TW202003816A - 液晶組成物及液晶顯示元件 - Google Patents

液晶組成物及液晶顯示元件 Download PDF

Info

Publication number
TW202003816A
TW202003816A TW108105882A TW108105882A TW202003816A TW 202003816 A TW202003816 A TW 202003816A TW 108105882 A TW108105882 A TW 108105882A TW 108105882 A TW108105882 A TW 108105882A TW 202003816 A TW202003816 A TW 202003816A
Authority
TW
Taiwan
Prior art keywords
diyl
substituted
hydrogen
fluorine
formula
Prior art date
Application number
TW108105882A
Other languages
English (en)
Inventor
渡部愛美
松田尚子
片野裕子
遠藤浩史
川上日向子
Original Assignee
日商捷恩智股份有限公司
日商捷恩智石油化學股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商捷恩智股份有限公司, 日商捷恩智石油化學股份有限公司 filed Critical 日商捷恩智股份有限公司
Publication of TW202003816A publication Critical patent/TW202003816A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3833Polymers with mesogenic groups in the side chain
    • C09K19/3842Polyvinyl derivatives
    • C09K19/3852Poly(meth)acrylate derivatives
    • C09K19/3857Poly(meth)acrylate derivatives containing at least one asymmetric carbon atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • C09K19/44Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40 containing compounds with benzene rings directly linked
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents

Abstract

本發明提供一種含有具有聚合性基的極性化合物(或其聚合物)、且通過所述化合物的作用而能夠達成液晶分子的垂直配向的介電各向異性為負的液晶組成物,及液晶顯示元件。本發明是一種含有具有聚合性基的極性化合物作為第一添加物且具有負的介電各向異性的向列液晶組成物,所述組成物也可含有具有負的大介電各向異性的特定液晶性化合物作為第一成分,含有具有高的上限溫度或小的黏度的特定液晶性化合物作為第二成分,含有聚合性化合物作為第二添加物及含有極性化合物作為第三添加物,而且本發明是一種含有所述組成物的液晶顯示元件。

