TW202002408A - Far-field testing system for antenna - Google Patents

Far-field testing system for antenna Download PDF

Info

Publication number
TW202002408A
TW202002408A TW107119476A TW107119476A TW202002408A TW 202002408 A TW202002408 A TW 202002408A TW 107119476 A TW107119476 A TW 107119476A TW 107119476 A TW107119476 A TW 107119476A TW 202002408 A TW202002408 A TW 202002408A
Authority
TW
Taiwan
Prior art keywords
antenna unit
antenna
test
difference
sum
Prior art date
Application number
TW107119476A
Other languages
Chinese (zh)
Other versions
TWI665825B (en
Inventor
胡正南
Original Assignee
亞東技術學院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 亞東技術學院 filed Critical 亞東技術學院
Priority to TW107119476A priority Critical patent/TWI665825B/en
Application granted granted Critical
Publication of TWI665825B publication Critical patent/TWI665825B/en
Publication of TW202002408A publication Critical patent/TW202002408A/en

Links

Images

Abstract

Disclosed is a far-field testing system for antenna. The system includes a multi-input multi-output (MIMO) active phased antenna array, a sum testing antenna, a difference testing antenna, a network analyzer, and a processor. The sum and difference testing antennas emit a sum and a difference electromagnetic radiation signals toward an under-test antenna of the MIMO active phased antenna array respectively. The network analyzer measures an electromagnetic mutual coupling parameter. The processor subtracts the difference electromagnetic radiation signal from the sum electromagnetic radiation signal to substantially eliminate noise of the sum and difference electromagnetic radiation signals, and then encodes the remaining parts of the electromagnetic radiation signals to suppress residual noise so as to restore a true electromagnetic mutual coupling parameter.

Description

天線遠場測試系統 Antenna far-field test system

本發明是有關於一種天線測試系統,且特別是有關於一種可用於多輸入多輸出主動相列性天線陣列的天線遠場測試系統。 The present invention relates to an antenna testing system, and in particular to an antenna far-field testing system that can be used for multi-input multi-output active phased antenna arrays.

任何天線經過適當的操作,都可以在近場或遠場範圍內成功的測量。但由於成本、尺寸以及更多複雜的細節因素,導致遠近場範圍的優勢各有不同。一般來說,遠場範圍適合較低頻的天線,其需要單一場型量測;近場範圍適合較高頻或大型的天線,其需要完整場型和極化量測。每一個量測都有附加的子類型,它們各有一定的優點和缺點,這也使得遠近場之間的量測技術難以比較。傳統遠近場量測技術在做完整測量時,必須排除天氣、電磁干擾、安全等問題。因此,需使用微波暗室和規範以確保量測訊號的可靠性,這將增加測試場地建置成本及複雜度。 With proper operation, any antenna can be successfully measured in the near or far field. However, due to cost, size, and more complex details, the advantages of the far and near field ranges vary. Generally speaking, the far-field range is suitable for lower frequency antennas, which require a single field type measurement; the near-field range is suitable for higher frequency or large antennas, which require a complete field type and polarization measurement. Each measurement has additional subtypes, each of which has certain advantages and disadvantages, which also makes it difficult to compare measurement techniques between the near and far fields. The traditional far-near field measurement technology must exclude weather, electromagnetic interference, safety, etc. when making a complete measurement. Therefore, it is necessary to use microwave anechoic chamber and specifications to ensure the reliability of the measurement signal, which will increase the cost and complexity of the test site construction.

現已證明,相較於傳統被動天線,多輸入多輸出(MIMO)天線陣列系統需要更為詳盡的測量,需要一些額外量測裝備及複雜的測試方法,導致在系統開發過程中需要耗費巨資以建置複雜且昂貴的測試系統及儀器,例如近場量測系統或空中下載(Over-the-Air,OTA)量測系統。然而,MIMO天線陣列系統於天線基地(例如軍事用的雷達基地或無線通訊系統的基地台)佈 置完成後,如有些傳送/接收模組故障或是訊號相位及振幅設定不正確的話,如何執行重新校正天線單元的振幅和相位是非常重要的問題,因為無法在陣地上建立複雜且昂貴的近場量測系統或OTA量測系統。因此,必須開發一種簡易天線自校系統,此系統可以檢測失效的天線單元,並於陣地及時抽換更新,以維護MIMO天線系統得以正常工作。也就是說,在簡化測試系統對測試環境的嚴格要求,同時又可以兼顧確保量測訊號的可靠性,才是最好的測試方法。 It has been proved that compared with traditional passive antennas, multiple input multiple output (MIMO) antenna array systems require more detailed measurements, require some additional measurement equipment, and complex test methods, resulting in huge expenditures in the system development process. To build complex and expensive test systems and instruments, such as near-field measurement systems or over-the-air (OTA) measurement systems. However, after the MIMO antenna array system is deployed on the antenna base (such as a military radar base or a base station of a wireless communication system), if some transmit/receive modules fail or the signal phase and amplitude settings are incorrect, how to perform Correcting the amplitude and phase of the antenna unit is a very important issue because it is impossible to build a complex and expensive near-field measurement system or OTA measurement system on the field. Therefore, a simple antenna self-calibration system must be developed. This system can detect the failed antenna unit and replace it in time to maintain the MIMO antenna system. In other words, it is the best test method to simplify the strict requirements of the test system on the test environment and at the same time to ensure the reliability of the measurement signal.

