TW202007058A - Method for synchronous driving of the power device and driving circuit thereof - Google Patents
Method for synchronous driving of the power device and driving circuit thereof Download PDFInfo
- Publication number
- TW202007058A TW202007058A TW107123799A TW107123799A TW202007058A TW 202007058 A TW202007058 A TW 202007058A TW 107123799 A TW107123799 A TW 107123799A TW 107123799 A TW107123799 A TW 107123799A TW 202007058 A TW202007058 A TW 202007058A
- Authority
- TW
- Taiwan
- Prior art keywords
- power
- circuit
- time
- driving
- delay
- Prior art date
Links
Images
Landscapes
- Electronic Switches (AREA)
Abstract
Description
本發明係關於一種功率元件(power device)的同步驅動方法及其驅動電路,特別是關於一種適用於大功率驅動的多個並聯的功率元件,其同步驅動的方法及其驅動電路。 The invention relates to a synchronous driving method of a power device (power device) and a driving circuit thereof, in particular to a synchronous driving method of a plurality of parallel power elements suitable for high-power driving, and a driving circuit thereof.
由於現在空氣汙染日愈嚴重,世界各國基於環境保護與環保因素,紛紛致力於電動車發展,歐美更提出2035~2040年要全面禁止汽油車生產。電動車動力來自於馬達,由馬達控制器來控制驅動。馬達控制器又以大功率動力系統為主,故需並聯多個功率元件以分散承受大電流來推動負載。 Due to the increasingly serious air pollution, countries around the world are committed to the development of electric vehicles based on environmental protection and environmental protection factors. Europe and the United States have also proposed to ban the production of gasoline vehicles in 2035-2040. The power of electric vehicles comes from the motor, which is controlled and driven by the motor controller. The motor controller is mainly based on a high-power power system, so it is necessary to connect multiple power components in parallel to spread the high current to drive the load.
然而在多個並聯的功率元件在電路位置配置時,因體積及空間的限制,可能使得每個功率元件所配置的線路路徑長度都或有不同,形成功率元件之間存在有啟動時間差,如此將使得某些先啟動的功率元件會先承受大電流,雖然這種情形都在時間很短的瞬間(微秒或奈秒),但久而久之,這些先啟動的功率元件就會先損壞,除了造成功率降低外,甚至還可能影響其它功率元件,形成相繼損壞的連鎖反應。 However, when multiple parallel power elements are arranged in the circuit position, due to the limitation of volume and space, the line path length of each power element may be different, and there is a start-up time difference between the formed power elements. Some of the power components that start first will bear a large current first. Although this situation is at a very short time (microseconds or nanoseconds), but over time, these power components that start first will be damaged first, except for the power In addition to the reduction, it may even affect other power components and form a chain reaction of successive damage.
在切換式電源轉換技術中所使用功率元件的驅動方式,是採用開關信號來控制,當輸入信號ON時,功率元件導通電流,當輸入信號 OFF時,功率元件截止電流,而當需要輸出大功率、大電流時,同樣需要並聯多個功率元件以分散電流,因此同樣會有信號傳遞的時間差的問題,距離信號路徑短的功率元件會先驅動,距離信號路徑長的功率元件會後驅動,而先驅動的功率元件率會先承受所有的電流,故當切換開關的頻率越快時,先驅動的功率元件越快損壞。 The driving method of the power element used in the switching power conversion technology is controlled by a switching signal. When the input signal is ON, the power element conducts current, and when the input signal is OFF, the power element cuts off the current, and when it is necessary to output high power In the case of large current, it is also necessary to connect multiple power elements in parallel to disperse the current, so there is also the problem of the time difference of signal transmission. Power elements with a short signal path will be driven first, and power elements with a long signal path will be driven later, and The power component driven first will bear all the current first, so the faster the frequency of the switch is, the faster the power component driven first will be damaged.
在習知技藝方面,中國實用新型公開第CN206506443U號專利,係為一種MOSFET並聯電路系統,提出利用電路佈局方式使各功率元件並聯驅動路徑均等,以達到平均分散電流的目的。然而此方式雖然改善了驅動信號路徑不等的影響,但在實際應用上,電路的配置及佈局皆受到空間或電路板層數的限制,並不容易達到實際的路徑均等。 In terms of conventional techniques, the Chinese Utility Model Publication No. CN206506443U patent is a MOSFET parallel circuit system. It is proposed to use circuit layout to make the parallel drive paths of each power element equal to achieve the purpose of evenly distributing current. However, although this method improves the influence of the unequal driving signal path, in practical applications, the circuit configuration and layout are limited by the space or the number of circuit board layers, and it is not easy to achieve the actual path equalization.
