TW202004180A - Full-spectrum water quality analysis system including a light source generating device and a light source receiving and computing device - Google Patents

Full-spectrum water quality analysis system including a light source generating device and a light source receiving and computing device Download PDF

Info

Publication number
TW202004180A
TW202004180A TW107117003A TW107117003A TW202004180A TW 202004180 A TW202004180 A TW 202004180A TW 107117003 A TW107117003 A TW 107117003A TW 107117003 A TW107117003 A TW 107117003A TW 202004180 A TW202004180 A TW 202004180A
Authority
TW
Taiwan
Prior art keywords
light source
full
light
analysis system
water quality
Prior art date
Application number
TW107117003A
Other languages
Chinese (zh)
Other versions
TWI661197B (en
Inventor
楊明恭
Original Assignee
楊明恭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 楊明恭 filed Critical 楊明恭
Priority to TW107117003A priority Critical patent/TWI661197B/en
Application granted granted Critical
Publication of TWI661197B publication Critical patent/TWI661197B/en
Publication of TW202004180A publication Critical patent/TW202004180A/en

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

A full-spectrum water quality analysis system mainly includes a light source generating device and a light source receiving and computing device. A sampling area is provided between the light source generating device and the light source receiving and computing device. The light source generating device generates light in a full spectrum of ultraviolet to visible light, and transmits the light to the light source receiving and computing device through the sampling area. The light source receiving and computing device is configured to perform parallel comparison verification of big data based on pre-stored artificial intelligence model algorithms, perform self-deep learning to analyze correlation and various interference factors, calculate corrected weighting parameters for mutual numerical compensation and noise filtering (such as turbidity and chromaticity), so as to further obtain a more accurate concentration of various organic substances such as ammonia nitrogen, total phosphorus and total nitrogen.

Description

全光譜水質分析系統Full spectrum water quality analysis system

本發明是有關一種紫外至可見光全光譜水質分析系統,特別是一種將接收光分光為許多高解析度的光譜,並測量不同的光吸收度,再根據預設人工智慧模型演算法,大數據平行比對驗證,自我深度學習分析相關性及各種干擾因子,計算出修正加權參數作相互數值補償及雜訊濾除(如濁度及色度等),以進一步得出更高精準度的氨氮、總磷、總氮、UV254、化學需氧量(COD)、總有機碳(TOC)、生物需氧量(BOD)、溶解性有機碳(DOC)、高錳酸鹽指數(CODMn)、硝氮、亞硝氮、色度、濁度、總懸浮固體、苯酚(BTX)、臭氧或硫化氫等多種有機物質濃度的全光譜水質分析系統。The invention relates to an ultraviolet to visible light full-spectrum water quality analysis system, in particular to split the received light into many high-resolution spectra, and measure different light absorbances, then according to a preset artificial intelligence model algorithm, big data is parallel Comparison verification, self-deep learning analysis of correlation and various interference factors, calculation of modified weighting parameters for mutual numerical compensation and noise filtering (such as turbidity and chromaticity, etc.), to further obtain higher accuracy of ammonia nitrogen, Total phosphorus, total nitrogen, UV254, chemical oxygen demand (COD), total organic carbon (TOC), biological oxygen demand (BOD), dissolved organic carbon (DOC), permanganate index (CODMn), nitrate nitrogen , Nitrous nitrogen, color, turbidity, total suspended solids, phenol (BTX), ozone or hydrogen sulfide concentration of a full spectrum water quality analysis system.

習知水中氨氮分析儀主要是採用離子選擇電極法,係由鉀離子選擇電極、PH電極(參比電極)和溫度電極共同組成一個一體式電極,包含一傳感器電極膜頭,係用傳感器電極膜頭產生電化學反應,經由氨離子濃度來進行換算電化學的反應,以取得污水水中氨氮的含量。但離子選擇電極法最大的缺點為傳感器電極膜頭要經常要更換,且該傳感器電極膜頭會老化或阻塞鈍化,所以大概10-14天左右要校準一次,造成人工耗費很大,而且該傳感器電極膜頭會偏移,大約2-3個月就要更換,不符合經濟效益。The conventional ammonia nitrogen analyzer in water mainly adopts the ion selective electrode method, which is composed of a potassium ion selective electrode, a PH electrode (reference electrode) and a temperature electrode to form an integrated electrode, including a sensor electrode membrane head, and a sensor electrode membrane The head produces an electrochemical reaction, and performs an electrochemical reaction based on the ammonia ion concentration to obtain the ammonia nitrogen content in the sewage water. However, the biggest disadvantage of the ion selective electrode method is that the sensor electrode membrane head must be replaced frequently, and the sensor electrode membrane head will be aged or blocked and passivated, so it needs to be calibrated about 10-14 days, which causes a lot of labor and the sensor The electrode membrane head will shift, and it will be replaced in about 2-3 months, which is not in line with economic benefits.

另一種習知水中氨氮分析儀是採用水楊酸分光光度法或納氏試劑比色法,該水楊酸分光光度法是基於水揚酸鈉比色法測量水中的氨氮含量,在鹼性介質及催化劑的條件下,以游離狀態的氨或銨離子等形式存在氨氮與水揚酸鹽反應生成一種帶色絡合物,分析儀根據絡合物顏色深淺程度,最終將其轉換化為氨氮濃度值。而該納氏試劑比色法的原理是以游離態的氨或銨離子存在氨氮與納氏試劑反應生成淡紅棕色絡合物,該絡合物的吸光度與氨氮的含量成正比,於該絡合物的特徵吸收波長處測量吸光度,通過儀表計算得到水樣中氨氮的含量。Another conventional ammonia nitrogen analyzer in water uses salicylic acid spectrophotometry or Nessler's reagent colorimetry. The salicylic acid spectrophotometry is based on the sodium salicylate colorimetric method to measure the ammonia nitrogen content in water in alkaline media. Under the conditions of catalyst and catalyst, ammonia nitrogen reacts with salicylate in the form of free ammonia or ammonium ions to form a colored complex. The analyzer finally converts it into ammonia nitrogen concentration according to the color depth of the complex value. The principle of the Nessler's reagent colorimetric method is that in the presence of free ammonia or ammonium ions, ammonia nitrogen reacts with the Nessler's reagent to form a reddish-brown complex. The absorbance of the complex is proportional to the content of ammonia nitrogen. The absorbance is measured at the characteristic absorption wavelength, and the content of ammonia nitrogen in the water sample is calculated by the meter.

習知總磷分析儀基於比色法測量水中的總磷含量,原理是水中聚磷酸鹽和其他含磷化合物,在高溫或高壓的酸性條件下水解,生成磷酸根,對於其他難氧化的磷化合物,則被強氧化劑過硫酸納氧化為磷酸根。磷酸根在含鉬離子酸鹽的強酸溶液中,生成一種銻化合物,這種銻化合物被抗壞血酸還原為藍色的磷鉬酸鹽,測量磷鉬酸鹽的吸光度,和標準相比,就得到水樣中總磷含量用。The conventional total phosphorus analyzer measures the total phosphorus content in water based on the colorimetric method. The principle is that polyphosphate and other phosphorus-containing compounds in water are hydrolyzed under acidic conditions of high temperature or high pressure to form phosphates. For other difficult-to-oxidize phosphorus compounds , Is oxidized to phosphate by strong oxidant sodium persulfate. Phosphate forms a antimony compound in a strong acid solution containing molybdenum ion salts. This antimony compound is reduced to blue phosphomolybdate by ascorbic acid. The absorbance of the phosphomolybdate is measured. Compared with the standard, water is obtained The total phosphorus content in the sample is used.

另一種水中總磷含量的測量方法為過硫酸鉀或硝酸-高氯酸使試樣消解,並將總含磷全部轉化為正磷酸鹽。在酸性介質中,正磷酸鹽與鉬酸銨反應,在銻鹽存在下生成磷鉬雜多酸後,立即被抗換血酸還原,生成藍色絡合物,其吸光度與總磷的濃度成正本。Another method for measuring the total phosphorus content in water is to digest the sample with potassium persulfate or nitric acid-perchloric acid, and convert all the total phosphorus content to orthophosphate. In an acidic medium, orthophosphate reacts with ammonium molybdate to form phosphomolybdate heteropolyacid in the presence of antimony salt, which is immediately reduced by ascorbic acid to produce a blue complex whose absorbance is the original of the total phosphorus concentration .

