TW202002481A - Controller for extending a protection period of a power converter and operational method thereof - Google Patents

Controller for extending a protection period of a power converter and operational method thereof Download PDF

Info

Publication number
TW202002481A
TW202002481A TW108111624A TW108111624A TW202002481A TW 202002481 A TW202002481 A TW 202002481A TW 108111624 A TW108111624 A TW 108111624A TW 108111624 A TW108111624 A TW 108111624A TW 202002481 A TW202002481 A TW 202002481A
Authority
TW
Taiwan
Prior art keywords
supply voltage
protection
power converter
controller
voltage
Prior art date
Application number
TW108111624A
Other languages
Chinese (zh)
Other versions
TWI694665B (en
Inventor
鄒明璋
葉之樸
盧宏儒
Original Assignee
通嘉科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 通嘉科技股份有限公司 filed Critical 通嘉科技股份有限公司
Priority to US16/435,544 priority Critical patent/US10700595B2/en
Publication of TW202002481A publication Critical patent/TW202002481A/en
Application granted granted Critical
Publication of TWI694665B publication Critical patent/TWI694665B/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/322Means for rapidly discharging a capacitor of the converter for protecting electrical components or for preventing electrical shock
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/344Active dissipative snubbers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

A controller for extending a protection period of a power converter includes a delay circuit. The delay circuit is coupled to a supply voltage pin of the controller. When the power converter enters a protection mode, the delay circuit is enabled, receives a supply voltage through the supply voltage pin, and extends a protection period corresponding to the protection mode according to the supply voltage.

Description

用於延長電源轉換器的保護期間的控制器及其操作方法Controller for extending protection period of power converter and operation method thereof

本發明是有關於一種應用於電源轉換器的控制器及其操作方法,尤指一種用於延長電源轉換器的保護期間的控制器及其操作方法。The invention relates to a controller applied to a power converter and an operation method thereof, in particular to a controller used to extend the protection period of the power converter and an operation method thereof.

在現有技術中,當電源轉換器運用在電視且進入一保護模式(其中該保護模式是對應於一輸出短路保護(output short-circuited protection, OSCP)或一過電流保護(over current protection, OCP))時,因為該電視無法任意地關機,所以應用於該電源轉換器的控制器內的閘極信號產生電路會產生類似突發模式(burst mode)的閘極控制信號至該電源轉換器的一次側的功率開關,也就是說在該閘極控制信號致能期間(對應該保護模式的恢復期間),該功率開關的運作仍會產生熱。如果在該閘極控制信號去能期間(對應該保護模式的保護期間),該功率開關在該恢復期間所產生的熱無法有效散去,則該功率開關在該恢復期間所產生的熱將可能危害該電視機內的元件。因此,如何使該功率開關在該恢復期間所產生的熱有效散去成為一項重要課題。In the prior art, when the power converter is used in a TV and enters a protection mode (where the protection mode corresponds to an output short-circuited protection (OSCP) or an over current protection (OCP) ), because the TV cannot be turned off arbitrarily, the gate signal generation circuit applied to the controller of the power converter will generate a burst mode gate control signal to the power converter once. The power switch on the side, that is, during the enable period of the gate control signal (corresponding to the recovery period of the protection mode), the operation of the power switch still generates heat. If the heat generated by the power switch during the recovery period cannot be effectively dissipated during the gate control signal deactivation period (the protection period corresponding to the protection mode), the heat generated by the power switch during the recovery period may be Hazardous to components in the TV. Therefore, how to effectively dissipate the heat generated by the power switch during the recovery period becomes an important issue.

本發明的一實施例提供一種用於延長電源轉換器的保護期間的控制器。該控制器包含一延遲電路。該延遲電路耦接於該控制器的一供電電壓接腳,其中當該電源轉換器進入一保護模式時,該延遲電路致能,通過該供電電壓接腳接收一供電電壓,且根據該供電電壓延長對應該保護模式的保護期間。An embodiment of the present invention provides a controller for extending the protection period of a power converter. The controller includes a delay circuit. The delay circuit is coupled to a power supply voltage pin of the controller, wherein when the power converter enters a protection mode, the delay circuit is enabled to receive a power supply voltage through the power supply voltage pin and according to the power supply voltage Extend the protection period corresponding to the protection mode.

本發明的另一實施例提供一種用於延長電源轉換器的保護期間的控制器的操作方法,其中該控制器包含一延遲電路以及該延遲電路包含一第一電流源、一延遲器和一第二電流源。該操作方法包含該電源轉換器進入一保護模式;該第一電流源根據對應該保護模式的一保護信號和一供電電壓產生一第一放電電流,且該第一放電電流,該電源轉換器的一次側的電容,以及有關該電源轉換器的一次側的輸入端的一充電電流決定該供電電壓;該延遲器根據該保護信號和有關該電源轉換器的一次側的偵測電壓,產生一延遲致能信號,其中該延遲致能信號對應一預定延遲時間;及該第二電流源根據該延遲致能信號產生一第二放電電流,且該第二放電電流和該第一放電電流,該電容,以及該充電電流決定該供電電壓。Another embodiment of the present invention provides an operation method of a controller for extending the protection period of a power converter, wherein the controller includes a delay circuit and the delay circuit includes a first current source, a delay, and a first Two current sources. The operation method includes the power converter entering a protection mode; the first current source generates a first discharge current according to a protection signal and a supply voltage corresponding to the protection mode, and the first discharge current, the power converter's The capacitor on the primary side and a charging current on the input of the primary side of the power converter determine the supply voltage; the delayer generates a delay response based on the protection signal and the detected voltage on the primary side of the power converter An enable signal, wherein the delayed enable signal corresponds to a predetermined delay time; and the second current source generates a second discharge current according to the delayed enable signal, and the second discharge current and the first discharge current, the capacitor, And the charging current determines the supply voltage.

本發明的另一實施例提供一種用於延長電源轉換器的保護期間的控制器的操作方法,其中該控制器包含一延遲電路以及該延遲電路包含一電流源和一計數器。該操作方法包含該電源轉換器進入一保護模式;該電流源根據對應該保護模式的一保護信號致能;當一供電電壓小於一下限值時,該電流源產生一第一放電電流,且該第一放電電流,該電源轉換器的一次側的電容,以及有關該電源轉換器的一次側的輸入端的一充電電流決定該供電電壓;當該供電電壓大於一上限值時,該電流源產生一第二放電電流,且該第二放電電流,該電容,以及該充電電流決定該供電電壓;及當該計數器計數該供電電壓小於該下限值的次數等於一預定次數時,該計數器使該電流源產生該第二放電電流;其中該第一放電電流小於該充電電流,以及該第二放電電流大於該充電電流。Another embodiment of the present invention provides an operation method of a controller for extending the protection period of a power converter, wherein the controller includes a delay circuit and the delay circuit includes a current source and a counter. The operation method includes the power converter entering a protection mode; the current source is enabled according to a protection signal corresponding to the protection mode; when a supply voltage is less than a lower limit, the current source generates a first discharge current, and the The first discharge current, the capacitance of the primary side of the power converter, and a charging current related to the input of the primary side of the power converter determine the supply voltage; when the supply voltage is greater than an upper limit, the current source generates A second discharge current, and the second discharge current, the capacitor, and the charging current determine the power supply voltage; and when the number of times the counter counts that the power supply voltage is less than the lower limit value is equal to a predetermined number of times, the counter causes the The current source generates the second discharge current; wherein the first discharge current is less than the charging current, and the second discharge current is greater than the charging current.

本發明提供一種用於延長電源轉換器的保護期間的控制器及其操作方法。該控制器及該操作方法是當該電源轉換器進入保護模式後,利用一延遲電路根據一供電電壓延長對應該保護模式的保護期間。因此,因為本發明可延長該保護期間,所以相較於現有技術,本發明可使該電源轉換器的功率開關在對應該保護模式的恢復期間所產生的熱有效散去。另外,因為該控制器是直接通過一供電電壓接腳控制該供電電壓,所以該控制器不須額外的接腳。The invention provides a controller for extending the protection period of a power converter and an operation method thereof. The controller and the operating method are to use a delay circuit to extend the protection period corresponding to the protection mode according to a supply voltage after the power converter enters the protection mode. Therefore, because the present invention can extend the protection period, compared with the prior art, the present invention can effectively dissipate the heat generated by the power switch of the power converter during the recovery period corresponding to the protection mode. In addition, because the controller directly controls the power supply voltage through a power supply voltage pin, the controller does not require additional pins.

