,利用該細菌載體在環境中具有自我增殖的特性,使得殺蟲劑具有複製性,且該蚊蟲毒殺蛋白可以更快又更有效率地被釋放。 Past studies have pointed out that Bacillus thuringiensis and Bacillus sphaericus have their own mosquito-killing proteins that can kill mosquitoes. There are also some insecticides made of Bacillus thuringiensis, but their The disadvantages are: 1. Bacillus thuringiensis is not an environmental probiotic, 2. Bacillus thuringiensis has mosquito killing characteristics only in the spore stage, 3. Bacillus thuringiensis preparation itself does not have the ability to replicate, therefore, the present invention provides a new concept Utilizing a polypeptide chain that can be digested by the enzymes of the intestine to express the mosquito toxin protein on the cell membrane binding protein of the cell membrane of environmental probiotics. The use of the bacterial carrier has the characteristics of self-proliferation in the environment, so that the insecticide has Reproducible, and the mosquito toxin protein can be released faster and more efficiently.

本發明所述之「短肽」係指3至9個胺基酸序列之短肽鏈。 The "short peptide" in the present invention refers to a short peptide chain of 3 to 9 amino acid sequences.

本發明之精神在於提供一種微生物製劑之平台,並表現一蚊蟲毒殺蛋白在細菌載體之上,其中,該細菌載體及該蚊蟲毒殺蛋白依其目的之不同而有不同之選擇。 The spirit of the present invention is to provide a platform for microbial preparations and express a mosquito toxin protein on a bacterial carrier, wherein the bacterial carrier and the mosquito toxin protein have different choices according to their purposes.

本發明之目的係提供一種環境友善之控制蚊媒傳染疾病之傳播的新穎微生物製劑,其主要概念係利用一環境微生物當作載體,並表現一蚊蟲毒殺蛋白於其細胞膜上。 The object of the present invention is to provide an environmentally friendly novel microbial preparation for controlling the transmission of mosquito-borne diseases. The main concept is to use an environmental microorganism as a carrier and express a mosquito-killing protein on its cell membrane.

本發明之主要技術特徵之一為一種多肽鏈,包括一段具有類胰蛋白酶酵素(trypsin like protease)切位之胺基酸序列,以供蚊蟲腸道消化,以及兩端之短肽,用以穩定該胺基酸序列。其中,該胺基酸序列至少 包括一離胺酸(K)或一精胺酸(R)。 One of the main technical features of the present invention is a polypeptide chain, which includes an amino acid sequence with trypsin like protease cleavage for digestion of mosquito intestines, and short peptides at both ends for stabilization The amino acid sequence. Wherein, the amino acid sequence includes at least monoamine acid (K) or monoarginine (R).

本發明之另一主要技術特徵係利用該多肽鏈將蚊蟲毒殺蛋白連接於細菌載體之細胞膜上的一種控制蚊媒傳染疾病傳播之微生物製劑,包括一細菌載體、一多肽鏈、以及一蚊蟲毒殺蛋白,其中該蚊蟲毒殺蛋白係指殺蚊蛋白。 Another main technical feature of the present invention is a microbial preparation that uses the polypeptide chain to connect the mosquito toxin to the cell membrane of a bacterial carrier to control the transmission of mosquito-borne diseases, including a bacterial carrier, a polypeptide chain, and a mosquito toxin Protein, wherein the mosquito poisoning protein refers to mosquito killing protein.

依據本發明之微生物製劑,於一較佳實施方式中,該細菌載體係為一環境益生菌,包括芽孢桿菌屬(Bacillus)的細菌、光合細菌及硝化細菌等。 Microbial preparations according to the present invention, in a preferred embodiment, the carrier system is a bacterial probiotic environment, including the genus Bacillus (Bacillus), and photosynthetic bacteria and nitrifying bacteria.

依據本發明之微生物製劑,於一較佳實施方式中,該多肽鏈之該胺基酸序列至少包括一離胺酸(K)或一精胺酸(R)。 According to the microbial preparation of the present invention, in a preferred embodiment, the amino acid sequence of the polypeptide chain includes at least an amine acid (K) or an arginine (R).

依據本發明之微生物製劑,於一較佳實施方式中,該蚊蟲毒殺蛋白係包括第一型殺蚊蛋白(Mosquitocidal Toxin 1)、第二型殺蚊蛋白(Mosquitocidal Toxin 2)、第三型殺蚊蛋白(Mosquitocidal Toxin 3)、Cry蛋白(Cry family proteins)、Cyt蛋白(Cyt family proteins)、CLP蛋白(Cyclic lipopeptide protein)或其之任意組合。 According to the microbial preparation of the present invention, in a preferred embodiment, the mosquito toxin protein includes first type mosquito killing protein (Mosquitocidal Toxin 1), second type mosquito killing protein (Mosquitocidal Toxin 2), third type mosquito killing protein Protein (Mosquitocidal Toxin 3), Cry protein (Cry family proteins), Cyt protein (Cyt family proteins), CLP protein (Cyclic lipopeptide protein), or any combination thereof.

依據本發明之微生物製劑,於一更佳實施方式中,該蚊蟲毒殺蛋白係第二型殺蚊蛋白(Mosquitocidal Toxin 2),其中,當該蚊蟲毒殺蛋白係截短修飾後的第二型殺蚊蛋白(truncated Mosquitocidal Toxin 2)時,其效果更佳。 According to the microbial preparation of the present invention, in a more preferred embodiment, the mosquito toxin protein is Mosquitocidal Toxin 2 (Mosquitocidal Toxin 2). Protein (Truncated Mosquitocidal Toxin 2), the effect is better.

依據本發明之微生物製劑,於一較佳實施方式中,該多肽鏈係接合於該細菌載體之細胞膜上的胞膜結合蛋白上,其中,該胞膜結合蛋白依據細菌載體不同而有不同之選擇,如於大腸桿菌(E.coli)上,則該胞 膜結合蛋白可選擇AIDA蛋白或OmpA蛋白;若於枯草桿菌(B.subtilis)之上,則該胞膜結合蛋白可選擇YhcR蛋白。 According to the microbial preparation of the present invention, in a preferred embodiment, the polypeptide chain is attached to the cell membrane binding protein on the cell membrane of the bacterial carrier, wherein the cell membrane binding protein has different options depending on the bacterial carrier For example, in E. coli , the membrane binding protein can be AIDA protein or OmpA protein; if it is on B. subtilis , the membrane binding protein can be YhcR protein.