習知水中總氮分析儀是基於比色法測量水中的總氮含量,原理是在120~124°C下,鹼性過硫酸鉀溶液使樣品中的含氮化合物的氮轉化為硝酸鹽,採用紫外分光光度法於波長200nm和275nm處,分別測定吸光度,按公式計算校正吸光度,總氮含量與校正吸光度成正本,以取得水中總氮的含量。The conventional total nitrogen analyzer in water is based on the colorimetric method to measure the total nitrogen content in water. The principle is that the alkaline potassium persulfate solution converts the nitrogen of the nitrogen-containing compounds in the sample into nitrate at 120~124°C. Ultraviolet spectrophotometry measures absorbance at 200nm and 275nm respectively, and calculates the corrected absorbance according to the formula. The total nitrogen content and the corrected absorbance are the original to obtain the total nitrogen content in the water.

然而,上述無論是水中氨氮或總磷或總氮含量的測量方法,主要都是以投藥為測量方法,除了本身分析儀器造價昂貴外,藥物本身成本亦相當高昂,且會造成二次污染,而且無論是電極法或投藥法,儀器設備及特殊藥品耗材及人工維護費用相當高,且分析時間約30分鐘~1小時左右,無法達到即時監測及控制的目的,實不符合環境及經濟成本。However, the above measurement methods for ammonia nitrogen, total phosphorus, or total nitrogen content in water are mainly based on the use of drugs. In addition to the high cost of the analytical equipment itself, the cost of the drug itself is also very high, and it will cause secondary pollution, and Whether it is the electrode method or the drug administration method, the cost of instruments and equipment, special pharmaceutical consumables and manual maintenance is quite high, and the analysis time is about 30 minutes to 1 hour, which cannot achieve the purpose of real-time monitoring and control, which does not meet the environmental and economic costs.

因此,若能夠設計出一種全光譜分析系統,取得全部光譜範圍,以人工智慧模型演算法,大數據平行比對驗證,自我深度學習分析相關性及各種干擾因子,計算出修正加權參數作相互數值補償及雜訊濾除(如濁度及色度等),以進一步得出更高精準度的氨氮、總磷、總氮、UV254、化學需氧量(COD)、總有機碳(TOC)、生物需氧量(BOD)、溶解性有機碳(DOC)、高錳酸鹽指數(CODMn)、硝氮、亞硝氮、色度、濁度、總懸浮固體、苯酚(BTX)、臭氧或硫化氫等多種有機物質濃度應為一最佳解決方案。Therefore, if a full-spectrum analysis system can be designed to obtain all spectral ranges, artificial intelligence model algorithms, large data parallel comparison verification, self-deep learning analysis of correlation and various interference factors, and calculation of modified weighting parameters for mutual values Compensation and noise filtering (such as turbidity and chromaticity) to further obtain higher accuracy ammonia nitrogen, total phosphorus, total nitrogen, UV254, chemical oxygen demand (COD), total organic carbon (TOC), Biological oxygen demand (BOD), dissolved organic carbon (DOC), permanganate index (CODMn), nitrate, nitrous nitrogen, color, turbidity, total suspended solids, phenol (BTX), ozone or sulfur The concentration of various organic substances such as hydrogen should be an optimal solution.

一種全光譜水質分析系統,包含:一裝置本體,而該裝置本體係具有一具有第一鏡窗之光源產生裝置及一具有第二鏡窗之光源接收運算裝置,其中該光源產生裝置與該光源接收運算裝置之間具有一取樣區,且該第一鏡窗之位置係相對於該第二鏡窗;一氙閃光燈,係設置於該光源產生裝置內部,而該氙閃光燈能夠朝向該第一鏡窗發射一穿透取樣區之測量光束,該測量光束能夠穿過該第一鏡窗及該第二鏡窗,並穿透至該光源接收運算裝置內部;一透鏡,係設置於該光源接收運算裝置內部,並位於該測量光束行進路徑上,用以對穿透至該光源接收運算裝置內部之測量光束進行聚光處理;一狹縫,用以提高解析度減少雜散光;一準直鏡,用以接收來自狹縫傳送的測量光束,並對該測量光束做準直化處理;一光柵,係接收來自準直鏡的測量光束,並將該測量光束分光為多個不同波長的光線;一透鏡,係設置於該光源接收運算裝置內部,係接收來自光柵的光束,並將集於一陣列光度計;該陣列光度器係設置於該光源接收運算裝置內部,係接收來自該透鏡的光束,並進測量高解析度不同波長的光譜;一儲存器,係用以儲存氨氮、總磷、總氮、UV254、化學需氧量(COD)、總有機碳(TOC)、生物需氧量(BOD)、溶解性有機碳(DOC)、高錳酸鹽指數(CODMn)、硝氮、亞硝氮、色度、濁度、總懸浮固體、苯酚(BTX)、臭氧或硫化氫等多種有機物質光波長吸光度及修正加權參數資料檔;以及一微處理器,係用以整體系統之運作,而該微處理器係與該氙閃光燈及該陣列光度器電性連接,用以於該測量光束穿過一通過該取樣區之液體後,該微處理器能夠依據比爾定律計算該測量光束全光譜波長之吸收度,用多成分定量分析解聯立方程式,獲得各種有機物的濃度,並再藉由一內嵌式人工智慧模型演算法,大數據平行比對驗證,自我深度學習分析相關性及各種干擾因子,計算出修正加權參數作相互數值補償及雜訊濾除(如濁度及色度等),以進一步得出更高精準度的氨氮、總磷、總氮、UV254、化學需氧量(COD)、總有機碳(TOC)、生物需氧量(BOD)、溶解性有機碳(DOC)、高錳酸鹽指數(CODMn)、硝氮、亞硝氮、色度、濁度、總懸浮固體、苯酚(BTX)、臭氧或硫化氫等多種有機物質濃度。A full-spectrum water quality analysis system includes: a device body, and the device system has a light source generating device with a first mirror window and a light source receiving computing device with a second mirror window, wherein the light source generating device and the light source There is a sampling area between the receiving computing devices, and the position of the first mirror window is relative to the second mirror window; a xenon flash lamp is disposed inside the light source generating device, and the xenon flash lamp can face the first mirror The window emits a measuring beam penetrating the sampling area, the measuring beam can pass through the first mirror window and the second mirror window, and penetrate into the light source receiving computing device; a lens is provided in the light source receiving computing Inside the device and located on the travel path of the measuring beam for condensing the measuring beam penetrating into the light source receiving computing device; a slit for improving resolution and reducing stray light; a collimating mirror, It is used to receive the measurement beam transmitted from the slit and collimate the measurement beam; a grating receives the measurement beam from the collimator lens and splits the measurement beam into multiple rays of different wavelengths; one The lens is arranged inside the light source receiving computing device, receives the light beam from the grating, and will be collected in an array photometer; the array photometer is arranged inside the light source receiving computing device, and receives the light beam from the lens, Simultaneous measurement of high-resolution spectra of different wavelengths; a storage for storing ammonia nitrogen, total phosphorus, total nitrogen, UV254, chemical oxygen demand (COD), total organic carbon (TOC), biological oxygen demand (BOD) , Dissolved organic carbon (DOC), permanganate index (CODMn), nitrate, nitrous nitrogen, color, turbidity, total suspended solids, phenol (BTX), ozone or hydrogen sulfide and other organic substances Absorbance and correction weighting parameter data files; and a microprocessor for the operation of the overall system, and the microprocessor is electrically connected to the xenon flash lamp and the array photometer for the measurement beam to pass through a After passing the liquid in the sampling area, the microprocessor can calculate the absorbance of the full-spectrum wavelength of the measuring beam according to Beer's law, use multi-component quantitative analysis to solve the simultaneous equations to obtain the concentration of various organic substances, and then use an embedded artificial Intelligent model algorithm, big data parallel comparison verification, self-deep learning analysis of correlation and various interference factors, calculation of modified weighting parameters for mutual numerical compensation and noise filtering (such as turbidity and chromaticity, etc.), to further obtain A higher accuracy of ammonia nitrogen, total phosphorus, total nitrogen, UV254, chemical oxygen demand (COD), total organic carbon (TOC), biological oxygen demand (BOD), dissolved organic carbon (DOC), permanganic acid Salt concentration (CODMn), nitrate, nitrous nitrogen, color, turbidity, total suspended solids, phenol (BTX), ozone or hydrogen sulfide and other organic substance concentrations.