為解決習知技術的缺失,本發明的目的在於示例性提供一種天線遠場測試系統,包含多輸入多輸出(MIMO)主動相列性天線陣列、和測試天線單元、差測試天線單元、網路分析儀以及處理單元。MIMO主動相列性天線陣列包含多個天線單元,位於多個天線單元的中心位置處的天線單元作為待測天線單元。和測試天線單元連接待測天線單元,和測試天線單元朝待測天線單元發射和電磁輻射訊號,以與待測天線單元發生電磁互耦合,其中和電磁輻射訊號包含和電磁互耦合部以及和天線雜訊部。差測試天線單元連接待測天線單元,設置與待測天線單元以及和測試天線單元共平面並相鄰於和測試天線單元,差測試天線單元以及待測天線單元之間的間距等於和測試天線單元以及待測天線單元之間的間距,差測試天線單元朝待測天線單元發射差電磁輻射訊號,以與待測天線單元發生電磁互耦合,其中差電磁輻射訊號包含差電磁互耦合部以及差天線雜訊部。網路分析儀連接和測試天線單元、差測試天線單元以及待測天線單元,以及連接除了待測天線單元以外的各天線單元至匹配負載,網路分析儀量測和測試天線單元以及差測試天線單元與待測天線單元之間的電磁互耦合,以輸出電磁互耦合參數,其中電磁互耦合參數包含電磁互耦合部以 及干擾雜訊部。處理單元連接和測試天線單元、差測試天線單元以及網路分析儀,處理單元將和電磁輻射訊號與差電磁輻射訊號相減,以基本上消除和天線雜訊部以及差天線雜訊部,處理單元編碼和電磁輻射訊號以及差電磁輻射訊號中保留的部分,並利用編碼的正交法則,從電磁互耦合參數中還原出電磁互耦合部,壓制干擾雜訊部。 In order to solve the lack of conventional technology, the object of the present invention is to provide an exemplary antenna far-field test system, including a multiple input multiple output (MIMO) active phased array antenna array, a test antenna unit, a differential test antenna unit, and a network Analyzer and processing unit. The MIMO active phase alignment antenna array includes multiple antenna elements, and the antenna element located at the center of the multiple antenna elements serves as the antenna element to be tested. Connect the test antenna unit to the antenna unit under test, and the test antenna unit emits electromagnetic radiation signals toward the antenna unit under test to electromagnetically couple with the antenna unit under test, wherein the electromagnetic radiation signal includes the electromagnetic mutual coupling unit and the antenna Noise department. The difference test antenna unit is connected to the antenna unit to be tested, and is set to be coplanar with the antenna unit to be tested and the test antenna unit and adjacent to the antenna unit to be tested, and the distance between the antenna unit to be tested and the antenna unit to be tested is equal to the antenna unit to be tested And the spacing between the antenna units under test, the differential test antenna unit emits a differential electromagnetic radiation signal toward the antenna unit under test to electromagnetically couple with the antenna unit under test, wherein the differential electromagnetic radiation signal includes a differential electromagnetic mutual coupling portion and a differential antenna Noise department. The network analyzer connects and tests the antenna unit, the difference test antenna unit and the antenna unit to be tested, and connects each antenna unit except the antenna unit to be tested to the matched load, and the network analyzer measures and tests the antenna unit and the difference test antenna The electromagnetic mutual coupling between the unit and the antenna unit to be tested to output electromagnetic mutual coupling parameters, wherein the electromagnetic mutual coupling parameters include an electromagnetic mutual coupling part and an interference noise part. The processing unit connects and tests the antenna unit, the difference test antenna unit, and the network analyzer. The processing unit subtracts the sum electromagnetic radiation signal and the difference electromagnetic radiation signal to substantially eliminate the sum antenna noise part and the difference antenna noise part. The part of the unit code and the electromagnetic radiation signal and the difference electromagnetic radiation signal are retained, and the orthogonal rule of the code is used to restore the electromagnetic mutual coupling part from the electromagnetic mutual coupling parameter and suppress the interference noise part.

本發明提供的天線遠場測試系統,其特點在於: The antenna far-field test system provided by the present invention is characterized by:

1.開放式領域測試環境的天線遠場場型測試 1. Antenna far-field type test in open field test environment

在測試天線端,首度提出應用雙天線取代單一天線,如此,利用雙天線的差和場型(Sum and difference pattern)的加減變化以簡化編碼器設計,同時也可以消除開放式環境測試的多重路徑干擾問題。 At the test antenna end, it was first proposed to use dual antennas instead of single antennas. In this way, the addition and subtraction of the difference and field pattern of the dual antennas is used to simplify the encoder design. At the same time, it can also eliminate the multiples of open environmental testing. Path interference problem.

2.應用於多輸入多輸出主動天線陣列校準 2. Applied to multi-input multi-output active antenna array calibration

待測天線單元的激發係數是依據待測天線單元的輻射場型而被調整,以使待測天線單元的輻射場型符合標準輻射場型。 The excitation coefficient of the antenna unit under test is adjusted according to the radiation pattern of the antenna unit under test so that the radiation pattern of the antenna unit under test conforms to the standard radiation field pattern.

50‧‧‧多輸入多輸出主動相列性天線陣列 50‧‧‧Multi-input multi-output active phase array antenna array

501‧‧‧和測試天線單元 501‧‧‧ and test antenna unit

502‧‧‧差測試天線單元 502‧‧‧ poor test antenna unit

5031‧‧‧天線單元 5031‧‧‧ Antenna unit

503‧‧‧待測天線單元 503‧‧‧ antenna unit under test

504‧‧‧網路分析儀 504‧‧‧Network Analyzer

505‧‧‧匹配負載 505‧‧‧ matching load

506‧‧‧處理單元 506‧‧‧ processing unit

801‧‧‧干擾雜訊 801‧‧‧Interference noise

802‧‧‧多重路徑干擾雜訊 802‧‧‧Multipath interference noise

x、y、z、x’、y’、z’‧‧‧座標軸 x, y, z, x’, y’, z’ ‧‧‧ coordinate axis

R‧‧‧間距 R‧‧‧spacing

h‧‧‧高度 h‧‧‧height

d‧‧‧距離 d‧‧‧Distance

θ、Φ‧‧‧方位角 θ,Φ‧‧‧Azimuth

S11~S33‧‧‧電磁互耦合取樣參數 S 11 ~S 33 ‧‧‧Electromagnetic mutual coupling sampling parameters

圖1是本發明實施例的天線遠場測試裝置的第一示意圖。 FIG. 1 is a first schematic diagram of an antenna far-field testing device according to an embodiment of the present invention.