本發明之主要技術特徵又包含了一重組基因,包括可轉錄出該微生物製劑之一胞膜結合蛋白基因、一多肽鏈基因、及一蚊蟲毒殺蛋白基因,其中,該多肽鏈基因係設置於該胞膜結合蛋白基因及該蚊蟲毒殺蛋白基因之間。 The main technical feature of the present invention further includes a recombinant gene, including a gene for a membrane binding protein that can be transcribed out of the microbial preparation, a polypeptide chain gene, and a mosquito poisoning protein gene, wherein the polypeptide chain gene is set in Between the cell membrane binding protein gene and the mosquito toxin protein gene.

依據本發明之重組基因,於一較佳實施方式中,該多肽鏈基因具有一類胰蛋白酶酵素(trypsin like protease)切位之胺基酸序列之基因,其中該胺基酸序列之基因至少包括一離胺酸(K)或一精胺酸(R)之基因。 According to the recombinant gene of the present invention, in a preferred embodiment, the polypeptide chain gene has a gene of amino acid sequence cleaved by trypsin like protease, wherein the gene of the amino acid sequence includes at least one Genes of lysine (K) or arginine (R).

依據本發明之重組基因,於一較佳實施方式中,該蚊蟲毒殺蛋白的基因係包括第一型殺蚊蛋白(Mosquitocidal Toxin 1)基因、第二型殺蚊蛋白(Mosquitocidal Toxin 2)基因、第三型殺蚊蛋白(Mosquitocidal Toxin 3)基因、Cry蛋白(Cry family proteins)基因、Cyt蛋白(Cyt family proteins)基因、CLP蛋白(Cyclic lipopeptide protein)基因或其之任意組合。 According to the recombinant gene of the present invention, in a preferred embodiment, the mosquito toxin-killing gene line includes the first type mosquito-killing protein (Mosquitocidal Toxin 1) gene, the second type mosquito-killing protein (Mosquitocidal Toxin 2) gene, the first Mosquitocidal Toxin 3 gene, Cry family protein gene, Cyt family protein gene, CLP protein (Cyclic lipopeptide protein) gene, or any combination thereof.

依據本發明之微生物製劑,於一更佳實施方式中,該蚊蟲毒殺蛋白係第二型殺蚊蛋白(Mosquitocidal Toxin 2)基因,其中,當該蚊蟲毒殺蛋白係截短修飾後的第二型殺蚊蛋白(truncated Mosquitocidal Toxin 2)基因時,其效果更佳。 According to the microbial preparation of the present invention, in a more preferred embodiment, the mosquito toxin protein is a Mosquitocidal Toxin 2 gene (Mosquitocidal Toxin 2) gene, wherein, when the mosquito toxin protein is truncated and modified, the second type kills Mosquito protein (truncated Mosquitocidal Toxin 2) gene, its effect is better.

依據本發明之微生物製劑,於一較佳實施方式中,該胞膜結合蛋白基因依據細菌載體不同而有不同之選擇,如於大腸桿菌(E.coli)上,則該胞膜結合蛋白基因可選擇AIDA蛋白基因或OmpA蛋白基因;若於枯草桿菌(B.subtilis)之上,則該胞膜結合蛋白可選擇YhcR蛋白基因。 According to the microbial preparation of the present invention, in a preferred embodiment, the membrane-binding protein gene has different choices depending on the bacterial carrier. For example, in E. coli , the membrane-binding protein gene may be Choose AIDA protein gene or OmpA protein gene; if it is on B. subtilis , then the membrane binding protein can choose YhcR protein gene.

本發明之微生物製劑於控制蚊媒傳染疾病之用途,其係利用投以適量之本發明於水中,由於蚊子的幼蟲-孑孓係生長於水中,尤其係不流動的水,故將適量之本發明之微生物製劑投於水中,則孑孓於進食的同時,就會將本發明之微生物製劑攝入,經其腸道酵素分解該多肽鏈之後,蚊蟲毒殺蛋白隨之釋放,進而達到殺蚊以控制蚊媒傳染疾病之目的。 The use of the microbial preparation of the present invention in the control of mosquito-borne infections is to use an appropriate amount of the present invention in water. Since the mosquito larvae-growth grows in water, especially the non-flowing water, the appropriate amount of the present invention is used. When the microbial preparation is cast into water, the microbial preparation of the present invention will be ingested while eating, and after the polypeptide chain is decomposed by its intestinal enzymes, the mosquito poisoning protein will be released accordingly, so as to achieve mosquito control to control mosquito The purpose of vector-borne diseases.

10‧‧‧控制蚊媒傳染疾病傳播之微生物製劑 10‧‧‧Microbiological preparation for controlling the transmission of mosquito-borne diseases

101‧‧‧細菌載體 101‧‧‧ Bacteria carrier

102‧‧‧胞膜結合蛋白 102‧‧‧ Membrane binding protein

103‧‧‧多肽鏈 103‧‧‧ polypeptide chain

104‧‧‧蚊蟲毒殺蛋白 104‧‧‧ Mosquito poison protein

20‧‧‧孑孓 20‧‧‧

201‧‧‧孑孓的腸道酵素 201‧‧‧The intestinal enzymes

圖1為本發明之實施態樣圖。 FIG. 1 is a diagram of an embodiment of the present invention.

圖2為本發明用於大腸桿菌(E.coli)表現系統試驗之融合蚊蟲毒殺蛋白基因的重組基因組,KM4重組基因為本發明之重組基因實驗組1;KM6重組基因為不含有多肽鏈基因(以GGGSG取代之)的實驗組2;KM3重組基因為不含多肽鏈基因及胞膜蛋白基因的對照組。 Figure 2 is the recombinant genome of the fusion mosquito toxin protein gene used in the E. coli expression system test of the present invention. The KM4 recombinant gene is the recombinant gene experiment group 1 of the present invention; the KM6 recombinant gene is a polypeptide chain-free gene ( Experimental group 2 replaced by GGGSG); KM3 recombinant gene is a control group without polypeptide chain gene and membrane protein gene.