於一較佳實施例中,其中該光源產生裝置更具有一透鏡及一光感測器,用以設置於該測量光束行進路徑上,該透鏡能將測量光束聚光,該取樣區能夠將該測量光束分開為一穿透水樣之測量光束及一不穿透水樣之參比光束,其中該穿透水樣之測量光束能夠穿過該第一鏡窗及該第二鏡窗,並穿透至該光源接收運算裝置內部,而該光感測器係設置於該不穿透水樣之參比光束行進路徑上,用以感測該不穿透水樣之參比光束之光強度,可在每次測量中對光源進行補償。In a preferred embodiment, the light source generating device further has a lens and a light sensor, which are arranged on the measuring beam traveling path, the lens can condense the measuring beam, and the sampling area can The measuring beam is divided into a measuring beam penetrating the water sample and a reference beam not penetrating the water sample, wherein the measuring beam penetrating the water sample can pass through the first mirror window and the second mirror window and pass through Penetrated into the light source receiving computing device, and the light sensor is disposed on the traveling path of the reference beam that does not penetrate the water sample, for sensing the light intensity of the reference beam that does not penetrate the water sample, The light source can be compensated in each measurement.

於一較佳實施例中,其中該光源接收運算裝置內部更具有一與該微處理器電性連接之時序產生器,該時序產生器用以發出一訊號至該微處理器,以控制該氙閃光燈發射光束與陣列光度計同步接收進行測量。In a preferred embodiment, the light source receiving and computing device further includes a timing generator electrically connected to the microprocessor, and the timing generator is used to send a signal to the microprocessor to control the xenon flash lamp The emitted beam is received simultaneously with the array photometer for measurement.

於一較佳實施例中,其中該光源接收運算裝置內部更具有一與該微處理器電性連接之通訊器,用以能夠將該全光譜水質分析系統所偵測或/及運算之數據資料傳送出去。In a preferred embodiment, the light source receiving and computing device further has a communicator electrically connected to the microprocessor for data data detected or calculated by the full-spectrum water quality analysis system Send it out.

於一較佳實施例中,其中該裝置本體上的該取樣區為一凹口,該取樣區處係具有一清潔刷,而該光源接收運算裝置內部更具有一與該微處理器電性連接之馬達,其中該馬達係延伸出一驅動軸固定於該清潔刷上,而該清潔刷兩側具有一刷體,因此該馬達被驅動使該驅動軸轉動時,該清潔刷兩側之刷體能夠分別清潔該第一鏡窗及該第二鏡窗之朝外表面。In a preferred embodiment, the sampling area on the device body is a notch, the sampling area is provided with a cleaning brush, and the light source receiving and computing device further has an electrical connection with the microprocessor Motor, wherein the motor extends a drive shaft fixed on the cleaning brush, and the cleaning brush has a brush body on both sides, so when the motor is driven to rotate the drive shaft, the brush body on both sides of the cleaning brush The outward-facing surfaces of the first mirror window and the second mirror window can be cleaned separately.

於一較佳實施例中,其中該裝置本體靠近第一鏡窗及第二鏡窗處設置有一超音波清潔裝置,可自動清潔該第一鏡窗及該第二鏡窗。In a preferred embodiment, the device body is provided with an ultrasonic cleaning device near the first mirror window and the second mirror window, which can automatically clean the first mirror window and the second mirror window.

於一較佳實施例中,其中該氙閃光燈所發射之測量光束的波長為160~800nm。In a preferred embodiment, the wavelength of the measuring beam emitted by the xenon flash lamp is 160-800 nm.

於一較佳實施例中,其中該微處理器的運算公式為比爾定律及多成分定量分析公式,係將要測量的有機物濃度列成一聯立方程式後,再進行解聯立方程式,即可取得各種有機物的濃度值。In a preferred embodiment, the operation formula of the microprocessor is Beer's law and multi-component quantitative analysis formula. After the concentration of the organic substance to be measured is listed into a simultaneous equation, the simultaneous equation is solved, and then the various organic substances can be obtained. Concentration value.

於一較佳實施例中,其中該總磷的光吸收率變異性最高是在於170~190nm之間。In a preferred embodiment, the maximum absorbance variability of the total phosphor is between 170 and 190 nm.

於一較佳實施例中,其中該總氮的光吸收率變異性最高是在於190~245nm之間。In a preferred embodiment, the maximum absorbance variability of the total nitrogen is between 190 and 245 nm.

於一較佳實施例中,其中該氨氮的光吸收率變異性最高是在於180~200nm之間。In a preferred embodiment, the variability of the light absorption rate of the ammonia nitrogen is between 180-200 nm.

有關於本發明其他技術內容、特點與功效,在以下配合參考圖式之較佳實施例的詳細說明中,將可清楚的呈現。Regarding other technical contents, features and effects of the present invention, it will be clearly presented in the following detailed description of the preferred embodiments with reference to the drawings.

請參閱第1、2及3圖,為本發明全光譜水質分析系統,由圖中可知,該全光譜水質分析系統係包含有一裝置本體1,而該裝置本體1具有一第一鏡窗111之光源產生裝置11及一具有第二鏡窗121之光源接收運算裝置12,其中該光源產生裝置11與該光源接收運算裝置12之間具有一取樣區13,且該第一鏡窗111之位置係相對於該第二鏡窗121。Please refer to FIGS. 1, 2 and 3, which is the full-spectrum water quality analysis system of the present invention. As can be seen from the figure, the full-spectrum water quality analysis system includes a device body 1, and the device body 1 has a first mirror window 111 A light source generating device 11 and a light source receiving computing device 12 having a second mirror window 121, wherein a sampling area 13 is provided between the light source generating device 11 and the light source receiving computing device 12, and the position of the first mirror window 111 is Relative to the second mirror window 121.

而該光源產生裝置11內部係具有一個或一個一個以上的氙閃光燈112、一透鏡113及一光感測器114,其中該氙閃光燈112所發射之測量光束的波常為160~800nm,因此能夠朝向該第一鏡窗111發射一紫外至可見光的測量光束(白光),該透鏡113用以設置於該測量光束行進路徑上,該取樣區13將該測量光束分開為一穿透水樣之測量光束及一不穿透水樣之參比光束,其中該穿透水樣之測量光束能夠穿過該第一鏡窗111及該第二鏡窗121,並穿透至該光源接收運算裝置12內部,而該光感測器114係設置於該不穿透水樣之參比光束行進路徑上,用以感測該不穿透水樣之參比光束之光強度。The light source generating device 11 has one or more xenon flash lamps 112, a lens 113, and a light sensor 114. The wave of the measuring beam emitted by the xenon flash lamp 112 is usually 160-800 nm, so it can A measurement beam (white light) of ultraviolet to visible light is emitted toward the first mirror window 111, the lens 113 is disposed on the path of the measurement beam, and the sampling area 13 separates the measurement beam into a measurement that penetrates a water sample A light beam and a reference beam that does not penetrate the water sample, wherein the measurement beam that penetrates the water sample can pass through the first mirror window 111 and the second mirror window 121 and penetrate into the light source receiving computing device 12 The light sensor 114 is disposed on the traveling path of the reference beam that does not penetrate the water sample, and is used to sense the light intensity of the reference beam that does not penetrate the water sample.

而該光源接收運算裝置12內部係具有一第一透鏡122、一狹縫132、一準直鏡133、一光柵129、一陣列光度器123、一微處理器124、一儲存器125、一時序產生器126、一通訊器127及一第二透鏡130,其中該準直鏡122係設置於該光源接收運算裝置12內部,並位於該穿透水樣之測量光束行進路徑上,用以接收來自第二鏡窗121之穿透水樣之測量光束,並將光束傳送至該光柵129;The light source receiving and computing device 12 has a first lens 122, a slit 132, a collimating mirror 133, a grating 129, an array photometer 123, a microprocessor 124, a memory 125, a timing A generator 126, a communicator 127, and a second lens 130, wherein the collimator lens 122 is disposed inside the light source receiving and computing device 12, and is located on the traveling path of the measurement beam penetrating the water sample for receiving The measurement beam of the second mirror window 121 penetrating the water sample and transmitting the beam to the grating 129;

該光柵129能夠將該穿透水樣之測量光束分光為多個波長的彩虹光束,並將該彩虹光束傳送至該透鏡130聚集光束並傳送該陣列光度器123,該陣列光度器123會測量高解析度不同波長光譜,將該光譜傳送至微處理器124中進行運算分析;且該陣列光度器123係為1024像素陣列光度器或2048像素陣列光度器或3072像素陣列光度器,可測量1024條或2048條或3072條高解析度的波長光譜,達到準確運算分析之目的。The grating 129 can split the measurement beam penetrating the water sample into rainbow beams of multiple wavelengths, and transmit the rainbow beam to the lens 130 to condense the beam and transmit the array photometer 123, which measures the height The spectrum of different wavelengths with different resolutions is transmitted to the microprocessor 124 for calculation and analysis; and the array photometer 123 is a 1024 pixel array photometer or 2048 pixel array photometer or 3072 pixel array photometer, which can measure 1024 lines Or 2048 or 3072 high-resolution wavelength spectra, to achieve the purpose of accurate calculation and analysis.