圖2是本發明實施例的天線遠場測試裝置的第二示意圖。 2 is a second schematic diagram of an antenna far-field testing device according to an embodiment of the present invention.

圖3是本發明實施例的天線遠場測試裝置的第三示意圖。 FIG. 3 is a third schematic diagram of an antenna far-field testing device according to an embodiment of the present invention.

圖4是本發明實施例的天線遠場測試裝置的網路分析儀所量測的電磁互耦合參數的波形圖。 4 is a waveform diagram of electromagnetic mutual coupling parameters measured by a network analyzer of an antenna far-field testing device according to an embodiment of the present invention.

圖5是本發明實施例的天線遠場測試裝置的處理單元消除干擾雜訊、地面反射雜波後的電磁互耦合參數的波形圖。 FIG. 5 is a waveform diagram of electromagnetic mutual coupling parameters after the processing unit of the antenna far-field testing device of the embodiment of the present invention eliminates interference noise and ground reflected clutter.

圖6是本發明實施例的天線遠場測試裝置的處理單元應用金氏碼對電磁輻射訊號編碼的褶積圖。 FIG. 6 is a convolution diagram of a processing unit of an antenna far-field test device according to an embodiment of the present invention applying a Gold code to encode an electromagnetic radiation signal.

圖7是本發明實施例的天線遠場測試裝置的處理單元消除干擾雜訊、地面反射雜波、殘餘雜訊後的電磁互耦合參數的第一波 形圖。 7 is a first waveform diagram of electromagnetic mutual coupling parameters after the processing unit of the antenna far-field test device of the embodiment of the present invention eliminates interference noise, ground reflection noise, and residual noise.

圖8是本發明實施例的天線遠場測試裝置的處理單元消除干擾雜訊、地面反射雜波、殘餘雜訊後的電磁互耦合參數的第二波形圖。 8 is a second waveform diagram of electromagnetic mutual coupling parameters after the processing unit of the antenna far-field testing device of the embodiment of the present invention eliminates interference noise, ground reflection noise, and residual noise.

請參閱圖1至圖8,圖1至圖3分別是本發明實施例的天線遠場測試裝置的第一至第三示意圖;圖4是本發明實施例的天線遠場測試裝置的網路分析儀所量測的電磁互耦合參數的波形圖;圖5是本發明實施例的天線遠場測試裝置的處理單元消除干擾雜訊、地面反射雜波後的電磁互耦合參數的波形圖;圖6是本發明實施例的天線遠場測試裝置的處理單元應用金氏碼對電磁輻射訊號編碼的褶積圖;圖7和圖8是本發明實施例的天線遠場測試裝置的處理單元消除干擾雜訊、地面反射雜波、殘餘雜訊後的電磁互耦合參數的第一和第二波形圖。 Please refer to FIG. 1 to FIG. 8, FIG. 1 to FIG. 3 are first to third schematic diagrams of the antenna far-field test device of the embodiment of the present invention; FIG. 4 is a network analysis of the antenna far-field test device of the embodiment of the present invention FIG. 5 is a waveform diagram of electromagnetic mutual coupling parameters measured by the instrument; FIG. 5 is a waveform diagram of electromagnetic mutual coupling parameters after the processing unit of the antenna far-field test device of the embodiment of the present invention eliminates interference noise and ground reflected clutter; FIG. 6 It is a convolution diagram of the processing unit of the antenna far-field test device of the embodiment of the present invention applying the Guinness code to the electromagnetic radiation signal; FIGS. 7 and 8 are the processing unit of the antenna far-field test device of the embodiment of the present invention to eliminate interference noise The first and second waveform diagrams of the electromagnetic mutual coupling parameters after the signal, ground reflection noise and residual noise.

如圖1所示,天線遠場測試系統包含多輸入多輸出(MIMO)主動相列性天線陣列50、和測試天線單元501、差測試天線單元502、網路分析儀504以及處理單元506,其中MIMO主動相列性天線陣列50包含多個天線單元5031。在本實施例中,選擇位於多個天線單元5031的中心位置的天線單元作為待測天線單元503。 As shown in FIG. 1, the antenna far-field test system includes a multiple input multiple output (MIMO) active phased array antenna array 50, and a test antenna unit 501, a difference test antenna unit 502, a network analyzer 504, and a processing unit 506, wherein The MIMO active phase alignment antenna array 50 includes a plurality of antenna elements 5031. In this embodiment, the antenna unit located at the center position of the plurality of antenna units 5031 is selected as the antenna unit 503 to be tested.

值得注意的是,如圖2所示,在本實施例中,一個待測天線單元503並非僅搭配一個測試天線單元,而是搭配雙測試天線單元501和502。待測天線單元503的中心線可對準和測試天線單元501以及差測試天線單元502的交界處,使得和測試天線單元501與差測試天線單元502以待測天線單元503的中心線相互對稱。 It is worth noting that, as shown in FIG. 2, in this embodiment, one antenna unit to be tested 503 is not only matched with one test antenna unit, but is paired with dual test antenna units 501 and 502. The center line of the antenna unit 503 to be tested can be aligned with the boundary between the test antenna unit 501 and the difference test antenna unit 502 such that the center line of the test antenna unit 501 and the difference test antenna unit 502 are symmetrical with the center line of the antenna unit 503 to be tested.