圖3為本發明用於大腸桿菌(E.coli)表現系統試驗之融合蚊蟲毒殺蛋白的重組蛋白表現結果,左圖為SDS-PAGE的結果,右圖為以鼠源抗GST tag的一級抗體進行西方墨點法的結果。 Figure 3 shows the results of the recombinant protein fusion of mosquito toxins used in the E. coli expression system test of the present invention. The left picture shows the results of SDS-PAGE, and the right picture shows the use of mouse-derived primary antibodies against GST tag. The result of Western blotting.

圖4為本發明於大腸桿菌(E.coli)表現系統中對於埃及斑紋幼蟲之毒殺性結果,圖A為KM4及KM6進入幼蟲體內的實施態樣圖,圖B為KM4及KM6的毒殺試驗結果。 Fig. 4 shows the results of the poisoning effect of the present invention on the E. coli expression system for the Egyptian zebra larvae. Fig. A shows the implementation of KM4 and KM6 entering the larvae. Fig. B shows the results of the killing test of KM4 and KM6. .

圖5為本發明用於枯草桿菌(B.subtilis)表現試驗之融合蚊蟲毒殺蛋白的枯草桿菌表現系統重組基因。 FIG. 5 is a recombinant gene of the Bacillus subtilis expression system fused with mosquito-killing protein for B. subtilis performance test of the present invention.

圖6為本發明用於枯草桿菌(B.subtilis)表現試驗之融合蚊蟲毒殺蛋白的枯草桿菌表現系統重組蛋白表現結果。 FIG. 6 shows the results of the recombinant protein expression of the Bacillus subtilis expression system fused with the mosquito-killing protein used in the B. subtilis performance test of the present invention.

本發明提供一種控制蚊媒傳染疾病傳播之微生物製劑,包括一細菌載體、一多肽鏈、以及一蚊蟲毒殺蛋白,其中,該細菌載體、該多肽鏈及該蚊蟲毒殺蛋白係依據不同目的不同物種而加以變更,例如本發明之最佳實施方式係利用一環境微生物來控制登革熱之傳播,而登革熱係由蚊蟲傳播,其幼蟲係生長於水中的孑孓;又,枯草桿菌(B.subtilis)係常用於調整水質之環境益生菌,故,該環境益生菌選用枯草桿菌(B.subtilis),該多肽鏈選用一段具有可被蚊蟲腸道酵素消化之切位之胺基酸序列,該蚊蟲毒殺蛋白選用殺蚊蛋白。 The invention provides a microbial preparation for controlling the transmission of mosquito-borne diseases, including a bacterial carrier, a polypeptide chain, and a mosquito toxin protein, wherein the bacterial carrier, the polypeptide chain and the mosquito toxin protein are different species according to different purposes To make changes, for example, the best embodiment of the present invention uses an environmental microorganism to control the spread of dengue fever, which is spread by mosquitoes and whose larvae are grown in water; and B. subtilis is commonly used. In order to adjust the environmental probiotics of the water quality, the environmental probiotics use B. subtilis . The polypeptide chain selects an amino acid sequence with a cleavable position that can be digested by mosquito intestinal enzymes. The mosquito toxin protein is selected. Mosquito killing protein.

如圖1所示,本發明旨在建立一種控制登革熱傳播之微生物製劑10,其包括一細菌載體101、一可被孑孓腸道酵素消化之多肽鏈103、以及一蚊蟲毒殺蛋白104,其中,該蚊蟲毒殺蛋白104係藉由該多肽鏈103表現於該細菌載體101之胞膜結合蛋白102上。當孑孓20自環境中進食的同時,就會將本發明之微生物製劑一併攝入,經孑孓的腸道酵素201分解該多肽鏈103之後,該蚊蟲毒殺蛋白104隨之釋放而達到殺蚊以控制登革熱傳播之目的。 As shown in FIG. 1, the present invention aims to establish a microbial preparation 10 for controlling the spread of dengue fever, which includes a bacterial carrier 101, a polypeptide chain 103 that can be digested by the enzymes of the intestinal tract, and a mosquito poisoning protein 104, wherein, the The mosquito toxin 104 is expressed on the membrane binding protein 102 of the bacterial carrier 101 through the polypeptide chain 103. When 孑孓20 eats from the environment, it will ingest the microbial preparation of the present invention together. After the intestinal enzyme 201 decomposes the polypeptide chain 103, the mosquito-toxin 104 will be released to achieve mosquito killing. The purpose of controlling the spread of dengue fever.

依據本發明之微生物製劑,其實施方式如下: The embodiment of the microbial preparation according to the present invention is as follows:

1. 建構大腸桿菌(E.coli)表現系統之融合蚊蟲毒殺蛋白重組基因的表現質體 1. Construction of E.coli (E.coli) expression system fusion mosquito toxin protein recombinant gene expression plasmid

本發明首先建構可於大腸桿菌(E.coli)中表現之融合蚊蟲毒殺蛋白基因的表現質體,包含一重組基因及一表現質體,以利實驗室試驗用。 The present invention first constructs an expression plastid fused with a mosquito toxin protein gene expressed in E. coli , which contains a recombinant gene and an expression plastid for laboratory testing.