本發明為解決習知並聯功率元件因線路路徑長度不同而產生驅動時間差的問題,設計出一種複數並聯功率元件間的同步驅動方法及其驅動電路,可達成所有並聯的功率元件間皆能同步導通或截止電流的同步驅動目的,以降低功率元件損壞率。 In order to solve the problem of difference in driving time of conventional parallel power elements due to different line path lengths, the present invention has designed a synchronous driving method and driving circuit between a plurality of parallel power elements, which can achieve synchronous conduction between all parallel power elements Or the purpose of synchronous drive of cut-off current to reduce the damage rate of power components.
為達成上述目的,本發明主要技術特徵係在於提供一種功率元件的同步驅動電路,包括複數功率元件及複數延遲電路,其中該些功率元件的第一連接端及第二連接端分別各自電性連接,形成功率元件的電性並聯,而每一功率元件的驅動端與一信號輸入端之間分別連接一個該延遲電路,該些延遲電路依對應連接的功率元件的電路走線長度Ln計算出對應的延遲驅動時間τ n,再依延遲驅動時間τ n做延遲調整,使該些功率元件皆在同步驅動時間dTs被同步驅動。 In order to achieve the above object, the main technical feature of the present invention is to provide a synchronous driving circuit for power elements, including a plurality of power elements and a plurality of delay circuits, wherein the first connection end and the second connection end of the power elements are respectively electrically connected To form an electrical parallel connection of the power elements, and a delay circuit is connected between the driving end of each power element and a signal input end respectively, and the delay circuits are calculated according to the circuit trace length Ln of the corresponding connected power element Delay drive time τ n, and then make delay adjustment according to the delay drive time τ n, so that all the power components are driven synchronously at the synchronous drive time dTs.
為達成上述目的,本發明之次一技術特徵係在於提供一種功率元件的同步驅動方法,首先量測每一功率元件的驅動端至信號輸入端之間的電路走線長度Ln,接下來依每一電路走線長度Ln分別計算出其信號走線時間tn,再依每一信號走線時間tn中的最大值計算出同步驅動時間dTs,跟著依同步驅動時間dTs計算出每一功率元件的延遲驅動時間τ n,最後依每一該延遲驅動時間τ n分別對應調整所連接該延遲電路,使該些功率元件皆在同步驅動時間dTs被同步驅動。 In order to achieve the above object, the next technical feature of the present invention is to provide a synchronous driving method for power elements. First, the length Ln of the circuit trace between the driving end of each power element and the signal input end is measured. A circuit trace length Ln calculates its signal trace time tn, and then calculates the synchronous drive time dTs according to the maximum value of each signal trace time tn, and then calculates the delay of each power element according to the synchronous drive time dTs The driving time τ n, and finally adjust the connected delay circuit according to each delayed driving time τ n respectively, so that the power devices are all synchronously driven at the synchronous driving time dTs.
10‧‧‧功率元件 10‧‧‧Power components
11‧‧‧第一連接端 11‧‧‧First connection
12‧‧‧第二連接端 12‧‧‧Second connector
20‧‧‧延遲電路 20‧‧‧ Delay circuit
30‧‧‧信號輸入端 30‧‧‧Signal input
Q1、Q2、Qn、Qk‧‧‧功率元件 Q 1 , Q 2 , Q n , Q k ‧‧‧ power element
R1、R2、Rn、Rk‧‧‧電阻 R 1 , R 2 , R n , R k ‧‧‧ resistance
C1、C2、Cn、Ck‧‧‧電容 C 1 , C 2 , C n , C k ‧‧‧ capacitance
L1、L2、Ln、Lk‧‧‧電路走線長度 L 1 , L 2 , L n , L k ‧‧‧ circuit trace length
t1、t2、t3、t4‧‧‧信號走線時間 t 1 , t 2 , t 3 , t 4 ‧‧‧ signal routing time
τ、τ1、τ2、τ3、τ4‧‧‧延遲驅動時間 τ, τ 1 , τ 2 , τ 3 , τ 4 ‧‧‧ delayed drive time
圖1係本發明實施例之功率元件的連接電路圖。 FIG. 1 is a connection circuit diagram of a power device according to an embodiment of the invention.
圖2係本發明實施例之功率元件連接狀態示意圖。 FIG. 2 is a schematic diagram of a connection state of power components according to an embodiment of the present invention.
圖3係本發明未調整延遲電路的功率元件驅動電壓-時間示意圖。 FIG. 3 is a schematic diagram of the driving voltage-time of the power element of the unadjusted delay circuit of the present invention.