請參照第1圖,第1圖是本發明的第一實施例所公開的一種用於延長電源轉換器100的保護期間的控制器200的示意圖,其中電源轉換器100是一返馳式電源轉換器(flyback power converter),且為了簡化第1圖,所以第1圖只顯示電源轉換器100和控制器200與本發明相關的元件。如第1圖所示,控制器200包含一延遲電路202,以及延遲電路202包含一第一電流源2022、一延遲器2024和一第二電流源2026,其中第一電流源2022耦接於一供電電壓接腳204,第二電流源2026耦接於延遲器2024和供電電壓接腳204,以及控制器200通過供電電壓接腳204接收一供電電壓VCC。如第1圖所示,控制器200內的保護電路(未繪示於第1圖的控制器200內)可根據電源轉換器100的二次側SEC的輸出電流IOUT,判斷是否使電源轉換器100進入一保護模式,其中該保護模式是對應於一輸出短路保護或一過電流保護。另外,該保護電路根據輸出電流IOUT判斷是否進入該保護模式的方法是本發明領域具有熟知技藝者熟知,在此不再贅述。Please refer to FIG. 1, which is a schematic diagram of a controller 200 for extending the protection period of the power converter 100 disclosed in the first embodiment of the present invention, wherein the power converter 100 is a flyback power conversion Flyback power converter, and in order to simplify FIG. 1, FIG. 1 only shows the components of the power converter 100 and the controller 200 related to the present invention. As shown in FIG. 1, the controller 200 includes a delay circuit 202, and the delay circuit 202 includes a first current source 2022, a delay 2024, and a second current source 2026, wherein the first current source 2022 is coupled to a The power supply voltage pin 204, the second current source 2026 is coupled to the delayer 2024 and the power supply voltage pin 204, and the controller 200 receives a power supply voltage VCC through the power supply voltage pin 204. As shown in FIG. 1, the protection circuit in the controller 200 (not shown in the controller 200 in FIG. 1) can determine whether to enable the power converter according to the output current IOUT of the secondary side SEC of the power converter 100 100 enters a protection mode, where the protection mode corresponds to an output short-circuit protection or an overcurrent protection. In addition, the method for the protection circuit to determine whether to enter the protection mode according to the output current IOUT is well-known to those skilled in the art in the field of the present invention, which will not be repeated here.

請參照第2圖,第2圖是說明在電源轉換器100進入該保護模式後,控制器200的供電電壓VCC和控制器200產生的一閘極控制信號GCS的時序示意圖。如第2圖所示,在一時間T1,供電電壓VCC大於一低電壓鎖定(under voltage lock out)開啟電壓UVLOON,所以控制器200內的閘極信號產生電路(未繪示於第1圖的控制器200內)將於一時間T2與一時間T3之間產生閘極控制信號GCS至電源轉換器100的一次側PRI的功率開關102,其中閘極控制信號GCS為脈波寬度調變(pulse width modulation, PWM)信號,閘極控制信號GCS通過控制器200的一接腳206傳送至功率開關102,且時間T2與時間T3之間的時間區間為電源轉換器100對應該保護模式的恢復期間TR。如第2圖所示,在時間T3,該閘極信號產生電路可根據電源轉換器100的一次側PRI的偵測電壓VCS(如第1圖所示)和一參考電壓VREF停止產生閘極控制信號GCS至功率開關102,且該保護電路產生一保護信號OCP至第一電流源2022和延遲器2024,其中偵測電壓VCS是由流經電源轉換器100的一次側PRI的一次側電流IPRI和一電阻103決定,且控制器200通過一接腳208接收偵測電壓VCS。因此,因為該保護電路產生保護信號OCP至第一電流源2022,所以第一電流源2022致能且開始根據供電電壓VCC產生一第一放電電流IDIS1對一電容104(如第1圖所示)放電,其中第一放電電流IDIS1會隨供電電壓VCC的變化而改變,且第一放電電流IDIS1通過控制器200的接腳210流至一地端GND。如第1、2圖所示,在恢復期間TR,因為只有一充電電流IC對電容104充電,所以此時供電電壓VCC是由充電電流IC和電容104決定,導致供電電壓VCC維持一第一穩定狀態。在時間T3後,第一放電電流IDIS1開始對電容104放電,所以供電電壓VCC是由第一放電電流IDIS1、充電電流IC和電容104決定,其中在本發明的一實施例中,第一放電電流IDIS1在時間T3時大於充電電流IC,所以供電電壓VCC會開始逐漸降低直到一時間T4(因為第一放電電流IDIS1會隨供電電壓VCC的變化而改變,所以在時間T4時,第一放電電流IDIS1等於充電電流IC,導致供電電壓VCC在時間T4後維持一第二穩定狀態直到一時間T5)。Please refer to FIG. 2. FIG. 2 is a timing diagram illustrating the power supply voltage VCC of the controller 200 and a gate control signal GCS generated by the controller 200 after the power converter 100 enters the protection mode. As shown in FIG. 2, at a time T1, the supply voltage VCC is greater than an under voltage lock out (under voltage lock out) turn-on voltage UVLOON, so the gate signal generation circuit in the controller 200 (not shown in FIG. 1) In the controller 200), a gate control signal GCS will be generated between a time T2 and a time T3 to the power switch 102 of the primary PRI of the power converter 100, wherein the gate control signal GCS is pulse width modulation (pulse) width modulation, PWM) signal, the gate control signal GCS is transmitted to the power switch 102 through a pin 206 of the controller 200, and the time interval between the time T2 and the time T3 is the recovery period of the power converter 100 corresponding to the protection mode TR. As shown in FIG. 2, at time T3, the gate signal generation circuit may stop generating gate control according to the detection voltage VCS (as shown in FIG. 1) of the primary PRI of the power converter 100 and a reference voltage VREF The signal GCS is sent to the power switch 102, and the protection circuit generates a protection signal OCP to the first current source 2022 and the delay 2024, wherein the detection voltage VCS is caused by the primary current IPRI flowing through the primary PRI of the power converter 100 and A resistor 103 determines, and the controller 200 receives the detection voltage VCS through a pin 208. Therefore, because the protection circuit generates the protection signal OCP to the first current source 2022, the first current source 2022 is enabled and begins to generate a first discharge current IDIS1 to a capacitor 104 according to the supply voltage VCC (as shown in FIG. 1) Discharge, wherein the first discharge current IDIS1 will change with the change of the supply voltage VCC, and the first discharge current IDIS1 flows to a ground terminal GND through the pin 210 of the controller 200. As shown in Figures 1 and 2, during the recovery period TR, because only a charging current IC charges the capacitor 104, the power supply voltage VCC is determined by the charging current IC and the capacitor 104 at this time, resulting in the power supply voltage VCC maintaining a first stability status. After the time T3, the first discharge current IDIS1 starts to discharge the capacitor 104, so the supply voltage VCC is determined by the first discharge current IDIS1, the charging current IC and the capacitor 104. In an embodiment of the present invention, the first discharge current IDIS1 is greater than the charging current IC at time T3, so the supply voltage VCC will gradually decrease until a time T4 (because the first discharge current IDIS1 will change with the change of the supply voltage VCC, so at time T4, the first discharge current IDIS1 It is equal to the charging current IC, which causes the power supply voltage VCC to maintain a second stable state after a time T4 until a time T5).