和測試天線單元501以及差測試天線單元502可與待測天線單元503設置於共平面。和測試天線單元501與待測天線單元503的間距R可等於差測試天線單元502與待測天線單元503的間距 R。和測試天線單元501以及差測試天線單元502可彼此相鄰、並列設置。和測試天線單元501與待測天線單元503之間的間距R可遠大於和測試天線單元501與差測試天線單元502之間的相隔距離d,屬於遠場範圍(far-field range),並且和測試天線單元501以及差測試天線單元502可無線連接待測天線單元503,進行如下文將詳述的精準的遠場測試。 The sum test antenna unit 501 and the difference test antenna unit 502 can be arranged in the same plane as the antenna unit 503 to be tested. The distance R between the sum test antenna unit 501 and the antenna unit 503 to be tested may be equal to the distance R between the difference test antenna unit 502 and the antenna unit 503 to be tested. The sum test antenna unit 501 and the difference test antenna unit 502 may be arranged adjacent to each other and juxtaposed. The distance R between the test antenna unit 501 and the antenna unit 503 to be tested may be much larger than the separation distance d between the test antenna unit 501 and the difference test antenna unit 502, which belongs to the far-field range, and The test antenna unit 501 and the difference test antenna unit 502 can be wirelessly connected to the antenna unit to be tested 503 to perform an accurate far-field test as described in detail below.

和測試天線單元501以及差測試天線單元502可同步或非同步地朝待測天線單元503分別發射和電磁輻射訊號以及差電磁輻射訊號,以與待測天線單元503發生電磁互耦合。其中,和電磁輻射訊號包含和電磁互耦合部以及和天線雜訊部,而差電磁輻射訊號包含差電磁互耦合部以及差天線雜訊部。也就是說,在和測試天線單元501以及待測天線單元503之間、差測試天線單元502以及待測天線單元503之間傳輸的電磁輻射訊號存在各種雜訊。 The sum test antenna unit 501 and the difference test antenna unit 502 can synchronously or asynchronously transmit the sum electromagnetic radiation signal and the difference electromagnetic radiation signal toward the antenna unit 503 to be tested, so as to cause electromagnetic mutual coupling with the antenna unit 503 to be tested. Among them, the sum electromagnetic radiation signal includes the sum electromagnetic mutual coupling part and the antenna noise part, and the difference electromagnetic radiation signal includes the difference electromagnetic mutual coupling part and the difference antenna noise part. That is to say, there are various noises in the electromagnetic radiation signals transmitted between the test antenna unit 501 and the antenna unit 503 to be tested, and between the difference test antenna unit 502 and the antenna unit 503 to be tested.

網路分析儀504可例如為4阜網路分析儀504,具有四個測試端,分別連接和測試天線單元501、差測試天線單元502、待測天線單元503以及匹配負載505。網路分析儀504可將除了待測天線單元503以外的多個天線單元5031連接至匹配負載505。透過此配置,網路分析儀504量測和測試天線單元501以及差測試天線單元502分別與待測天線單元503之間的電磁互耦合,以透過除與匹配負載505連接以外的其他三個測試端取得電磁互耦合參數。如圖4所示,網路分析儀504所量測到的電磁互耦合參數包含電磁互耦合部以及干擾雜訊部,而非真正的電磁互耦合參數(即電磁互耦合部)。 The network analyzer 504 may be, for example, a 4F network analyzer 504, having four test terminals, respectively connected and tested to the antenna unit 501, the difference test antenna unit 502, the antenna unit to be tested 503, and the matching load 505. The network analyzer 504 may connect a plurality of antenna units 5031 other than the antenna unit 503 to be tested to the matching load 505. With this configuration, the network analyzer 504 measures and tests the electromagnetic mutual coupling between the antenna unit 501 and the difference test antenna unit 502 and the antenna unit 503 to be tested to pass the other three tests except for connection with the matching load 505 End to obtain electromagnetic mutual coupling parameters. As shown in FIG. 4, the electromagnetic mutual coupling parameters measured by the network analyzer 504 include an electromagnetic mutual coupling part and an interference noise part, rather than real electromagnetic mutual coupling parameters (ie, electromagnetic mutual coupling part).

處理單元506例如處理器,其連接和測試天線單元501、差測試天線單元502以及網路分析儀504。值得注意的是,處理單元506將和測試天線單元501的和電磁輻射訊號與差測試天線單元502的差電磁輻射訊號相減,以基本上消除和天線雜訊部以及差天線雜訊部,如圖5所示的電磁輻射訊號相比於圖4具較少雜訊, 即已消除干擾雜訊801以及地面反射的多重路徑干擾雜訊802。處理單元506接著編碼和電磁輻射訊號以及差電磁輻射訊號中保留的部分,並利用編碼的正交法則,依據和電磁輻射訊號以及差電磁輻射訊號中保留的部分,以壓制電磁互耦合參數中的干擾雜訊部,藉以從電磁互耦合參數中還原出電磁互耦合部,如圖7和圖8所示,電磁輻射訊號中的雜訊大量減少,僅剩殘餘隨機雜訊。 The processing unit 506 is, for example, a processor, which connects and tests the antenna unit 501, the difference test antenna unit 502, and the network analyzer 504. It is worth noting that the processing unit 506 subtracts the sum electromagnetic radiation signal of the sum test antenna unit 501 and the difference electromagnetic radiation signal of the difference test antenna unit 502 to substantially eliminate the sum of the antenna noise part and the difference antenna noise part, such as The electromagnetic radiation signal shown in FIG. 5 has less noise than FIG. 4, that is, the interference noise 801 and the multipath interference noise 802 reflected on the ground have been eliminated. The processing unit 506 then encodes the remaining parts of the electromagnetic radiation signal and the differential electromagnetic radiation signal, and uses the orthogonal rule of the encoding to suppress the electromagnetic mutual coupling parameters according to the remaining parts of the electromagnetic radiation signal and the differential electromagnetic radiation signal The interference noise part is used to restore the electromagnetic mutual coupling part from the electromagnetic mutual coupling parameters. As shown in FIGS. 7 and 8, the noise in the electromagnetic radiation signal is greatly reduced, and only the residual random noise is left.