圖4係本發明已調整延遲電路後的功率元件驅動電壓-時間示意圖。 FIG. 4 is a schematic diagram of the driving voltage-time of the power element after the delay circuit of the present invention has been adjusted.
請一併參閱圖1及圖2所示,圖1係本發明實施例之功率元件的連接電路圖,圖2係本發明實施例之功率元件連接狀態示意圖。本發明主要為提供一種能同步驅動複數個相互並聯的功率元件,其同步驅動的方法及驅動電路,因此本發明包括有複數個功率元件(Q1、Q2、Qn、Qk)10,每個功率元件10皆設有一第一連接端11、一第二連接端12及一驅動端13,其中每個功率元件10的第一連接端11皆電性連接,形成一輸出端,較佳地,該輸出端可連接至一負載(圖中未示),例如馬達等。而每個功率元件10的第二連接端12亦皆電性連接,形成一參考電位端,較佳地,參考電位端為一接 地端。 Please refer to FIG. 1 and FIG. 2 together. FIG. 1 is a connection circuit diagram of a power element according to an embodiment of the present invention, and FIG. 2 is a schematic diagram of a power element connection state according to an embodiment of the present invention. The present invention is mainly to provide a method for synchronously driving a plurality of power elements connected in parallel with each other, and a method and a driving circuit for synchronous driving. Therefore, the present invention includes a plurality of power elements (Q 1 , Q 2 , Q n , Q k ) 10, Each
該些個功率元件10的第一連接端11及第二連接端12皆分別各自電性連接,形成功率元件10之間的電性並聯,而每一個功率元件10的驅動端13又分別各自電性連接一延遲電路20至一信號輸入端30,如圖1的實施例中,每一延遲電路20皆由一電阻(R)及一電容(C)組成RC充放電電路,然而在其它實施例中,可使用其它電阻、電容或電感等被動元件組成延遲電路,也可使用緩衝器(Buffer)等積體電路來組成延遲電路,故延遲電路20的使用元件不受本發明實施例所限制。 The first connection end 11 and the
換言之,本發明具有複數延遲電路20分別連接於每一功率元件10的驅動端13與信號輸入端30之間,每一延遲電路20皆針對所對應功率元件10在電路中的走線長度不同,延遲對應長度的延遲驅動時間τ n ,使得該些相互並聯的功率元件皆能在同一時間,即同步驅動時間dTs被同步驅動。 In other words, the present invention has a
如圖1所示,本發明之實施例中使用的功率元件10為功率金氧半電晶體(Power MOSFET),但在其它實施例中功率元件可使用其它的主動元件,如功率二極體、閘流體等,功率元件不受本實施例所限制。而在本實施例中,功率元件10的第一連接端11為汲極端,第二連接端12為源極端,而驅動端13為閘極端。但在其它實施例中,功率元件10的第一連接端11可以為源極端,而第二連接端12可以為汲極端。 As shown in FIG. 1, the
本發明欲達成同步驅動相互並聯的複數個功率元件10,就必需針對功率元件10之間所電性連接的材料進行延遲設計,如電路板(PCB)或電線等,因材料不同,其介電常數ε r就會有所不同。而不同的材料對於 電磁波在材料的傳播速度皆有差異,因此本發明利用電磁波在材料中傳播速度做為信號傳輸速度V的公式:,其中C為光速,ε r為材料的介電常數。 In order to achieve the simultaneous driving of a plurality of
例如配置於電路板(PCB)上的功率元件10,其電性連接第一連接端、第二連接端或驅動端的材料為電路板上的銅箔導電線,銅的介電常數ε r為4.7,光速C為3×108,其信號傳輸速度。 For example, the
接著,本發明需要針對每一功率元件10的信號傳遞長度來進行延遲設計,換言之,本發明必需量測每一功率元件10的驅動端13至信號輸入端30之間的電路走線長度L n ,其中n為第n個功率元件,且n=1~k,k為整數。因為每一功率元件10會因電路佈局、空間位置配置而有不同的電路走線長度L n ,而量測的方法亦相當容易且多元,如圖像尺寸量測、探針量測、阻抗量測、電流量測...等等,本發明在此不做細節說明。 Next, the present invention needs to perform a delay design for the signal transmission length of each
當知道每一功率元件10的電路走線長度L n 後,可依公式1的信號傳輸速度,計算出每一功率元件10的信號走線時間t n ,其公式為:
由於每一個功率元件10的信號走線時間t n 都與電路走線長度L n 成正比,換言之,電路走線長度L n 越長,其信號走線時間t n 就越久,而當知道所有功率元件10的信號走線時間t n 後,就必需找出其中最長電路走線長度L max 的功率元件,即為最大值的信號走線時間t max 的功率元件,依其所連接的延遲電路30的延遲時間作為最小延遲驅動時間τ min ,再對其它功率元件的延遲電路30進行延遲時間的調整,因此本發明將信號走線時間t max 的 最大值加上該最小延遲驅動時間τ min 作為該同步驅動時間dTs,即公式3............dTs=t max +τ min 。 Since the signal trace time t n of each