如第2圖所示,在時間T5,延遲器2024可根據保護信號OCP和偵測電壓VCS,產生一延遲致能信號DES至第二電流源2026,所以第二電流源2026致能且開始產生一第二放電電流IDIS2對電容104放電,其中延遲致能信號DES對應一預定延遲時間,時間T3與時間T5之間的時間區間為電源轉換器100對應該保護模式的保護期間TP,且第二放電電流IDIS2通過控制器200的接腳210流至地端GND。如第2圖所示,在時間T5後,第二放電電流IDIS2開始對電容104放電(其中第一放電電流IDIS1還是繼續對電容104放電,所以供電電壓VCC是由第一放電電流IDIS1、第二放電電流IDIS2、充電電流IC和電容104決定,導致供電電壓VCC在時間T5後從該第二穩定狀態開始降低直到小於一低電壓鎖定關閉電壓UVLOOFF(如第2圖所示的時間T6)。如第2圖所示,在時間T6,因為供電電壓VCC低於低電壓鎖定關閉電壓UVLOOFF,所以控制器200去能延遲電路2024,導致供電電壓VCC逐漸增加直到大於低電壓鎖定開啟電壓UVLOON(如第2圖所示的時間T7)。如第2圖所示,在時間T7後,控制器200將重複上述時間T1-時間T7的操作原理直到電源轉換器100離開該保護模式。此外,本發明的另一實施例中,第二放電電流IDIS2可依據電源轉換器100的二次側SEC的輸出電壓而調整(其中該輸出電壓未標示於第1圖),例如當該輸出電壓高時,第二放電電流IDIS2較低,當該輸出電壓低時,第二放電電流IDIS2較高。As shown in FIG. 2, at time T5, the delayer 2024 can generate a delay enable signal DES to the second current source 2026 according to the protection signal OCP and the detection voltage VCS, so the second current source 2026 is enabled and begins to generate A second discharge current IDIS2 discharges the capacitor 104, wherein the delay enable signal DES corresponds to a predetermined delay time, the time interval between the time T3 and the time T5 is the protection period TP corresponding to the protection mode of the power converter 100, and the second The discharge current IDIS2 flows to the ground GND through the pin 210 of the controller 200. As shown in FIG. 2, after time T5, the second discharge current IDIS2 starts to discharge the capacitor 104 (where the first discharge current IDIS1 continues to discharge the capacitor 104, so the supply voltage VCC is determined by the first discharge current IDIS1, the second The discharge current IDIS2, the charge current IC, and the capacitor 104 determine that the supply voltage VCC decreases from the second stable state after time T5 until it is less than a low-voltage lock-off voltage UVLOOFF (time T6 shown in FIG. 2). As shown in FIG. 2, at time T6, because the power supply voltage VCC is lower than the low-voltage lock-off voltage UVLOOFF, the controller 200 disables the delay circuit 2024, causing the power supply voltage VCC to gradually increase until it is greater than the low-voltage lock-on voltage UVLOON (as in Time T7 shown in FIG. 2). As shown in FIG. 2, after time T7, the controller 200 will repeat the above operation principle from time T1 to time T7 until the power converter 100 leaves the protection mode. In addition, the present invention In another embodiment, the second discharge current IDIS2 can be adjusted according to the output voltage of the secondary side SEC of the power converter 100 (where the output voltage is not shown in FIG. 1), for example, when the output voltage is high, the second The discharge current IDIS2 is low, and when the output voltage is low, the second discharge current IDIS2 is high.

請參照第3、4圖,第3圖是說明第一電流源2022、延遲器2024和第二電流源2026的耦接關係示意圖,以及第4圖是說明延遲器2024的操作時序的示意圖。如第3圖所示,延遲器2024包含一比較器20242、一或閘20244、一反及閘20246、一脈波產生器20248和正反器D0-DN+1、DF。如第2、4圖所示,在一時間T41(對應第2圖的時間T2)和一時間T42(對應第2圖的時間T3)之間,因為閘極信號產生電路產生閘極控制信號GCS至功率開關102,所以偵測電壓VCS從零開始逐漸增加直到時間T3時等於參考電壓VREF。因此,在時間T41和時間T42之間,比較器20242所產生的比較信號VCOMP是高電位。另外,在時間T41和時間T42之間,該保護電路尚未產生保護信號OCP,所以保護信號OCP是低電位。另外,如第4圖所示,在時間T42後,比較信號VCOMP、保護信號OCP和脈波產生器20248所產生的脈波信號PUL可使正反器D0-DN+1的重置接腳R為低電位,所以延遲器2024可利用正反器D0-DN+1延遲一時脈信號CLK且於一時間T43(對應第2圖的時間T5)產生延遲致能信號DES至第二電流源2026,導致第二電流源2026致能且開始產生第二放電電流IDIS2對電容104放電,其中如第4圖所示,正反器D0-DN+1的串接即是用以決定該預定延遲時間,也就是說延遲器2024可利用正反器D0-DN+1改變該預定延遲時間的長度。另外,脈波產生器20248是根據保護信號OCP的上升緣,產生脈波信號PUL。另外,如第4圖所示,在時間T42後,正反器DF的重置信號EN為低電位以使保護信號OCP維持高電位。Please refer to FIGS. 3 and 4. FIG. 3 is a schematic diagram illustrating the coupling relationship between the first current source 2022, the delay 2024, and the second current source 2026, and FIG. 4 is a schematic diagram illustrating the operation timing of the delay 2024. As shown in FIG. 3, the delayer 2024 includes a comparator 20242, an OR gate 20244, an inverter gate 20246, a pulse generator 20248, and flip-flops D0-DN+1, DF. As shown in Figures 2 and 4, between a time T41 (corresponding to the time T2 in Figure 2) and a time T42 (corresponding to the time T3 in Figure 2), because the gate signal generation circuit generates the gate control signal GCS To the power switch 102, the detection voltage VCS gradually increases from zero until the time T3 is equal to the reference voltage VREF. Therefore, between time T41 and time T42, the comparison signal VCOMP generated by the comparator 20242 is high. In addition, between time T41 and time T42, the protection circuit has not yet generated the protection signal OCP, so the protection signal OCP is at a low potential. In addition, as shown in FIG. 4, after the time T42, the comparison signal VCOMP, the protection signal OCP and the pulse wave signal PUL generated by the pulse wave generator 20248 can make the reset pin R of the flip-flop D0-DN+1 Is low, so the delayer 2024 can use the flip-flop D0-DN+1 to delay a clock signal CLK and generate a delay enable signal DES to the second current source 2026 at a time T43 (corresponding to time T5 in FIG. 2), As a result, the second current source 2026 is enabled and begins to generate a second discharge current IDIS2 to discharge the capacitor 104. As shown in FIG. 4, the series connection of the flip-flops D0-DN+1 is used to determine the predetermined delay time, That is to say, the delay 2024 can use the flip-flops D0-DN+1 to change the length of the predetermined delay time. In addition, the pulse wave generator 20248 generates the pulse wave signal PUL according to the rising edge of the protection signal OCP. In addition, as shown in FIG. 4, after time T42, the reset signal EN of the flip-flop DF is at a low potential to maintain the protection signal OCP at a high potential.

在本發明的一實施例中,當電源轉換器100運用在一電視且進入該保護模式時,因為該電視無法任意地關機,所以控制器200會根據第2圖的時序運作。雖然如第2圖所示,該閘極信號產生電路在恢復期間TR仍會產生閘極控制信號GCS至功率開關102,但因為延遲器2024可利用正反器D0-DN+1延長該預定延遲時間(也就是延長保護期間TP,其中在保護期間TP,該閘極信號產生電路停止產生閘極控制信號GCS至功率開關102),所以控制器200可使電源轉換器100的功率開關102在恢復期間TR所產生的熱有效散去以保護該電視機內的元件。另外,因為控制器200是利用延遲電路202直接通過供電電壓接腳204控制供電電壓VCC,所以控制器200還是一6接腳的積體電路,也就是說本發明可使控制器200不須額外的接腳。In an embodiment of the present invention, when the power converter 100 is used in a TV and enters the protection mode, since the TV cannot be turned off arbitrarily, the controller 200 will operate according to the timing of FIG. 2. Although as shown in FIG. 2, the gate signal generating circuit still generates the gate control signal GCS to the power switch 102 during the recovery period, but because the delay 2024 can use the flip-flop D0-DN+1 to extend the predetermined delay Time (that is, to extend the protection period TP, where during the protection period TP, the gate signal generation circuit stops generating the gate control signal GCS to the power switch 102), so the controller 200 can enable the power switch 102 of the power converter 100 to recover During this period, the heat generated by the TR is effectively dissipated to protect the components in the TV. In addition, because the controller 200 uses the delay circuit 202 to directly control the power supply voltage VCC through the power supply voltage pin 204, the controller 200 is also a 6-pin integrated circuit, that is to say, the present invention enables the controller 200 without additional Pins.

請參照第5、6圖,第5圖是本發明的第二實施例所公開的一種用於延長電源轉換器100的保護期間的控制器500的示意圖,以及第6圖是說明在電源轉換器100進入該保護模式後,控制器500的供電電壓VCC和控制器500產生的閘極控制信號GCS的時序示意圖,其中為了簡化第5圖,所以第5圖只顯示電源轉換器100和控制器500與本發明相關的元件。如第5圖所示,控制器500和控制器200的差別在於控制器500包含一延遲電路502,以及延遲電路502包含一電流源5022和一計數器5024,其中電流源5022耦接於供電電壓接腳204,計數器5024耦接於電流源5022以及控制器500通過供電電壓接腳204接收供電電壓VCC。另外,如第6圖所示,控制器500的供電電壓VCC和控制器200的供電電壓VCC的差異在於對應保護時間TP的操作原理,詳述如下。Please refer to FIG. 5 and FIG. 6, FIG. 5 is a schematic diagram of a controller 500 for extending the protection period of the power converter 100 disclosed in the second embodiment of the present invention, and FIG. 6 is a diagram illustrating the power converter After 100 enters the protection mode, the timing diagram of the power supply voltage VCC of the controller 500 and the gate control signal GCS generated by the controller 500, in order to simplify FIG. 5, so FIG. 5 only shows the power converter 100 and the controller 500 Elements related to the present invention. As shown in FIG. 5, the difference between the controller 500 and the controller 200 is that the controller 500 includes a delay circuit 502, and the delay circuit 502 includes a current source 5022 and a counter 5024, wherein the current source 5022 is coupled to the power supply voltage At pin 204, the counter 5024 is coupled to the current source 5022 and the controller 500 receives the supply voltage VCC through the supply voltage pin 204. In addition, as shown in FIG. 6, the difference between the power supply voltage VCC of the controller 500 and the power supply voltage VCC of the controller 200 lies in the operation principle corresponding to the protection time TP, which is described in detail below.