本發明之該重組基因的蚊蟲毒殺蛋白基因係選用截短修飾 後的來自於31-2型球形芽孢桿菌的第二型殺蚊蛋白(truncated Mosquitocidal Toxin 2;tMTX2)基因,並將該重組基因克隆(clone)至pET42b表現質體內。請參照圖2,本發明植入之重組基因,其5’端接入GST tag基因、3’端接入AIDA胞膜蛋白基因,並於tMTX2基因及AIDA基因之間設計一段用以表現包含SEQ ID NO.1之多肽鏈(GGG-KRWY-GGG)的基因,該多肽鏈基因具有可被蚊蟲腸道消化的類胰蛋白酶酵素(trypsin like protease)切位之胺基酸序列之基因及兩端用以穩定該多肽鏈之短肽基因,稱之為KM4重組基因(實驗組1),同時並另外設計了不含有該多肽鏈基因(以GGGSG取代GGG-KRWY-GGG)的KM6重組基因(實驗組2)、及不含該多肽鏈基因及胞膜蛋白基因的KM3重組基因(對照組)。 The mosquito toxin-killing gene of the recombinant gene of the present invention selects truncated Mosquitocidal Toxin 2 (tMTX2) gene from truncated modified Bacillus sphaericus type 31-2 and clones the recombinant gene (clone) to pET42b expression in vivo. Please refer to FIG. 2, the recombinant gene implanted in the present invention is connected to the GST tag gene at the 5′ end and the AIDA membrane protein gene at the 3′ end, and a segment is designed between the tMTX2 gene and the AIDA gene to express the inclusion of SEQ ID NO.1 gene of the polypeptide chain (GGG-KRWY-GGG), which has the amino acid sequence of the trypsin like protease digested by the mosquito intestine and both ends The short peptide gene used to stabilize the polypeptide chain is called KM4 recombinant gene (Experimental group 1), and a KM6 recombinant gene (experimental) that does not contain the polypeptide chain gene (replace GGG-KRWY-GGG with GGGSG) is also designed. Group 2), and the KM3 recombinant gene (control group) without the polypeptide chain gene and the membrane protein gene.

2. 大腸桿菌(E.coli)表現系統之融合蚊蟲毒殺蛋白的重組蛋白表現 2. Recombinant protein expression of E. coli expression system fusion mosquito toxin protein

將KM3、KM4及KM6重組基因的融合蚊蟲毒殺蛋白表現質體分別轉型(Transform)入BL21(DE3)型大腸桿菌(E.coli)表現載體中,以LB培養液培養至細菌濃度吸光值達OD600nm約為0.4時,開始加入0.1mM的異丙基-β-D-硫代半乳糖苷(Isopropyl β-D-1-thiogalactopyranoside;IPTG)誘導(induction)培養,進行蛋白質表現,生產出KM3、KM4及KM6重組蛋白。因為KM3、KM4及KM6的蛋白質大小不同,因此在誘導時分別為KM3誘導0.5小時、KM4誘導3小時及KM6誘導1小時,以求蛋白表現量一致。其後,以SDS-PAGE及西方墨點法進行蛋白質驗證,如圖3所示,左圖為SDS-PAGE的結果,右圖為以鼠源抗GST tag的一級抗體進行西方墨點法的結果。結果顯示,KM4(SEQ ID NO.3)及KM6(SEQ ID NO.4)的表現蛋 白大小分別為預期的108kDa(千道爾吞),而KM3(SEQ ID NO.2)的表現蛋白大小為預期的58kDa。 Transform KM3, KM4 and KM6 recombinant gene fusion mosquito toxin protein expression plasmids into BL21 (DE3) type E. coli expression vectors respectively, and incubate with LB medium until the bacterial concentration absorbance reaches OD600nm At about 0.4, start adding 0.1 mM isopropyl-β-D-thiogalactoside (Isopropyl β-D-1-thiogalactopyranoside; IPTG) induction culture to perform protein expression and produce KM3 and KM4 And KM6 recombinant protein. Because the protein sizes of KM3, KM4 and KM6 are different, the induction time is KM3 induction for 0.5 hours, KM4 induction for 3 hours and KM6 induction for 1 hour, in order to achieve the same protein expression. Afterwards, SDS-PAGE and Western blotting were used to verify the protein. As shown in Figure 3, the left picture shows the results of SDS-PAGE, and the right picture shows the results of Western blotting with mouse-derived primary antibodies against GST tag. . The results showed that the protein sizes of KM4 (SEQ ID NO.3) and KM6 (SEQ ID NO.4) were the expected 108kDa (kilo-Dalton), while the protein sizes of KM3 (SEQ ID NO.2) were Expected 58kDa.

3. tMTX2-AIDA表現之BL21(DE3)型大腸桿菌(E.coli)對於埃及斑紋幼蟲之毒殺性測試 3. Toxicity test of BL21(DE3) type E.coli (E.coli) expressed by tMTX2-AIDA against Egyptian zebra larvae

經蛋白表現確認之後,KM4及KM6分別用於埃及斑紋幼蟲之毒殺性測試,其中,如圖4A所示,KM4具有本發明之該多肽鏈,其tMTX2可被蚊蟲腸道酵素切割分離,KM6之tMTX2則不可被蚊蟲腸道酵素切割分離。 After the protein performance was confirmed, KM4 and KM6 were used for the cytotoxicity test of Egyptian spotted larvae. As shown in FIG. 4A, KM4 has the polypeptide chain of the present invention, and its tMTX2 can be cleaved and separated by mosquito intestinal enzymes. tMTX2 cannot be cleaved and separated by mosquito gut enzymes.

如圖4b所示,KM4組及KM6組以不同濃度(105cells/ml-108cells/ml)與埃及斑紋幼蟲培養60個小時(n=5,獨立且重複3次試驗)後,測量其死亡率,並以未轉型的BL21(DE3)型大腸桿菌(E.coli)(同樣在濃度為OD600nm約為0.4時,以IPTG誘導培養3小時)當作對照組。結果顯示,相較於控制組,KM4與KM6具有明顯的毒殺效果,且KM4的毒殺效果相較於KM6來得更快更有效,且其造成孑孓死亡的半數致死劑量(LC50)大約落在105cells/ml-106cells/ml左右,該結果證明本策略在大腸桿菌(E.coli)的系統上是成功的。 Shown, KM4 KM6 group and groups with different concentrations in FIG. 4b (10 5 cells / ml- 10 8 cells / ml) cultured with Egyptian markings larvae 60 hours (n = 5, and independent experiment was repeated three times) was measured after The mortality rate, and the untransformed BL21 (DE3) type E. coli (also at a concentration of OD600nm about 0.4, IPTG induced culture for 3 hours) as a control group. The results show that compared with the control group, KM4 and KM6 have obvious toxin killing effect, and the toxin killing effect of KM4 is faster and more effective than KM6, and the half lethal dose (LC50) of the death caused by it is about 10 5 Cells/ml-10 6 cells/ml, this result proves that this strategy is successful in E. coli system.