本發明將同步驅動時間dTs作為所有功率元件10的統一驅動時間,因此依據同步驅動時間dTs計算其它每一功率元件10的所需要的延遲驅動時間τ n ,其計算方式為將同步驅動時間dTs減去每一功率元件的信號走線時間t n ,即公式4............τ n= dTs-t n 。換言之,當信號走線時間t n 較長時,延遲驅動時間τ n 就要縮短,反之當信號走線時間t n 較短時,延遲驅動時間τ n 就加增長。 In the present invention, the synchronous driving time dTs is taken as the unified driving time of all
最後,本發明知道每一功率元件10所需要的延遲驅動時間τ n 後,可針對每個功率元件10對應的延遲電路進行調整,如圖1之實施例所示,本實施例的延遲電路為電阻(R)與電容(C)組成的充放電電路,而對應調整電阻(R)及電容(C)的充放電時間常數,即
請一併參閱圖1、圖3及圖4所示,其中圖3為本發明未調整延遲電路的功率元件驅動電壓-時間示意圖,而圖4為本發明已調整延遲電路後的功率元件驅動電壓-時間示意圖。舉例而言,假設信號輸入端30到功率元件1、功率元件2、功率元件3及功率元件4的信號走線時間t n 分別為1ns、2ns、3ns及4ns,其功率元件1~4的驅動電壓波形如圖3所示。 Please also refer to FIG. 1, FIG. 3 and FIG. 4 together, wherein FIG. 3 is a schematic diagram of the power element driving voltage-time of the unadjusted delay circuit of the present invention, and FIG. 4 is a power element driving voltage of the present invention after the adjusted delay circuit -Schematic diagram of time. For example, assuming that the signal trace time t n from the
再由最長路徑選定最小驅動時間τ min =R4*C4=1ns。接著設定同步驅動複數功率元件10所需的同步驅動時間dTs為最長走線時間加上最小驅動時間,即公式3:dTs=t 4 +1ns=5ns,再依公式4計算出每一功率元 件的驅動時間τ n= dTs-t n ,即:功率元件1需1ns,τ1=dTs-t 1 =5ns-1ns=4ns=R1C1;功率元件2需2ns,τ2=dTs-t 2 =5ns-2ns=3ns=R2C2;功率元件3需3ns,τ3=dTs-t 3 =5ns-3ns=2ns=R3C3;功率元件4需4ns,τ4=dTs-t 4 =5ns-4ns=1ns=R4C4。 The minimum driving time τ min =R 4 *C 4 =1ns is selected by the longest path. Then set the synchronous driving time dTs required to synchronously drive the
最後,本發明依據每一功率元件的驅動時間調整延遲電路,在本實施例中,可固定電容(C)=C1=C2=C3=C4=100pF,因此=10Ω,R3=20Ω,R2=30Ω,R1=40Ω。經由調整延遲電路中電阻(R),就能如圖4所示,各功率元件在同步驅動時間5ns時,驅動電壓同步達到所需電壓值,達成各功率元件同步驅動的目的。 Finally, the present invention adjusts the delay circuit according to the driving time of each power element. In this embodiment, the capacitance (C) = C 1 = C 1 = C 2 = C 3 = C 4 = 100 pF, so =10Ω, R 3 =20Ω, R 2 =30Ω, R 1 =40Ω. By adjusting the resistance (R) in the delay circuit, as shown in FIG. 4, when the synchronous driving time of each power element is 5 ns, the driving voltage synchronously reaches the required voltage value, and the purpose of synchronous driving of each power element is achieved.
故而由上述的實施例可知,因各功率元件擺放位置皆有其順序性,所以對應的路徑長度可以倍數計算,在匹配的電阻(R)或電容(C)元件時也呈現倍數,因此可由計算簡易即可求出匹配參數,達成複數功率元件同步驅動之效果。且利用本發明同步驅動複數功率元件的方法,可以平均分散電流延長元件的壽命,以減少單一功率元件先承受大電流造成損壞的情況發生。 Therefore, from the above embodiment, it can be seen that since the placement of each power element has its order, the corresponding path length can be calculated in multiples, and it also shows multiples when matching the resistance (R) or capacitor (C) elements, so it can be With simple calculation, matching parameters can be obtained to achieve the effect of synchronous driving of multiple power components. Moreover, by using the method for synchronously driving a plurality of power components of the present invention, the current can be evenly distributed to extend the life of the component, so as to reduce the occurrence of damage caused by a single power component firstly receiving a large current.