如第6圖所示,在電源轉換器100進入該保護模式後,在時間T3,控制器500內的閘極信號產生電路(未繪示於第5圖的控制器500內)可根據電源轉換器100的一次側PRI的偵測電壓VCS(如第5圖所示)和參考電壓VREF停止產生閘極控制信號GCS至功率開關102,且控制器500內的保護電路(未繪示於第5圖的控制器500內)產生保護信號OCP至電流源5022。因此,因為該保護電路產生保護信號OCP至電流源5022,所以電流源5022致能且開始產生一第二放電電流IDIS2對電容104(如第5圖所示)放電。在時間T3後,因為第二放電電流IDIS2開始對電容104放電,所以供電電壓VCC是由第二放電電流IDIS2、充電電流IC和電容104決定,但在本發明的一實施例中,第二放電電流IDIS2大於充電電流IC,所以供電電壓VCC會開始逐漸降低直到供電電壓VCC小於一下限值LLI(如第6圖所示的時間T4)。如第6圖所示,在時間T4,因為供電電壓VCC小於下限值LLI,所以電流源5022產生一第一放電電流IDIS1。此時,供電電壓VCC是由第一放電電流IDIS1、充電電流IC和電容104決定,但在本發明的一實施例中,第一放電電流IDIS1小於充電電流IC,所以供電電壓VCC會開始逐漸增加直到供電電壓VCC大於一上限值ULI(如第6圖所示的時間T5)。如此,延遲電路502可重複上述時間T4至時間T5的操作原理直到當計數器5024計數供電電壓VCC小於下限值LLI的次數(在本發明的另一實施例中,計數器5024計數供電電壓VCC大於上限值ULI的次數)等於一預定次數(對應第6圖所示的時間T6)。在時間T6,因為該次數等於該預定次數,所以電流源5022只會產生第二放電電流IDIS2,導致供電電壓VCC在時間T6後開始降低直到小於低電壓鎖定關閉電壓UVLOOFF(如第6圖所示的時間T7)。因此,雖然如第6圖所示,該閘極信號產生電路在恢復期間TR仍會產生閘極控制信號GCS至功率開關102,但因為延遲電路502可利用如上述第6圖所示的操作原理延長該預定延遲時間(也就是延長保護期間TP),所以控制器500可使電源轉換器100的功率開關102在恢復期間TR所產生的熱有效散去以保護該電視機內的元件。另外,控制器500的其餘操作原理都和控制器200相同,在此不再贅述。As shown in FIG. 6, after the power converter 100 enters the protection mode, at time T3, the gate signal generating circuit in the controller 500 (not shown in the controller 500 in FIG. 5) can be converted according to the power supply The detection voltage VCS (as shown in FIG. 5) and the reference voltage VREF of the primary PRI of the device 100 stop generating the gate control signal GCS to the power switch 102, and the protection circuit in the controller 500 (not shown in FIG. 5) In the controller 500 of the figure), a protection signal OCP is generated to the current source 5022. Therefore, because the protection circuit generates the protection signal OCP to the current source 5022, the current source 5022 is enabled and begins to generate a second discharge current IDIS2 to discharge the capacitor 104 (as shown in FIG. 5). After time T3, because the second discharge current IDIS2 starts to discharge the capacitor 104, the supply voltage VCC is determined by the second discharge current IDIS2, the charging current IC, and the capacitor 104, but in an embodiment of the present invention, the second discharge The current IDIS2 is greater than the charging current IC, so the supply voltage VCC will gradually decrease until the supply voltage VCC is less than the lower limit LLI (time T4 shown in FIG. 6). As shown in FIG. 6, at time T4, because the power supply voltage VCC is less than the lower limit value LLI, the current source 5022 generates a first discharge current IDIS1. At this time, the supply voltage VCC is determined by the first discharge current IDIS1, the charge current IC and the capacitor 104, but in an embodiment of the present invention, the first discharge current IDIS1 is less than the charge current IC, so the supply voltage VCC will gradually increase Until the supply voltage VCC is greater than an upper limit ULI (time T5 shown in FIG. 6). In this way, the delay circuit 502 can repeat the above operation principle from time T4 to time T5 until the counter 5024 counts the number of times that the power supply voltage VCC is less than the lower limit LLI (in another embodiment of the present invention, the counter 5024 counts the power supply voltage VCC greater than the upper limit The number of limits ULI) is equal to a predetermined number of times (corresponding to the time T6 shown in FIG. 6). At time T6, because the number of times is equal to the predetermined number of times, the current source 5022 will only generate the second discharge current IDIS2, causing the supply voltage VCC to start to decrease after time T6 until it is less than the low voltage lock-off voltage UVLOOFF (as shown in FIG. 6) Time T7). Therefore, although the gate signal generating circuit TR will still generate the gate control signal GCS to the power switch 102 during the recovery period as shown in FIG. 6, because the delay circuit 502 can utilize the operating principle shown in FIG. 6 above By extending the predetermined delay time (that is, extending the protection period TP), the controller 500 can effectively dissipate the heat generated by the power switch 102 of the power converter 100 during the recovery period to protect the components in the television. In addition, the remaining operating principles of the controller 500 are the same as those of the controller 200, and will not be repeated here.

請參照第1、2、7圖,第7圖是為本發明的第三實施例所公開的一種用於延長電源轉換器的保護期間的控制器的操作方法的流程圖。第7圖的操作方法是利用第1圖的電源轉換器100和同步整流器200說明,詳細步驟如下:Please refer to FIGS. 1, 2, and 7, FIG. 7 is a flowchart of a controller operating method for extending the protection period of a power converter disclosed in the third embodiment of the present invention. The operation method of FIG. 7 is explained by using the power converter 100 and the synchronous rectifier 200 of FIG. 1, the detailed steps are as follows:

步驟700: 開始;Step 700: Start;

步驟702: 電源轉換器100進入該保護模式;Step 702: The power converter 100 enters the protection mode;

步驟704: 第一電流源2022根據對應保護信號OCP和供電電壓VCC產生第一放電電流IDIS1;Step 704: The first current source 2022 generates a first discharge current IDIS1 according to the corresponding protection signal OCP and the power supply voltage VCC;

步驟706: 延遲器2024根據保護信號OCP和偵測電壓VCS,產生延遲致能信號DES;Step 706: The delayer 2024 generates a delay enable signal DES according to the protection signal OCP and the detection voltage VCS;

步驟708: 第二電流源2026根據延遲致能信號DES產生第二放電電流IDIS2;Step 708: The second current source 2026 generates a second discharge current IDIS2 according to the delayed enable signal DES;

步驟710: 當供電電壓VCC低於低電壓鎖定關閉電壓UVLOOFF時,控制器200去能延遲電路202;Step 710: When the power supply voltage VCC is lower than the low voltage lock-off voltage UVLOOFF, the controller 200 disables the delay circuit 202;

步驟712: 當延遲電路202去能且供電電壓VCC大於低電壓鎖定開啟電壓UVLOON時,控制器200再次產生閘極控制信號GCS至電源轉換器100的一次側PRI的功率開關102,跳回步驟704。Step 712: When the delay circuit 202 is disabled and the power supply voltage VCC is greater than the low voltage lock-on voltage UVLOON, the controller 200 generates the gate control signal GCS to the power switch 102 of the primary side PRI of the power converter 100 again, and skips back to step 704 .