4. 建構枯草桿菌(B.subtilis)表現系統之融合蚊蟲毒殺蛋白重組基因的表現質體 4. Construction of B. subtilis (B. subtilis) expression system fusion mosquito toxin protein recombinant gene expression plasmid

經大腸桿菌(E.coli)表現系統證明本發明是成功的之後,本發明進一步實施於環境益生菌中,其中所選用的環境益生菌為枯草桿菌(B.subtilis)。 After the E. coli expression system proves that the present invention is successful, the present invention is further implemented in environmental probiotics, wherein the selected environmental probiotic is B. subtilis .

本發明之重組基因與大腸桿菌(E.coli)表現系統的建構方 式相同,於殺蚊蛋白(tMTX2)及胞膜結合蛋白之間設計一段用以表現包含SEQ ID NO.1之多肽鏈(GGG-KRWY-GGG)的基因,不同點則係在於,本次使用之重組基因於胞膜結合蛋白基因前多接上一段HA tag基因。由於選用枯草桿菌(B.subtilis)當作細菌載體,故胞膜結合蛋白基因選用YhcR基因,如圖5所示,本次試驗建構兩種不同的重組基因,分別命名為枯草桿菌表現系統重組基因a及枯草桿菌表現系統重組基因b,其中,枯草桿菌表現系統重組基因a可表現「(tMTX 2)-(GGG-KRWY-GGG)-(HA)-(YhcR)」之蛋白(SEQ ID NO.5),枯草桿菌表現系統重組基因b則係在5’端多加一個GST tag,其可表現「(GST)-(tMTX 2)-(GGG-KRWY-GGG)-(HA)-(YhcR)」之蛋白(SEQ ID NO.6)。二者皆克隆(clone)至pHY300PLK表現質體內。 The recombinant gene of the present invention is constructed in the same way as the E. coli expression system, and a segment is designed between the mosquito killing protein (tMTX2) and the membrane binding protein to express the polypeptide chain (GGG) containing SEQ ID NO.1 -KRWY-GGG) gene, the difference is that the recombinant gene used in this time is connected with an additional HA tag gene before the membrane binding protein gene. Because B. subtilis was selected as the bacterial carrier, the membrane-binding protein gene was selected as the YhcR gene. As shown in Figure 5, two different recombinant genes were constructed in this experiment, which were named recombinant genes of Bacillus subtilis expression system a and Bacillus subtilis expression system recombinant gene b, wherein the Bacillus subtilis expression system recombinant gene a can express "(tMTX 2)-(GGG-KRWY-GGG)-(HA)-(YhcR)" protein (SEQ ID NO. 5), the recombinant gene b of Bacillus subtilis expression system is added with a GST tag at the 5'end, which can express "(GST)-(tMTX 2)-(GGG-KRWY-GGG)-(HA)-(YhcR)" Protein (SEQ ID NO. 6). Both are cloned into pHY300PLK expression plasmid.

5. 枯草桿菌(B.subtilis)表現融合蚊蟲毒殺蛋白 5. Bacillus subtilis (B. subtilis) performance fusion mosquito toxin protein

將枯草桿菌表現系統重組基因a及枯草桿菌表現系統重組基因b的融合蚊蟲毒殺蛋白表現質體分別轉型(Transform)入枯草桿菌(B.subtilis)載體中表現,以LB培養液培養至細菌濃度吸光值達OD600nm約為0.6時,開始加入1mM的異丙基-β-D-硫代半乳糖苷(Isopropyl β-D-1-thiogalactopyranoside;IPTG)誘導(induction)培養3小時,進行蛋白質表現。其後,以SDS-PAGE及西方墨點法進行蛋白質驗證,本次試驗的兩種不同重組基因,枯草桿菌表現系統重組基因a轉譯出的枯草桿菌表現系統重組蛋白a之全長共56kDa,枯草桿菌表現系統重組基因b轉譯出的枯草桿菌表現系統重組蛋白b之全長共80kDa。如圖6所示,以鼠源抗HA tag的一級抗體進行西方墨點法的結果顯示,枯草桿菌表現系統重組蛋白a並未產生預期 的56kDa蛋白,反而出現許多缺損的蛋白(約36kDa),而枯草桿菌表現系統重組蛋白b的表現蛋白大小為預期的80kDa,證明了枯草桿菌表現系統重組蛋白b係相對穩定且被成功表現出來的。 Transform the mosquito-toxin protein-expressing plastids of recombinant gene a of Bacillus subtilis expression system and recombinant gene b of Bacillus subtilis expression system into B. subtilis vector for expression, and cultivate in LB culture solution to the bacterial concentration to absorb light When the value reaches OD600nm of about 0.6, 1 mM isopropyl-β-D-1-thiogalactopyranoside (Isopropyl β-D-1-thiogalactopyranoside; IPTG) induction culture is started for 3 hours, and protein expression is performed. Afterwards, the protein was verified by SDS-PAGE and Western blot method. The two different recombinant genes in this experiment, the recombinant protein a of Bacillus subtilis expression system, translated from recombinant gene a of Bacillus subtilis expression system, the total length of the recombinant protein a was 56kDa, and Bacillus subtilis The full-length recombinant protein b of Bacillus subtilis expression system translated from expression system recombinant gene b has a total length of 80 kDa. As shown in Figure 6, the Western blot method using a primary antibody against HA tag showed that the recombinant protein a of Bacillus subtilis expression system did not produce the expected 56kDa protein, but many defective proteins (about 36kDa) appeared. The expression protein size of the recombinant protein b of the Bacillus subtilis expression system is 80 kDa, which proves that the recombinant protein b line of the Bacillus subtilis expression system is relatively stable and successfully expressed.

由前述結果可以證實,將tMTX2蛋白透過本發明之多肽鏈表現在細菌載體的胞膜結合蛋白上,確實具有良好的殺滅蚊子幼蟲的效率,且本發明也成功將tMTX2蛋白表現在枯草桿菌(B.subtilis)上,本發明之微生物製劑可同時應用於水質改善及控制蚊媒傳染疾病的傳播。 From the foregoing results, it can be confirmed that the expression of tMTX2 protein through the polypeptide chain of the present invention on the membrane binding protein of the bacterial carrier does have a good efficiency of killing mosquito larvae, and the present invention also successfully expressed the tMTX2 protein in Bacillus subtilis ( B. subtilis ), the microbial preparation of the present invention can be used for improving water quality and controlling the spread of mosquito-borne diseases.