Description

液晶組成物及液晶顯示元件
本發明是有關於一種液晶組成物、含有所述組成物的液晶顯示元件等。特別是有關於一種含有具有聚合性基的極性化合物(或其聚合物)、且通過所述化合物的作用而能夠達成液晶分子的垂直配向的介電各向異性為負的液晶組成物,及液晶顯示元件。
液晶顯示元件中,基於液晶分子的運作模式的分類為相變(phase change,PC)、扭轉向列(twisted nematic,TN)、超扭轉向列(super twisted nematic,STN)、電控雙折射(electrically controlled birefringence,ECB)、光學補償彎曲(optically compensated bend,OCB)、面內切換(in-plane switching,IPS)、垂直配向(vertical alignment,VA)、邊緣場切換(fringe field switching,FFS)、電場感應光反應配向(field-induced photo-reactive alignment,FPA)等模式。基於元件的驅動方式的分類為被動元件矩陣 (passive matrix,PM)與主動矩陣(active matrix,AM)。PM被分類為靜態式(static)與多路複用式(multiplex)等,AM被分類為薄膜電晶體(thin film transistor,TFT)、金屬-絕緣體-金屬(metal insulator metal,MIM)等。TFT的分類為非晶矽(amorphous silicon)及多晶矽(polycrystal silicon)。後者根據製造步驟而分類為高溫型與低溫型。基於光源的分類為利用自然光的反射型、利用背光的透過型、以及利用自然光與背光兩者的半透過型。
液晶顯示元件含有具有向列相的液晶組成物。所述組成物具有適當的特性。通過提高所述組成物的特性,可獲得具有良好特性的AM元件。將兩種特性中的關聯歸納於下述表1中。基於市售的AM元件來對組成物的特性進一步進行說明。向列相的溫度範圍與元件可使用的溫度範圍相關聯。向列相的較佳上限溫度為約70℃以上,而且向列相的較佳下限溫度為約-10℃以下。組成物的黏度與元件的響應時間相關聯。為了以元件顯示動態圖像,較佳為響應時間短。理想為短於1毫秒的響應時間。因此,較佳為組成物的黏度小。尤其較佳為低溫下的黏度小。
Figure 108105882-A0304-0001
組成物的光學各向異性與元件的對比度相關聯。根據元件的模式,而需要大的光學各向異性或小的光學各向異性,即適當的光學各向異性。組成物的光學各向異性(Δn)與元件的單元間隙(d)的積(Δn×d)被設計成使對比度為最大。適當的積的值依存於運作模式的種類。VA模式的元件中,所述值為約0.30 μm至約0.40 μm的範圍,IPS模式或FFS模式的元件中,所述值為約0.20 μm至約0.30 μm的範圍。這些情況下,對單元間隙小的元件而言較佳為具有大的光學各向異性的組成物。組成物的大的介電各向異性有助於元件中的低閾電壓、小的消耗電力與大的對比度。因此,較佳為大的介電各向異性。組成物的大的比電阻有助於元件的大的電壓保持率與大的對比度。因此,較佳為在初始階段中具有大的比電阻的組成物。較佳為在長時間使用後,具有大的比電阻的組成物。組成物對紫外線或熱的穩定性與元件的壽命相關聯。在所述穩定性高時,元件的壽命長。此種特性對用於液晶監視器、液晶電視等的AM元件而言較佳。
通用的液晶顯示元件中,液晶分子的垂直配向可利用特定的聚醯亞胺配向膜來達成。聚合物穩定配向(polymer sustained alignment,PSA)型的液晶顯示元件中,使聚合物與配向膜加以組合。首先,將添加有少量聚合性化合物的組成物注入至元件中。繼而,一邊對所述元件的基板之間施加電壓,一邊對組成物照射紫外線。聚合性化合物進行聚合而在組成物中生成聚合物的網狀結構。所述組成物中,能夠利用聚合物來控制液晶分子的配向,因此元件的響應時間縮短,圖像的殘像得到改善。具有TN、ECB、OCB、IPS、VA、FFS、FPA之類的模式的元件中可期待聚合物的此種效果。
另一方面,不具有配向膜的液晶顯示元件中使用含有聚合物及極性化合物的液晶組成物。首先,將添加有少量聚合性化合物及少量極性化合物的組成物注入至元件中。此處,極性化合物吸附於元件的基板表面並進行排列。液晶分子依據所述排列而配向。繼而,一邊對所述元件的基板之間施加電壓,一邊對組成物照射紫外線。此處,聚合性化合物進行聚合,並使液晶分子的配向穩定化。所述組成物中,能夠利用聚合物及極性化合物來控制液晶分子的配向,因此元件的響應時間縮短,圖像的殘像得到改善。進而,不具有配向膜的元件中不需要形成配向膜的步驟。由於不存在配向膜,故通過配向膜與組成物的相互作用,元件的電阻不會降低。具有TN、ECB、OCB、IPS、VA、FFS、FPA之類的模式的元件中可期待利用聚合物與極性化合物的組合的此種效果。
具有TN模式的AM元件中使用具有正的介電各向異性的組成物。具有VA模式的AM元件中使用具有負的介電各向異性的組成物。具有IPS模式或FFS模式的AM元件中使用具有正或負的介電各向異性的組成物。聚合物穩定配向型的AM元件中使用具有正或負的介電各向異性的組成物。不具有配向膜的元件中使用具有正或負的介電各向異性的組成物。具有負的介電各向異性的組成物在以下的專利文獻1至專利文獻5等中有揭示。本發明中,將具有聚合性基的極性化合物(或其聚合物)與液晶性化合物組合,並將所述組成物用於不具有配向膜的液晶顯示元件中。 [現有技術文獻]
[專利文獻] [專利文獻1] 國際公開2014-090362號 [專利文獻2] 國際公開2014-094959號 [專利文獻3] 國際公開2013-004372號 [專利文獻4] 日本專利特開2015-168826號公報
[發明所要解決的問題] 本發明的問題為提供一種含有具有聚合性基的極性化合物(或其聚合物)的液晶組成物,此處,極性化合物在低溫下具有與液晶性化合物的高的相容性。另一問題為提供一種通過自所述極性化合物產生的聚合物的作用而能夠達成液晶分子的垂直配向的液晶組成物。另一問題為一種液晶組成物,其在向列相的上限溫度高、向列相的下限溫度低、黏度小、光學各向異性適當、負的介電各向異性大、比電阻大、對紫外線的穩定性高、對熱的穩定性高、彈性常數大之類的特性中,滿足至少一種特性。另一問題為提供一種在這些特性的至少兩種之間具有適當平衡的液晶組成物。另一問題為一種含有此種組成物的液晶顯示元件。又一問題為一種具有響應時間短、電壓保持率大、閾電壓低、對比度大、壽命長等特性的AM元件。 [解決問題的技術手段]
本發明為一種含有選自式(1)所表示的聚合性的極性化合物中的至少一種化合物作為第一添加物、而且具有向列相及負的介電各向異性的液晶組成物,及含有所述組成物的液晶顯示元件。
Figure 02_image001
此處,R1 等記號的定義參照後述的項1。 [發明的效果]
本發明的優點為提供一種含有具有聚合性基的極性化合物(或其聚合物)的液晶組成物,此處,極性化合物在低溫下具有與液晶性化合物的高的相容性。另一優點為提供一種通過自所述極性化合物產生的聚合物的作用而能夠達成液晶分子的垂直配向的液晶組成物。另一優點為一種液晶組成物,其在向列相的上限溫度高、向列相的下限溫度低、黏度小、光學各向異性適當、負的介電各向異性大、比電阻大、對紫外線的穩定性高、對熱的穩定性高、彈性常數大之類的特性中,滿足至少一種特性。另一優點為提供一種在這些特性的至少兩種之間具有適當平衡的液晶組成物。另一優點為提供一種含有此種組成物的液晶顯示元件。又一優點為提供一種具有響應時間短、電壓保持率大、閾電壓低、對比度大、壽命長等特性的AM元件。
本說明書中的用語的使用方法如下所述。有時將「液晶組成物」及「液晶顯示元件」的用語分別簡稱為「組成物」及「元件」。「液晶顯示元件」是液晶顯示面板及液晶顯示模塊的總稱。「液晶性化合物」是具有向列相、層列相之類的液晶相的化合物,以及雖不具有液晶相但出於調節向列相的溫度範圍、黏度、介電各向異性之類的特性的目的而混合於組成物中的化合物的總稱。所述化合物具有例如1,4-伸環己基或1,4-伸苯基之類的六元環,其分子(液晶分子)為棒狀(rod like)。「聚合性化合物」是出於使組成物中生成聚合物的目的而添加的化合物。具有烯基的液晶性化合物在其意義方面並不分類為聚合性化合物。
液晶組成物是通過將多種液晶性化合物加以混合來製備。在所述液晶組成物中視需要而添加光學活性化合物或聚合性化合物之類的添加物。即便在添加有添加物的情況下,液晶性化合物的比例也是由基於不包含添加物的液晶組成物的質量的質量百分率(質量%)來表示。添加物的比例是由基於不包含添加物的液晶組成物的質量的質量百分率(質量%)來表示。即,液晶性化合物或添加物的比例是基於液晶性化合物的總質量而算出。聚合起始劑及聚合抑制劑的比例是例外地基於聚合性化合物的質量來表示。
有時將「向列相的上限溫度」簡稱為「上限溫度」。有時將「向列相的下限溫度」簡稱為「下限溫度」。「提高介電各向異性」的表述在介電各向異性為正的組成物時,是指其值正向地增加,在介電各向異性為負的組成物時,是指其值負向地增加。「電壓保持率大」是指元件在初始階段中不僅在室溫下,而且在接近於上限溫度的溫度下也具有大的電壓保持率,而且,在長時間使用後不僅在室溫下,而且在接近於上限溫度的溫度下也具有大的電壓保持率。有時通過經時變化試驗來研究組成物或元件的特性。
Figure 02_image003
以所述化合物(1z)為例進行說明。式(1z)中,以六邊形包圍的α及β的記號分別與環α及環β對應,表示六元環、縮合環之類的環。在下標‘x’為2時,存在兩個環α。兩個環α所表示的兩個基可相同,或也可不同。所述規則適用於下標‘x’大於2時的任意兩個環α。所述規則也適用於鍵結基Z之類的其他記號。將環β的一邊橫切的斜線表示環β上的任意氫可經取代基(-Sp-P)取代。下標‘y’表示所取代的取代基的數量。在下標‘y’為0時,不存在此種取代。在下標‘y’為2以上時,在環β上存在多個取代基(-Sp-P)。在所述情況下,「可相同,或也可不同」的規則也適用。再者,所述規則也適用於將Ra的記號用於多種化合物中的情況。
式(1z)中,例如,「Ra及Rb為烷基、烷氧基或烯基」的表述是指Ra及Rb獨立地選自烷基、烷氧基及烯基的群組中。此處,由Ra表示的基與由Rb表示的基可相同,或也可不同。
有時將選自式(1z)所表示的化合物中的至少一種化合物簡稱為「化合物(1z)」。「化合物(1z)」是指式(1z)所表示的一種化合物、兩種化合物的混合物、或三種以上的化合物的混合物。關於其他式所表示的化合物,也相同。「選自式(1z)及式(2z)所表示的化合物中的至少一種化合物」的表述是指選自化合物(1z)及化合物(2z)的群組中的至少一種化合物。
「至少一個‘A’」的表述是指‘A’的數量為任意。「至少一個‘A’可經‘B’取代」的表述是指在‘A’的數量為一個時,‘A’的位置為任意,在‘A’的數量為兩個以上時,它們的位置也可無限制地選擇。有時使用「至少一個-CH2 -可經-O-取代」的表述。在所述情況下,-CH2 -CH2 -CH2 -可通過不鄰接的-CH2 -經-O-取代而轉換為-O-CH2 -O-。然而,不存在鄰接的-CH2 -經-O-取代的情況。原因在於:所述取代中生成-O-O-CH2 -(過氧化物)。
液晶性化合物的烷基為直鏈狀或分支狀,且不包含環狀烷基。直鏈狀烷基優於分支狀烷基。這些情況對於烷氧基、烯基之類的末端基而言也相同。針對與1,4-伸環己基相關的立體構型(configuration),為了提高上限溫度,反式構型優於順式構型。由於2-氟-1,4-伸苯基為左右非對稱,故存在朝左(L)及朝右(R)。
Figure 02_image005
四氫吡喃-2,5-二基之類的二價基中,也相同。羰氧基之類的鍵結基(-COO-或-OCO-)也相同。
本發明為下述項等。
項1. 一種液晶組成物,其含有選自式(1)所表示的聚合性的極性化合物中的至少一種化合物作為第一添加物,而且具有向列相及負的介電各向異性。
Figure 02_image001
式(1)中,環A1 及環A2 為1,4-伸環己基、1,4-伸環己烯基、1,4-伸苯基、萘-1,5-二基、萘-2,6-二基、十氫萘-2,6-二基、1,2,3,4-四氫萘-2,6-二基、四氫吡喃-2,5-二基、1,3-二噁烷-2,5-二基、嘧啶-2,5-二基或吡啶-2,5-二基,這些環中,至少一個氫可經氟、氯、碳數1至10的烷基、碳數2至10的烯基、碳數1至10的烷氧基或碳數2至10的烯氧基取代,這些基中,至少一個氫可經氟或氯取代;a為0、1、2或3;Z1 為單鍵或碳數1至10的伸烷基,所述伸烷基中,至少一個-CH2 -可經-O-、-CO-、-COO-、-OCO-或-OCOO-取代,至少一個-CH2 CH2 -可經-CH=CH-或-C≡C-取代,這些基中,至少一個氫可經氟或氯取代;Sp1 及Sp2 為單鍵或碳數1至15的伸烷基,所述伸烷基中,至少一個-CH2 -可經-O-、-CO-、-COO-、-OCO-或-OCOO-取代,至少一個-CH2 CH2 -可經-CH=CH-或-C≡C-取代,這些基中,至少一個氫可經氟或氯取代;M1 、M2 、M3 及M4 為氫、氟、氯、碳數1至5的烷基、或者至少一個氫經氟或氯取代的碳數1至5的烷基;R1 為氫、碳數1至10的烷基、碳數1至10的烷氧基或碳數1至10的烷氧基烷基,這些基中,至少一個-CH2 CH2 -可經-CH=CH-或-C≡C-取代,這些基中,至少一個氫可經氟或氯取代;R2 為選自式(1-a)、式(1-b)及式(1-c)所表示的基中的基;
Figure 02_image008
式(1-a)、式(1-b)及式(1-c)中,Sp3 及Sp4 為單鍵或碳數1至15的伸烷基,所述伸烷基中,至少一個-CH2 -可經-O-、-CO-、-COO-、-OCO-或-OCOO-取代,至少一個-CH2 CH2 -可經-CH=CH-或-C≡C-取代,這些基中,至少一個氫可經氟或氯取代;R3 為氫、碳數1至10的烷基、碳數1至10的烷氧基或碳數1至10的烷氧基烷基;S1 及S2 為>C<;X1 為-OH、-NH2 、-N(R4 )2 、-COOH、-SH或-Si(R4 )3 ,此處,R4 為氫或碳數1至10的烷基,所述烷基中,至少一個-CH2 -可經-O-取代,至少一個-CH2 CH2 -可經-CH=CH-取代,這些基中,至少一個氫可經氟或氯取代。
項2. 根據項1所述的液晶組成物,其含有選自式(1-1)至式(1-18)所表示的聚合性的極性化合物中的至少一種化合物作為第一添加物。
Figure 02_image010
Figure 02_image012
式(1-1)至式(1-18)中,Y1 、Y2 、Y3 、Y4 、Y5 及Y6 為氫、氟、甲基或乙基;Z11 及Z12 為單鍵或-CH2 CH2 -;R3 為氫、碳數1至10的烷基、碳數1至10的烷氧基或碳數1至10的烷氧基烷基;S1 為>C<;Sp1 、Sp2 、Sp3 及Sp4 為單鍵或碳數1至10的伸烷基,所述伸烷基中,至少一個-CH2 -可經-O-取代。
項3. 根據項1或項2所述的液晶組成物,其中,第一添加物的比例為10質量%以下。
項4. 根據項1至項3中任一項所述的液晶組成物,其含有選自式(2)所表示的化合物中的至少一種化合物作為第一成分。
Figure 02_image014
式(2)中,R5 及R6 為氫、碳數1至12的烷基、碳數1至12的烷氧基、碳數2至12的烯基、碳數2至12的烯氧基、或者至少一個氫經氟或氯取代的碳數1至12的烷基;環B及環D為1,4-伸環己基、1,4-伸環己烯基、四氫吡喃-2,5-二基、1,4-伸苯基、至少一個氫經氟或氯取代的1,4-伸苯基、萘-2,6-二基、至少一個氫經氟或氯取代的萘-2,6-二基、色原烷-2,6-二基、或者至少一個氫經氟或氯取代的色原烷-2,6-二基;環C為2,3-二氟-1,4-伸苯基、2-氯-3-氟-1,4-伸苯基、2,3-二氟-5-甲基-1,4-伸苯基、3,4,5-三氟萘-2,6-二基、7,8-二氟色原烷-2,6-二基、3,4,5,6-四氟茀-2,7-二基、4,6-二氟二苯並呋喃-3,7-二基、4,6-二氟二苯並噻吩-3,7-二基或1,1,6,7-四氟茚滿-2,5-二基;Z2 及Z3 為單鍵、伸乙基、伸乙烯基、亞甲氧基或羰氧基;b為0、1、2或3,c為0或1,而且b與c的和為3以下。
項5. 根據項1至項4中任一項所述的液晶組成物,其含有選自式(2-1)至式(2-35)所表示的化合物中的至少一種化合物作為第一成分。
Figure 02_image016
Figure 02_image018