在步驟702中,如第1圖所示,控制器200內的保護電路(未繪示於第1圖的控制器200內)可根據電源轉換器100的二次側SEC的輸出電流IOUT,判斷是否使電源轉換器100進入該保護模式。在電源轉換器100進入該保護模式後,在時間T1,供電電壓VCC大於低電壓鎖定開啟電壓UVLOON,所以控制器200內的閘極信號產生電路將於時間T2與時間T3之間產生閘極控制信號GCS至功率開關102,其中時間T2與時間T3之間的時間區間為電源轉換器100對應該保護模式的恢復期間TR。如第1、2圖所示,在恢復期間TR,因為只有充電電流IC對電容104充電,所以供電電壓VCC維持該第一穩定狀態。在步驟704中,如第2圖所示,在時間T3,該閘極信號產生電路可根據電源轉換器100的一次側PRI的偵測電壓VCS(如第1圖所示)和參考電壓VREF停止產生閘極控制信號GCS至功率開關102,且該保護電路產生保護信號OCP至第一電流源2022和延遲器2024。因此,第一電流源2022致能且開始根據供電電壓VCC產生第一放電電流IDIS1對電容104放電,其中第一放電電流IDIS1會隨供電電壓VCC的變化而改變。在時間T3後,第一放電電流IDIS1開始對電容104放電,所以供電電壓VCC是由第一放電電流IDIS1、充電電流IC和電容104決定,其中因為第一放電電流IDIS1在時間T3時大於充電電流IC,所以供電電壓VCC會開始逐漸降低直到時間T4(因為第一放電電流IDIS1會隨供電電壓VCC的變化而改變,所以在時間T4時,第一放電電流IDIS1等於充電電流IC,導致供電電壓VCC在時間T4後維持該第二穩定狀態直到時間T5)。在步驟706中,如第2圖所示,在時間T5,延遲器2024可根據保護信號OCP和偵測電壓VCS,產生延遲致能信號DES至第二電流源2026,所以第二電流源2026致能且開始產生第二放電電流IDIS2對電容104放電,其中延遲致能信號DES對應該預定延遲時間,以及時間T3與時間T5之間的時間區間為電源轉換器100對應該保護模式的保護期間TP。在步驟708中,如第2圖所示,在時間T5後,第二放電電流IDIS2開始對電容104放電(其中第一放電電流IDIS1還是繼續對電容104放電,所以供電電壓VCC是由第一放電電流IDIS1、第二放電電流IDIS2、充電電流IC和電容104決定,導致供電電壓VCC在時間T5後從該第二穩定狀態開始降低直到小於低電壓鎖定關閉電壓UVLOOFF(如第2圖所示的時間T6)。在步驟710中,如第2圖所示,在時間T6,因為供電電壓VCC低於低電壓鎖定關閉電壓UVLOOFF,所以控制器200去能延遲電路2024,導致供電電壓VCC逐漸增加直到大於低電壓鎖定開啟電壓UVLOON(如第2圖所示的時間T7)。在步驟712中,如第2圖所示,在時間T7時,供電電壓VCC大於低電壓鎖定開啟電壓UVLOON,所以控制器200內的閘極信號產生電路(未繪示於第1圖的控制器200內)再次產生閘極控制信號GCS至電源轉換器100的一次側PRI的功率開關102。In step 702, as shown in FIG. 1, the protection circuit in the controller 200 (not shown in the controller 200 in FIG. 1) can be determined according to the output current IOUT of the secondary side SEC of the power converter 100 Whether to put the power converter 100 into this protection mode. After the power converter 100 enters the protection mode, at time T1, the power supply voltage VCC is greater than the low voltage lock-on voltage UVLOON, so the gate signal generation circuit in the controller 200 will generate gate control between time T2 and time T3 The signal GCS is sent to the power switch 102, wherein the time interval between the time T2 and the time T3 is the recovery period TR of the power converter 100 corresponding to the protection mode. As shown in FIGS. 1 and 2, in the recovery period TR, since only the charging current IC charges the capacitor 104, the power supply voltage VCC maintains the first stable state. In step 704, as shown in FIG. 2, at time T3, the gate signal generating circuit may stop according to the detection voltage VCS (as shown in FIG. 1) of the primary PRI of the power converter 100 and the reference voltage VREF A gate control signal GCS is generated to the power switch 102, and the protection circuit generates a protection signal OCP to the first current source 2022 and the delay 2024. Therefore, the first current source 2022 is enabled and starts to generate the first discharge current IDIS1 to discharge the capacitor 104 according to the supply voltage VCC, where the first discharge current IDIS1 changes with the change of the supply voltage VCC. After time T3, the first discharge current IDIS1 starts to discharge the capacitor 104, so the supply voltage VCC is determined by the first discharge current IDIS1, the charging current IC and the capacitor 104, where the first discharge current IDIS1 is greater than the charging current at time T3 IC, so the supply voltage VCC will gradually decrease until time T4 (because the first discharge current IDIS1 will change with the change of the supply voltage VCC, so at time T4, the first discharge current IDIS1 is equal to the charging current IC, resulting in the supply voltage VCC The second stable state is maintained after time T4 until time T5). In step 706, as shown in FIG. 2, at time T5, the delayer 2024 can generate the delay enable signal DES to the second current source 2026 according to the protection signal OCP and the detection voltage VCS, so the second current source 2026 causes The second discharge current IDIS2 can be generated and discharged to the capacitor 104, wherein the delay enable signal DES corresponds to a predetermined delay time, and the time interval between the time T3 and the time T5 is the protection period TP of the power converter 100 corresponding to the protection mode . In step 708, as shown in FIG. 2, after time T5, the second discharge current IDIS2 begins to discharge the capacitor 104 (where the first discharge current IDIS1 continues to discharge the capacitor 104, so the power supply voltage VCC is discharged by the first The current IDIS1, the second discharge current IDIS2, the charging current IC, and the capacitor 104 determine that the supply voltage VCC starts to decrease from the second stable state after time T5 until it is less than the low voltage lock-off voltage UVLOOFF (the time shown in FIG. 2) T6). In step 710, as shown in FIG. 2, at time T6, because the power supply voltage VCC is lower than the low voltage lock-off voltage UVLOOFF, the controller 200 disables the delay circuit 2024, causing the power supply voltage VCC to gradually increase until it is greater than Low voltage lock-on voltage UVLOON (time T7 shown in Figure 2). In step 712, as shown in Figure 2, at time T7, the power supply voltage VCC is greater than the low voltage lock-on voltage UVLOON, so the controller 200 The internal gate signal generating circuit (not shown in the controller 200 in FIG. 1) again generates the gate control signal GCS to the power switch 102 of the primary side PRI of the power converter 100.

請參照第1、5、6、8圖,第8圖是為本發明的第四實施例所公開的一種用於延長電源轉換器的保護期間的控制器的操作方法的流程圖。第8圖的操作方法是利用第5圖的電源轉換器100和同步整流器500說明,詳細步驟如下:Please refer to FIGS. 1, 5, 6, and 8, which is a flowchart of a controller operating method for extending the protection period of the power converter disclosed in the fourth embodiment of the present invention. The operation method of FIG. 8 is explained by using the power converter 100 and the synchronous rectifier 500 of FIG. 5, the detailed steps are as follows:

步驟800: 開始;Step 800: Start;

步驟802: 電源轉換器100進入該保護模式;Step 802: The power converter 100 enters the protection mode;

步驟804: 電流源5022根據對應該保護模式的保護信號OCP致能;Step 804: The current source 5022 is enabled according to the protection signal OCP corresponding to the protection mode;

步驟806: 供電電壓VCC是否小於下限值LLI;如果是,進行步驟808;如果否,再次進行步驟806;Step 806: whether the power supply voltage VCC is less than the lower limit LLI; if yes, proceed to step 808; if not, proceed to step 806 again;

步驟808: 電流源5022產生第一放電電流IDIS1,且計數器5024計數供電電壓VCC小於下限值LLI的次數;Step 808: The current source 5022 generates the first discharge current IDIS1, and the counter 5024 counts the number of times the power supply voltage VCC is less than the lower limit LLI;

步驟810: 供電電壓VCC是否大於上限值ULI;如果是,進行步驟812;如果否,再次進行步驟810;Step 810: whether the power supply voltage VCC is greater than the upper limit ULI; if yes, proceed to step 812; if not, proceed to step 810 again;

步驟812: 電流源5022產生第二放電電流IDIS2;Step 812: The current source 5022 generates a second discharge current IDIS2;

步驟814: 計數器5024計數供電電壓VCC小於下限值LLI的次數是否等於該預定次數;如果是,進行步驟816;如果否,進行步驟806;Step 814: The counter 5024 counts whether the number of times the power supply voltage VCC is less than the lower limit value LLI is equal to the predetermined number of times; if yes, proceed to step 816; if not, proceed to step 806;

步驟816: 當供電電壓VCC低於低電壓鎖定關閉電壓UVLOOFF時,控制器500去能延遲電路502;Step 816: When the power supply voltage VCC is lower than the low voltage lock-off voltage UVLOOFF, the controller 500 disables the delay circuit 502;

步驟818: 當延遲電路502去能且供電電壓VCC大於低電壓鎖定開啟電壓UVLOON時,控制器500再次產生閘極控制信號GCS至電源轉換器100的一次側PRI的功率開關102,跳回步驟804。Step 818: When the delay circuit 502 is disabled and the supply voltage VCC is greater than the low-voltage lock-on voltage UVLOON, the controller 500 generates the gate control signal GCS again to the power switch 102 of the primary-side PRI of the power converter 100, and skips back to step 804 .