以下將針對上述操作,具體描述在操作中所使用的運算。 The operation used in the operation will be described in detail below for the above operation.

當待測天線單元503作為接收端,搭配和測試天線單元501以及差測試天線單元502作為發射端時,操作模式有兩種:和電磁輻射訊號以及差電磁輻射訊號,分別由和測試天線單元501以及差測試天線單元502發射後,網路分析儀504將量測到如下的電磁互耦合參數:

Figure 107119476-A0101-12-0006-1
When the antenna unit under test 503 is used as the receiving end and the antenna unit 501 and the differential test antenna unit 502 are used as the transmitting end, there are two operating modes: the electromagnetic radiation signal and the differential electromagnetic radiation signal. After the antenna unit 502 is tested, the network analyzer 504 will measure the following electromagnetic mutual coupling parameters:
Figure 107119476-A0101-12-0006-1

其中,[S]代表電磁互耦合參數,Sij(n)代表電磁互耦合取樣參數,S ij (n)=S ij (nT 0);t=nT 0;i=1,2,3;j=1,2,3;n=1,2,3,........,T0代表和電磁輻射訊號及差電磁輻射訊號的取樣周期。 Among them, [S] represents the electromagnetic mutual coupling parameter, S ij (n) represents the electromagnetic mutual coupling sampling parameter, S ij ( n ) = S ij ( nT 0 ); t = nT 0 ; i = 1, 2, 3; j =1,2,3; n=1,2,3,..., T 0 represents the sampling period of the sum electromagnetic radiation signal and the difference electromagnetic radiation signal.

和電磁輻射訊號以及差電磁輻射訊號是由以下方程式獲得:

Figure 107119476-A0101-12-0006-2
The sum electromagnetic radiation signal and the difference electromagnetic radiation signal are obtained by the following equation:
Figure 107119476-A0101-12-0006-2

其中,

Figure 107119476-A0101-12-0006-3
代表和電磁輻射訊號,
Figure 107119476-A0101-12-0006-4
中的S、cos(ψ)代表和訊號場型(Sum Pattern),
Figure 107119476-A0101-12-0006-5
代表差電磁輻射訊號,
Figure 107119476-A0101-12-0006-6
中的D、sin(ψ)代表差訊號場型(Difference Pattern),Γ代表網路分析儀504的與匹配負載505連接的端口例如第四端口的反射係數,a代表振福,Es代表地面反射的多重路徑干擾雜訊,λ代表波長,d代表振福峰值,θ s 代表多重路徑干擾雜訊的入射角度,Ejj ')代表入射角為 θj '的干擾雜訊,NS(D)(n)代表殘餘隨機雜訊。 among them,
Figure 107119476-A0101-12-0006-3
Representatives and electromagnetic radiation signals,
Figure 107119476-A0101-12-0006-4
S, cos( ψ ) in the representative and sum pattern (Sum Pattern),
Figure 107119476-A0101-12-0006-5
Stands for differential electromagnetic radiation signal,
Figure 107119476-A0101-12-0006-6
The D, sin (ψ) representative of the difference signal field pattern (Difference Pattern), Γ network analyzer 504 is representative of the reflection coefficient matched load port 505 connected to the fourth port, for example, a is the representative-fu, E s behalf ground Reflected multipath interference noise, λ represents the wavelength, d represents the peak of vibration, θ s represents the incident angle of the multipath interference noise, E jj ) represents the interference noise with the incident angle θ j , N S(D) (n) represents residual random noise.

如果配置和測試天線單元501以及差測試天線單元502以待測天線單元503的中心線相互對稱,則由於幾何對稱關係,可將上列方程式簡化如下:

Figure 107119476-A0101-12-0007-7
If the configuration and test antenna unit 501 and the difference test antenna unit 502 are symmetrical to each other with the center line of the antenna unit 503 to be tested, the above equation can be simplified as follows due to the geometric symmetry relationship:
Figure 107119476-A0101-12-0007-7

處理單元506是由以下方程式將和電磁輻射訊號與差電磁輻射訊號相減,不需要複雜電路設計或複雜計算,就可以消除和電磁輻射訊號的和天線雜訊部中的以及差電磁輻射訊號的差天線雜訊部中的入射角為θ'的干擾雜訊801,即Ejj '),並建立二位元兩極訊號:

Figure 107119476-A0101-12-0007-8
The processing unit 506 subtracts the sum electromagnetic radiation signal from the difference electromagnetic radiation signal by the following equation, and can eliminate the sum of the electromagnetic radiation signal and the antenna noise part and the difference electromagnetic radiation signal without complicated circuit design or complicated calculation. The interference noise 801 in the noise portion of the poor antenna is θ ' , that is, E jj ' ), and establishes a two-bit bipolar signal:
Figure 107119476-A0101-12-0007-8

其中,r 1(n)以及r -1(n)代表二位元兩極訊號,N(n)代表殘餘隨機雜訊,Es代表地面反射的多重路徑干擾雜訊。 Among them, r 1 ( n ) and r -1 ( n ) represent two-bit bipolar signals, N(n) represents residual random noise, and E s represents ground-reflected multipath interference noise.