該儲存器125用以儲存氨氮、總磷、總氮、UV254、化學需氧量(COD)、總有機碳(TOC)、生物需氧量(BOD)、溶解性有機碳(DOC)、高錳酸鹽指數(CODMn)、硝氮、亞硝氮、色度、濁度、總懸浮固體、苯酚(BTX)、臭氧或硫化氫等多種有機物質光波長吸光度及修正加權參數資料檔,而該微處理器124用以控制該全光譜水質分析系統之運作,該微處理器125係與該氙閃光燈112及該陣列光度器123電性連接,用以於該穿透水樣之測量光束穿過一通過該取樣區13之液體2後,該微處理器125能夠依據比爾定律該穿透水樣之測量光束計算出全光譜吸收度,並再藉由多成分定量分析、內嵌人工智慧模型演算法,大數據平行比對驗證,自我深度學習分析相關性及各種干擾因子,計算出修正加權參數作相互數值補償及雜訊濾除(如濁度及色度等),以進一步得出更高精準度的氨氮、總磷、總氮、UV254、化學需氧量(COD)、總有機碳(TOC)、生物需氧量(BOD)、溶解性有機碳(DOC)、高錳酸鹽指數(CODMn)、硝氮、亞硝氮、色度、濁度、總懸浮固體、苯酚(BTX)、臭氧或硫化氫等多種有機物質濃度。The storage 125 is used to store ammonia nitrogen, total phosphorus, total nitrogen, UV254, chemical oxygen demand (COD), total organic carbon (TOC), biological oxygen demand (BOD), dissolved organic carbon (DOC), high manganese Acid wavelength index (CODMn), nitrate nitrogen, nitrous nitrogen, color, turbidity, total suspended solids, phenol (BTX), ozone or hydrogen sulfide and other organic substances light wavelength absorbance and corrected weighted parameter data file, and the micro The processor 124 is used to control the operation of the full-spectrum water quality analysis system. The microprocessor 125 is electrically connected to the xenon flash lamp 112 and the array photometer 123 for passing the measurement beam passing through the water sample through a After passing through the liquid 2 in the sampling area 13, the microprocessor 125 can calculate the full-spectrum absorbance according to Beer's law of the measuring beam penetrating the water sample, and then through multi-component quantitative analysis and embedded artificial intelligence model algorithm , Big data parallel comparison verification, self-deep learning analysis of correlation and various interference factors, calculation of modified weighting parameters for mutual numerical compensation and noise filtering (such as turbidity and chromaticity, etc.) to further obtain higher accuracy Degree of ammonia nitrogen, total phosphorus, total nitrogen, UV254, chemical oxygen demand (COD), total organic carbon (TOC), biological oxygen demand (BOD), dissolved organic carbon (DOC), permanganate index (CODMn ), nitrate, nitrous nitrogen, color, turbidity, total suspended solids, phenol (BTX), ozone or hydrogen sulfide and other organic substance concentrations.

而微處理器125運算主要是透過比爾定律(紫外線-可見光吸收光譜之定量分析公式)公式: A=log(Po /P)=εbc 其中A是代表吸光度,Po 是代表原本光束未通過樣品槽之輻射功率,P是代表光束通過樣品槽後之輻射功率,ε是代表莫耳吸光係數、單位為Lmol-1 cm-1 ),b是代表光束通過樣品槽之光徑長度、單位為cm,c是代表樣品濃度、單位為mol L-1The operation of microprocessor 125 is mainly through Beer's law (quantitative analysis formula for ultraviolet-visible absorption spectrum): A=log(P o /P)=εbc where A is the absorbance and P o is the original light beam does not pass through the sample The radiant power of the cell, P is the radiant power after the beam passes through the sample cell, ε is the mole absorption coefficient in Lmol -1 cm -1 ), b is the optical path length of the beam through the sample cell in cm , C is the sample concentration, the unit is mol L -1 ;

以上述公式當基礎延伸,再套用多成分的定量分析公式: Atotal =A1 +A2 +A3 +A4 +….An1 bc12 bc23 bc34 bc4 +……εn bcn Extend the above formula as the basis, and then apply the multi-component quantitative analysis formula: A total = A 1 + A 2 + A 3 + A 4 +…. A n = ε 1 bc 1 + ε 2 bc 2 + ε 3 bc 34 bc 4 +……ε n bc n

含有一種上的成分溶液,只要成分彼此不起化學變化,同樣可運運比爾定律進行定量分析,即總吸收光度(Atotal )=各成分吸光度(A1 2 3 4…n )之加總,其中下標代表成分1、成分2、成分3….成分n。A solution containing one of the above components, as long as the components do not chemically change from each other, can also be transported by Beer's law for quantitative analysis, that is, total absorption luminosity (A total ) = absorbance of each component (A 1 , 2 , 3 , 4...n ) Summing up, where the subscripts represent component 1, component 2, component 3...component n.

因此,若微處理器只要把要測量的每一種成分經由上述公式列成一聯立方程式,再進行解聯立方程式,即可獲得水中各種有有機物的濃度,包含氨氮、總磷及總氮及所有有機物的濃度測量分析。Therefore, if the microprocessor just lists each component to be measured into a simultaneous equation through the above formula, and then solves the simultaneous equation, the concentration of various organic substances in the water can be obtained, including ammonia nitrogen, total phosphorus, total nitrogen and all organic substances. Concentration measurement analysis.

透過人工智慧模型演算法,大數據平行比對驗證,自我深度學習分析相關性及各種干擾因子,計算出修正加權參數作相互數值補償及雜訊濾除(如濁度及色度等),以進一步得出更高精準度的氨氮、總磷、總氮、UV254、化學需氧量(COD)、總有機碳(TOC)、生物需氧量(BOD)、溶解性有機碳(DOC)、高錳酸鹽指數(CODMn)、硝氮、亞硝氮、色度、濁度、總懸浮固體、苯酚(BTX)、臭氧或硫化氫等多種有機物質濃度。Through artificial intelligence model algorithm, parallel comparison verification of big data, self-deep learning analysis of correlation and various interference factors, calculated and corrected weighted parameters for mutual numerical compensation and noise filtering (such as turbidity and chromaticity, etc.) Further results in higher precision ammonia nitrogen, total phosphorus, total nitrogen, UV254, chemical oxygen demand (COD), total organic carbon (TOC), biological oxygen demand (BOD), dissolved organic carbon (DOC), high Manganate index (CODMn), nitrate, nitrous nitrogen, color, turbidity, total suspended solids, phenol (BTX), ozone or hydrogen sulfide and other organic substance concentrations.

該時序產生器126用以發出一訊號至該微處理器124,以控制該氙閃光燈112發射光束與該陣列光度計123同步進行接收測量;且該通訊器127用以能夠將該全光譜水質分析系統所偵測或/及運算之數據資料傳送出去,該通訊器127係能夠為RS485介面,且該通訊器127並可導入電源至裝置本體1中,讓每個用電電路可正常運作。The timing generator 126 is used to send a signal to the microprocessor 124 to control the xenon flash lamp 112 to emit light and the array photometer 123 to receive and measure simultaneously; and the communicator 127 is used to analyze the full-spectrum water quality The data data detected or/and calculated by the system is transmitted. The communicator 127 can be an RS485 interface, and the communicator 127 can be imported into the power supply 1 of the device body 1 to allow each power circuit to operate normally.