第8圖的第四實施例和第7圖第三實施例的差別在於在步驟806中,在時間T3,電流源5022致能且開始產生第二放電電流IDIS2對電容104(如第5圖所示)放電,所以供電電壓VCC會開始逐漸降低直到供電電壓VCC小於下限值LLI(如第6圖所示的時間T4);在步驟808中,如第6圖所示,在時間T4,因為電流源5022產生第一放電電流IDIS1,所以供電電壓VCC會開始逐漸增加直到供電電壓VCC大於上限值ULI(如第6圖所示的時間T5);在步驟812中,因為電流源5022產生第二放電電流IDIS2,所以供電電壓VCC會開始逐漸降低直到供電電壓VCC小於下限值LLI;在步驟814中,延遲電路502可重複上述時間T4至時間T5的操作原理直到當計數器5024計數供電電壓VCC小於下限值LLI的次數(在本發明的另一實施例中,計數器5024計數供電電壓VCC大於上限值ULI的次數)等於該預定次數(對應第6圖所示的時間T6);在時間T6,因為該次數等於該預定次數,所以電流源5022只會產生第二放電電流IDIS2,導致供電電壓VCC在時間T6後開始降低直到小於低電壓鎖定關閉電壓UVLOOFF(如第6圖所示的時間T7)。另外,第8圖的第四實施例的其餘操作原理都和第7圖的第三實施例相同,在此不再贅述。The difference between the fourth embodiment of FIG. 8 and the third embodiment of FIG. 7 is that in step 806, at time T3, the current source 5022 is enabled and begins to generate the second discharge current IDIS2 to the capacitor 104 (as shown in FIG. 5) Display) discharge, so the supply voltage VCC will gradually decrease until the supply voltage VCC is less than the lower limit LLI (time T4 shown in Figure 6); in step 808, as shown in Figure 6, at time T4, because The current source 5022 generates the first discharge current IDIS1, so the supply voltage VCC will gradually increase until the supply voltage VCC is greater than the upper limit ULI (time T5 shown in FIG. 6); in step 812, because the current source 5022 generates the Two discharge currents IDIS2, so the supply voltage VCC will gradually decrease until the supply voltage VCC is less than the lower limit LLI; in step 814, the delay circuit 502 may repeat the operation principle from the above time T4 to time T5 until the counter 5024 counts the supply voltage VCC The number of times less than the lower limit LLI (in another embodiment of the present invention, the counter 5024 counts the number of times the supply voltage VCC is greater than the upper limit ULI) is equal to the predetermined number of times (corresponding to time T6 shown in FIG. 6); T6, because the number of times is equal to the predetermined number of times, the current source 5022 will only generate the second discharge current IDIS2, causing the supply voltage VCC to start to decrease after time T6 until it is less than the low voltage lock-off voltage UVLOOFF (the time shown in Figure 6) T7). In addition, the remaining operating principles of the fourth embodiment of FIG. 8 are the same as those of the third embodiment of FIG. 7, and are not repeated here.

綜上所述,本發明所提供的控制器和操作方法是當該電源轉換器進入該保護模式後,利用該延遲電路根據該供電電壓延長對應該保護模式的保護期間。另外,本發明上述實施例的內容是以應用於該過電流保護和該輸出短路保護的保護信號為例。實際上本發明的保護信號也可應用於各種保護機制或保護模式之態樣,例如,過電壓保護(over voltage protection, OVP)、過負載保護(over load protection, OLP)、過溫度保護(over temperature protection, OTP)、電壓不足保護(Brown out protection)等等。因此,因為本發明可延長該保護期間,所以相較於現有技術,本發明可使該電源轉換器的功率開關在對應該保護模式的恢復期間所產生的熱有效散去。另外,因為該控制器是直接通過該供電電壓接腳控制該供電電壓,所以該控制器不須額外的接腳。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。In summary, the controller and the operating method provided by the present invention are to use the delay circuit to extend the protection period corresponding to the protection mode according to the power supply voltage after the power converter enters the protection mode. In addition, the content of the above-mentioned embodiments of the present invention takes the protection signals applied to the overcurrent protection and the output short-circuit protection as examples. In fact, the protection signal of the present invention can also be applied to various protection mechanisms or protection modes, such as over voltage protection (over voltage protection, OVP), over load protection (over load protection, OLP), and over temperature protection (over temperature protection (OTP), brown out protection, etc. Therefore, because the present invention can extend the protection period, compared with the prior art, the present invention can effectively dissipate the heat generated by the power switch of the power converter during the recovery period corresponding to the protection mode. In addition, because the controller directly controls the power supply voltage through the power supply voltage pin, the controller does not require additional pins. The above are only the preferred embodiments of the present invention, and all changes and modifications made in accordance with the scope of the patent application of the present invention shall fall within the scope of the present invention.

100‧‧‧電源轉換器 102‧‧‧功率開關 103‧‧‧電阻 104‧‧‧電容 200、500‧‧‧控制器 202‧‧‧延遲電路 204‧‧‧供電電壓接腳 206、208、210‧‧‧接腳 2022‧‧‧第一電流源 2024‧‧‧延遲器 2026‧‧‧第二電流源 20242‧‧‧比較器 20244‧‧‧或閘 20246‧‧‧反及閘 20248‧‧‧脈波產生器 502‧‧‧延遲電路 5022‧‧‧電流源 5024‧‧‧計數器 CLK‧‧‧時脈信號 D0-DN+1、DF‧‧‧正反器 DES‧‧‧延遲致能信號 EN‧‧‧重置信號 GND‧‧‧地端 GCS‧‧‧閘極控制信號 IC‧‧‧充電電流 IPRI‧‧‧一次側電流 IOUT‧‧‧輸出電流 IDIS1‧‧‧第一放電電流 IDIS2‧‧‧第二放電電流 LLI‧‧‧下限值 OCP‧‧‧保護信號 PRI‧‧‧一次側 PUL‧‧‧脈波信號 R‧‧‧重置接腳 SEC‧‧‧二次側 T1-T7、T41、T42、T43‧‧‧時間 TR‧‧‧恢復期間 TP‧‧‧保護期間 UVLOON‧‧‧低電壓鎖定開啟電壓 UVLOOFF‧‧‧低電壓鎖定關閉電壓 ULI‧‧‧上限值 VCS‧‧‧偵測電壓 VCC‧‧‧供電電壓 VREF‧‧‧參考電壓 VCOMP‧‧‧比較信號 700-712、800-818‧‧‧步驟 100‧‧‧Power converter 102‧‧‧Power switch 103‧‧‧Resistance 104‧‧‧Capacitance 200, 500‧‧‧ controller 202‧‧‧ Delay circuit 204‧‧‧ Supply voltage pin 206、208、210‧‧‧pin 2022‧‧‧First current source 2024‧‧‧Delay 2026‧‧‧second current source 20242‧‧‧Comparator 20244‧‧‧or gate 20246‧‧‧Reverse gate 20248‧‧‧Pulse generator 502‧‧‧ Delay circuit 5022‧‧‧Current source 5024‧‧‧Counter CLK‧‧‧clock signal D0-DN+1, DF‧‧‧Flip DES‧‧‧delay enable signal EN‧‧‧Reset signal GND‧‧‧Ground GCS‧‧‧Gate control signal IC‧‧‧Charging current IPRI‧‧‧primary side current IOUT‧‧‧Output current IDIS1‧‧‧First discharge current IDIS2‧‧‧Second discharge current LLI‧‧‧Lower limit OCP‧‧‧Protection signal PRI‧‧‧primary side PUL‧‧‧Pulse signal R‧‧‧ reset pin SEC‧‧‧Secondary side T1-T7, T41, T42, T43‧‧‧ time TR‧‧‧During recovery TP‧‧‧Protection period UVLOON‧‧‧Low voltage lock-on voltage UVLOOFF‧‧‧Low voltage lock off voltage ULI‧‧‧Upper limit VCS‧‧‧detect voltage VCC‧‧‧Supply voltage VREF‧‧‧Reference voltage VCOMP‧‧‧Comparison signal 700-712, 800-818‧‧‧ steps