處理單元506可調整和測試天線單元501以及差測試天線單元502的高度h,使得測試天線(TA)的和訊號場型cos(Ψ)與測試天線(TA)的差訊號場型sin(Ψ)可相互抵消。藉此,如由以下方程式可進一步消除和電磁輻射訊號的和天線雜訊部中的以及差電磁輻射訊號的差天線雜訊部中的地面反射的多重路徑干擾雜訊802/Es如下方程式,因此不需要微波暗室就可以確保量測訊號的可靠性:

Figure 107119476-A0101-12-0007-9
The processing unit 506 can adjust and test the height h of the antenna unit 501 and the difference test antenna unit 502 so that the sum signal field type cos(Ψ) of the test antenna (TA) and the difference signal field type sin(Ψ) of the test antenna (TA) Can cancel each other out. By this, if the multipath interference noise 802/E s reflected by the ground in the sum of the electromagnetic radiation signal and the antenna noise portion and the difference in the antenna noise portion of the poor electromagnetic radiation signal can be further eliminated by the following equation, the following equation, Therefore, the reliability of the measurement signal can be ensured without the microwave darkroom:
Figure 107119476-A0101-12-0007-9

處理單元506包含編解碼器,用以編碼二位元兩極訊號,例如,如圖5所示,共進行測試127次後,用金氏碼(Gold Code) 進行127次編碼:X(t)=c(t)r(t)

Figure 107119476-A0101-12-0008-10
,t=nT The processing unit 506 includes a codec to encode a two-bit bipolar signal. For example, as shown in FIG. 5, after a total of 127 tests, the Gold Code is used to encode 127 times: X(t)= c(t)r(t)
Figure 107119476-A0101-12-0008-10
,t=nT

如圖6所示,處理單元506可用相同的編碼作褶積,以消除電磁互耦合參數中的干擾雜訊部,而還原出電磁互耦合參數中的電磁互耦合部:

Figure 107119476-A0101-12-0008-11
As shown in FIG. 6, the processing unit 506 can use the same code as convolution to eliminate the interference noise part in the electromagnetic mutual coupling parameters, and restore the electromagnetic mutual coupling part in the electromagnetic mutual coupling parameters:
Figure 107119476-A0101-12-0008-11

其中,c(t)代表編碼, R cc (τ)代表c(t)的褶積, R cn (τ)代表c(t)與殘餘隨機雜訊之間的互相關係數,T代表積分周期,S(τ)代表電磁互耦合部。 Where c(t) represents coding, R cc ( τ ) represents the convolution of c(t), R cn ( τ ) represents the correlation between c(t) and residual random noise, and T represents the integration period, S( τ ) represents the electromagnetic mutual coupling part.

更詳細地說,待測天線單元503以及差測試天線單元502之間、待測天線單元503以及和測試天線單元501之間的真正電磁互耦合參數(即電磁互耦合參數的電磁互耦合部)(S(τ))是穩態訊號,而雜訊N(t)是殘餘隨機雜訊(即電磁互耦合參數的干擾雜訊部)。由於c(t)是慎選的已知編碼,因此自相關聯係數( R cc (τ))可以計算獲得,而不相關聯係數( R cn (τ)),則是非常小的數值。因此,可以由上列公式是計算真正電磁互耦合參數(S(τ)),同時可利用編碼的正交原理將殘餘雜訊N(n)壓制。因此,如圖7和圖8的將電磁輻射訊號的雜訊最小化所有的干擾訊號如入射角為θ'的干擾雜訊801、地面反射雜波以及隨機雜訊,都可以經由兩階段處理方式完全壓制,而不需複雜的編碼器設計及不需要用無反射實驗的吸波裝置,就可以解決電磁波弱訊號易受雜訊干擾影響測試誤差的問題。 In more detail, the true electromagnetic mutual coupling parameters between the antenna unit under test 503 and the difference test antenna unit 502, and between the antenna unit under test 503 and the test antenna unit 501 (ie, the electromagnetic mutual coupling part of the electromagnetic mutual coupling parameters) (S(τ)) is the steady-state signal, and the noise N(t) is the residual random noise (that is, the interference noise part of the electromagnetic mutual coupling parameter). Since c(t) is a carefully selected known code, the number of autocorrelated connections ( R cc ( τ )) can be calculated and the number of uncorrelated connections ( R cn ( τ )) is a very small value. Therefore, the true electromagnetic mutual coupling parameter (S(τ)) can be calculated by the above formula, and at the same time, the residual principle N(n) can be suppressed by using the orthogonal principle of coding. Therefore, as shown in FIGS. 7 and 8, the noise of the electromagnetic radiation signal is minimized. All interference signals such as interference noise 801 with an incident angle of θ , ground reflection noise, and random noise can be processed in two stages. Completely suppressed, without the need for complex encoder design and without the use of reflection-free experimental wave absorption device, can solve the problem of weak electromagnetic signals that are easily affected by noise interference and test errors.