10‧‧‧功率元件 10‧‧‧Power components
11‧‧‧第一連接端 11‧‧‧First connection
12‧‧‧第二連接端 12‧‧‧Second connector
20‧‧‧延遲電路 20‧‧‧ Delay circuit
30‧‧‧信號輸入端 30‧‧‧Signal input
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107123799A TWI659596B (en) | 2018-07-10 | 2018-07-10 | Method for synchronous driving of the power device and driving circuit thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107123799A TWI659596B (en) | 2018-07-10 | 2018-07-10 | Method for synchronous driving of the power device and driving circuit thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI659596B TWI659596B (en) | 2019-05-11 |
TW202007058A true TW202007058A (en) | 2020-02-01 |
Family
ID=67347955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107123799A TWI659596B (en) | 2018-07-10 | 2018-07-10 | Method for synchronous driving of the power device and driving circuit thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI659596B (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200908526A (en) * | 2007-08-09 | 2009-02-16 | Ind Tech Res Inst | DC-DC converter |
CN102769385B (en) * | 2012-05-28 | 2014-10-08 | 华为技术有限公司 | Current sharing control method, device and system for multi-phase parallel system |
MY178547A (en) * | 2013-02-06 | 2020-10-15 | Meidensha Electric Mfg Co Ltd | Cross-current suppression control device for power conversion circuit |
US8884658B2 (en) * | 2013-03-15 | 2014-11-11 | Atieva, Inc. | Inverter with parallel power devices |
JP2016135070A (en) * | 2015-01-22 | 2016-07-25 | 株式会社デンソー | Control apparatus |
JP6524020B2 (en) * | 2016-05-19 | 2019-06-05 | 三菱電機株式会社 | Delay time correction circuit, semiconductor device drive circuit and semiconductor device |
-
2018
- 2018-07-10 TW TW107123799A patent/TWI659596B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI659596B (en) | 2019-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8890565B2 (en) | Logic signal transmission circuit with isolation barrier | |
Chun et al. | Modeling of simultaneous switching noise in high speed systems | |
US6564355B1 (en) | System and method for analyzing simultaneous switching noise | |
CN108880212A (en) | A kind of power clamp circuit, chip and the communication terminal of Anti-surging | |
Meisser et al. | Parasitics in Power Electronic Modules: How parasitic inductance influences switching and how it can be minimized | |
JP2000101031A (en) | Method and device for reducing integrated circuit chip noise | |
US6737749B2 (en) | Resistive vias for controlling impedance and terminating I/O signals at the package level | |
Risch et al. | Nanosecond switching of ohmic loads using SiC MOSFETs in ultra-low inductive PCB-packages | |
TWI659596B (en) | Method for synchronous driving of the power device and driving circuit thereof | |
US8604351B2 (en) | Printed circuit board with circuit topology | |
Stahr et al. | Investigation of a power module with double sided cooling using a new concept for chip embedding | |
TWM567516U (en) | The power devices synchronous driving circuit | |
CN110890876A (en) | High-frequency high-voltage picosecond pulse generator of Marx circuit with avalanche triode series-parallel structure and application | |
CN205093035U (en) | Short circuit resistance packaging structure who is used for measuring among PCB | |
Sagehashi et al. | Pattern design criteria of main circuit using printed circuit boards for parasitic inductance reduction | |
US20030079900A1 (en) | Adjustable line length | |
CN110995222A (en) | Short-circuit protection device of GaN power switch device | |
Zhao et al. | Extraction of loop inductances of SiC half-bridge power module using an improved two-port network method | |
Dąbrowski et al. | Stability of low ohmic thick-film resistors under pulsed operation | |
Srinivasan et al. | Enhancement of signal integrity and power integrity with embedded capacitors in high-speed packages | |
Risch et al. | PCB-Embedded Packaging for Ultra-Fast Switching of SiC MOSFETs | |
Cretu et al. | A low-impedance TLP measurement system for power semiconductor characterization up to 700V and 400A in the microsecond range | |
Joannou et al. | An experimental study of switching GaN FETs in a coaxial transmission line | |
CA3109659C (en) | Use of metal-core printed circuit board (pcb) for generation of ultra-narrow, high-current pulse driver | |
Guillaume | Evaluation, Modeling and Application of Gallium Nitride Field Effect Transistor |