該取樣區13處係具有一清潔刷131,而該光源接收運算裝置12內部更具有一與該微處理器125電性連接之馬達128,其中該馬達128係延伸出一驅動軸1281固定於該清潔刷131上,而該清潔刷131兩側具有一刷體1311,因此該馬達128被驅動使該驅動軸1281轉動時,該清潔刷131兩側之刷體1311能夠分別清潔該第一鏡窗111及該第二鏡窗121之朝外表面,避免第一鏡窗111及該第二鏡窗121沾附污物,同時可保持清潔。The sampling area 13 has a cleaning brush 131, and the light source receiving and computing device 12 further has a motor 128 electrically connected to the microprocessor 125, wherein the motor 128 extends a drive shaft 1281 fixed to the The cleaning brush 131 has a brush body 1311 on both sides of the cleaning brush 131, so when the motor 128 is driven to rotate the drive shaft 1281, the brush bodies 1311 on both sides of the cleaning brush 131 can clean the first mirror window respectively The outward-facing surfaces of 111 and the second mirror window 121 prevent dirt from adhering to the first mirror window 111 and the second mirror window 121, while keeping them clean.

另外,請參閱第4、5圖所示,該光源產生裝置11及光源接收運算裝置12靠近第一鏡區111及第二鏡區121係設置有一超音波清潔裝置134,可自動清潔該第一鏡窗111及第二鏡窗121上沾附的污物,達到保持清潔之目的。In addition, as shown in FIGS. 4 and 5, the light source generating device 11 and the light source receiving computing device 12 are provided with an ultrasonic cleaning device 134 near the first mirror area 111 and the second mirror area 121, which can automatically clean the first The contaminants on the mirror window 111 and the second mirror window 121 are kept clean.

請同時參閱第6及7圖所示,如第6圖所示,欲量測水中氨氮、總磷及總氮等濃度時,係將該裝置本體1放入水槽、水庫、河川、湖泊、渠道或 海洋等環境中,且藉由上述的量測方法,取得一全光譜圖,則如第7圖所示,波長160~800nm的不同波長對應吸光度則皆如圖中所示,而針對不同有機物說明如下: (1) 而經光譜圖可知,總磷之光吸收率變異性最大的是位於170~195nm範圍之間(例如為170、171、172、173、174、175、176、177、178、179、180、181、182、183、184、185、186、187、188、189、190、191、192、193、194、195nm皆為取樣範圍),其中,較佳實施例是在波長180nm、182nm、185nm、187nm及195nm進行取樣,每一次取樣都藉由比爾定律、多成分定量分析、人工智慧模型演算法,大數據平行比對驗證,自我深度學習分析相關性及各種干擾因子,計算出修正加權參數作相互數值補償及雜訊濾除(如濁度及色度等),以進一步得出更高精準度的總磷濃度值,並經由多次取樣數據的平均值,判定水中總磷準確的濃度值。 (2) 而經光譜圖可知,總氮之光吸收率變異性最大的是位於190~245nm範圍之間(例如為190、191、192、193、194、195、196、197、198、199、200、201、202、203、204、205、206、207、208、209、210、211、212、213、214、215、216、217、218、219、220、221、222、223、224、225、226、227、228、229、230、231、232、233、234、235、236、237、238、239、240、241、242、243、244、245皆在取樣範圍),其中,較佳實施例是在波長190nm、195nm、200nm、220nm及245nm進行取樣,每一次取樣都藉由比爾定律、多成分定量分析、人工智慧模型演算法,大數據平行比對驗證,自我深度學習分析相關性及各種干擾因子,計算出修正加權參數作相互數值補償及雜訊濾除(如濁度及色度等),以進一步得出更高精準度的總氮濃度值,並經由多次取樣數據的平均值,判定水中總氮準確的濃度值。 (3) 而經光譜圖可知,氨氮之光吸收率變異性最大的是位於180~200nm範圍之間(例如為180、181、182、183、184、185、186、187、188、189、190、191、192、193、194、195、196、197、198、199及200nm皆在取樣範圍),其中,較佳實施例是在波長182nm、187nm、192nm、195nm及200nm進行取樣,每一次取樣都藉由比爾定律、多成分定量分析、人工智慧模型演算法,大數據平行比對驗證,自我深度學習分析相關性及各種干擾因子,計算出修正加權參數作相互數值補償及雜訊濾除(如濁度及色度等),以進一步得出更高精準度的氨氮濃度值,並經由多次取樣數據的平均值,判定水中氨氮準確的濃度值。 (4) 而經光譜圖可知,該化學需氧量(COD)、生物需氧量(BOD)、總有機碳(TOC)、溶解性有機碳(DOC)、高錳鹽酸指數(CODMn)、紫外吸光係數(SAC254)之光吸收率變異最大是位於243~290nm範圍之間(例如為243、244、245、246、247、248、249、250、251、252、253、254、255、256、257、258、259、260、261、262、263、264、265、266、267、268、269、270、271、272、273、274、275、276、277、278、279、280、281、282、283、284、285、286、287、288、289、290nm之間皆為取樣範圍),較佳實施例是在波長243nm、254nm、265nm、275nm及290nm進行取樣,每一次取樣都藉由比爾定律、多成分定量分析、人工智慧模型演算法,大數據平行比對驗證,自我深度學習分析相關性及各種干擾因子,計算出修正加權參數作相互數值補償及雜訊濾除(如濁度及色度等),以進一步得出更高精準度的化學需氧量(COD)、生物需氧量(BOD)、總有機碳(TOC)、溶解性有機碳(DOC)、高錳鹽酸指數(CODMn)、紫外吸光係數(SAC254)濃度值,並經由多次取樣數據的平均值,判定水中化學需氧量(COD)、生物需氧量(BOD)、總有機碳(TOC)、溶解性有機碳(DOC)、高錳鹽酸指數(CODMn)、紫外吸光係數(SAC254)準確的濃度值。。 (5) 而經光譜圖可知,該色度的光吸收率變異最高是位於390~525nm範圍之間(例如為390、391、392、393、394、395、396、397、398、399、400、401、402、403、404、405、406、407、408、409、410、411、412、413、414、415、416、417、418、419、420、421、422、423、424、425、426、427、428、429、430、431、432、433、434、435、436、437、438、439、440、441、442、443、444、445、446、447、448、449、450、451、452、453、454、455、456、457、458、459、460、461、462、463、464、465、466、467、468、469、470、471、472、473、474、475、476、477、478、479、480、481、482、483、484、485、486、487、488、489、490、491、492、493、494、495、496、497、498、499、500、501、502、503、504、505、506、507、508、509、510、511、512、513、514、515、516、517、518、519、520、521、522、523、524、525nm之間皆為取樣範圍),較佳實施例是在波長390nm、410nm、455nm、500nm及525nm進行取樣,每一次取樣都藉由比爾定律、多成分定量分析、人工智慧模型演算法,大數據平行比對驗證,自我深度學習分析相關性及各種干擾因子,計算出修正加權參數作相互數值補償及雜訊濾除(如濁度及色度等),以進一步得出更高精準度的色度濃度值,並經由多次取樣數據的平均值,判定水中色度準確的濃度值。 (6) 而經光譜圖可知,苯酚 (BTX)之最高吸光度是位於300~350nm範圍之間(例如為300、301、302、303、304、305、306、307、308、309、310、311、312、313、314、315、316、317、318、319、320、321、322、323、324、325、326、327、328、329、330、331、332、333、334、335、336、337、338、339、340、341、342、343、344、345、346、347、348、349、350),較佳實施例是在波長300nm、310nm、325nm、340nm及350nm進行取樣,每一次取樣都藉由比爾定律、多成分定量分析、人工智慧模型演算法,大數據平行比對驗證,自我深度學習分析相關性及各種干擾因子,計算出修正加權參數作相互數值補償及雜訊濾除(如濁度及色度等),以進一步得出更高精準度的苯酚 (BTX)濃度值,並經由多次取樣數據的平均值,判定水中苯酚 (BTX)準確的濃度值。Please refer to Figures 6 and 7 at the same time. As shown in Figure 6, if you want to measure the concentration of ammonia nitrogen, total phosphorus and total nitrogen in the water, put the device body 1 into the water tank, reservoir, river, lake and channel In the ocean or other environment, and by the above measurement method, a full spectrum is obtained, as shown in Figure 7, the corresponding absorbances of different wavelengths of 160~800nm are as shown in the figure, and for different organic substances The explanations are as follows: (1) According to the spectrogram, the greatest variability of the total phosphorus absorption rate is between 170 and 195 nm (for example, 170, 171, 172, 173, 174, 175, 176, 177, 178 , 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, and 195 nm are all sampling ranges), where the preferred embodiment is at a wavelength of 180 nm , 182nm, 185nm, 187nm and 195nm sampling, each sampling by Bill's law, multi-component quantitative analysis, artificial intelligence model algorithm, big data parallel comparison verification, self-deep learning analysis correlation and various interference factors, calculation Correct the weighted parameters for mutual numerical compensation and noise filtering (such as turbidity and chromaticity, etc.) to further obtain a more accurate total phosphorus concentration value, and determine the total water Accurate concentration value of phosphorus. (2) From the spectrogram, it can be seen that the variability of the total nitrogen light absorption rate is between 190 and 245 nm (for example, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245 are all within the sampling range), of which, A preferred embodiment is to sample at wavelengths of 190nm, 195nm, 200nm, 220nm and 245nm. Each sampling is through Bill’s law, multi-component quantitative analysis, artificial intelligence model algorithm, big data parallel comparison verification, and self-deep learning analysis. And various interference factors, calculate the correction weighting parameters for mutual numerical compensation and noise filtering (such as turbidity and chromaticity, etc.), to further obtain a more accurate total nitrogen concentration value, and through multiple sampling data The average value of the total nitrogen to determine the accurate concentration of total nitrogen in the water. (3) According to the spectrogram, the largest variation in the absorption rate of ammonia nitrogen is between 180 and 200 nm (for example, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190 , 191, 192, 193, 194, 195, 196, 197, 198, 199 and 200nm are in the sampling range), of which, the preferred embodiment is sampling at wavelengths 182nm, 187nm, 192nm, 195nm and 200nm, each sampling By using Bill's law, multi-component quantitative analysis, artificial intelligence model algorithm, parallel comparison verification of big data, self-deep learning analysis of correlation and various interference factors, correction weighted parameters are calculated for mutual numerical compensation and noise filtering ( Such as turbidity and chromaticity, etc., to further obtain the ammonia nitrogen concentration value with higher accuracy, and determine the accurate ammonia nitrogen concentration value in the water through the average value of multiple sampling data. (4) The spectrum shows that the chemical oxygen demand (COD), biological oxygen demand (BOD), total organic carbon (TOC), dissolved organic carbon (DOC), high manganese hydrochloric acid index (CODMn), UV The absorption coefficient (SAC254) has a maximum variation in light absorption rate between 243 and 290 nm (eg, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, and 290nm are sampling ranges), the preferred embodiment is to sample at wavelengths of 243nm, 254nm, 265nm, 275nm, and 290nm, each sampling is performed by Beer's law, multi-component quantitative analysis, artificial intelligence model algorithm, big data parallel comparison verification, self-deep learning analysis of correlation and various interference factors, calculation of modified weighting parameters for mutual numerical compensation and noise filtering (such as turbidity And color, etc.) to further obtain higher precision of chemical oxygen demand (COD), biological oxygen demand (BOD), total organic carbon (TOC), dissolved organic carbon (DOC), permanganese hydrochloric acid index (CODMn), ultraviolet absorption coefficient (SAC254) concentration value, and the average value of multiple sampling data to determine the chemical oxygen demand (COD), biological oxygen demand (BOD), total organic carbon (TOC), solubility in water Accurate concentration values of organic carbon (DOC), high manganese hydrochloric acid index (CODMn), and ultraviolet absorption coefficient (SAC254). . (5) According to the spectrogram, the highest variation of the absorbance of the chromaticity is between 390 and 525 nm (for example, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400 , 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425 , 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450 , 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475 , 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500 , 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525nm Both are sampling ranges), the preferred embodiment is to sample at wavelengths of 390nm, 410nm, 455nm, 500nm and 525nm, each sampling is by Bill's law, multi-component quantitative analysis, artificial intelligence model algorithm, big data parallel Comparison verification, self-deep learning analysis of correlation and various interference factors, calculation of modified weighting parameters for mutual numerical compensation and noise filtering (such as turbidity and chromaticity, etc.), to further obtain higher-precision chromaticity Concentration value, and through the average value of multiple sampling data, determine the accurate concentration value of color in water. (6) According to the spectrogram, the highest absorbance of phenol (BTX) is in the range of 300~350nm (for example, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311 , 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336 , 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350), the preferred embodiment is sampling at wavelengths of 300nm, 310nm, 325nm, 340nm and 350nm, each One sampling is based on Beer's law, multi-component quantitative analysis, artificial intelligence model algorithm, big data parallel comparison verification, self-deep learning analysis of correlation and various interference factors, and calculation of modified weighting parameters for mutual numerical compensation and noise filtering In addition (such as turbidity and color, etc.), to further obtain a higher precision phenol (BTX) concentration value, and through the average value of multiple sampling data, determine the accurate concentration value of phenol (BTX) in water.