最後,可將解碼的電磁互耦合參數的電磁互耦合部由下列公式轉換成相關的天線性能參數:

Figure 107119476-A0101-12-0009-12
Finally, the electromagnetic mutual coupling part of the decoded electromagnetic mutual coupling parameters can be converted into related antenna performance parameters by the following formula:
Figure 107119476-A0101-12-0009-12

其中,

Figure 107119476-A0101-12-0009-13
代表待測天線單元503的增益場型分布,AUT代表待測天線單元503,(θ'')代表待測天線單元503的方位角,G TA 代表和測試天線單元501或差測試天線單元502的增益場型分布,TA代表和測試天線單元501以及差測試天線單元502,(θ=0°,Φ=90°)代表和測試天線單元501以及差測試天線單元502的方位角,R代表和測試天線單元501以及待測天線單元503的間距或差測試天線單元502以及待測天線單元503的間距(單位:公尺),λ代表空中的訊號波長(單位:公尺)。 among them,
Figure 107119476-A0101-12-0009-13
Representative test field type distribution gain antenna unit 503, AUT Representative test antenna unit 503, (θ ', Φ' ) representative of the azimuth antenna unit under test, G TA representative of the antenna unit 503 and the test 501 or test a difference antenna unit 502's gain pattern distribution, TA stands for the test antenna unit 501 and the difference test antenna unit 502, (θ=0°, Φ=90°) stands for the azimuth angle of the test antenna unit 501 and the difference test antenna unit 502, R stands for The distance between the test antenna unit 501 and the antenna unit to be tested 503 or the difference between the test antenna unit 502 and the antenna unit to be tested 503 (unit: m), λ represents the signal wavelength in the air (unit: m).

待測天線單元503的方位角(θ'')設為(θ'=0°,Φ'=90°),電磁互耦合參數由下列公式轉換成相關的天線性能參數:

Figure 107119476-A0101-12-0009-14
The azimuth angle (θ ' , Φ ' ) of the antenna unit 503 to be tested is set to (θ ' = 0°, Φ ' = 90°), and the electromagnetic mutual coupling parameters are converted into the relevant antenna performance parameters by the following formula:
Figure 107119476-A0101-12-0009-14

以上所述僅為本發明之較佳可行實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above are only the preferred and feasible embodiments of the present invention, and all changes and modifications made within the scope of the patent application of the present invention shall fall within the scope of the present invention.

50‧‧‧多輸入多輸出主動相列性天線陣列 50‧‧‧Multi-input multi-output active phase array antenna array

501‧‧‧和測試天線單元 501‧‧‧ and test antenna unit

502‧‧‧差測試天線單元 502‧‧‧ poor test antenna unit

5031‧‧‧天線單元 5031‧‧‧ Antenna unit

503‧‧‧待測天線單元 503‧‧‧ antenna unit under test

504‧‧‧網路分析儀 504‧‧‧Network Analyzer

505‧‧‧匹配負載 505‧‧‧ matching load

506‧‧‧處理單元 506‧‧‧ processing unit

801‧‧‧干擾雜訊 801‧‧‧Interference noise

802‧‧‧多重路徑干擾雜訊 802‧‧‧Multipath interference noise

x、y、z、x’、y’、z’‧‧‧座標軸 x, y, z, x’, y’, z’ ‧‧‧ coordinate axis

R‧‧‧間距 R‧‧‧spacing

h‧‧‧高度 h‧‧‧height

d‧‧‧距離 d‧‧‧Distance

Claims (8)