第1圖是本發明的第一實施例所公開的一種用於延長電源轉換器的保護期間的控制器的示意圖。 第2圖是說明在電源轉換器進入該保護模式後,控制器的供電電壓和控制器產生的閘極控制信號的時序示意圖。 第3圖是說明第一電流源、延遲器和第二電流源的耦接關係示意圖。 第4圖是說明延遲器的操作時序的示意圖。 第5圖是本發明的第二實施例所公開的一種用於延長電源轉換器的保護期間的控制器的示意圖。 第6圖是說明在電源轉換器進入該保護模式後,控制器的供電電壓和控制器產生的閘極控制信號的時序示意圖。 第7圖是為本發明的第三實施例所公開的一種用於延長電源轉換器的保護期間的控制器的操作方法的流程圖。 第8圖是為本發明的第四實施例所公開的一種用於延長電源轉換器的保護期間的控制器的操作方法的流程圖。FIG. 1 is a schematic diagram of a controller for extending the protection period of a power converter disclosed in the first embodiment of the present invention. Figure 2 is a schematic diagram illustrating the timing of the power supply voltage of the controller and the gate control signal generated by the controller after the power converter enters the protection mode. FIG. 3 is a schematic diagram illustrating the coupling relationship between the first current source, the delay, and the second current source. FIG. 4 is a schematic diagram illustrating the operation timing of the delay. FIG. 5 is a schematic diagram of a controller for extending the protection period of a power converter disclosed in the second embodiment of the present invention. Fig. 6 is a timing diagram illustrating the power supply voltage of the controller and the gate control signal generated by the controller after the power converter enters the protection mode. FIG. 7 is a flowchart of a controller operation method for extending the protection period of a power converter disclosed in the third embodiment of the present invention. FIG. 8 is a flowchart of a controller operation method for extending the protection period of a power converter disclosed in the fourth embodiment of the present invention.

100‧‧‧電源轉換器 100‧‧‧Power converter

102‧‧‧功率開關 102‧‧‧Power switch

103‧‧‧電阻 103‧‧‧Resistance

104‧‧‧電容 104‧‧‧Capacitance

200‧‧‧控制器 200‧‧‧Controller

202‧‧‧延遲電路 202‧‧‧ Delay circuit

204‧‧‧供電電壓接腳 204‧‧‧ Supply voltage pin

206、208、210‧‧‧接腳 206、208、210‧‧‧pin

2022‧‧‧第一電流源 2022‧‧‧First current source

2024‧‧‧延遲器 2024‧‧‧Delay

2026‧‧‧第二電流源 2026‧‧‧second current source

DES‧‧‧延遲致能信號 DES‧‧‧delay enable signal

GND‧‧‧地端 GND‧‧‧Ground

GCS‧‧‧閘極控制信號 GCS‧‧‧Gate control signal

IC‧‧‧充電電流 IC‧‧‧Charging current

IPRI‧‧‧一次側電流 IPRI‧‧‧primary side current

IOUT‧‧‧輸出電流 IOUT‧‧‧Output current

IDIS1‧‧‧第一放電電流 IDIS1‧‧‧First discharge current

IDIS2‧‧‧第二放電電流 IDIS2‧‧‧Second discharge current

OCP‧‧‧保護信號 OCP‧‧‧Protection signal

PRI‧‧‧一次側 PRI‧‧‧primary side

SEC‧‧‧二次側 SEC‧‧‧Secondary side

VCS‧‧‧偵測電壓 VCS‧‧‧detect voltage

VCC‧‧‧供電電壓 VCC‧‧‧Supply voltage

VREF‧‧‧參考電壓 VREF‧‧‧Reference voltage

Claims (17)

一種用於延長電源轉換器的保護期間的控制器,包含: 一延遲電路,耦接於該控制器的一供電電壓接腳,其中當該電源轉換器進入一保護模式時,該延遲電路致能,通過該供電電壓接腳接收一供電電壓,且根據該供電電壓延長對應該保護模式的保護期間。A controller for extending the protection period of a power converter, including: A delay circuit, coupled to a power supply voltage pin of the controller, wherein when the power converter enters a protection mode, the delay circuit is enabled, receives a power supply voltage through the power supply voltage pin, and according to the power supply The voltage extension corresponds to the protection period of the protection mode. 如請求項1所述的控制器,其中該延遲電路包含: 一第一電流源,耦接於該供電電壓接腳,用以當該電源轉換器進入該保護模式時,根據對應該保護模式的一保護信號和該供電電壓產生一第一放電電流; 一延遲器,用以根據該保護信號和有關該電源轉換器的一次側的偵測電壓,產生一延遲致能信號,其中該延遲致能信號對應一預定延遲時間;及 一第二電流源,耦接於該延遲器和該供電電壓接腳,用以根據該延遲致能信號產生一第二放電電流; 其中該供電電壓是由該第一放電電流,該電源轉換器的一次側的電容,以及有關該電源轉換器的一次側的輸入端的一充電電流決定,或由該第一放電電流,該第二放電電流,該電容,以及該充電電流決定。The controller according to claim 1, wherein the delay circuit includes: A first current source, coupled to the supply voltage pin, for generating a first discharge current according to a protection signal corresponding to the protection mode and the supply voltage when the power converter enters the protection mode; A delayer for generating a delay enable signal based on the protection signal and the detected voltage on the primary side of the power converter, wherein the delay enable signal corresponds to a predetermined delay time; and A second current source, coupled to the delay and the supply voltage pin, for generating a second discharge current according to the delay enable signal; Where the power supply voltage is determined by the first discharge current, the capacitance of the primary side of the power converter, and a charging current related to the input of the primary side of the power converter, or by the first discharge current, the second The discharge current, the capacitance, and the charge current are determined. 如請求項2所述的控制器,其中當該供電電壓低於一低電壓鎖定(under voltage lock out)關閉電壓時,該控制器去能該延遲電路。The controller according to claim 2, wherein the controller disables the delay circuit when the power supply voltage is lower than an under voltage lock out turn-off voltage. 如請求項3所述的控制器,其中當該延遲電路去能且該供電電壓大於一低電壓鎖定開啟電壓時,該控制器再次產生一閘極控制信號至該電源轉換器的一次側的功率開關。The controller according to claim 3, wherein when the delay circuit is disabled and the supply voltage is greater than a low voltage lock-on voltage, the controller generates a gate control signal to the power of the primary side of the power converter again switch. 如請求項1所述的控制器,其中該延遲電路包含: 一電流源,用以根據對應該保護模式的一保護信號致能,當該供電電壓小於一下限值時,產生一第一放電電流,以及當該供電電壓大於一上限值時,產生一第二放電電流;及 一計數器,用以計數該供電電壓小於該下限值的次數; 其中該供電電壓是由該第一放電電流,該電源轉換器的一次側的電容,有關該電源轉換器的一次側的輸入端的一充電電流決定,或由該第二放電電流,該電容,以及該充電電流決定 其中當該次數等於一預定次數時,該計數器使該電流源產生該第二放電電流,該第一放電電流小於該充電電流,以及該第二放電電流大於該充電電流。The controller according to claim 1, wherein the delay circuit includes: A current source for enabling according to a protection signal corresponding to the protection mode, when the supply voltage is less than the lower limit, a first discharge current is generated, and when the supply voltage is greater than an upper limit, a first 2. Discharge current; and A counter for counting the number of times the power supply voltage is less than the lower limit; Where the supply voltage is determined by the first discharge current, the primary side capacitor of the power converter, a charging current related to the input side of the primary side of the power converter, or by the second discharge current, the capacitor, and The charging current determines When the number of times is equal to a predetermined number of times, the counter causes the current source to generate the second discharge current, the first discharge current is less than the charging current, and the second discharge current is greater than the charging current. 如請求項5所述的控制器,其中當該供電電壓低於一低電壓鎖定關閉電壓時,該控制器去能該延遲電路。The controller according to claim 5, wherein when the power supply voltage is lower than a low-voltage lock-off voltage, the controller disables the delay circuit. 如請求項6所述的控制器,其中當該延遲電路去能且該供電電壓大於一低電壓鎖定開啟電壓時,該控制器再次產生一閘極控制信號至該電源轉換器的一次側的功率開關。The controller according to claim 6, wherein when the delay circuit is disabled and the supply voltage is greater than a low-voltage lock-on voltage, the controller generates a gate control signal to the power of the primary side of the power converter again switch. 如請求項2或5所述的控制器,其中該第二放電電流是依據該電源轉換器的二次側的輸出電壓而調整。The controller according to claim 2 or 5, wherein the second discharge current is adjusted according to the output voltage of the secondary side of the power converter. 如請求項1所述的控制器,其中該保護模式是對應於一輸出短路保護(output short-circuited protection, OSCP)或一過電流保護(over current protection, OCP)。The controller according to claim 1, wherein the protection mode corresponds to an output short-circuited protection (OSCP) or an over current protection (OCP). 如請求項1所述的控制器,其中該保護模式是對應於一過電壓保護(over voltage protection, OVP)、一過負載保護(over load protection, OLP)、一過溫度保護(over temperature protection, OTP)、或一電壓不足保護(Brown out protection)。The controller according to claim 1, wherein the protection mode corresponds to an over voltage protection (over voltage protection, OVP), an over load protection (over load protection, OLP), and an over temperature protection (over temperature protection, OTP), or a brown out protection. 如請求項1所述的控制器,其中該電源轉換器是一返馳式電源轉換器(flyback power converter)。The controller according to claim 1, wherein the power converter is a flyback power converter. 一種用於延長電源轉換器的保護期間的控制器的操作方法,其中該控制器包含一延遲電路以及該延遲電路包含一第一電流源、一延遲器和一第二電流源,該操作方法包含: 該電源轉換器進入一保護模式; 該第一電流源根據對應該保護模式的一保護信號和一供電電壓產生一第一放電電流,且該第一放電電流,該電源轉換器的一次側的電容,以及有關該電源轉換器的一次側的輸入端的一充電電流決定該供電電壓; 該延遲器根據該保護信號和有關該電源轉換器的一次側的偵測電壓,產生一延遲致能信號,其中該延遲致能信號對應一預定延遲時間;及 該第二電流源根據該延遲致能信號產生一第二放電電流,且該第二放電電流和該第一放電電流,該電容,以及該充電電流決定該供電電壓。An operation method of a controller for extending the protection period of a power converter, wherein the controller includes a delay circuit and the delay circuit includes a first current source, a delay and a second current source, the operation method includes : The power converter enters a protection mode; The first current source generates a first discharge current according to a protection signal corresponding to the protection mode and a supply voltage, and the first discharge current, the capacitance of the primary side of the power converter, and the primary current related to the power converter A charging current at the input of the side determines the supply voltage; The delayer generates a delay enable signal based on the protection signal and the detected voltage on the primary side of the power converter, wherein the delay enable signal corresponds to a predetermined delay time; and The second current source generates a second discharge current according to the delayed enable signal, and the second discharge current and the first discharge current, the capacitor, and the charging current determine the supply voltage. 如請求項12所述的操作方法,另包含: 當該供電電壓低於一低電壓鎖定關閉電壓時,該控制器去能該延遲電路;及 當該延遲電路去能且該供電電壓大於一低電壓鎖定開啟電壓時,該控制器再次產生一閘極控制信號至該電源轉換器的一次側的功率開關。The operation method as described in claim 12, additionally includes: When the supply voltage is lower than a low voltage lock-off voltage, the controller disables the delay circuit; and When the delay circuit is disabled and the power supply voltage is greater than a low-voltage lock-up voltage, the controller generates a gate control signal to the power switch on the primary side of the power converter again. 如請求項12所述的操作方法,其中該第二放電電流是依據該電源轉換器的二次側的輸出電壓而調整。The operation method according to claim 12, wherein the second discharge current is adjusted according to the output voltage of the secondary side of the power converter. 一種用於延長電源轉換器的保護期間的控制器的操作方法,其中該控制器包含一延遲電路以及該延遲電路包含一電流源和一計數器,該操作方法包含: 該電源轉換器進入一保護模式; 該電流源根據對應該保護模式的一保護信號致能; 當一供電電壓小於一下限值時,該電流源產生一第一放電電流,且該第一放電電流,該電源轉換器的一次側的電容,以及有關該電源轉換器的一次側的輸入端的一充電電流決定該供電電壓; 當該供電電壓大於一上限值時,該電流源產生一第二放電電流,且該第二放電電流,該電容,以及該充電電流決定該供電電壓;及 當該計數器計數該供電電壓小於該下限值的次數等於一預定次數時,該計數器使該電流源產生該第二放電電流; 其中該第一放電電流小於該充電電流,以及該第二放電電流大於該充電電流。An operation method of a controller for extending the protection period of a power converter, wherein the controller includes a delay circuit and the delay circuit includes a current source and a counter, the operation method includes: The power converter enters a protection mode; The current source is enabled according to a protection signal corresponding to the protection mode; When a power supply voltage is less than the lower limit, the current source generates a first discharge current, and the first discharge current, the capacitance of the primary side of the power converter, and the input of the primary side of the power converter The charging current determines the supply voltage; When the supply voltage is greater than an upper limit, the current source generates a second discharge current, and the second discharge current, the capacitor, and the charging current determine the supply voltage; and When the counter counts that the number of times that the power supply voltage is less than the lower limit value is equal to a predetermined number of times, the counter causes the current source to generate the second discharge current; The first discharge current is smaller than the charging current, and the second discharge current is larger than the charging current. 如請求項15所述的操作方法,另包含: 當該供電電壓低於一低電壓鎖定關閉電壓時,該控制器去能該延遲電路;及 當該延遲電路去能且該供電電壓大於一低電壓鎖定開啟電壓時,該控制器再次產生一閘極控制信號至該電源轉換器的一次側的功率開關。The operation method described in claim 15 additionally includes: When the supply voltage is lower than a low voltage lock-off voltage, the controller disables the delay circuit; and When the delay circuit is disabled and the power supply voltage is greater than a low-voltage lock-up voltage, the controller generates a gate control signal to the power switch on the primary side of the power converter again. 如請求項15所述的操作方法,其中該第二放電電流是依據該電源轉換器的二次側的輸出電壓而調整。The operation method according to claim 15, wherein the second discharge current is adjusted according to the output voltage of the secondary side of the power converter.
TW108111624A 2018-06-19 2019-04-02 Controller for extending a protection period of a power converter and operational method thereof TWI694665B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/435,544 US10700595B2 (en) 2018-06-19 2019-06-09 Controller for extending a protection period of a power converter and operational method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862686691P 2018-06-19 2018-06-19
US62/686,691 2018-06-19