Figure 02_image020
式(2-1)至式(2-35)中,R5 及R6 為氫、碳數1至12的烷基、碳數1至12的烷氧基、碳數2至12的烯基、碳數2至12的烯氧基、或者至少一個氫經氟或氯取代的碳數1至12的烷基。
項6. 根據項4或項5所述的液晶組成物,其中,第一成分的比例為10質量%至90質量%的範圍。
項7. 根據項1至項6中任一項所述的液晶組成物,其含有選自式(3)所表示的化合物中的至少一種化合物作為第二成分。
Figure 02_image022
式(3)中,R7 及R8 為碳數1至12的烷基、碳數1至12的烷氧基、碳數2至12的烯基、至少一個氫經氟或氯取代的碳數1至12的烷基、或者至少一個氫經氟或氯取代的碳數2至12的烯基;環E及環F為1,4-伸環己基、1,4-伸苯基、2-氟-1,4-伸苯基或2,5-二氟-1,4-伸苯基;Z4 為單鍵、伸乙基、伸乙烯基、亞甲氧基或羰氧基;d為1、2或3。
項8. 根據項1至項7中任一項所述的液晶組成物,其含有選自式(3-1)至式(3-13)所表示的化合物中的至少一種化合物作為第二成分。
Figure 02_image024
式(3-1)至式(3-13)中,R7 及R8 為碳數1至12的烷基、碳數1至12的烷氧基、碳數2至12的烯基、至少一個氫經氟或氯取代的碳數1至12的烷基、或者至少一個氫經氟或氯取代的碳數2至12的烯基。
項9. 根據項7或項8所述的液晶組成物,其中,第二成分的比例為10質量%至90質量%的範圍。
項10. 根據項1至項9中任一項所述的液晶組成物,其含有選自式(4)所表示的聚合性化合物中的至少一種化合物作為第二添加物。
Figure 02_image026
式(4)中,環G及環J為環己基、環己烯基、苯基、1-萘基、2-萘基、四氫吡喃-2-基、1,3-二噁烷-2-基、嘧啶-2-基或吡啶-2-基,這些環中,至少一個氫可經氟、氯、碳數1至12的烷基、碳數1至12的烷氧基、或者至少一個氫經氟或氯取代的碳數1至12的烷基取代;環I為1,4-伸環己基、1,4-伸環己烯基、1,4-伸苯基、萘-1,2-二基、萘-1,3-二基、萘-1,4-二基、萘-1,5-二基、萘-1,6-二基、萘-1,7-二基、萘-1,8-二基、萘-2,3-二基、萘-2,6-二基、萘-2,7-二基、四氫吡喃-2,5-二基、1,3-二噁烷-2,5-二基、嘧啶-2,5-二基或吡啶-2,5-二基,這些環中,至少一個氫可經氟、氯、碳數1至12的烷基、碳數1至12的烷氧基、或者至少一個氫經氟或氯取代的碳數1至12的烷基取代;Z5 及Z6 為單鍵或碳數1至10的伸烷基,所述Z5 及Z6 中,至少一個-CH2 -可經-O-、-CO-、-COO-或-OCO-取代,而且至少一個-CH2 CH2 -可經-CH=CH-、-C(CH3 )=CH-、-CH=C(CH3 )-或-C(CH3 )=C(CH3 )-取代,至少一個氫可經氟或氯取代;P1 、P2 及P3 為聚合性基;Sp5 、Sp6 及Sp7 為單鍵或碳數1至10的伸烷基,所述Sp5 、Sp6 及Sp7 中,至少一個-CH2 -可經-O-、-COO-、-OCO-或-OCOO-取代,而且至少一個-CH2 CH2 -可經-CH=CH-或-C≡C-取代,至少一個氫可經氟或氯取代;h為0、1或2;e、f及g為0、1、2、3或4,而且e、f及g的和為1以上。
項11. 根據項10所述的液晶組成物,其中,式(4)中,P1 、P2 及P3 為選自式(P-1)至式(P-5)所表示的聚合性基中的基。
Figure 02_image028
式(P-1)至式(P-5)中,M5 、M6 及M7 為氫、氟、碳數1至5的烷基、或者至少一個氫經氟或氯取代的碳數1至5的烷基。
項12. 根據項1至項11中任一項所述的液晶組成物,其含有選自式(4-1)至式(4-29)所表示的聚合性化合物中的至少一種化合物作為第二添加物。
Figure 02_image030
Figure 02_image032
Figure 02_image034
式(4-1)至式(4-29)中,P1 、P2 及P3 為選自式(P-1)至式(P-3)所表示的聚合性基中的基;Sp5 、Sp6 及Sp7 為單鍵或碳數1至10的伸烷基,所述Sp5 、Sp6 及Sp7 中,至少一個-CH2 -可經-O-、-COO-、-OCO-或-OCOO-取代,而且至少一個-CH2 CH2 -可經-CH=CH-或-C≡C-取代,至少一個氫可經氟或氯取代;
Figure 02_image036
式(P-1)至式(P-3)中,M5 、M6 及M7 為氫、氟、碳數1至5的烷基、或者至少一個氫經氟或氯取代的碳數1至5的烷基。
項13. 根據項10至項12中任一項所述的液晶組成物,其中,第二添加物的比例為0.03質量%至10質量%的範圍。
項14. 根據項1至項13中任一項所述的液晶組成物,其含有選自式(5-1)至式(5-3)所表示的聚合性的極性化合物中的至少一種化合物作為第三添加物。
Figure 02_image038
式(5-1)至式(5-3)中,R50 為氫、氟、氯、碳數1至12的烷基、碳數1至12的烷氧基、碳數2至12的烯基、至少一個氫經氟或氯取代的碳數1至12的烷基、或者至少一個氫經氟取代的碳數2至12的烯基;R51 為-OH、-NH2 、-OR52 、-N(R52 )2 、-COOH、-SH或-Si(R52 )3 所表示的基,此處,R52 為氫或碳數1至5的烷基,所述烷基中,至少一個-CH2 -可經-O-取代,至少一個-CH2 CH2 -可經-CH=CH-取代,這些基中,至少一個氫可經氟取代;R53 為氫或碳數1至5的烷基,所述烷基中,至少一個-CH2 -可經-O-取代,至少一個-CH2 CH2 -可經-CH=CH-取代,這些基中,至少一個氫可經氟取代;環A50 及環B50 為1,4-伸環己基、1,4-伸環己烯基、1,4-伸苯基、萘-2,6-二基、四氫吡喃-2,5-二基、1,3-二噁烷-2,5-二基、嘧啶-2,5-二基或吡啶-2,5-二基,這些環中,至少一個氫可經氟、碳數1至12的烷基、碳數1至12的烷氧基、或者至少一個氫經氟取代的碳數1至12的烷基取代;Z50 為單鍵、-CH2 CH2 -、-CH=CH-、-C≡C-、-COO-、-OCO-、-CF2 O-、-OCF2 -、-CH2 O-、-OCH2 -或-CF=CF-;Sp51 、Sp52 、Sp53 、Sp54 及Sp55 為單鍵或碳數1至7的伸烷基,所述伸烷基中,至少一個-CH2 -可經-O-、-COO-或-OCO-取代,至少一個-CH2 CH2 -可經-CH=CH-取代,這些基中,至少一個氫可經氟取代;a50 為0、1、2、3或4。
項15. 根據項14所述的液晶組成物,其中,第三添加物的比例為10質量%以下。
項16. 一種液晶顯示元件,其含有根據項1至項15中任一項所述的液晶組成物。
項17. 根據項16所述的液晶顯示元件,其中,液晶顯示元件的運作模式為IPS模式、VA模式、FFS模式或FPA模式,且液晶顯示元件的驅動方式為主動矩陣方式。
項18. 一種聚合物穩定配向型的液晶顯示元件,其含有根據項1至項15中任一項所述的液晶組成物,且所述液晶組成物中的聚合性化合物進行聚合。
項19. 一種不具有配向膜的液晶顯示元件,其含有根據項1至項15中任一項所述的液晶組成物,且所述液晶組成物中的聚合性化合物進行聚合。
項20. 一種液晶組成物的用途,所述液晶組成物為根據項1至項15中任一項所述的液晶組成物,其用於液晶顯示元件中。
項21. 一種液晶組成物的用途,所述液晶組成物為根據項1至項15中任一項所述的液晶組成物,其用於聚合物穩定配向型的液晶顯示元件中。
項22. 一種液晶組成物的用途,所述液晶組成物為根據項1至項15中任一項所述的液晶組成物,其用於不具有配向膜的液晶顯示元件中。
本發明也包括以下項。(a)液晶顯示元件的製造方法,其通過將所述液晶組成物配置於兩塊基板之間,在對所述組成物施加電壓的狀態下照射光,使所述組成物中所含有的具有聚合性基的極性化合物進行聚合,來製造所述液晶顯示元件。(b)所述液晶組成物,其向列相的上限溫度為70℃以上,波長589 nm下的光學各向異性(在25℃下測定)為0.08以上,而且頻率1 kHz下的介電各向異性(在25℃下測定)為-2以下。
本發明也包括以下項。(c)所述組成物,雖然日本專利特開2006-199941號公報中記載的化合物(5)至化合物(7)是介電各向異性為正的液晶性化合物,但所述組成物含有選自這些化合物的群組中的至少一種化合物。(d)所述組成物,含有選自所述極性化合物(1)中的至少兩種化合物。(e)所述組成物,還含有與所述極性化合物(1)不同的極性化合物。(f)所述組成物,含有一種、兩種或至少三種光學活性化合物、抗氧化劑、紫外線吸收劑、消光劑、色素、消泡劑、與所述聚合性化合物(4)不同的聚合性化合物、聚合起始劑、聚合抑制劑之類的添加物。(g)一種AM元件,其含有所述組成物。(h)一種元件,其含有所述組成物,而且具有TN模式、ECB模式、OCB模式、IPS模式、FFS模式、VA模式或FPA模式。(i)一種透過型元件,其含有所述組成物。(j)將所述組成物用作具有向列相的組成物。(k)將通過在所述組成物中添加光學活性化合物而製備的組成物用作光學活性組成物。
以如下順序對本發明的組成物進行說明。第一,對組成物的構成進行說明。第二,對成分化合物的主要特性、以及所述化合物給組成物帶來的主要效果進行說明。第三,對組成物中的成分的組合、成分的較佳比例以及其根據進行說明。第四,對成分化合物的較佳形態進行說明。第五,示出較佳的成分化合物。第六,對可添加於組成物中的添加物進行說明。第七,對成分化合物的合成方法進行說明。最後,對組成物的用途進行說明。
第一,對組成物的構成進行說明。所述組成物含有多種液晶性化合物。所述組成物也可含有添加物。添加物為光學活性化合物、抗氧化劑、紫外線吸收劑、消光劑、色素、消泡劑、聚合性化合物、聚合起始劑、聚合抑制劑、極性化合物等。就液晶性化合物的觀點而言,所述組成物被分類為組成物A與組成物B。組成物A除了含有選自化合物(2)及化合物(3)中的液晶性化合物以外,也可還含有其他液晶性化合物、添加物等。「其他液晶性化合物」是與化合物(2)及化合物(3)不同的液晶性化合物。此種化合物是出於進一步調整特性的目的而混合於組成物中。
組成物B實質上僅包含選自化合物(2)及化合物(3)中的液晶性化合物。「實質上」是指組成物B雖可含有添加物,但不含其他液晶性化合物。與組成物A比較,組成物B的成分化合物的數量少。就降低成本的觀點而言,組成物B優於組成物A。就可通過混合其他液晶性化合物來進一步調整特性的觀點而言,組成物A優於組成物B。
第二,對成分化合物的主要特性、以及所述化合物給組成物的特性帶來的主要效果進行說明。將成分化合物的主要特性歸納於表2中。表2的記號中,L是指大或高,M是指中等程度,S是指小或低。記號L、M、S是基於成分化合物之間的定性比較的分類,記號0(零)是指小於S(小)。
表2. 化合物的特性
Figure 108105882-A0304-0002
1)介電各向異性的值為負,記號表示絕對值的大小
在將成分化合物混合於組成物中時,成分化合物給組成物的特性帶來的主要效果為如下所述。化合物(1)通過極性基的作用而吸附於基板表面,並控制液晶分子的配向。為了獲得所期望的效果,要求化合物(1)具有與液晶性化合物的高的相容性。認為化合物(1)具有1,4-伸環己基或1,4-伸苯基之類的六元環,且具有棒狀的分子結構,從而可提高相容性,因此最適於所述目的。化合物(1)通過聚合而形成聚合物。所述聚合物由於使液晶分子的配向穩定化,故縮短元件的響應時間,而且改善圖像的殘像。化合物(2)提高介電各向異性,而且降低下限溫度。化合物(3)提高上限溫度或降低黏度。化合物(4)通過聚合而形成聚合物。所述聚合物由於使液晶分子的配向穩定化,故縮短元件的響應時間,而且改善圖像的殘像。就液晶分子的配向的觀點而言,化合物(1)的聚合物由於具有與基板表面的相互作用,故推斷相較於化合物(4)的聚合物而更有效果。
第三,對組成物中的成分的組合、成分的較佳比例以及其根據進行說明。組成物中的成分的較佳組合為化合物(1)+化合物(2)、化合物(1)+化合物(2)+化合物(3)、化合物(1)+化合物(2)+化合物(4)、化合物(1)+化合物(2)+化合物(3)+化合物(4)、化合物(1)+化合物(2)+化合物(3)+化合物(5-1)、化合物(1)+化合物(2)+化合物(3)+化合物(5-2)、化合物(1)+化合物(2)+化合物(3)+化合物(5-3)、化合物(1)+化合物(2)+化合物(3)+化合物(4)+化合物(5-1)、化合物(1)+化合物(2)+化合物(3)+化合物(4)+化合物(5-2)或化合物(1)+化合物(2)+化合物(3)+化合物(4)+化合物(5-3)
化合物(1)、化合物(5-1)、化合物(5-2)或化合物(5-3)是出於控制液晶分子的配向的目的而添加於組成物中。為了使液晶分子進行配向,化合物(1)的較佳比例為約0.05質量%以上,為了防止元件的顯示不良,化合物(1)的較佳比例為約10質量%以下。尤其較佳的比例為約0.1質量%至約7質量%的範圍。特別較佳的比例為約0.5質量%至約5質量%的範圍。為了使液晶分子進行配向,化合物(5-1)、化合物(5-2)或化合物(5-3)的較佳比例為約0.05質量%以上,為了防止元件的顯示不良,化合物(5-1)、化合物(5-2)或化合物(5-3)的較佳比例為約10質量%以下。尤其較佳的比例為約0.1質量%至約7質量%的範圍。特別較佳的比例為約0.5質量%至約5質量%的範圍。
為了提高介電各向異性,化合物(2)的較佳比例為約10質量%以上,為了降低下限溫度,化合物(2)的較佳比例為約90質量%以下。尤其較佳的比例為約20質量%至約85質量%的範圍。特別較佳的比例為約30質量%至約85質量%的範圍。
為了提高上限溫度或為了降低黏度,化合物(3)的較佳比例為約10質量%以上,為了提高介電各向異性,化合物(3)的較佳比例為約90質量%以下。尤其較佳的比例為約15質量%至約75質量%的範圍。特別較佳的比例為約15質量%至約60質量%的範圍。
為了使配向的長期可靠性提高,化合物(4)的較佳比例為約0.03質量%以上,為了防止元件的顯示不良,化合物(4)的較佳比例為約10質量%以下。尤其較佳的比例為約0.1質量%至約2質量%的範圍。特別較佳的比例為約0.2質量%至約1.0質量%的範圍。
第四,對成分化合物的較佳形態進行說明。首先,將兩種液晶性化合物加以歸納並進行說明。繼而,以第一添加物及第三添加物(具有聚合性基的極性化合物)、第二添加物(聚合性化合物)的順序進行說明。
(a)液晶性化合物 式(2)及式(3)中,R5 及R6 為氫、碳數1至12的烷基、碳數1至12的烷氧基、碳數2至12的烯基、碳數2至12的烯氧基、或者至少一個氫經氟或氯取代的碳數1至12的烷基。為了提高穩定性,較佳的R5 或R6 為碳數1至12的烷基,為了提高介電各向異性,較佳的R5 或R6 為碳數1至12的烷氧基,為了降低黏度、為了低的閾電壓,較佳的R5 或R6 為碳數2至12的烯基。R7 及R8 為碳數1至12的烷基、碳數1至12的烷氧基、碳數2至12的烯基、至少一個氫經氟或氯取代的碳數1至12的烷基、或者至少一個氫經氟或氯取代的碳數2至12的烯基。為了降低黏度,較佳的R7 或R8 為碳數2至12的烯基,為了提高穩定性,較佳的R7 或R8 為碳數1至12的烷基。
較佳的烷基為甲基、乙基、丙基、丁基、戊基、己基、庚基或辛基。為了降低黏度,尤其較佳的烷基為乙基、丙基、丁基、戊基或庚基。
較佳的烷氧基為甲氧基、乙氧基、丙氧基、丁氧基、戊氧基、己氧基或庚氧基。為了降低黏度,尤其較佳的烷氧基為甲氧基或乙氧基。
較佳的烯基為乙烯基、1-丙烯基、2-丙烯基、1-丁烯基、2-丁烯基、3-丁烯基、1-戊烯基、2-戊烯基、3-戊烯基、4-戊烯基、1-己烯基、2-己烯基、3-己烯基、4-己烯基或5-己烯基。為了降低黏度,尤其較佳的烯基為乙烯基、1-丙烯基、3-丁烯基或3-戊烯基。這些烯基中的-CH=CH-的較佳為立體構型依存於雙鍵的位置。為了降低黏度等原因,在1-丙烯基、1-丁烯基、1-戊烯基、1-己烯基、3-戊烯基、3-己烯基之類的烯基中較佳為反式構型。在2-丁烯基、2-戊烯基、2-己烯基之類的烯基中較佳為順式構型。
較佳的烯氧基為乙烯氧基、烯丙氧基、3-丁烯氧基、3-戊烯氧基或4-戊烯氧基。為了降低黏度,尤其較佳的烯氧基為烯丙氧基或3-丁烯氧基。
至少一個氫經氟或氯取代的烷基的較佳例為氟甲基、2-氟乙基、3-氟丙基、4-氟丁基、5-氟戊基、6-氟己基、7-氟庚基或8-氟辛基。為了提高介電各向異性,尤其較佳例為2-氟乙基、3-氟丙基、4-氟丁基或5-氟戊基。