<110> 高雄醫學大學(Kaohsiung Medical University) Cheng,Tian-Lu Huang,Chien-Chiao Lin,Wen-Wei <110> Kaohsiung Medical University (Kaohsiung Medical University) Cheng, Tian-Lu Huang, Chien-Chiao Lin, Wen-Wei

<120> A MICROBIAL AGENT FOR CONTROLLING TRANSMISSION OF MOSQUITO-BORNE DISEASES <120> A MICROBIAL AGENT FOR CONTROLLING TRANSMISSION OF MOSQUITO-BORNE DISEASES

<130> 3098-KMU-TW <130> 3098-KMU-TW

<160> 6 <160> 6

<170> PatentIn version 3.5 <170> PatentIn version 3.5

<210> 1 <210> 1

<211> 4 <211> 4

<212> PRT <212> PRT

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> Polypeptide <223> Polypeptide

<400> 1

Figure 107131752-A0101-12-0012-1
<400> 1
Figure 107131752-A0101-12-0012-1

<210> 2 <210> 2

<211> 523 <211> 523

<212> PRT <212> PRT

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> KM3 <223> KM3

<400> 2

Figure 107131752-A0101-12-0012-2
Figure 107131752-A0101-12-0013-3
Figure 107131752-A0101-12-0014-4
Figure 107131752-A0101-12-0015-5
Figure 107131752-A0101-12-0016-6
Figure 107131752-A0101-12-0017-7
Figure 107131752-A0101-12-0018-8
<400> 2
Figure 107131752-A0101-12-0012-2
Figure 107131752-A0101-12-0013-3
Figure 107131752-A0101-12-0014-4
Figure 107131752-A0101-12-0015-5
Figure 107131752-A0101-12-0016-6
Figure 107131752-A0101-12-0017-7
Figure 107131752-A0101-12-0018-8

<210> 3 <210> 3

<211> 983 <211> 983

<212> PRT <212> PRT

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> KM4 <223> KM4

<400> 3

Figure 107131752-A0101-12-0019-9
Figure 107131752-A0101-12-0020-10
Figure 107131752-A0101-12-0021-11
Figure 107131752-A0101-12-0022-12
Figure 107131752-A0101-12-0023-13
Figure 107131752-A0101-12-0024-14
Figure 107131752-A0101-12-0025-15
Figure 107131752-A0101-12-0026-16
Figure 107131752-A0101-12-0027-17
Figure 107131752-A0101-12-0028-18
Figure 107131752-A0101-12-0029-19
Figure 107131752-A0101-12-0030-20
<400> 3
Figure 107131752-A0101-12-0019-9
Figure 107131752-A0101-12-0020-10
Figure 107131752-A0101-12-0021-11
Figure 107131752-A0101-12-0022-12
Figure 107131752-A0101-12-0023-13
Figure 107131752-A0101-12-0024-14
Figure 107131752-A0101-12-0025-15
Figure 107131752-A0101-12-0026-16
Figure 107131752-A0101-12-0027-17
Figure 107131752-A0101-12-0028-18
Figure 107131752-A0101-12-0029-19
Figure 107131752-A0101-12-0030-20

<210> 4 <210> 4

<211> 983 <211> 983

<212> PRT <212> PRT

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> KM6 <223> KM6

<400> 4

Figure 107131752-A0101-12-0031-21
Figure 107131752-A0101-12-0032-22
Figure 107131752-A0101-12-0033-23
Figure 107131752-A0101-12-0034-24
Figure 107131752-A0101-12-0035-25
Figure 107131752-A0101-12-0036-26
Figure 107131752-A0101-12-0037-27
Figure 107131752-A0101-12-0038-28
Figure 107131752-A0101-12-0039-29
Figure 107131752-A0101-12-0040-30
Figure 107131752-A0101-12-0041-31
Figure 107131752-A0101-12-0042-32
<400> 4
Figure 107131752-A0101-12-0031-21
Figure 107131752-A0101-12-0032-22
Figure 107131752-A0101-12-0033-23
Figure 107131752-A0101-12-0034-24
Figure 107131752-A0101-12-0035-25
Figure 107131752-A0101-12-0036-26
Figure 107131752-A0101-12-0037-27
Figure 107131752-A0101-12-0038-28
Figure 107131752-A0101-12-0039-29
Figure 107131752-A0101-12-0040-30
Figure 107131752-A0101-12-0041-31
Figure 107131752-A0101-12-0042-32

<210> 5 <210> 5

<211> 508 <211> 508

<212> PRT <212> PRT

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> 枯草桿菌表現系統重組蛋白a <223> Bacillus subtilis expression system recombinant protein a

<400> 5

Figure 107131752-A0101-12-0042-34
Figure 107131752-A0101-12-0043-35
Figure 107131752-A0101-12-0044-36
Figure 107131752-A0101-12-0045-37
Figure 107131752-A0101-12-0046-38
Figure 107131752-A0101-12-0047-39
Figure 107131752-A0101-12-0048-40
<400> 5
Figure 107131752-A0101-12-0042-34
Figure 107131752-A0101-12-0043-35
Figure 107131752-A0101-12-0044-36
Figure 107131752-A0101-12-0045-37
Figure 107131752-A0101-12-0046-38
Figure 107131752-A0101-12-0047-39
Figure 107131752-A0101-12-0048-40

<210> 6 <210> 6

<211> 730 <211> 730

<212> PRT <212> PRT

<213> Artificial Sequence <213> Artificial Sequence

<220> <220>

<223> 枯草桿菌表現系統重組蛋白b <223> Recombinant protein b of Bacillus subtilis expression system