本發明所提供之全光譜水質分析系統,與其他習用技術相互比較時,其優點如下: (1) 本發明具有無須水樣處理,可在無添加化學試劑的情況下放入水中,連續在線全光譜紫外光-可見光直接同時量測水中多種參數,包含氨氮、總磷、總氮、、UV254、化學需氧量(COD)、總有機碳(TOC)、生物需氧量(BOD)、溶解性有機碳(DOC)、高錳酸鹽指數(CODMn)、硝氮、亞硝氮、色度、濁度、總懸浮固體、苯酚(BTX)、臭氧或硫化氫等多種有機物質及營養鹽等參數,並通過全光譜測量對濁度與色度彼此相互干擾進行補償,確保測量準確,內置相關標定參數,達到即時監測及反應迅速之功效。 (2) 本發明為一種可進行即時測量、現場校正,超低功耗,適合戶外無電力環境,強固型沉水式外殼,可連續沉水100米深。 (3) 本發明具有自動清潔刷或超音波清潔裝置,防止境窗沾污,幾乎免維護。 (4) 本發明具有體積小、重量輕及方便攜帶等諸多優點,更能夠應用於水槽、水庫、河川、湖泊、渠道、 海洋等應用環境。Compared with other conventional technologies, the full-spectrum water quality analysis system provided by the present invention has the following advantages: (1) The present invention has no need for water sample treatment, and can be put into water without adding chemical reagents. Spectral ultraviolet-visible light directly measures various parameters in water, including ammonia nitrogen, total phosphorus, total nitrogen, UV254, chemical oxygen demand (COD), total organic carbon (TOC), biological oxygen demand (BOD), solubility Organic carbon (DOC), permanganate index (CODMn), nitrate, nitrous nitrogen, color, turbidity, total suspended solids, phenol (BTX), ozone or hydrogen sulfide and other organic substances and nutrients and other parameters And compensate the mutual interference of turbidity and chromaticity through full-spectrum measurement to ensure accurate measurement. Built-in relevant calibration parameters achieve the effect of immediate monitoring and quick response. (2) The present invention is a real-time measurement, on-site correction, ultra-low power consumption, suitable for outdoor power-free environment, a strong submerged housing, can continuously submerge 100 meters deep. (3) The present invention has an automatic cleaning brush or ultrasonic cleaning device to prevent contamination of the environment window and is almost maintenance-free. (4) The present invention has many advantages such as small size, light weight, and convenient portability, and can be applied to application environments such as water tanks, reservoirs, rivers, lakes, channels, and oceans.

本發明已透過上述之實施例揭露如上,然其並非用以限定本發明,任何熟悉此一技術領域具有通常知識者,在瞭解本發明前述的技術特徵及實施例,並在不脫離本發明之精神和範圍內,不可作些許之更動與潤飾,因此本發明之專利保護範圍須視本說明書所附之請求項所界定者為準。The present invention has been disclosed as above through the above embodiments, but it is not intended to limit the present invention. Anyone who is familiar with this technical field and has general knowledge should understand the foregoing technical features and embodiments of the present invention without departing from the scope of the present invention. No changes or modifications can be made within the spirit and scope, so the patent protection scope of the present invention shall be subject to the definition as defined in the claims attached to this specification.