至少一個氫經氟或氯取代的烯基的較佳例為2,2-二氟乙烯基、3,3-二氟-2-丙烯基、4,4-二氟-3-丁烯基、5,5-二氟-4-戊烯基或6,6-二氟-5-己烯基。為了降低黏度,尤其較佳例為2,2-二氟乙烯基或4,4-二氟-3-丁烯基。
環B及環D為1,4-伸環己基、1,4-伸環己烯基、四氫吡喃-2,5-二基、1,4-伸苯基、至少一個氫經氟或氯取代的1,4-伸苯基、萘-2,6-二基、至少一個氫經氟或氯取代的萘-2,6-二基、色原烷-2,6-二基、或者至少一個氫經氟或氯取代的色原烷-2,6-二基。「至少一個氫經氟或氯取代的1,4-伸苯基」的較佳例為2-氟-1,4-伸苯基、2,3-二氟-1,4-伸苯基或2-氯-3-氟-1,4-伸苯基。為了降低黏度,較佳的環B或環D為1,4-伸環己基,為了提高介電各向異性,較佳的環B或環D為四氫吡喃-2,5-二基,為了提高光學各向異性,較佳的環B或環D為1,4-伸苯基。
環C為2,3-二氟-1,4-伸苯基、2-氯-3-氟-1,4-伸苯基、2,3-二氟-5-甲基-1,4-伸苯基、3,4,5-三氟萘-2,6-二基、7,8-二氟色原烷-2,6-二基、3,4,5,6-四氟茀-2,7-二基(FLF4)、4,6-二氟二苯並呋喃-3,7-二基(DBFF2)、4,6-二氟二苯並噻吩-3,7-二基(DBTF2)或1,1,6,7-四氟茚滿-2,5-二基(InF4)。
Figure 02_image040
為了提高介電各向異性,較佳的環C為2,3-二氟-1,4-伸苯基。
環E及環F為1,4-伸環己基、1,4-伸苯基、2-氟-1,4-伸苯基或2,5-二氟-1,4-伸苯基。為了降低黏度或為了提高上限溫度,較佳的環E或環F為1,4-伸環己基,為了降低下限溫度,較佳的環E或環F為1,4-伸苯基。
Z2 及Z3 為單鍵、伸乙基、伸乙烯基、亞甲氧基或羰氧基。為了降低黏度,較佳的Z2 或Z3 為單鍵,為了提高介電各向異性,較佳的Z2 或Z3 為亞甲氧基。Z4 為單鍵、伸乙基、伸乙烯基、亞甲氧基或羰氧基。為了降低黏度,較佳的Z4 為單鍵。
b為0、1、2或3,c為0或1,而且b與c的和為3以下。為了降低黏度,較佳的b為1,為了提高上限溫度,較佳的b為2或3。為了降低黏度,較佳的c為0,為了降低下限溫度,較佳的c為1。d為1、2或3。為了降低黏度,較佳的d為1,為了提高上限溫度,較佳的d為2或3。
(b)第一添加物及第三添加物 化合物(1)較佳為對紫外線或熱穩定。在將化合物(1)添加於組成物中時,所述化合物較佳為不降低元件的電壓保持率。化合物(1)較佳為具有低的揮發性。較佳的莫耳質量為130 g/mol以上。尤其較佳的莫耳質量為150 g/mol至700 g/mol的範圍。較佳的化合物(1)具有丙烯醯氧基(-OCO-CH=CH2 )、甲基丙烯醯氧基(-OCO-(CH3 )C=CH2 )之類的聚合性基。
R1 為氫、碳數1至10的烷基、碳數1至10的烷氧基或碳數1至10的烷氧基烷基,這些基中,至少一個-CH2 CH2 -可經-CH=CH-或-C≡C-取代,這些基中,至少一個氫可經氟或氯取代。較佳的R1 為氫、碳數1至5的烷基、碳數1至5的烷氧基或碳數1至5的烷氧基烷基。尤其較佳的R1 為碳數1至5的烷基。R2 為選自式(1-a)、式(1-b)及式(1-c)所表示的基中的基,較佳的R2 為式(1-a)或式(1-b)。
Figure 02_image008
式(1-a)、式(1-b)及式(1-c)中,Sp3 及Sp4 為單鍵或碳數1至15的伸烷基,所述伸烷基中,至少一個-CH2 -可經-O-、-CO-、-COO-、-OCO-或-OCOO-取代,至少一個-CH2 CH2 -可經-CH=CH-或-C≡C-取代,這些基中,至少一個氫可經氟或氯取代。較佳的Sp3 及Sp4 為單鍵或碳數1至10的伸烷基,所述伸烷基中,至少一個-CH2 -可經-O-、-CO-、-COO-、-OCO-或-OCOO-取代,至少一個-CH2 CH2 -可經-CH=CH-或-C≡C-取代,這些基中,至少一個氫可經氟取代。R3 為氫、碳數1至10的烷基、碳數1至10的烷氧基或碳數1至10的烷氧基烷基,較佳的R3 為氫、碳數1至7的烷基、碳數1至7的烷氧基或碳數1至7的烷氧基烷基。S1 及S2 為>C<,X1 為-OH、-NH2 、-N(R4 )2 、-COOH、-SH或-Si(R4 )3 ,此處,R4 為氫或碳數1至10的烷基,所述烷基中,至少一個-CH2 -可經-O-取代,至少一個-CH2 CH2 -可經-CH=CH-取代,這些基中,至少一個氫可經氟或氯取代。就對液晶組成物的高的溶解度的觀點而言,X1 特別較佳為-OH或-NH2 。-OH因具有高的錨固力,故優於-O-、-CO-或-COO-。特別較佳為具有多個雜原子(氮、氧)的基。具有此種極性基的化合物即便為低濃度也有效。
環A1 及環A2 為1,4-伸環己基、1,4-伸環己烯基、1,4-伸苯基、萘-1,5-二基、萘-2,6-二基、十氫萘-2,6-二基、1,2,3,4-四氫萘-2,6-二基、四氫吡喃-2,5-二基、1,3-二噁烷-2,5-二基、嘧啶-2,5-二基或吡啶-2,5-二基,這些環中,至少一個氫可經氟、氯、碳數1至10的烷基、碳數2至10的烯基、碳數1至10的烷氧基或碳數2至10的烯氧基取代,這些基中,至少一個氫可經氟或氯取代。較佳的環A1 或環A2 為1,4-伸環己基、1,4-伸環己烯基、1,4-伸苯基、萘-2,6-二基、四氫吡喃-2,5-二基、1,3-二噁烷-2,5-二基、嘧啶-2,5-二基、吡啶-2,5-二基或3-乙基-1,4-伸苯基,這些環中,至少一個氫可經氟、碳數1至7的烷基、碳數2至7的烯基、碳數1至7的烷氧基取代。特別較佳的環A1 或環A2 為1,4-伸環己基、1,4-伸苯基、2-氟-1,4-伸苯基、萘-2,6-二基或3-乙基-1,4-伸苯基。
Z1 為單鍵或碳數1至10的伸烷基,所述伸烷基中,至少一個-CH2 -可經-O-、-CO-、-COO-、-OCO-或-OCOO-取代,至少一個-CH2 CH2 -可經-CH=CH-或-C≡C-取代,這些基中,至少一個氫可經氟或氯取代。較佳的Z1 為單鍵、-CH2 CH2 -、-(CH2 )4 -、-CH=CH-、-C≡C-、-COO-、-OCO-、-CF2 O-、-OCF2 -、-CH2 O-、-OCH2 -或-CF=CF-。尤其較佳的Z1 為單鍵或-CH2 CH2 -。
Sp1 及Sp2 為單鍵或碳數1至15的伸烷基,所述伸烷基中,至少一個-CH2 -可經-O-、-CO-、-COO-、-OCO-或-OCOO-取代,至少一個-CH2 CH2 -可經-CH=CH-或-C≡C-取代,這些基中,至少一個氫可經氟或氯取代。較佳的Sp1 及Sp2 為單鍵或碳數1至10的伸烷基,所述伸烷基中,至少一個-CH2 -可經-O-取代,至少一個-CH2 CH2 -可經-CH=CH-取代。尤其較佳的Sp1 及Sp2 為單鍵或碳數1至5的伸烷基,所述伸烷基中,至少一個-CH2 -可經-O-取代。
M1 、M2 、M3 及M4 為氫、氟、氯、碳數1至5的烷基、或者至少一個氫經氟或氯取代的碳數1至5的烷基。較佳的M1 、M2 、M3 及M4 為氫或碳數1至3的烷基。
a為0、1、2或3。較佳的a為1或2。
式(1-1)至式(1-18)中,Y1 、Y2 、Y3 、Y4 、Y5 及Y6 為氫、氟、甲基或乙基。
式(5-1)至式(5-3)中,R50 為氫、氟、氯、碳數1至12的烷基、碳數1至12的烷氧基、碳數2至12的烯基、至少一個氫經氟或氯取代的碳數1至12的烷基、或者至少一個氫經氟取代的碳數2至12的烯基。較佳的R50 為碳數1至10的烷基。R51 為-OH、-NH2 、-OR52 、-N(R52 )2 、-COOH、-SH或-Si(R52 )3 所表示的基,此處,R52 為氫或碳數1至5的烷基,所述烷基中,至少一個-CH2 -可經-O-取代,至少一個-CH2 CH2 -可經-CH=CH-取代,這些基中,至少一個氫可經氟取代。就對液晶組成物的高的溶解度的觀點而言,R51 較佳為-OH或-NH2
環A50 及環B50 為1,4-伸環己基、1,4-伸環己烯基、1,4-伸苯基、萘-2,6-二基、四氫吡喃-2,5-二基、1,3-二噁烷-2,5-二基、嘧啶-2,5-二基或吡啶-2,5-二基,這些環中,至少一個氫可經氟、碳數1至12的烷基、碳數1至12的烷氧基、或者至少一個氫經氟取代的碳數1至12的烷基取代。
Z50 為單鍵、-CH2 CH2 -、-CH=CH-、-C≡C-、-COO-、-OCO-、-CF2 O-、-OCF2 -、-CH2 O-、-OCH2 -或-CF=CF-。特別較佳的Z50 為單鍵。
Sp51 、Sp52 、Sp53 、Sp54 及Sp55 為單鍵或碳數1至7的伸烷基,所述伸烷基中,至少一個-CH2 -可經-O-、-COO-或-OCO-取代,至少一個-CH2 CH2 -可經-CH=CH-取代,這些基中,至少一個氫可經氟取代。較佳的Sp51 、Sp52 、Sp53 、Sp54 及Sp55 為單鍵或碳數1至7的伸烷基。
a50 為0、1、2、3或4,較佳為1或2。
(c)第二添加物 式(4)中,環G及環J為環己基、環己烯基、苯基、1-萘基、2-萘基、四氫吡喃-2-基、1,3-二噁烷-2-基、嘧啶-2-基或吡啶-2-基,這些環中,至少一個氫可經氟、氯、碳數1至12的烷基、碳數1至12的烷氧基、或者至少一個氫經氟或氯取代的碳數1至12的烷基取代。較佳的環G或環J為苯基。環I為1,4-伸環己基、1,4-伸環己烯基、1,4-伸苯基、萘-1,2-二基、萘-1,3-二基、萘-1,4-二基、萘-1,5-二基、萘-1,6-二基、萘-1,7-二基、萘-1,8-二基、萘-2,3-二基、萘-2,6-二基、萘-2,7-二基、四氫吡喃-2,5-二基、1,3-二噁烷-2,5-二基、嘧啶-2,5-二基或吡啶-2,5-二基,這些環中,至少一個氫可經氟、氯、碳數1至12的烷基、碳數1至12的烷氧基、或者至少一個氫經氟或氯取代的碳數1至12的烷基取代。較佳的環I為1,4-伸苯基或2-氟-1,4-伸苯基。
Z5 及Z6 為單鍵或碳數1至10的伸烷基,所述伸烷基中,至少一個-CH2 -可經-O-、-CO-、-COO-或-OCO-取代,而且至少一個-CH2 CH2 -可經-CH=CH-、-C(CH3 )=CH-、-CH=C(CH3 )-或-C(CH3 )=C(CH3 )-取代,這些基中,至少一個氫可經氟或氯取代。較佳的Z5 或Z6 為單鍵、-CH2 CH2 -、-CH2 O-、-OCH2 -、-COO-或-OCO-。尤其較佳的Z5 或Z6 為單鍵。
P1 、P2 及P3 為聚合性基。較佳的P1 、P2 或P3 為選自式(P-1)至式(P-5)所表示的基的群組中的聚合性基。尤其較佳的P1 、P2 或P3 為式(P-1)、式(P-2)或式(P-3)所表示的基。特別較佳的P1 、P2 或P3 為式(P-1)或式(P-2)所表示的基。最較佳的P1 、P2 或P3 為式(P-1)所表示的基。式(P-1)所表示的較佳的基為-OCO-CH=CH2 或-OCO-C(CH3 )=CH2 。式(P-1)至式(P-5)的波浪線表示鍵結的部位。
Figure 02_image028
式(P-1)至式(P-5)中,M5 、M6 及M7 為氫、氟、碳數1至5的烷基、或者至少一個氫經氟或氯取代的碳數1至5的烷基。為了提高反應性,較佳的M5 、M6 或M7 為氫或甲基。尤其較佳的M5 為氫或甲基,且尤其較佳的M6 或M7 為氫。
Sp5 、Sp6 及Sp7 為單鍵或碳數1至10的伸烷基,所述伸烷基中,至少一個-CH2 -可經-O-、-COO-、-OCO-或-OCOO-取代,而且至少一個-CH2 CH2 -可經-CH=CH-或-C≡C-取代,這些基中,至少一個氫可經氟或氯取代。較佳的Sp5 、Sp6 或Sp7 為單鍵、-CH2 CH2 -、-CH2 O-、-OCH2 -、-COO-、-OCO-、-CO-CH=CH-或-CH=CH-CO-。尤其較佳的Sp5 、Sp6 或Sp7 為單鍵。
h為0、1或2。較佳的h為0或1。e、f及g為0、1、2、3或4,而且e、f及g的和為1以上。較佳的e、f或g為1或2。
第五,示出較佳的成分化合物。較佳的化合物(1)為項2所述的化合物(1-1)至化合物(1-18)。這些化合物中,較佳為第一添加物的至少一種為化合物(1-1)至化合物(1-9)。較佳為第一添加物的至少兩種為化合物(1-1)及化合物(1-9)的組合。
較佳的化合物(2)為項5所述的化合物(2-1)至化合物(2-35)。這些化合物中,較佳為第一成分的至少一種為化合物(2-1)、化合物(2-2)、化合物(2-3)、化合物(2-6)、化合物(2-7)、化合物(2-8)、化合物(2-9)、化合物(2-10)、化合物(2-13)、化合物(2-14)或化合物(2-18)。較佳為第一成分的至少兩種為化合物(2-1)及化合物(2-8)、化合物(2-1)及化合物(2-14)、化合物(2-3)及化合物(2-8)、化合物(2-3)及化合物(2-10)、化合物(2-3)及化合物(2-14)、化合物(2-6)及化合物(2-8)、化合物(2-6)及化合物(2-10)、化合物(2-6)及化合物(2-18)、化合物(2-7)及化合物(2-8)、化合物(2-7)及化合物(2-9)、化合物(2-7)及化合物(2-10)、化合物(2-7)及化合物(2-14)或化合物(2-10)及化合物(2-14)的組合。
較佳的化合物(3)為項8所述的化合物(3-1)至化合物(3-13)。這些化合物中,較佳為第二成分的至少一種為化合物(3-1)、化合物(3-2)、化合物(3-3)、化合物(3-5)、化合物(3-6)、化合物(3-8)或化合物(3-9)。較佳為第二成分的至少兩種為化合物(3-1)及化合物(3-3)、化合物(3-1)及化合物(3-5)或化合物(3-1)及化合物(3-6)的組合。
較佳的化合物(4)為項12所述的化合物(4-1)至化合物(4-29)。這些化合物中,較佳為第二添加物的至少一種為化合物(4-1)、化合物(4-2)、化合物(4-24)、化合物(4-25)、化合物(4-26)、化合物(4-27)或化合物(4-29)。較佳為第二添加物的至少兩種為化合物(4-1)及化合物(4-2)、化合物(4-1)及化合物(4-18)、化合物(4-2)及化合物(4-24)、化合物(4-2)及化合物(4-25)、化合物(4-2)及化合物(4-26)、化合物(4-25)及化合物(4-26)或化合物(4-18)及化合物(4-24)的組合。
第六,對可添加於組成物中的第一添加物以外的添加物進行說明。此種添加物為光學活性化合物、抗氧化劑、紫外線吸收劑、消光劑、色素、消泡劑、聚合性化合物、聚合起始劑、聚合抑制劑、極性化合物等。出於引起液晶分子的螺旋結構來賦予扭轉角(torsion angle)的目的,而將光學活性化合物添加於組成物中。此種化合物的例子為化合物(6-1)至化合物(6-5)。光學活性化合物的較佳比例為約5質量%以下。尤其較佳的比例為約0.01質量%至約2質量%的範圍。
Figure 02_image044
為了防止由大氣中的加熱所引起的比電阻的降低或為了在將元件長時間使用後,不僅在室溫下,而且在接近於上限溫度的溫度下也維持大的電壓保持率,而將抗氧化劑添加於組成物中。抗氧化劑的較佳例為化合物(7-1)至化合物(7-3)等。
Figure 02_image046
化合物(7-2)由於揮發性小,故對於在將元件長時間使用後,不僅在室溫下,而且在接近於上限溫度的溫度下也維持大的電壓保持率而言有效。為了獲得所述效果,抗氧化劑的較佳比例為約50 ppm以上,為了不降低上限溫度或為了不提高下限溫度,抗氧化劑的較佳比例為約600 ppm以下。尤其較佳的比例為約100 ppm至約300 ppm的範圍。
紫外線吸收劑的較佳例為二苯甲酮衍生物、苯甲酸酯衍生物、三唑衍生物等。另外,具有位阻的胺之類的光穩定劑也較佳。光穩定劑的較佳例為化合物(8-1)至化合物(8-16)等。為了獲得所述效果,這些吸收劑或穩定劑的較佳比例為約50 ppm以上,為了不降低上限溫度或為了不提高下限溫度,這些吸收劑或穩定劑的較佳比例為約10000 ppm以下。尤其較佳的比例為約100 ppm至約10000 ppm的範圍。
Figure 02_image048
Figure 02_image050
消光劑是通過接受液晶性化合物所吸收的光能量,並轉換為熱能量來防止液晶性化合物的分解的化合物。消光劑的較佳例為化合物(9-1)至化合物(9-7)等。為了獲得所述效果,這些消光劑的較佳比例為約50 ppm以上,為了不提高下限溫度,這些消光劑的較佳比例為約20000 ppm以下。尤其較佳的比例為約100 ppm至約10000 ppm的範圍。