<400> 6

Figure 107131752-A0101-12-0049-41
Figure 107131752-A0101-12-0050-42
Figure 107131752-A0101-12-0051-43
Figure 107131752-A0101-12-0052-44
Figure 107131752-A0101-12-0053-45
Figure 107131752-A0101-12-0054-46
Figure 107131752-A0101-12-0055-47
Figure 107131752-A0101-12-0056-48
Figure 107131752-A0101-12-0057-49
<400> 6
Figure 107131752-A0101-12-0049-41
Figure 107131752-A0101-12-0050-42
Figure 107131752-A0101-12-0051-43
Figure 107131752-A0101-12-0052-44
Figure 107131752-A0101-12-0053-45
Figure 107131752-A0101-12-0054-46
Figure 107131752-A0101-12-0055-47
Figure 107131752-A0101-12-0056-48
Figure 107131752-A0101-12-0057-49

10‧‧‧控制蚊媒傳染疾病傳播之微生物製劑 10‧‧‧Microbiological preparation for controlling the transmission of mosquito-borne diseases

101‧‧‧細菌載體 101‧‧‧ Bacteria carrier

102‧‧‧胞膜結合蛋白 102‧‧‧ Membrane binding protein

103‧‧‧多肽鏈 103‧‧‧ polypeptide chain

104‧‧‧蚊蟲毒殺蛋白 104‧‧‧ Mosquito poison protein

20‧‧‧孑孓 20‧‧‧

201‧‧‧孑孓的腸道酵素 201‧‧‧The intestinal enzymes

Claims (18)

一種多肽鏈,包括:一段具有類胰蛋白酶酵素(trypsin like protease)切位之胺基酸序列,以供蚊蟲腸道消化;以及兩端之短肽,供穩定該胺基酸序列之用。 A polypeptide chain includes: an amino acid sequence with trypsin like protease cleavage for mosquito intestinal digestion; and short peptides at both ends for stabilization of the amino acid sequence. 如請求項1所述之多肽鏈,其中,該胺基酸序列至少包括一離胺酸(K)或一精胺酸(R)。 The polypeptide chain according to claim 1, wherein the amino acid sequence includes at least monoamine acid (K) or monoarginine (R). 如請求項1所述之多肽鏈,其中,該胺基酸序列包含SEQ ID NO.1之序列。 The polypeptide chain of claim 1, wherein the amino acid sequence comprises the sequence of SEQ ID NO.1. 一種控制蚊媒傳染疾病傳播之微生物製劑,包括:一細菌載體;一如請求項1之多肽鏈,接合於該細菌載體之細胞膜上;以及一蚊蟲毒殺蛋白,其係藉由接合於該多肽鏈而表現於該細菌載體之上。 A microbial preparation for controlling the spread of mosquito-borne diseases, including: a bacterial carrier; as in claim 1, the polypeptide chain is attached to the cell membrane of the bacterial carrier; and a mosquito toxin protein, which is attached to the polypeptide chain It is expressed on the bacterial carrier. 如請求項4所述之微生物製劑,其中,該細菌載體係為一環境益生菌。 The microbial preparation according to claim 4, wherein the bacterial carrier is an environmental probiotic. 如請求項4所述之微生物製劑,其中,該環境益生菌包括芽孢桿菌屬( Bacillus)的細菌、光合細菌及硝化細菌。 The microbial preparation according to claim 4, wherein the environmental probiotic bacteria include bacteria of the genus Bacillus , photosynthetic bacteria, and nitrifying bacteria. 如請求項4所述之微生物製劑,其中,該胺基酸序列至少包括一離胺酸(K)或一精胺酸(R)。 The microbial preparation according to claim 4, wherein the amino acid sequence includes at least monoamine acid (K) or monoarginine (R). 如請求項4所述之微生物製劑,其中,該胺基酸序列包含SEQ ID NO.1之序列。 The microbial preparation according to claim 4, wherein the amino acid sequence comprises the sequence of SEQ ID NO.1. 如請求項4所述之微生物製劑,其中,該蚊蟲毒殺蛋白係包括第一型殺蚊蛋白(Mosquitocidal Toxin 1)、第二型殺蚊蛋白(Mosquitocidal Toxin 2)、第三型殺蚊蛋白(Mosquitocidal Toxin 3)、Cry蛋白(Cry family proteins)、Cyt蛋白(Cyt family proteins)、CLP蛋白(Cyclic lipopeptide protein)或其之任意組合。 The microbial preparation according to claim 4, wherein the mosquito toxin protein includes a first type mosquito killing protein (Mosquitocidal Toxin 1), a second type mosquito killing protein (Mosquitocidal Toxin 2), a third type mosquito killing protein (Mosquitocidal Toxin 2) Toxin 3), Cry protein (Cry family proteins), Cyt protein (Cyt family proteins), CLP protein (Cyclic lipopeptide protein), or any combination thereof. 如請求項4所述之微生物製劑,其中,該蚊蟲毒殺蛋白係第二型殺蚊蛋白(Mosquitocidal Toxin 2)。 The microbial preparation according to claim 4, wherein the mosquito toxin is Mosquitocidal Toxin 2 (Mosquitocidal Toxin 2). 如請求項4所述之微生物製劑,其中,該蚊蟲毒殺蛋白係截短修飾後的第二型殺蚊蛋白(truncated Mosquitocidal Toxin 2)。 The microbial preparation according to claim 4, wherein the mosquito toxin is truncated modified mosquito killer protein (truncated Mosquitocidal Toxin 2). 如請求項4所述之微生物製劑,其中,該多肽鏈係接合於該細菌載體之細胞膜上的胞膜結合蛋白上。 The microbial preparation according to claim 4, wherein the polypeptide chain is attached to a cell membrane binding protein on the cell membrane of the bacterial carrier. 一種重組基因,包括:一胞膜結合蛋白基因,轉錄成如請求項12所述之該細菌載體之細胞膜上的胞膜結合蛋白;一多肽鏈基因,轉錄成如請求項1所述之多肽鏈;以及一蚊蟲毒殺蛋白的基因,轉錄成如請求項4所述之蚊蟲毒殺蛋白;其中,該多肽鏈基因係設置於該胞膜結合蛋白基因及該殺蚊蛋白基因之間。 A recombinant gene, comprising: a cell membrane binding protein gene transcribed into a cell membrane binding protein on the cell membrane of the bacterial vector as described in claim 12; a polypeptide chain gene transcribed into a polypeptide as described in claim 1 Chain; and a mosquito toxin protein gene transcribed into the mosquito toxin protein as described in claim 4; wherein, the polypeptide chain gene is disposed between the cell membrane binding protein gene and the mosquito protein gene. 如請求項13所述之重組基因,其中,該多肽鏈基因至少包括一離胺酸(K)或一精胺酸(R)之基因。 The recombinant gene according to claim 13, wherein the polypeptide chain gene includes at least the gene of monoamine (K) or arginine (R). 如請求項13所述之重組基因,其中,該多肽鏈基因包含可表現SEQ ID NO.1之序列之基因。 The recombinant gene according to claim 13, wherein the polypeptide chain gene includes a gene that can express the sequence of SEQ ID NO.1. 如請求項13所述之重組基因,其中,該蚊蟲毒殺蛋白基因係包括第一型殺蚊蛋白(Mosquitocidal Toxin 1)基因、第二型殺蚊蛋白(Mosquitocidal Toxin 2)基因、第三型殺蚊蛋白(Mosquitocidal Toxin 3)基因、Cry蛋白(Cry family proteins)基因、Cyt蛋白(Cyt family proteins)基因、CLP蛋白(Cyclic lipopeptide protein)基因或其之任意組合。 The recombinant gene according to claim 13, wherein the mosquito toxin-killing gene line includes a first type mosquito-killing protein (Mosquitocidal Toxin 1) gene, a second type mosquito-killing protein (Mosquitocidal Toxin 2) gene, a third type mosquito-killing protein Protein (Mosquitocidal Toxin 3) gene, Cry protein (Cry family proteins) gene, Cyt protein (Cyt family proteins) gene, CLP protein (Cyclic lipopeptide protein) gene, or any combination thereof. 如請求項13所述之重組基因,其中,該蚊蟲毒殺蛋白基因係第二型殺蚊蛋白(Mosquitocidal Toxin 2)基因。 The recombinant gene according to claim 13, wherein the mosquito toxin protein gene is a Mosquitocidal Toxin 2 gene. 如請求項13所述之重組基因,其中,該蚊蟲毒殺蛋白基因係截短修飾後的第二型殺蚊蛋白(truncated Mosquitocidal Toxin 2)基因。 The recombinant gene according to claim 13, wherein the mosquito toxin gene is a truncated Mosquitocidal Toxin 2 gene after truncation modification.
TW107131752A 2018-09-10 2018-09-10 A microbial agent for controlling transmission of mosquito-borne diseases TWI728264B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107131752A TWI728264B (en) 2018-09-10 2018-09-10 A microbial agent for controlling transmission of mosquito-borne diseases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107131752A TWI728264B (en) 2018-09-10 2018-09-10 A microbial agent for controlling transmission of mosquito-borne diseases