1‧‧‧裝置本體11‧‧‧光源產生裝置111‧‧‧第一鏡窗112‧‧‧氙閃光燈113‧‧‧透鏡114‧‧‧光感測器12‧‧‧光源接收運算裝置121‧‧‧第二鏡窗122‧‧‧透鏡123‧‧‧陣列光度器129‧‧‧光柵124‧‧‧微處理器125‧‧‧儲存器126‧‧‧時序產生器127‧‧‧通訊器128‧‧‧馬達130‧‧‧透鏡13‧‧‧取樣區131‧‧‧清潔刷1311‧‧‧刷體132‧‧‧狹縫133‧‧‧準直鏡134‧‧‧超音波清潔裝置2‧‧‧液體1‧‧‧Device body 11‧‧‧Light source generating device 111‧‧‧First mirror window 112‧‧‧Xenon flash lamp 113‧‧‧Lens 114‧‧‧Light sensor 12‧‧‧Light source receiving computing device 121‧ ‧‧Second mirror window 122‧‧‧lens 123‧‧‧array photometer 129‧‧‧grating 124‧‧‧microprocessor 125‧‧‧storage 126‧‧‧sequence generator 127‧‧‧‧communicator 128 ‧‧‧Motor 130‧‧‧Lens 13‧‧‧Sampling area 131‧‧‧Cleaning brush 1311‧‧‧Brush body 132‧‧‧Slit 133‧‧‧Collimating mirror 134‧‧‧Ultrasonic cleaning device 2‧ ‧‧liquid

[第1圖]係本發明全光譜水質分析系統之結構示意圖。 [第2圖]係本發明全光譜水質分析系統之上視結構示意圖。 [第3圖]係本發明全光譜水質分析系統之架構示意圖。 [第4圖]係本發明全光譜水質分析系統之另一實施示意圖。 [第5圖]係第4圖之架構示意圖。 [第6圖]係本發明全光譜水質分析系統之量測運作實施示意圖。 [第7圖]係本發明全光譜水質分析系統之量測光譜示意圖。[Figure 1] It is a schematic structural diagram of the full-spectrum water quality analysis system of the present invention. [Figure 2] This is a schematic diagram of the top view structure of the full-spectrum water quality analysis system of the present invention. [Figure 3] is a schematic structural diagram of the full-spectrum water quality analysis system of the present invention. [Figure 4] is another schematic diagram of the full spectrum water quality analysis system of the present invention. [Figure 5] is a schematic diagram of Figure 4. [Figure 6] is a schematic diagram of the implementation of the measurement operation of the full-spectrum water quality analysis system of the present invention. [Figure 7] It is a schematic diagram of the measurement spectrum of the full-spectrum water quality analysis system of the present invention.

1‧‧‧裝置本體 1‧‧‧device body

11‧‧‧光源產生裝置 11‧‧‧Light source generator

111‧‧‧第一鏡窗 111‧‧‧The first mirror window

12‧‧‧光源接收運算裝置 12‧‧‧Light source receiving arithmetic device

127‧‧‧通訊器 127‧‧‧Communication device

13‧‧‧取樣區 13‧‧‧Sampling area

131‧‧‧清潔刷 131‧‧‧Cleaning brush

1311‧‧‧刷體 1311‧‧‧Brush

Claims (11)

一種全光譜水質分析系統,包含: 一裝置本體,而該裝置本體係具有一具有第一鏡窗之光源產生裝置及一具有第二鏡窗之光源接收運算裝置,其中該光源產生裝置與該光源接收運算裝置之間具有一取樣區,且該第一鏡窗之位置係相對於該第二鏡窗; 一氙閃光燈,係設置於該光源產生裝置內部,而該氙閃光燈能夠朝向該第一鏡窗發射一穿透取樣區之測量光束,該測量光束能夠穿過該第一鏡窗及該第二鏡窗,並穿透至該光源接收運算裝置內部; 一透鏡,係設置於該光源接收運算裝置內部,並位於該測量光束行進路徑上,用以對穿透至該光源接收運算裝置內部之測量光束進行聚光處理; 一狹縫,用以提高解析度,減少雜散光; 一準直鏡,用以接收來自狹縫傳送的測量光束,並對該測量光束做準直化處理; 一光柵,係接收來自準直鏡的測量光束,並將該測量光束分光為多個不同波長的光線; 一透鏡,係設置於該光源接收運算裝置內部,係接收來自光柵的光束,並將該光束聚集一陣列光度器,該陣列光度器係設置於該光源接收運算裝置內部,係接收來自該透鏡的光束,並測量高解析度不同波長之光譜; 一儲存器,係用以儲存氨氮、總磷、總氮、UV254、化學需氧量(COD)、總有機碳(TOC)、生物需氧量(BOD)、溶解性有機碳(DOC)、高錳酸鹽指數(CODMn)、硝氮、亞硝氮、色度、濁度、總懸浮固體、苯酚(BTX)、臭氧或硫化氫等多種有機物質光波長吸光度及修正加權參數資料檔;以及 一微處理器,係用以整體系統之運作,而該微處理器係與該氙閃光燈及該陣列光度器電性連接,用以於該測量光束穿過一通過該取樣區之液體後,該微處理器能夠依據比爾定律計算該測量光束全光譜波長之吸收度,並再藉由一內嵌式人工智慧模型演算法,大數據平行比對驗證,自我深度學習分析相關性及各種干擾因子,計算出修正加權參數作相互數值補償及雜訊濾除,以進一步得出更高精準度的氨氮、總磷、總氮、UV254、化學需氧量(COD)、總有機碳(TOC)、生物需氧量(BOD)、溶解性有機碳(DOC)、高錳酸鹽指數(CODMn)、硝氮、亞硝氮、色度、濁度、總懸浮固體、苯酚(BTX)、臭氧或硫化氫等多種有機物質濃度。A full-spectrum water quality analysis system includes: a device body, and the device system has a light source generating device with a first mirror window and a light source receiving computing device with a second mirror window, wherein the light source generating device and the light source There is a sampling area between the receiving and computing devices, and the position of the first mirror window is relative to the second mirror window; a xenon flash lamp is disposed inside the light source generating device, and the xenon flash lamp can face the first mirror The window emits a measuring beam penetrating the sampling area, the measuring beam can pass through the first mirror window and the second mirror window, and penetrate into the light source receiving operation device; a lens is provided in the light source receiving operation Inside the device and located on the travel path of the measuring beam for condensing the measuring beam penetrating into the light source receiving computing device; a slit to improve resolution and reduce stray light; a collimating mirror , Used to receive the measurement beam transmitted from the slit and collimate the measurement beam; a grating that receives the measurement beam from the collimator lens and splits the measurement beam into rays of different wavelengths; A lens is arranged inside the light source receiving computing device, receives the light beam from the grating, and gathers the light beam into an array photometer, the array photometer is arranged inside the light source receiving computing device, and receives the light from the lens Beam, and measure the high-resolution spectrum of different wavelengths; a storage is used to store ammonia nitrogen, total phosphorus, total nitrogen, UV254, chemical oxygen demand (COD), total organic carbon (TOC), biological oxygen demand ( BOD), dissolved organic carbon (DOC), permanganate index (CODMn), nitrate, nitrous nitrogen, color, turbidity, total suspended solids, phenol (BTX), ozone or hydrogen sulfide and other organic substances Data file of light wavelength absorbance and modified weighting parameters; and a microprocessor for the operation of the overall system, and the microprocessor is electrically connected to the xenon flash lamp and the array photometer for the measurement beam to pass through After passing the liquid in the sampling area, the microprocessor can calculate the absorbance of the full-spectrum wavelength of the measuring beam according to Beer's law, and then verify the parallel comparison of big data by an embedded artificial intelligence model algorithm. Self-deep learning analyzes the correlation and various interference factors, and calculates the modified weighting parameters for mutual numerical compensation and noise filtering to further obtain higher accuracy ammonia nitrogen, total phosphorus, total nitrogen, UV254, and chemical oxygen demand ( COD), total organic carbon (TOC), biological oxygen demand (BOD), dissolved organic carbon (DOC), permanganate index (CODMn), nitrate, nitrous nitrogen, color, turbidity, total suspension Solid, phenol (BTX), ozone or hydrogen sulfide concentrations of various organic substances. 如請求項1所述之全光譜水質分析系統,其中該光源產生裝置更具有一透鏡及一光感測器,用以設置於該測量光束行進路徑上,該透鏡能將測量光束聚光,該取樣區能夠將該測量光束分開為一穿透水樣之測量光束及一不穿透水樣之參比光束,其中該穿透水樣之測量光束能夠穿過該第一鏡窗及該第二鏡窗,並穿透至該光源接收運算裝置內部,而該光感測器係設置於該不穿透水樣之參比光束行進路徑上,用以感測該不穿透水樣之參比光束之光強度,在每次測量中對光源進行補償。The full-spectrum water quality analysis system according to claim 1, wherein the light source generating device further has a lens and a light sensor for being disposed on the measuring beam traveling path, the lens can condense the measuring beam, the The sampling area can separate the measuring beam into a measuring beam penetrating the water sample and a reference beam not penetrating the water sample, wherein the measuring beam penetrating the water sample can pass through the first mirror window and the second The mirror window penetrates into the light source receiving computing device, and the light sensor is disposed on the traveling path of the reference beam that does not penetrate the water sample, for sensing the reference of the non-penetrating water sample The light intensity of the beam compensates the light source in each measurement. 如請求項1所述之全光譜水質分析系統,其中該光源接收運算裝置內部更具有一與該微處理器電性連接之時序產生器,該時序產生器用以發出一訊號至該微處理器,以控制該氙閃光燈發射光束與陣列光度計同步進行接收測量。The full-spectrum water quality analysis system according to claim 1, wherein the light source receiving and computing device further has a timing generator electrically connected to the microprocessor, and the timing generator is used to send a signal to the microprocessor, To control the emission beam of the xenon flash lamp to synchronize with the array photometer to receive and measure. 如請求項1所述之全光譜水質分析系統,其中該光源接收運算裝置內部更具有一與該微處理器電性連接之通訊器,用以能夠將該全光譜水質分析系統所偵測或/及運算之數據資料傳送出去。The full-spectrum water quality analysis system as described in claim 1, wherein the light source receiving and computing device further has a communicator electrically connected to the microprocessor for detecting or/or detecting the full-spectrum water quality analysis system And the data data of the operation are sent out. 如請求項1所述之全光譜水質分析系統,其中該裝置本體上的該取樣區為一凹口,該取樣區處係具有一清潔刷,而該光源接收運算裝置內部更具有一與該微處理器電性連接之馬達,其中該馬達係延伸出一驅動軸固定於該清潔刷上,而該清潔刷兩側具有一刷體,因此該馬達被驅動使該驅動軸轉動時,該清潔刷兩側之刷體能夠分別清潔該第一鏡窗及該第二鏡窗之朝外表面。The full-spectrum water quality analysis system according to claim 1, wherein the sampling area on the device body is a notch, the sampling area is provided with a cleaning brush, and the light source receiving computing device further has a A motor electrically connected to the processor, wherein the motor extends a drive shaft fixed to the cleaning brush, and the cleaning brush has a brush body on both sides, so when the motor is driven to rotate the drive shaft, the cleaning brush The brush bodies on both sides can clean the outward-facing surfaces of the first mirror window and the second mirror window, respectively. 如請求項1所述之全光譜水質分析系統,其中該裝置本體靠近第一鏡窗及第二鏡窗處設置有一超音波清潔裝置,可自動清潔該第一鏡窗及該第二鏡窗。The full-spectrum water quality analysis system according to claim 1, wherein the device body is provided with an ultrasonic cleaning device near the first mirror window and the second mirror window, which can automatically clean the first mirror window and the second mirror window. 如請求項1所述之全光譜水質分析系統,其中該氙閃光燈所發射之測量光束的波長為160~800nm。The full-spectrum water quality analysis system according to claim 1, wherein the wavelength of the measuring beam emitted by the xenon flash lamp is 160-800 nm. 如請求項1所述之全光譜水質分析系統,其中該微處理器的運算公式為比爾定律及多成分定量分析公式,係將要測量的有機物濃度列成一聯立方程式後,再進行解聯立方程式,即可取得各種有機物的濃度值。The full-spectrum water quality analysis system as described in claim 1, wherein the operation formula of the microprocessor is Beer's law and multi-component quantitative analysis formula, which is to list the organic substance concentration to be measured into a simultaneous equation, and then solve the simultaneous equation, namely The concentration values of various organic substances can be obtained. 如請求項1所述之全光譜水質分析系統,其中該總磷的光吸收率變異性最高是在於170~190nm之間。The full-spectrum water quality analysis system as described in claim 1, wherein the maximum variability of the total phosphorus light absorption rate is between 170 and 190 nm. 如請求項1所述之全光譜水質分析系統,其中該總氮的光吸收率變異性最高是在於190~245nm之間。The full-spectrum water quality analysis system as described in claim 1, wherein the maximum variability of the light absorption rate of the total nitrogen is between 190 and 245 nm. 如請求項1所述之全光譜水質分析系統,其中該氨氮的光吸收率變異性最高是在於180~200nm之間。The full-spectrum water quality analysis system as described in claim 1, wherein the highest variability of the light absorption rate of the ammonia nitrogen is between 180 and 200 nm.
TW107117003A 2018-05-18 2018-05-18 Full-spectrum water quality analysis system TWI661197B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107117003A TWI661197B (en) 2018-05-18 2018-05-18 Full-spectrum water quality analysis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107117003A TWI661197B (en) 2018-05-18 2018-05-18 Full-spectrum water quality analysis system