Publications (2)

Publication Number Publication Date
TW202002481A true TW202002481A (en) 2020-01-01
TWI694665B TWI694665B (en) 2020-05-21

Family

ID=68921273

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108111624A TWI694665B (en) 2018-06-19 2019-04-02 Controller for extending a protection period of a power converter and operational method thereof

Country Status (2)

Country Link
CN (1) CN110620494B (en)
TW (1) TWI694665B (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6185082B1 (en) * 1999-06-01 2001-02-06 System General Corporation Protection circuit for a boost power converter
US7149098B1 (en) * 2006-01-04 2006-12-12 System General Corporation Over-power protection apparatus with programmable over-current threshold
TW201023469A (en) * 2008-12-03 2010-06-16 Universal Scient Ind Co Ltd Apparatus for over-current protection and the method thereof
TW201225461A (en) * 2010-12-06 2012-06-16 Leadtrend Tech Corp Protection circuits and methods
CN108923390B (en) * 2016-03-29 2020-01-07 昂宝电子(上海)有限公司 System and method for overvoltage protection of LED lighting
WO2018042937A1 (en) * 2016-08-30 2018-03-08 パナソニックIpマネジメント株式会社 Switching power supply device and semiconductor device

Also Published As

Publication number Publication date
CN110620494A (en) 2019-12-27
TWI694665B (en) 2020-05-21
CN110620494B (en) 2021-06-04

Similar Documents

Publication Publication Date Title
JP6915115B2 (en) How to Control Secondary Controllers, Power Converters, and Synchronous Flyback Converters for Use in Synchronous Flyback Converters
US9083246B2 (en) Control circuit for primary side control of switching power supply
US10211626B2 (en) System and method providing reliable over current protection for power converter
US9444353B2 (en) Isolated power converter and associated switching power supply
TWI599160B (en) Flyback power converter and controller and driver thereof
US7710095B2 (en) Power converter having PWM controller for maximum output power compensation
JP5641140B2 (en) Switching power supply control circuit and switching power supply
US9614448B2 (en) Switching power-supply device
US6665197B2 (en) Circuit configuration for producing a switching signal for a current-controlled switch-mode power supply
US7619909B2 (en) Control circuit for adjusting leading edge blanking time and power converting system using the same control circuit
US8427850B2 (en) Switching power supply device with a switching control circuit
WO2013146339A1 (en) Switching power source device
EP1471626A2 (en) Fault protected self-oscillating full-bridge driver
TWI419469B (en) Regulator and synchronized pulse generator thereof
JP5397534B2 (en) Switching power supply
JP2004208382A (en) Switching power supply device
US8149598B2 (en) Switching power supply apparatus
TWI661663B (en) Switching power supply chip and switching power supply circuit including the same
TWI646767B (en) Power control device and power control system
WO2010125751A1 (en) Switching power supply device
TW201739153A (en) Control module with active snubber and related flyback power converting device
US11703550B2 (en) Resonance voltage attenuation detection circuit, semiconductor device for switching power, and switching power supply
US10700595B2 (en) Controller for extending a protection period of a power converter and operational method thereof
JP2011083130A (en) Switching power supply device
TWI694665B (en) Controller for extending a protection period of a power converter and operational method thereof