Figure 02_image052
為了適合於賓主(guest host,GH)模式的元件,而將偶氮系色素、蒽醌系色素等之類的二色性色素(dichroic dye)添加於組成物中。色素的較佳比例為約0.01質量%至約10質量%的範圍。 為了防止鼓泡,而將二甲基矽酮油、甲基苯基矽酮油等消泡劑添加於組成物中。為了獲得所述效果,消泡劑的較佳比例為約1 ppm以上,為了防止顯示不良,消泡劑的較佳比例為約1000 ppm以下。尤其較佳的比例為約1 ppm至約500 ppm的範圍。
為了適合於聚合物穩定配向(PSA)型的元件,而使用聚合性化合物。化合物(1)、化合物(4)、化合物(5-1)、化合物(5-2)及化合物(5-3)適合於所述目的。也可將化合物(1)、化合物(4)、化合物(5-1)、化合物(5-2)及化合物(5-3)以及與化合物(1)、化合物(4)、化合物(5-1)、化合物(5-2)及化合物(5-3)不同的其他聚合性化合物一起添加於組成物中。此種聚合性化合物的較佳例為丙烯酸酯、甲基丙烯酸酯、乙烯基化合物、乙烯氧基化合物、丙烯基醚、環氧化合物(氧雜環丙烷、氧雜環丁烷)、乙烯基酮等化合物。尤其較佳例為丙烯酸酯或甲基丙烯酸酯。通過改變化合物(1)、化合物(4)、化合物(5-1)、化合物(5-2)及化合物(5-3)的種類,或者通過以適當的比將其他聚合性化合物與化合物(1)、化合物(4)、化合物(5-1)、化合物(5-2)及化合物(5-3)加以組合,可調整聚合性化合物的反應性或液晶分子的預傾角。通過將預傾角最佳化,可達成元件的短的響應時間。液晶分子的配向穩定化,因此可達成大的對比度或長壽命。
所述聚合性化合物通過紫外線照射而聚合。也可在光聚合起始劑等適當的引發劑的存在下進行聚合。用於進行聚合的適當條件、引發劑的適當類型、以及適當量已為本領域技術人員所知,並記載於文獻中。例如作為光聚合起始劑的豔佳固(Irgacure)651(注冊商標;巴斯夫(BASF))、豔佳固(Irgacure)184(注冊商標;巴斯夫(BASF))或德牢固(Darocur)1173(注冊商標;巴斯夫(BASF))適合於自由基聚合。基於聚合性化合物的質量,光聚合起始劑的較佳比例為約0.1質量%至約5質量%的範圍。尤其較佳的比例為約1質量%至約3質量%的範圍。
在保管所述聚合性化合物時,為了防止聚合,也可添加聚合抑制劑。聚合性化合物通常是以未去除聚合抑制劑的狀態添加於組成物中。聚合抑制劑的例子為對苯二酚、甲基對苯二酚之類的對苯二酚衍生物、4-第三丁基鄰苯二酚、4-甲氧基苯酚、酚噻𠯤等。
極性化合物為具有極性的有機化合物。此處,不包含具有離子鍵的化合物。氧、硫及氮之類的原子的電性偏陰性且存在具有部分負電荷的傾向。碳及氫為中性或存在具有部分正電荷的傾向。極性是因部分電荷在化合物中的不同種的原子間不均等地分佈而產生。例如,極性化合物具有-OH、-COOH、-SH、-NH2 、>NH、>N-之類的部分結構的至少一種。
第七,對成分化合物的合成方法進行說明。這些化合物可利用已知的方法來合成。例示合成方法。化合物(1)的合成方法是記載於實施例的項中。化合物(2-1)是利用日本專利特表平2-503441號公報中記載的方法來合成。化合物(3-5)是利用日本專利特開昭57-165328號公報中記載的方法來合成。化合物(4-18)是利用日本專利特開平7-101900號公報中記載的方法來合成。化合物(7-1)可自西格瑪奧德裡奇公司(Sigma-Aldrich Corporation)獲取。化合物(7-2)等是利用美國專利3660505號說明書中記載的方法來合成。
未記載合成方法的化合物可利用以下成書中記載的方法來合成:《有機合成》(Organic Syntheses,約翰威立父子出版公司(John Wiley & Sons, Inc.))、《有機反應》(Organic Reactions,約翰威立父子出版公司)、《綜合有機合成》(Comprehensive Organic Synthesis,培格曼出版公司(Pergamon Press))、新實驗化學講座(丸善)等。組成物是利用公知的方法,由以所述方式獲得的化合物來製備。例如,將成分化合物混合,然後通過加熱而使其相互溶解。
最後,對組成物的用途進行說明。大部分的組成物具有約-10℃以下的下限溫度、約70℃以上的上限溫度、以及約0.07至約0.20的範圍的光學各向異性。可通過控制成分化合物的比例、或者通過混合其他液晶性化合物,來製備具有約0.08至約0.25的範圍的光學各向異性的組成物。進而也可通過嘗試錯誤來製備具有約0.10至約0.30的範圍的光學各向異性的組成物。含有所述組成物的元件具有大的電壓保持率。所述組成物適合於AM元件。所述組成物特別適合於透過型的AM元件。所述組成物能夠用作具有向列相的組成物,能夠通過添加光學活性化合物而用作光學活性組成物。
所述組成物能夠用於AM元件。進而也能夠用於PM元件。所述組成物能夠用於具有PC、TN、STN、ECB、OCB、IPS、FFS、VA、FPA等模式的AM元件及PM元件。特別較佳為用於具有TN、OCB、IPS模式或FFS模式的AM元件。具有IPS模式或FFS模式的AM元件中,在不施加電壓時,液晶分子的配向可與玻璃基板平行,或者也可為垂直。這些元件可為反射型、透過型或半透過型。較佳為用於透過型的元件。也能夠用於非晶矽-TFT元件或多晶矽-TFT元件。也可將所述組成物用於進行微膠囊化(microencapsulation)而製作的向列曲線排列相(nematic curvilinear aligned phase,NCAP)型的元件、或在組成物中形成三維網狀高分子而成的聚合物分散(polymer dispersed,PD)型的元件。
製造聚合物穩定配向型的元件的方法的一例如下所述。準備包括兩塊基板的元件,所述兩塊基板被稱為陣列基板及彩色濾光片基板。所述基板具有配向膜。所述基板的至少一塊具有電極層。將液晶性化合物混合來製備液晶組成物。在所述組成物中添加聚合性化合物。視需要可進而添加添加物。將所述組成物注入至元件中。在對所述元件施加電壓的狀態下進行光照射。較佳為紫外線。通過光照射而使聚合性化合物進行聚合。通過所述聚合而生成含有聚合物的組成物。聚合物穩定配向型的元件是以如上所述的順序來製造。
所述順序中,在施加電壓時,液晶分子通過配向膜及電場的作用而配向。依據所述配向,聚合性化合物的分子也進行配向。由於聚合性化合物是在所述狀態下通過紫外線來進行聚合,故生成維持所述配向的聚合物。通過所述聚合物的效果,元件的響應時間縮短。由於圖像的殘像為液晶分子的運作不良,故通過所述聚合物的效果,殘像也同時得到改善。再者,也能夠使組成物中的聚合性化合物預先進行聚合,將所述組成物配置於液晶顯示元件的基板之間。
在使用化合物(1)、化合物(5-1)、化合物(5-2)及化合物(5-3)之類的具有聚合性基的極性化合物(即,聚合性化合物)的情況下,在元件的基板上不需要配向膜。不具有配向膜的元件依據前兩個段落中記載的順序由不具有配向膜的基板製造。
所述順序中,化合物(1)、化合物(5-1)、化合物(5-2)及化合物(5-3)因極性基與基板表面發生相互作用而在基板上進行排列。依據所述排列,液晶分子進行配向。在施加電壓時,進一步促進液晶分子的配向。由於聚合性基是在所述狀態下通過紫外線來進行聚合,故生成維持所述配向的聚合物。通過所述聚合物的效果,液晶分子的配向追加地穩定化,元件的響應時間縮短。由於圖像的殘像為液晶分子的運作不良,故通過所述聚合物的效果,殘像也同時得到改善。
[實施例] 通過實施例對本發明進一步進行詳細說明。本發明不受這些實施例的限制。本發明包含組成物M1與組成物M2的混合物。本發明也包含將實施例的組成物的至少兩種混合而成的混合物。所合成的化合物是通過核磁共振(Nuclear Magnetic Resonance,NMR)分析等方法來鑒定。化合物、組成物及元件的特性是通過下述方法進行測定。
NMR分析:測定時使用布魯克拜厄斯賓(Bruker BioSpin)公司製造的DRX-500。1 H-NMR的測定中,使試樣溶解於CDCl3 等氘化溶媒中,在室溫下以500 MHz、累計次數為16次的條件進行測定。使用四甲基矽烷作為內部標準。19 F-NMR的測定中,使用CFCl3 作為內部標準,以累計次數24次來進行。核磁共振波譜的說明中,s是指單峰(singlet),d是指雙重峰(doublet),t是指三重峰(triplet),q是指四重峰(quartet),quin是指五重峰(quintet),sex是指六重峰(sextet),m是指多重峰(multiplet),br是指寬峰(broad)。
氣相色譜分析:測定時使用島津製作所製造的GC-14B型氣相色譜儀。載體氣體為氦氣(2 mL/min)。將試樣氣化室設定為280℃,將檢測器(火焰離子化檢測器(flame ionization detector,FID))設定為300℃。進行成分化合物的分離時使用安捷倫科技有限公司(Agilent Technologies Inc.)製造的毛細管柱DB-1(長度30 m、內徑0.32 mm、膜厚0.25 μm;固定液相為二甲基聚矽氧烷;無極性)。所述管柱在200℃下保持2分鐘後,以5℃/min的比例升溫至280℃。將試樣製備成丙酮溶液(0.1質量%)後,將其1 μL注入至試樣氣化室中。記錄計為島津製作所製造的C-R5A型色譜儀組件(Chromatopac)或其同等品。所獲得的氣相色譜圖顯示出與成分化合物對應的峰值的保持時間以及峰值的面積。
用於稀釋試樣的溶媒可使用氯仿、己烷等。為了將成分化合物分離,可使用如下的毛細管柱。安捷倫科技有限公司(Agilent Technologies Inc.)製造的HP-1(長度30 m、內徑0.32 mm、膜厚0.25 μm)、瑞斯泰克公司(Restek Corporation)製造的Rtx-1(長度30 m、內徑0.32 mm、膜厚0.25 μm)、澳大利亞SGE國際公司(SGE International Pty. Ltd)製造的BP-1(長度30 m、內徑0.32 mm、膜厚0.25 μm)。出於防止化合物峰值的重疊的目的,可使用島津製作所製造的毛細管柱CBP1-M50-025(長度50 m、內徑0.25 mm、膜厚0.25 μm)。
組成物中所含有的液晶性化合物的比例可利用如下所述的方法來算出。利用氣相色譜儀(FID)來對液晶性化合物的混合物進行分析。氣相色譜圖中的峰值的面積比相當於液晶性化合物的比例。在使用上文記載的毛細管柱時,可將各種液晶性化合物的修正係數視為1。因此,液晶性化合物的比例(質量%)可根據峰值的面積比來算出。
測定試樣:在測定組成物及元件的特性時,將組成物直接用作試樣。在測定化合物的特性時,通過將所述化合物(15質量%)混合於母液晶(85質量%)中來製備測定用試樣。根據通過測定而獲得的值,利用外推法(extrapolation method)來算出化合物的特性值。(外推值)={(試樣的測定值)-0.85×(母液晶的測定值)}/0.15。當在所述比例下,層列相(或結晶)在25℃下析出時,將化合物與母液晶的比例以10質量%:90質量%、5質量%:95質量%、1質量%:99質量%的順序變更。利用所述外插法來求出與化合物相關的上限溫度、光學各向異性、黏度以及介電各向異性的值。
使用下述母液晶。成分化合物的比例是由質量%來表示。
Figure 02_image054
測定方法:利用下述方法來進行特性的測定。這些方法大多是日本電子資訊技術產業協會(Japan Electronics and Information Technology Industries Association;稱為JEITA)審議制定的JEITA標準(JEITA·ED-2521B)中記載的方法或將其修飾而成的方法。用於測定的TN元件上未安裝薄膜電晶體(TFT)。
(1)向列相的上限溫度(NI;℃):在具備偏光顯微鏡的熔點測定裝置的熱板上放置試樣,以1℃/min的速度進行加熱。測定試樣的一部分由向列相變化為各向同性液體時的溫度。有時將向列相的上限溫度簡稱為「上限溫度」。
(2)向列相的下限溫度(TC ;℃):將具有向列相的試樣放入玻璃瓶中,在0℃、-10℃、-20℃、-30℃及-40℃的冷凍器中保管10天后,觀察液晶相。例如,當試樣在-20℃下保持向列相的狀態,而在-30℃下變化為結晶或層列相時,將TC 記載為<-20℃。有時將向列相的下限溫度簡稱為「下限溫度」。
(3)黏度(體積黏度;η;在20℃下測定;mPa·s):測定時使用東京計器股份有限公司製造的E型旋轉黏度計。
(4)黏度(旋轉黏度;γ1;在25℃下測定;mPa·s):測定時使用東陽技術(TOYO Corporation)股份有限公司的旋轉黏性率測定系統LCM-2型。在兩片玻璃基板的間隔(單元間隙)為10 μm的VA元件中注入試樣。對所述元件施加矩形波(55 V、1 ms)。測定通過所述施加而產生的瞬態電流(transient current)的峰值電流(peak current)及峰值時間(peak time)。使用這些測定值與介電各向異性而獲得旋轉黏度的值。介電各向異性是利用測定(6)中記載的方法來測定。
(5)光學各向異性(折射率各向異性;Δn;在25℃下測定):使用波長589 nm的光,利用在接目鏡上安裝有偏光板的阿貝折射計來進行測定。將主棱鏡的表面向一個方向摩擦後,將試樣滴加至主棱鏡上。折射率n∥是在偏光的方向與摩擦的方向平行時進行測定。折射率n⊥是在偏光的方向與摩擦的方向垂直時進行測定。光學各向異性的值是根據Δn=n∥-n⊥的式子來計算。
(6)介電各向異性(Δε;在25℃下測定):介電各向異性的值是根據Δε=ε∥-ε⊥的式子來計算。以如下方式測定介電常數(ε∥及ε⊥)。 1)介電常數(ε∥)的測定:在經充分清洗的玻璃基板上塗布十八烷基三乙氧基矽烷(octadecyl triethoxysilane)(0.16 mL)的乙醇(20 mL)溶液。利用旋轉器使玻璃基板旋轉後,在150℃下加熱1小時。在兩片玻璃基板的間隔(單元間隙)為4 μm的VA元件中放入試樣,利用以紫外線進行硬化的黏接劑將所述元件密封。對所述元件施加正弦波(0.5 V、1 kHz),2秒後測定液晶分子的長軸方向上的介電常數(ε∥)。 2)介電常數(ε⊥)的測定:在經充分清洗的玻璃基板上塗布聚醯亞胺溶液。將所述玻璃基板煆燒後,對所獲得的配向膜進行摩擦處理。在兩片玻璃基板的間隔(單元間隙)為9 μm且扭轉角為80度的TN元件中注入試樣。對所述元件施加正弦波(0.5 V、1 kHz),2秒後測定液晶分子的短軸方向上的介電常數(ε⊥)。
(7)閾電壓(Vth;在25℃下測定;V):測定時使用大塚電子股份有限公司製造的LCD5100型亮度計。光源為鹵素燈。在兩片玻璃基板的間隔(單元間隙)為4 μm且摩擦方向為反平行的正常顯黑模式(normally black mode)的VA元件中放入試樣,使用以紫外線進行硬化的黏接劑將所述元件密封。對所述元件施加的電壓(60 Hz、矩形波)是以0.02 V為單位自0 V階段性地增加至20 V。此時,自垂直方向對元件照射光,測定透過元件的光量。製成在所述光量達到最大時透過率為100%,且在所述光量為最小時透過率為0%的電壓-透過率曲線。閾電壓是由透過率達到10%時的電壓來表示。
(8)電壓保持率(初始VHR;在60℃下測定;%):在不具有配向膜的玻璃基板的VA元件中封入試樣。兩片玻璃基板的間隔(單元間隙)為3.5 μm。所述元件在注入試樣後,利用以紫外線進行硬化的黏接劑來密封。使用東芝照明技術股份有限公司(Toshiba Lighting & Technology Corporation)製造的UV燈FLR110H×UV32/A-1作為光源,對所述元件照射15 J的365 nm下的強度為2.5毫瓦的光,從而製作VA元件。對所述元件施加脈衝電壓(1 V、60微秒)來進行充電。利用高速電壓計在1667毫秒的期間內測定衰減的電壓,求出單位週期的電壓曲線與橫軸之間的面積A。面積B為電壓未衰減時的面積。電壓保持率是由面積A相對於面積B的百分率來表示。
(9)電壓保持率(UV-VHR;在60℃下測定;%):對注入有試樣的VA元件照射紫外線後,測定電壓保持率,評價對紫外線的穩定性。測定時,使用不具有配向膜的玻璃基板的VA元件,兩片玻璃基板的間隔(單元間隙)為3.5 μm。在所述元件中注入試樣,利用與初始VHR相同的方法來製作VA元件。使用UV燈作為光源,對所述元件照射15 J的5毫瓦的光。其後,以與初始VHR相同的測定條件進行UV-VHR的測定。具有大的UV-VHR的組成物對紫外線具有大的穩定性。UV-VHR較佳為90%以上,尤其較佳為95%以上。