Publications (2)

Publication Number Publication Date
TWI661197B TWI661197B (en) 2019-06-01
TW202004180A true TW202004180A (en) 2020-01-16

Family

ID=67764334

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107117003A TWI661197B (en) 2018-05-18 2018-05-18 Full-spectrum water quality analysis system

Country Status (1)

Country Link
TW (1) TWI661197B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113984671A (en) * 2021-09-27 2022-01-28 苏州雷博亚仪器有限公司 Multi-index detector and method for online or real-time detection of water quality

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105954192B (en) * 2016-07-20 2019-07-30 中国科学院烟台海岸带研究所 A kind of double light path water body environment on-line measurement device based on spectral measurement methods
TWI611183B (en) * 2016-07-26 2018-01-11 吳志偉 Remote water quality monitoring system
CN106198424B (en) * 2016-09-28 2020-03-06 深圳市七善科技有限公司 Full-spectrum-based water quality online monitoring device and monitoring method thereof
CN206192871U (en) * 2016-09-30 2017-05-24 深圳市赛宝伦科技有限公司 Online full gloss register for easy reference water quality analyzer
CN207366435U (en) * 2017-09-20 2018-05-15 天津瑞泽分析仪器有限公司 A kind of hand-held composes Water Test Kits entirely

Also Published As

Publication number Publication date
TWI661197B (en) 2019-06-01

Similar Documents

Publication Publication Date Title
CN110530801A (en) Full spectral water quality analysis system
US8352207B2 (en) Methods for calibrating a fluorometer
Aßmann et al. Spectrophotometric high-precision seawater pH determination for use in underway measuring systems
Cogan et al. The development of an autonomous sensing platform for the monitoring of ammonia in water using a simplified Berthelot method
CN103776787A (en) Double-spectrum water quality analyzer
Wang et al. Development and characterization of a highly sensitive fluorometric transducer for ultra low aqueous ammonia nitrogen measurements in aquaculture
CN107389643A (en) A kind of dissolved oxygen sensing method and device based on binary channels phase lock amplifying technology
Clarke et al. Characterisation and deployment of an immobilised pH sensor spot towards surface ocean pH measurements
CN101105440A (en) Method for measuring water body total nitrogen and total phosphorous by digestion spectrophotometry of ultraviolet cooperating with ozone
CN207081660U (en) A kind of dissolved oxygen measuring device based on binary channels phase lock amplifying technology
US10302552B2 (en) Apparatus, composition and method for determination of chemical oxidation demand
Lai et al. Autonomous Optofluidic Chemical Analyzers for Marine Applications: Insights from the Submersible Autonomous Moored Instruments (SAMI) for pH and p CO2
CN102928390A (en) On-line detection method and device for chlorophyll concentration in water body based on two detectors
KR20150107945A (en) Microfluidic chip based absorbance measurement apparatus using standard addition method
CN106053421B (en) Content of organic matter on-line checking and filter core/film breakdown early warning method and apparatus in water
Dissanayake et al. Economical colorimetric smart sensor to measure water quality of drinking water in CKDu prevalence areas
TWI661197B (en) Full-spectrum water quality analysis system
KR20150106493A (en) Microfluidic chips having flow cells using standard addition method and absorbance measurement apparatus having thereof
CN203705336U (en) Double-spectrum water quality analyzer
Nehir et al. Improved calibration and data processing procedures of OPUS optical sensor for high-resolution in situ monitoring of nitrate in seawater
KR101484521B1 (en) Luminescent-Based Dissolved Oxygen Sensor
CN210720145U (en) Portable quick water quality testing appearance
TWM565796U (en) Full spectrum water quality analysis system
Martz et al. Tracer monitored titrations: measurement of dissolved oxygen
KR20110042401A (en) Contactless laser measuring instrument for water analysis