Publications (2)

Publication Number Publication Date
TW202010410A true TW202010410A (en) 2020-03-16
TWI728264B TWI728264B (en) 2021-05-21

Family

ID=70766475

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107131752A TWI728264B (en) 2018-09-10 2018-09-10 A microbial agent for controlling transmission of mosquito-borne diseases

Country Status (1)

Country Link
TW (1) TWI728264B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1778714A4 (en) * 2004-07-20 2008-05-21 Phyllom Llc Methods for making and using recombinant bacillus thuringiensis spores
WO2010077672A2 (en) * 2008-12-08 2010-07-08 University Of Florida Research Foundation, Inc. Control of mosquito larvae with bti toxins and tmof

Also Published As

Publication number Publication date
TWI728264B (en) 2021-05-21

Similar Documents

Publication Publication Date Title
ES2674324T3 (en) Pesticides
CN103718895B (en) The method of Control pests
CN103688974B (en) Method for controlling injurious insect
Quicke et al. Review of venoms of non-polydnavirus carrying ichneumonoid wasps
CN104286014B (en) The purposes of insecticidal proteins
CN108642029B (en) Metarhizium anisopliae protease Pr1C and gene and application thereof
Mathur et al. A 37 kDa Txp40 protein characterized from Photorhabdus luminescens sub sp. akhurstii conferred injectable and oral toxicity to greater wax moth, Galleria mellonella
TWI728264B (en) A microbial agent for controlling transmission of mosquito-borne diseases
CN115197305A (en) Bt protein Cry53A and gene and application thereof
US20230002452A1 (en) Targeted mosquitocidal toxins
CN103757049A (en) Pest control constructor and method thereof
Mamtha et al. Gene cloning, recombinant expression, and bioassay of an allatotropin in Spodoptera litura Fabricius (Lepidoptera: Noctuidae)
CN114438118A (en) Method for efficiently expressing Bt protein Cry56Aa1 in rice and corn to resist spodoptera frugiperda
Luo et al. Functional GNA expressed in Escherichia coli with high efficiency and its effect on Ceratovacuna lanigera Zehntner
Jones et al. Toxins produced by arthropod parasites: salivary gland proteins of human body lice and venom proteins of chelonine wasps
Nezamiha et al. OdTx12/GNA, a chimeric variant of a β excitatory toxin from Odontobuthus doriae, reveals oral toxicity towards Locusta migratoria and Tenebrio molitor
Soe et al. Cry51Aa proteins are active against Apolygus lucorum and show a mechanism similar to pore formation model
CN104255771B (en) The purposes of insecticidal proteins
CN118546905A (en) Venom protein HhMAPK of plutella xylostella and soft cocoon bee and application of venom protein HhMAPK
Quicke et al. Review of Venoms of Non-Polydnavirus Carrying Ichneumonoid Wasps. Biology 2021, 10, 50
Pruett Constructing a Nectar Delivery System for Mosquito Control Using Impatiens walleriana
Soares et al. Bioprospecting of Bacillus thuringiensis in the control of Aedes aegypti larvae
Mohammed et al. Synergistic activity of Bacillus thuringiensis δ‐endotoxin and TMOF against Culex pipiens and Spodoptera littoralis larvae
Wang et al. CRISPR/Cas9‐mediated knockout of a male accessory glands‐specific gene takeout1 decreases the fecundity of Zeugodacus cucurbitae female
Zakarian et al. Growth of an ovarian cell line of Galleria mellonelia and its response to immune-inducing factors