(10)電壓保持率(加熱VHR;在60℃下測定;%):對注入有試樣的VA元件進行加熱後,測定電壓保持率,評價對熱的穩定性。測定時,使用不具有配向膜的玻璃基板的VA元件,兩片玻璃基板的間隔(單元間隙)為3.5 μm。在所述元件中注入試樣,利用與初始VHR相同的方法來製作VA元件。將所述元件在140℃恒溫槽內加熱1小時。其後,以與初始VHR相同的測定條件進行加熱VHR的測定。具有大的加熱VHR的組成物對熱具有大的穩定性。加熱VHR較佳為90%以上,尤其較佳為95%以上。
(11)響應時間(τ;在25℃下測定;ms):測定時使用大塚電子股份有限公司製造的LCD5100型亮度計。光源為鹵素燈。低通濾波器(Low-pass filter)設定為5 kHz。在兩片玻璃基板的間隔(單元間隙)為3.5 μm且不具有配向膜的VA元件中放入試樣。利用以紫外線進行硬化的黏接劑將所述元件密封。對所述元件一邊施加30 V的電壓,一邊照射78 mW/cm2 (405 nm)的紫外線449秒(35 J)。在紫外線的照射中使用岩崎(EYE GRAPHICS)股份有限公司製造的紫外硬化用多金屬燈M04-L41。對所述元件施加矩形波(120 Hz)。此時,自垂直方向對元件照射光,測定透過元件的光量。在所述光量達到最大時視為透過率100%,在所述光量為最小時視為透過率0%。矩形波的最大電壓是以透過率成為90%的方式進行設定。矩形波的最低電壓是設定為透過率成為0%的2.5 V。響應時間是由透過率自10%變化至90%所需要的時間(上升時間;rise time;毫秒)來表示。
(12)彈性常數(K11:展曲(splay)彈性常數、K33:彎曲(bend)彈性常數;在25℃下測定;pN):測定時使用東陽技術(TOYO Corporation)股份有限公司製造的EC-1型彈性常數測定器。在兩片玻璃基板的間隔(單元間隙)為20 μm的垂直配向單元中放入試樣。對所述單元施加20伏特至0伏特的電荷,測定靜電電容以及施加電壓。使用《液晶裝置手冊》(日刊工業報社)第75頁中的式(2.98)、式(2.101)對所測定的靜電電容(C)及施加電壓(V)的值進行擬合(fitting),根據式(2.100)獲得彈性常數的值。
(13)比電阻(ρ;在25℃下測定;Ωcm):在具備電極的容器中注入試樣1.0 mL。對所述容器施加直流電壓(10 V),測定10秒後的直流電流。比電阻是根據下式而算出。(比電阻)={(電壓)×(容器的電容)}/{(直流電流)×(真空的介電常數)}。
(14)預傾角(度):在預傾角的測定中使用分光橢偏儀M-2000U(J. A.伍拉姆股份有限公司(J. A. Woollam Co., Inc.)製造)。
(15)配向穩定性(液晶配向軸穩定性):評價液晶顯示元件的電極側的液晶配向軸的變化。測定施加應力前的電極側的液晶配向角度f(之前(before)),其後,對元件施加矩形波4.5 V、60 Hz 20分鐘後,短路1秒,在1秒後及5分鐘後再次測定電極側的液晶配向角度f(之後(after))。根據這些值並使用下述式來算出1秒後及5分鐘後的液晶配向角度的變化Δf(deg.)。 Δf(deg.)=f(after)-f(before) (式2) 以J.希爾菲克、B.詹遜、C.赫辛格、J.F.艾爾曼、E.蒙特巴赫、D.布賴恩特與P.J.博斯(J. Hilfiker, B. Johs, C. Herzinger, J. F. Elman, E. Montbach, D. Bryant, and P. J. Bos),《固體薄膜》(Thin Solid Films), 455-456, (2004) 596-600為參考來進行這些測定。可以說Δf越小液晶配向軸的變化率越小,液晶配向軸的穩定性越好。
[合成例1] 化合物(PC-1)的合成
Figure 02_image056
第1步驟 將化合物(T-1)(40 g)及二甲基甲醯胺(dimethylformamide,DMF)(3000 ml)放入至反應器中,並冷卻至0℃。向其中添加化合物(T-2)(23.19 g),一邊恢復至室溫一邊攪拌12小時。將反應混合物注入至水中,利用乙酸乙酯對水層進行萃取。利用食鹽水對所獲得的有機層進行清洗,利用無水硫酸鎂進行乾燥。在減壓下對所述溶液進行濃縮,利用矽膠色譜法(體積比,庚烷:乙酸乙酯=1:1)對殘渣進行純化而獲得化合物(T-3)(2.69 g;5%)。
第2步驟 將化合物(T-3)(5.0 g)、化合物(T-4)(4.19 g)、二甲基氨基吡啶(Dimethylaminopyridine,DMAP)(1.15 g)及二氯甲烷(55.0 ml)放入至反應器中,並冷卻至0℃。向其中緩緩滴加二環己基碳二醯亞胺(Dicyclohexylcarbodiimide,DCC)(5.8 g)的二氯甲烷(30.0 ml)溶液,一邊恢復至室溫一邊攪拌12小時。將不溶物爐別後,將反應混合物注入至水中,利用二氯甲烷對水層進行萃取。利用水對所獲得的有機層進行清洗,利用無水硫酸鎂進行乾燥。在減壓下對所述溶液進行濃縮,利用矽膠色譜法(體積比,庚烷:乙酸乙酯=9:1)對殘渣進行純化而獲得化合物(T-5)(5.03 g;58%)。再者,THP表示四氫吡喃基。
第3步驟 將化合物(T-5)(5.03 g)、對甲苯磺酸吡啶鹽(Pyridinium p-toluenesulfonate,PPTS)(1.45 g)、四氫呋喃(Tetrahydrofuran,THF)(25.0 ml)及甲醇(25.0 ml)放入至反應器中,在50℃下攪拌4小時。將反應混合物注入至水中,利用乙酸乙酯對水層進行萃取。利用水對所獲得的有機層進行清洗,利用無水硫酸鎂進行乾燥。在減壓下對所述溶液進行濃縮,利用矽膠色譜法(體積比,甲苯:乙酸乙酯=2:1)對殘渣進行純化。進而,通過自庚烷的再結晶來進行純化,從而獲得化合物(PC-1)(2.73 g;67%)。
所獲得的化合物(PC-1)的NMR分析值為如下所述。1 H-NMR:化學位移δ (ppm; CDCl3 ):6.23 (s, 1H), 6.07 (s, 1H), 5.80 (d, J=1.1 Hz, 1H), 5.53 (t, J=1.6 Hz, 1H), 4.79-4.65 (m, 2H), 4.32 (d, J=6.8 Hz, 2H), 2.30 (t, J=6.6 Hz, 1H), 2.09-2.00 (m, 4H), 1.93 (s, 3H), 1.85-1.76 (m, 4H), 1.43-1.31 (m, 4H), 1.19-1.07 (m, 6H). 轉變溫度:C 119 I.(聚合起始溫度:123℃)
能夠參考合成例中記載的方法來合成化合物(1-1)至化合物(1-18)。
實施例中的化合物是基於下述表3的定義而由記號來表示。表3中,與1,4-伸環己基相關的立體構型為反式構型。位於記號後的括弧內的編號與化合物的編號對應。(-)的記號是指其他液晶性化合物。液晶性化合物的比例(百分率)是基於液晶組成物的質量的質量百分率(質量%)。最後,歸納組成物的特性值。
Figure 02_image058
元件的實施例 1.原料 在不具有配向膜的元件中注入添加有極性化合物的液晶組成物。在照射紫外線後,對所述元件中的液晶分子的垂直配向性進行研究。首先對原料進行說明。原料為組成物M1至組成物M28、極性化合物(PC-1)至極性化合物(PC-15)、聚合性化合物(RM-1)至聚合性化合物(RM-8),且依序進行列舉。
[組成物M1]
Figure 02_image060
NI=73.2℃;Tc<-20℃;Δn=0.113;Δε=-4.0;Vth=2.18 V;η=22.6 mPa·s.
[組成物M2]
Figure 02_image061
NI=82.8℃;Tc<-30℃;Δn=0.118;Δε=-4.4;Vth=2.13 V;η=22.5 mPa·s.
[組成物M3]
Figure 02_image062
NI=78.1℃;Tc<-30℃;Δn=0.107;Δε=-3.2;Vth=2.02 V;η=15.9 mPa·s.
[組成物M4]
Figure 02_image063
NI=88.5℃;Tc<-30℃;Δn=0.108;Δε=-3.8;Vth=2.25 V;η=24.6 mPa·s;VHR-1=99.1%;VHR-2=98.2%;VHR-3=97.8%.
[組成物M5]
Figure 02_image064
NI=81.1℃;Tc<-30℃;Δn=0.119;Δε=-4.5;Vth=1.69 V;η=31.4 mPa·s.
[組成物M6]
Figure 02_image065
NI=98.8℃;Tc<-30℃;Δn=0.111;Δε=-3.2;Vth=2.47 V;η=23.9 mPa·s.
[組成物M7]
Figure 02_image066
NI=77.5℃;Tc<-30℃;Δn=0.084;Δε=-2.6;Vth=2.43 V;η=22.8 mPa·s.
[組成物M8]
Figure 02_image067
NI=70.6℃;Tc<-20℃;Δn=0.129;Δε=-4.3;Vth=1.69 V;η=27.0 mPa·s.
[組成物M9]
Figure 02_image068
NI=93.0℃;Tc<-30℃;Δn=0.123;Δε=-4.0;Vth=2.27 V;η=29.6 mPa·s.
[組成物M10]
Figure 02_image069
NI=87.6℃;Tc<-30℃;Δn=0.126;Δε=-4.5;Vth=2.21 V;η=25.3 mPa·s.
[組成物M11]
Figure 02_image070
NI=93.0℃;Tc<-20℃;Δn=0.124;Δε=-4.5;Vth=2.22 V;η=25.0 mPa·s.
[組成物M12]
Figure 02_image071
NI=76.4℃;Tc<-30℃;Δn=0.104;Δε=-3.2;Vth=2.06 V;η=15.6 mPa·s.
[組成物M13]
Figure 02_image072
NI=78.3℃;Tc<-20℃;Δn=0.103;Δε=-3.2;Vth=2.17 V;η=17.7 mPa·s.
[組成物M14]
Figure 02_image073
NI=81.2℃;Tc<-20℃;Δn=0.107;Δε=-3.2;Vth=2.11 V;η=15.5 mPa·s.
[組成物M15]
Figure 02_image074
NI=88.7℃;Tc<-30℃;Δn=0.115;Δε=-1.9;Vth=2.82 V;η=17.3 mPa·s.
[組成物M16]
Figure 02_image075
NI=89.9℃;Tc<-20℃;Δn=0.122;Δε=-4.2;Vth=2.16 V;η=23.4 mPa·s.
[組成物M17]
Figure 02_image076
NI=77.1℃;Tc<-20℃;Δn=0.101;Δε=-3.0;Vth=2.04 V;η=13.9 mPa·s.
[組成物M18]
Figure 02_image077
NI=75.9℃;Tc<-20℃;Δn=0.114;Δε=-3.9;Vth=2.20 V;η=24.7 mPa·s.
[組成物M19]
Figure 02_image078
NI=75.9℃;Δn=0.101;Δε=-2.7.
[組成物M20]
Figure 02_image079
NI=78.4℃;Tc<-30℃;Δn=0.105;Δε=-2.7;Vth=2.43 V;η=16.2 mPa·s.
[組成物M21]
Figure 02_image080
NI=76.0℃;Tc<-20℃;Δn=0.097;Δε=-3.0;Vth=2.20 V.
[組成物M22]
Figure 02_image081
NI=75.3℃;Δn=0.109;Δε=-3.1;Vth=2.29 V.
[組成物M23]
Figure 02_image082
NI=73.5℃;Tc<-20℃;Δn=0.100;Δε=-2.6.
[組成物M24]
Figure 02_image083
NI=74.8℃;Tc<-20℃;Δn=0.099;Δε=-3.2.
[組成物M25]
Figure 02_image084
NI=71.1℃;Tc<-20℃;Δn=0.105;Δε=-2.7.
[組成物M26]
Figure 02_image085
NI=75.6℃;Δn=0.104;Δε=-2.4.
[組成物M27]
Figure 02_image086
NI=76.5℃;Tc<-20℃;Δn=0.098;Δε=-3.0;Vth=2.15 V;η=16.2 mPa·s.
[組成物M28]
Figure 02_image087
NI=75.3℃;Tc<-20℃;Δn=0.102;Δε=-2.6;Vth=2.41 V;η=17.5 mPa·s.
將以下的極性化合物(PC-1)至極性化合物(PC-12)用作第一添加物。
Figure 02_image088
將以下的極性化合物(PC-13)至極性化合物(PC-15)用作第三添加物。
Figure 02_image090
將以下的聚合性化合物(RM-1)至聚合性化合物(RM-8)用作第二添加物。
Figure 02_image092
2.液晶顯示元件的配向性 [實施例1] 將作為第一添加物的極性化合物(PC-1)以2.0質量%的比例添加於組成物(M1)中。將添加有所述極性化合物的本發明的液晶組成物封入至不具有配向膜的玻璃基板的VA元件中,並對組成物在基板上的垂直配向性進行確認,結果顯示出垂直配向性。
[比較例1] 作為比較,僅使用組成物(M1)並利用與實施例1相同的方法來製成元件,並對基板上的垂直配向性進行確認,結果不顯示垂直配向性。
[實施例2至實施例34] 改變組成物的種類及極性化合物的濃度來製備添加有極性化合物的液晶組成物,並利用與實施例1相同的方法來確認垂直配向性。將組成物在基板上進行了配向的情況表示為「○」,將不進行配向的情況表示為「×」。將結果歸納於表4中。
表4.液晶顯示元件的垂直配向性
Figure 108105882-A0304-0003
根據表4的結果,使用添加有第一添加物的液晶組成物的元件中,顯示出垂直配向性。另一方面,使用未添加第一添加物的液晶組成物的元件中,不顯示垂直配向性。另外,實施例25至實施例34的液晶組成物中,雖進而添加了聚合性化合物(RM-1)至聚合性化合物(RM-8)、作為第三添加物的極性化合物(PC-13)至極性化合物(PC-15),但獲得相同的結果。所述結果示出本發明的第一添加物具有液晶顯示元件中的垂直配向性。
3.液晶顯示元件的電壓保持率(初始VHR) [實施例23] 將作為第一添加物的極性化合物(PC-1)以1.5質量%的比例添加於組成物(M21)中。將添加有所述極性化合物的本發明的液晶組成物封入至不具有配向膜的玻璃基板的VA元件中。使用所述元件,並依據測定方法中記載的方法來測定電壓保持率(初始VHR),結果為77%。
[比較例2] 作為比較,將與第一添加物類似的化合物(PC-16)以1.5質量%的比例添加於組成物(M1)中,利用與實施例23相同的方法來製作元件,並測定電壓保持率,結果為53%。
Figure 02_image094
[實施例24至實施例27、實施例30、實施例31] 改變組成物的種類及極性化合物的濃度來製備添加有極性化合物的液晶組成物,並利用與實施例23相同的方法來測定電壓保持率。將結果歸納於表5中。
表5.液晶顯示元件的電壓保持率(初始VHR)
Figure 108105882-A0304-0004
根據表5的結果,使用添加有第一添加物的液晶組成物的元件中,顯示出高的電壓保持率。另一方面,使用添加有與第一添加物類似的化合物(PC-16)的液晶組成物的元件中,顯示出低於使用添加有第一添加物的液晶組成物的元件的電壓保持率。另外,實施例25至實施例27、實施例30、實施例31的液晶組成物中,雖進而添加了聚合性化合物(RM-1)及聚合性化合物(RM-2)、作為第三添加物的極性化合物(PC-13)至極性化合物(PC-15),但同樣地顯示出高的電壓保持率。
根據所述結果而可知:在分子結構的兩末端分別具有聚合性基與極性基的極性化合物具有液晶顯示元件中的良好的垂直配向性及高的電壓保持率。 產業上的可利用性
本發明的液晶組成物能夠在不具有配向膜的元件中控制液晶分子的配向。含有所述組成物的液晶顯示元件具有響應時間短、電壓保持率大、閾電壓低、對比度大、壽命長等特性,因此可用於液晶投影儀、液晶電視等。

Claims (20)

  1. 一種液晶組成物,其含有選自式(1)所表示的聚合性的極性化合物中的至少一種化合物作為第一添加物,而且具有向列相及負的介電各向異性,
    Figure 03_image001
    式(1)中,環A1 及環A2 為1,4-伸環己基、1,4-伸環己烯基、1,4-伸苯基、萘-1,5-二基、萘-2,6-二基、十氫萘-2,6-二基、1,2,3,4-四氫萘-2,6-二基、四氫吡喃-2,5-二基、1,3-二噁烷-2,5-二基、嘧啶-2,5-二基或吡啶-2,5-二基,這些環中,至少一個氫可經氟、氯、碳數1至10的烷基、碳數2至10的烯基、碳數1至10的烷氧基或碳數2至10的烯氧基取代,這些基中,至少一個氫可經氟或氯取代;a為0、1、2或3;Z1 為單鍵或碳數1至10的伸烷基,所述伸烷基中,至少一個-CH2 -可經-O-、-CO-、-COO-、-OCO-或-OCOO-取代,至少一個-CH2 CH2 -可經-CH=CH-或-C≡C-取代,這些基中,至少一個氫可經氟或氯取代;Sp1 及Sp2 為單鍵或碳數1至15的伸烷基,所述伸烷基中,至少一個-CH2 -可經-O-、-CO-、-COO-、-OCO-或-OCOO-取代,至少一個-CH2 CH2 -可經-CH=CH-或-C≡C-取代,這些基中,至少一個氫可經氟或氯取代;M1 、M2 、M3 及M4 為氫、氟、氯、碳數1至5的烷基、或者至少一個氫經氟或氯取代的碳數1至5的烷基;R1 為氫、碳數1至10的烷基、碳數1至10的烷氧基或碳數1至10的烷氧基烷基,這些基中,至少一個-CH2 CH2 -可經-CH=CH-或-C≡C-取代,這些基中,至少一個氫可經氟或氯取代;R2 為選自式(1-a)、式(1-b)及式(1-c)所表示的基中的基;
    Figure 03_image008
    式(1-a)、式(1-b)及式(1-c)中,Sp3 及Sp4 為單鍵或碳數1至15的伸烷基,所述伸烷基中,至少一個-CH2 -可經-O-、-CO-、-COO-、-OCO-或-OCOO-取代,至少一個-CH2 CH2 -可經-CH=CH-或-C≡C-取代,這些基中,至少一個氫可經氟或氯取代;R3 為氫、碳數1至10的烷基、碳數1至10的烷氧基或碳數1至10的烷氧基烷基;S1 及S2 為>C<;X1 為-OH、-NH2 、-N(R4 )2 、-COOH、-SH或-Si(R4 )3 ,此處,R4 為氫或碳數1至10的烷基,所述烷基中,至少一個-CH2 -可經-O-取代,至少一個-CH2 CH2 -可經-CH=CH-取代,這些基中,至少一個氫可經氟或氯取代。
  2. 如申請專利範圍第1項所述的液晶組成物,其含有選自式(1-1)至式(1-18)所表示的聚合性的極性化合物中的至少一種化合物作為第一添加物,
    Figure 03_image010
    Figure 03_image012
    式(1-1)至式(1-18)中,Y1 、Y2 、Y3 、Y4 、Y5 及Y6 為氫、氟、甲基或乙基;Z11 及Z12 為單鍵或-CH2 CH2 -;R3 為氫、碳數1至10的烷基、碳數1至10的烷氧基或碳數1至10的烷氧基烷基;S1 為>C<;Sp1 、Sp2 、Sp3 及Sp4 為單鍵或碳數1至10的伸烷基,所述伸烷基中,至少一個-CH2 -可經-O-取代。
  3. 如申請專利範圍第1項所述的液晶組成物,其中,第一添加物的比例為10質量%以下。
  4. 如申請專利範圍第1項所述的液晶組成物,其中,含有選自式(2)所表示的化合物中的至少一種化合物作為第一成分,
    Figure 03_image014
    式(2)中,R5 及R6 為氫、碳數1至12的烷基、碳數1至12的烷氧基、碳數2至12的烯基、碳數2至12的烯氧基、或者至少一個氫經氟或氯取代的碳數1至12的烷基;環B及環D為1,4-伸環己基、1,4-伸環己烯基、四氫吡喃-2,5-二基、1,4-伸苯基、至少一個氫經氟或氯取代的1,4-伸苯基、萘-2,6-二基、至少一個氫經氟或氯取代的萘-2,6-二基、色原烷-2,6-二基、或者至少一個氫經氟或氯取代的色原烷-2,6-二基;環C為2,3-二氟-1,4-伸苯基、2-氯-3-氟-1,4-伸苯基、2,3-二氟-5-甲基-1,4-伸苯基、3,4,5-三氟萘-2,6-二基、7,8-二氟色原烷-2,6-二基、3,4,5,6-四氟茀-2,7-二基、4,6-二氟二苯並呋喃-3,7-二基、4,6-二氟二苯並噻吩-3,7-二基或1,1,6,7-四氟茚滿-2,5-二基;Z2 及Z3 為單鍵、伸乙基、伸乙烯基、亞甲氧基或羰氧基;b為0、1、2或3,c為0或1,而且b與c的和為3以下。
  5. 如申請專利範圍第1項所述的液晶組成物,其中,含有選自式(2-1)至式(2-35)所表示的化合物中的至少一種化合物作為第一成分,
    Figure 03_image016
    Figure 03_image018
    Figure 03_image020
    式(2-1)至式(2-35)中,R5 及R6 為氫、碳數1至12的烷基、碳數1至12的烷氧基、碳數2至12的烯基、碳數2至12的烯氧基、或者至少一個氫經氟或氯取代的碳數1至12的烷基。
  6. 如申請專利範圍第4項所述的液晶組成物,其中,第一成分的比例為10質量%至90質量%的範圍。
  7. 如申請專利範圍第1項所述的液晶組成物,其中,含有選自式(3)所表示的化合物中的至少一種化合物作為第二成分,
    Figure 03_image022
    式(3)中,R7 及R8 為碳數1至12的烷基、碳數1至12的烷氧基、碳數2至12的烯基、至少一個氫經氟或氯取代的碳數1至12的烷基、或者至少一個氫經氟或氯取代的碳數2至12的烯基;環E及環F為1,4-伸環己基、1,4-伸苯基、2-氟-1,4-伸苯基或2,5-二氟-1,4-伸苯基;Z4 為單鍵、伸乙基、伸乙烯基、亞甲氧基或羰氧基;d為1、2或3。
  8. 如申請專利範圍第1項所述的液晶組成物,其中,含有選自式(3-1)至式(3-13)所表示的化合物中的至少一種化合物作為第二成分,
    Figure 03_image024
    式(3-1)至式(3-13)中,R7 及R8 為碳數1至12的烷基、碳數1至12的烷氧基、碳數2至12的烯基、至少一個氫經氟或氯取代的碳數1至12的烷基、或者至少一個氫經氟或氯取代的碳數2至12的烯基。
  9. 如申請專利範圍第7項所述的液晶組成物,其中,第二成分的比例為10質量%至90質量%的範圍。
  10. 如申請專利範圍第4項所述的液晶組成物,其中,含有選自式(3)所表示的化合物中的至少一種化合物作為第二成分,
    Figure 03_image022
    式(3)中,R7 及R8 為碳數1至12的烷基、碳數1至12的烷氧基、碳數2至12的烯基、至少一個氫經氟或氯取代的碳數1至12的烷基、或者至少一個氫經氟或氯取代的碳數2至12的烯基;環E及環F為1,4-伸環己基、1,4-伸苯基、2-氟-1,4-伸苯基或2,5-二氟-1,4-伸苯基;Z4 為單鍵、伸乙基、伸乙烯基、亞甲氧基或羰氧基;d為1、2或3。
  11. 如申請專利範圍第1項所述的液晶組成物,其中,含有選自式(4)所表示的聚合性化合物中的至少一種化合物作為第二添加物,
    Figure 03_image026
    式(4)中,環G及環J為環己基、環己烯基、苯基、1-萘基、2-萘基、四氫吡喃-2-基、1,3-二噁烷-2-基、嘧啶-2-基或吡啶-2-基,這些環中,至少一個氫可經氟、氯、碳數1至12的烷基、碳數1至12的烷氧基、或者至少一個氫經氟或氯取代的碳數1至12的烷基取代;環I為1,4-伸環己基、1,4-伸環己烯基、1,4-伸苯基、萘-1,2-二基、萘-1,3-二基、萘-1,4-二基、萘-1,5-二基、萘-1,6-二基、萘-1,7-二基、萘-1,8-二基、萘-2,3-二基、萘-2,6-二基、萘-2,7-二基、四氫吡喃-2,5-二基、1,3-二噁烷-2,5-二基、嘧啶-2,5-二基或吡啶-2,5-二基,這些環中,至少一個氫可經氟、氯、碳數1至12的烷基、碳數1至12的烷氧基、或者至少一個氫經氟或氯取代的碳數1至12的烷基取代;Z5 及Z6 為單鍵或碳數1至10的伸烷基,所述Z5 及Z6 中,至少一個-CH2 -可經-O-、-CO-、-COO-或-OCO-取代,而且至少一個-CH2 CH2 -可經-CH=CH-、-C(CH3 )=CH-、-CH=C(CH3 )-或-C(CH3 )=C(CH3 )-取代,至少一個氫可經氟或氯取代;P1 、P2 及P3 為聚合性基;Sp5 、Sp6 及Sp7 為單鍵或碳數1至10的伸烷基,所述Sp5 、Sp6 及Sp7 中,至少一個-CH2 -可經-O-、-COO-、-OCO-或-OCOO-取代,而且至少一個-CH2 CH2 -可經-CH=CH-或-C≡C-取代,至少一個氫可經氟或氯取代;h為0、1或2;e、f及g為0、1、2、3或4,而且e、f及g的和為1以上。
  12. 如申請專利範圍第11項所述的液晶組成物,其中,式(4)中,P1 、P2 及P3 為選自式(P-1)至式(P-5)所表示的聚合性基中的基,
    Figure 03_image028
    式(P-1)至式(P-5)中,M5 、M6 及M7 為氫、氟、碳數1至5的烷基、或者至少一個氫經氟或氯取代的碳數1至5的烷基。
  13. 如申請專利範圍第1項所述的液晶組成物,其中,含有選自式(4-1)至式(4-29)所表示的聚合性化合物中的至少一種化合物作為第二添加物,
    Figure 03_image030
    Figure 03_image032
    Figure 03_image034
    式(4-1)至式(4-29)中,P1 、P2 及P3 為選自式(P-1)至式(P-3)所表示的聚合性基中的基;Sp5 、Sp6 及Sp7 為單鍵或碳數1至10的伸烷基,所述Sp5 、Sp6 及Sp7 中,至少一個-CH2 -可經-O-、-COO-、-OCO-或-OCOO-取代,而且至少一個-CH2 CH2 -可經-CH=CH-或-C≡C-取代,至少一個氫可經氟或氯取代;
    Figure 03_image036
    式(P-1)至式(P-3)中,M5 、M6 及M7 為氫、氟、碳數1至5的烷基、或者至少一個氫經氟或氯取代的碳數1至5的烷基。
  14. 如申請專利範圍第11項所述的液晶組成物,其中,第二添加物的比例為0.03質量%至10質量%的範圍。
  15. 如申請專利範圍第4項所述的液晶組成物,其中,含有選自式(4)所表示的聚合性化合物中的至少一種化合物作為第二添加物,
    Figure 03_image026
    式(4)中,環G及環J為環己基、環己烯基、苯基、1-萘基、2-萘基、四氫吡喃-2-基、1,3-二噁烷-2-基、嘧啶-2-基或吡啶-2-基,這些環中,至少一個氫可經氟、氯、碳數1至12的烷基、碳數1至12的烷氧基、或者至少一個氫經氟或氯取代的碳數1至12的烷基取代;環I為1,4-伸環己基、1,4-伸環己烯基、1,4-伸苯基、萘-1,2-二基、萘-1,3-二基、萘-1,4-二基、萘-1,5-二基、萘-1,6-二基、萘-1,7-二基、萘-1,8-二基、萘-2,3-二基、萘-2,6-二基、萘-2,7-二基、四氫吡喃-2,5-二基、1,3-二噁烷-2,5-二基、嘧啶-2,5-二基或吡啶-2,5-二基,這些環中,至少一個氫可經氟、氯、碳數1至12的烷基、碳數1至12的烷氧基、或者至少一個氫經氟或氯取代的碳數1至12的烷基取代;Z5 及Z6 為單鍵或碳數1至10的伸烷基,所述Z5 及Z6 中,至少一個-CH2 -可經-O-、-CO-、-COO-或-OCO-取代,而且至少一個-CH2 CH2 -可經-CH=CH-、-C(CH3 )=CH-、-CH=C(CH3 )-或-C(CH3 )=C(CH3 )-取代,至少一個氫可經氟或氯取代;P1 、P2 及P3 為聚合性基;Sp5 、Sp6 及Sp7 為單鍵或碳數1至10的伸烷基,所述Sp5 、Sp6 及Sp7 中,至少一個-CH2 -可經-O-、-COO-、-OCO-或-OCOO-取代,而且至少一個-CH2 CH2 -可經-CH=CH-或-C≡C-取代,至少一個氫可經氟或氯取代;h為0、1或2;e、f及g為0、1、2、3或4,而且e、f及g的和為1以上。
  16. 如申請專利範圍第7項所述的液晶組成物,其中,含有選自式(4)所表示的聚合性化合物中的至少一種化合物作為第二添加物,
    Figure 03_image026
    式(4)中,環G及環J為環己基、環己烯基、苯基、1-萘基、2-萘基、四氫吡喃-2-基、1,3-二噁烷-2-基、嘧啶-2-基或吡啶-2-基,這些環中,至少一個氫可經氟、氯、碳數1至12的烷基、碳數1至12的烷氧基、或者至少一個氫經氟或氯取代的碳數1至12的烷基取代;環I為1,4-伸環己基、1,4-伸環己烯基、1,4-伸苯基、萘-1,2-二基、萘-1,3-二基、萘-1,4-二基、萘-1,5-二基、萘-1,6-二基、萘-1,7-二基、萘-1,8-二基、萘-2,3-二基、萘-2,6-二基、萘-2,7-二基、四氫吡喃-2,5-二基、1,3-二噁烷-2,5-二基、嘧啶-2,5-二基或吡啶-2,5-二基,這些環中,至少一個氫可經氟、氯、碳數1至12的烷基、碳數1至12的烷氧基、或者至少一個氫經氟或氯取代的碳數1至12的烷基取代;Z5 及Z6 為單鍵或碳數1至10的伸烷基,所述Z5 及Z6 中,至少一個-CH2 -可經-O-、-CO-、-COO-或-OCO-取代,而且至少一個-CH2 CH2 -可經-CH=CH-、-C(CH3 )=CH-、-CH=C(CH3 )-或-C(CH3 )=C(CH3 )-取代,至少一個氫可經氟或氯取代;P1 、P2 及P3 為聚合性基;Sp5 、Sp6 及Sp7 為單鍵或碳數1至10的伸烷基,所述Sp5 、Sp6 及Sp7 中,至少一個-CH2 -可經-O-、-COO-、-OCO-或-OCOO-取代,而且至少一個-CH2 CH2 -可經-CH=CH-或-C≡C-取代,至少一個氫可經氟或氯取代;h為0、1或2;e、f及g為0、1、2、3或4,而且e、f及g的和為1以上。
  17. 如申請專利範圍第10項所述的液晶組成物,其中,含有選自式(4)所表示的聚合性化合物中的至少一種化合物作為第二添加物,
    Figure 03_image026
    式(4)中,環G及環J為環己基、環己烯基、苯基、1-萘基、2-萘基、四氫吡喃-2-基、1,3-二噁烷-2-基、嘧啶-2-基或吡啶-2-基,這些環中,至少一個氫可經氟、氯、碳數1至12的烷基、碳數1至12的烷氧基、或者至少一個氫經氟或氯取代的碳數1至12的烷基取代;環I為1,4-伸環己基、1,4-伸環己烯基、1,4-伸苯基、萘-1,2-二基、萘-1,3-二基、萘-1,4-二基、萘-1,5-二基、萘-1,6-二基、萘-1,7-二基、萘-1,8-二基、萘-2,3-二基、萘-2,6-二基、萘-2,7-二基、四氫吡喃-2,5-二基、1,3-二噁烷-2,5-二基、嘧啶-2,5-二基或吡啶-2,5-二基,這些環中,至少一個氫可經氟、氯、碳數1至12的烷基、碳數1至12的烷氧基、或者至少一個氫經氟或氯取代的碳數1至12的烷基取代;Z5 及Z6 為單鍵或碳數1至10的伸烷基,所述Z5 及Z6 中,至少一個-CH2 -可經-O-、-CO-、-COO-或-OCO-取代,而且至少一個-CH2 CH2 -可經-CH=CH-、-C(CH3 )=CH-、-CH=C(CH3 )-或-C(CH3 )=C(CH3 )-取代,至少一個氫可經氟或氯取代;P1 、P2 及P3 為聚合性基;Sp5 、Sp6 及Sp7 為單鍵或碳數1至10的伸烷基,所述Sp5 、Sp6 及Sp7 中,至少一個-CH2 -可經-O-、-COO-、-OCO-或-OCOO-取代,而且至少一個-CH2 CH2 -可經-CH=CH-或-C≡C-取代,至少一個氫可經氟或氯取代;h為0、1或2;e、f及g為0、1、2、3或4,而且e、f及g的和為1以上。
  18. 如申請專利範圍第1項所述的液晶組成物,其中,含有選自式(5-1)至式(5-3)所表示的聚合性的極性化合物中的至少一種化合物作為第三添加物,
    Figure 03_image038
    式(5-1)至式(5-3)中,R50 為氫、氟、氯、碳數1至12的烷基、碳數1至12的烷氧基、碳數2至12的烯基、至少一個氫經氟或氯取代的碳數1至12的烷基、或者至少一個氫經氟取代的碳數2至12的烯基;R51 為-OH、-NH2 、-OR52 、-N(R52 )2 、-COOH、-SH或-Si(R52 )3 所表示的基,此處,R52 為氫或碳數1至5的烷基,所述烷基中,至少一個-CH2 -可經-O-取代,至少一個-CH2 CH2 -可經-CH=CH-取代,這些基中,至少一個氫可經氟取代;R53 為氫或碳數1至5的烷基,所述烷基中,至少一個-CH2 -可經-O-取代,至少一個-CH2 CH2 -可經-CH=CH-取代,這些基中,至少一個氫可經氟取代;環A50 及環B50 為1,4-伸環己基、1,4-伸環己烯基、1,4-伸苯基、萘-2,6-二基、四氫吡喃-2,5-二基、1,3-二噁烷-2,5-二基、嘧啶-2,5-二基或吡啶-2,5-二基,這些環中,至少一個氫可經氟、碳數1至12的烷基、碳數1至12的烷氧基、或者至少一個氫經氟取代的碳數1至12的烷基取代;Z50 為單鍵、-CH2 CH2 -、-CH=CH-、-C≡C-、-COO-、-OCO-、-CF2 O-、-OCF2 -、-CH2 O-、-OCH2 -或-CF=CF-;Sp51 、Sp52 、Sp53 、Sp54 及Sp55 為單鍵或碳數1至7的伸烷基,所述伸烷基中,至少一個-CH2 -可經-O-、-COO-或-OCO-取代,至少一個-CH2 CH2 -可經-CH=CH-取代,這些基中,至少一個氫可經氟取代;a50 為0、1、2、3或4。
  19. 一種液晶顯示元件,其含有如申請專利範圍第1項所述的液晶組成物。
  20. 一種不具有配向膜的液晶顯示元件,其含有如申請專利範圍第1項所述的液晶組成物,且所述液晶組成物中的聚合性化合物進行聚合。
TW108105882A 2018-05-21 2019-02-21 液晶組成物及液晶顯示元件 TW202003816A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018097312 2018-05-21
JP2018-097312 2018-05-21

Publications (1)

Publication Number Publication Date
TW202003816A true TW202003816A (zh) 2020-01-16

Family

ID=68622467

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108105882A TW202003816A (zh) 2018-05-21 2019-02-21 液晶組成物及液晶顯示元件

Country Status (3)

Country Link
JP (1) JP2019203114A (zh)
CN (1) CN110511765A (zh)
TW (1) TW202003816A (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107849457B (zh) * 2015-07-23 2021-11-30 捷恩智株式会社 液晶组合物及液晶显示元件
JP2017115122A (ja) * 2015-12-21 2017-06-29 Jnc株式会社 液晶組成物および液晶表示素子
CN108473873A (zh) * 2016-04-18 2018-08-31 捷恩智株式会社 液晶组合物、以及液晶显示元件
TW201816080A (zh) * 2016-08-03 2018-05-01 日商捷恩智股份有限公司 液晶顯示元件、顯示裝置

Also Published As

Publication number Publication date
JP2019203114A (ja) 2019-11-28
CN110511765A (zh) 2019-11-29

Similar Documents

Publication Publication Date Title
TWI674313B (zh) 液晶組成物、液晶顯示元件及液晶組成物的用途
TWI694141B (zh) 液晶組成物、液晶顯示元件及液晶組成物的用途
TWI719139B (zh) 液晶組成物及液晶顯示元件
TWI729989B (zh) 液晶組成物、液晶顯示元件、聚合物穩定配向型的液晶顯示元件以及液晶組成物的用途
TW201807175A (zh) 液晶組成物及其用途、以及液晶顯示元件
TWI661034B (zh) 液晶組成物與其用途及液晶顯示元件
TWI663251B (zh) 液晶組成物、液晶組成物的用途及液晶顯示元件
TWI693272B (zh) 液晶組成物、液晶顯示元件以及液晶組成物的用途
TW201809227A (zh) 液晶組成物及液晶顯示元件
TWI713651B (zh) 液晶組成物及液晶顯示元件
JP2019127547A (ja) 液晶組成物、液晶素子、および液晶組成物の液晶素子における使用
TWI671386B (zh) 液晶組成物、液晶顯示元件及液晶組成物的用途
TW201840833A (zh) 液晶組成物及其用途、液晶顯示元件及高分子穩定取向型液晶顯示元件
TW201809235A (zh) 液晶組成物及其用途、液晶顯示元件、聚合物穩定配向型的 液晶顯示元件、及不具有配向膜的液晶顯示元件
TW202045699A (zh) 液晶組成物及其用途、以及液晶顯示元件
TW202028441A (zh) 液晶組成物及其用途、以及液晶顯示元件
TW202100727A (zh) 液晶組成物及液晶顯示元件
TWI633177B (zh) Liquid crystal composition and use thereof, liquid crystal display element, and polymerization Stable alignment type liquid crystal display element
TW202009236A (zh) 液晶組成物、液晶顯示元件及用於液晶顯示元件的用途
TW201945525A (zh) 液晶組成物及液晶顯示元件
TW202028821A (zh) 極性化合物、液晶組成物及液晶顯示元件
TW201912769A (zh) 液晶組成物、液晶顯示元件以及液晶組成物在液晶顯示元件中的應用
TW201930563A (zh) 液晶組成物及液晶顯示元件
TW202003816A (zh) 液晶組成物及液晶顯示元件
TW201903132A (zh) 液晶組成物及其用途、液晶顯示元件