一種天線遠場測試系統,包含:一多輸入多輸出(MIMO)主動相列性天線陣列,包含多個天線單元,位於該多個天線單元的中心位置處的其中一該天線單元作為一待測天線單元;一和測試天線單元,連接該待測天線單元,該和測試天線單元朝該待測天線單元發射一和電磁輻射訊號,以與該待測天線單元發生電磁互耦合,其中該和電磁輻射訊號包含一和電磁互耦合部以及一和天線雜訊部;一差測試天線單元,連接該待測天線單元,設置與該待測天線單元以及該和測試天線單元共平面並相鄰於該和測試天線單元,該差測試天線單元以及該待測天線單元之間的間距等於該和測試天線單元以及該待測天線單元之間的間距,該差測試天線單元朝該待測天線單元發射一差電磁輻射訊號,以與該待測天線單元發生電磁互耦合,其中該差電磁輻射訊號包含一差電磁互耦合部以及一差天線雜訊部;一網路分析儀,連接該和測試天線單元、該差測試天線單元以及該待測天線單元,以及連接除了該待測天線單元以外的各該天線單元至一匹配負載,該網路分析儀量測該和測試天線單元以及該差測試天線單元與該待測天線單元之間的電磁互耦合,以輸出一電磁互耦合參數,其中該電磁互耦合參數包含一電磁互耦合部以及一干擾雜訊部;以及一處理單元,連接該和測試天線單元、該差測試天線單元以及該網路分析儀,該處理單元將該和電磁輻射訊號與該差電磁輻射訊號相減,以基本上消除該和天線雜訊部以及該差天線雜訊部,該處理單元編碼該和電磁輻射訊號以及該差電磁輻射訊號中保留的部分,並利用編碼的正交法則,以壓制該 干擾雜訊部,以從該電磁互耦合參數中還原出該電磁互耦合部。 An antenna far-field test system, including: a multiple input multiple output (MIMO) active phased array antenna, including a plurality of antenna units, one of which is located at the central position of the plurality of antenna units as a test An antenna unit; a test antenna unit connected to the antenna unit under test, and the test antenna unit emits a sum of electromagnetic radiation signals toward the antenna unit under test to electromagnetically couple with the antenna unit under test, wherein the sum electromagnetic The radiated signal includes an electromagnetic mutual coupling part and an antenna noise part; a differential test antenna unit is connected to the antenna unit to be tested, and is disposed coplanar with the antenna unit to be tested and the antenna unit to be tested and is adjacent to the And the test antenna unit, the distance between the difference test antenna unit and the antenna unit under test is equal to the distance between the test antenna unit and the antenna unit under test, and the difference test antenna unit transmits a signal toward the antenna unit under test A differential electromagnetic radiation signal to electromagnetically couple with the antenna unit under test, wherein the differential electromagnetic radiation signal includes a differential electromagnetic mutual coupling unit and a differential antenna noise unit; a network analyzer is connected to the test antenna unit , The difference test antenna unit and the antenna unit to be tested, and connect each antenna unit except the antenna unit to be tested to a matching load, the network analyzer measures the sum test antenna unit and the difference test antenna unit Electromagnetic mutual coupling with the antenna unit to be tested to output an electromagnetic mutual coupling parameter, wherein the electromagnetic mutual coupling parameter includes an electromagnetic mutual coupling part and an interference noise part; and a processing unit, which is connected to the test antenna Unit, the difference test antenna unit and the network analyzer, the processing unit subtracts the sum electromagnetic radiation signal from the difference electromagnetic radiation signal to substantially eliminate the sum antenna noise part and the difference antenna noise part, The processing unit encodes the remaining portion of the sum electromagnetic radiation signal and the differential electromagnetic radiation signal, and uses the orthogonal rule of the code to suppress the interference noise part to restore the electromagnetic mutual coupling from the electromagnetic mutual coupling parameters unit. 如請求項1所述的天線遠場測試系統,其中該電磁互耦合參數為:
Figure 107119476-A0101-13-0002-15
其中,[S]代表該電磁互耦合參數,S ij(n)代表電磁互耦合取樣參數,S ij ( n)= S ij ( nT 0); t= nT 0;i=1,2,3;j=1,2,3;n=1,2,3,...,T 0代表該和電磁輻射訊號及該差電磁輻射訊號的取樣周期。
The antenna far-field test system according to claim 1, wherein the electromagnetic mutual coupling parameters are:
Figure 107119476-A0101-13-0002-15
Among them, [S] represents the electromagnetic mutual coupling parameter, S ij (n) represents the electromagnetic mutual coupling sampling parameter, S ij ( n ) = S ij ( nT 0 ); t = nT 0 ; i = 1, 2, 3; j=1,2,3; n=1,2,3,..., T 0 represents the sampling period of the sum electromagnetic radiation signal and the differential electromagnetic radiation signal.
如請求項2所述的天線遠場測試系統,其中該和電磁輻射訊號以及該差電磁輻射訊號是由以下方程式獲得:
Figure 107119476-A0101-13-0002-16
其中,
Figure 107119476-A0101-13-0002-17
代表該和電磁輻射訊號,cos( ψ)代表和訊號場型,
Figure 107119476-A0101-13-0002-18
代表該差電磁輻射訊號,sin( ψ)代表差訊號場型,Γ代表該網路分析儀的與該匹配負載連接的端口的反射係數,a代表振福,E s代表地面反射的多重路徑干擾雜訊, λ代表波長,d代表振福峰值, θ s 代表多重路徑干擾雜訊的入射角度,E j')代表入射角為θ '的干擾雜訊,N S(D)(n)代表殘餘隨機雜訊。
The antenna far-field test system according to claim 2, wherein the sum electromagnetic radiation signal and the differential electromagnetic radiation signal are obtained by the following equation:
Figure 107119476-A0101-13-0002-16
among them,
Figure 107119476-A0101-13-0002-17
Represents the sum electromagnetic radiation signal, cos( ψ ) represents the sum signal field type,
Figure 107119476-A0101-13-0002-18
Represents the difference electromagnetic radiation signal, sin( ψ ) represents the difference signal field type, Γ represents the reflection coefficient of the port of the network analyzer connected to the matched load, a represents Zhen Fu, and E s represents the multipath interference reflected by the ground Noise, λ represents the wavelength, d represents the peak of vibration, θ s represents the angle of incidence of the multipath interference noise, E j' ) represents the interference noise with the angle of incidence θ ' , N S(D) (n) Represents residual random noise.
如請求項3所述的天線遠場測試系統,其中該和測試天線單元與該差測試天線單元以該待測天線單元的中心線相互對稱,由於幾何對稱關係獲得下列方程式:
Figure 107119476-A0101-13-0002-20
Figure 107119476-A0101-13-0002-19
The antenna far-field test system according to claim 3, wherein the sum test antenna unit and the difference test antenna unit are symmetrical to each other with the center line of the antenna unit under test, and the following equation is obtained due to the geometric symmetry relationship:
Figure 107119476-A0101-13-0002-20
Figure 107119476-A0101-13-0002-19
如請求項4所述的天線遠場測試系統,其中該處理單元是由以 下方程式將該和電磁輻射訊號與該差電磁輻射訊號相減,以消除入射角為θ '的干擾雜訊,並取得二位元兩極訊號:
Figure 107119476-A0101-13-0003-21
其中, r 1( n)以及 r -1( n)代表二位元兩極訊號,N(n)代表殘餘隨機雜訊,E s代表地面反射的多重路徑干擾雜訊;該處理單元控制該和測試天線單元以及該差測試天線單元的高度,以由以下方程式進一步消除該和天線雜訊部以及該差天線雜訊部中的地面反射的多重路徑干擾雜訊:
Figure 107119476-A0101-13-0003-22
The requested item antenna far-field testing system of claim 4, wherein the processing unit is a subtraction by the following equation and the electromagnetic radiation signal and the difference signal of electromagnetic radiation, to eliminate the interference noise incident angle of θ ', and to obtain Two-digit bipolar signal:
Figure 107119476-A0101-13-0003-21
Where r 1 ( n ) and r -1 ( n ) represent two-bit bipolar signals, N(n) represents residual random noise, and E s represents ground-reflected multipath interference noise; the processing unit controls the sum test The height of the antenna unit and the difference test antenna unit to further eliminate the multipath interference noise reflected by the ground in the sum antenna noise part and the difference antenna noise part by the following equation:
Figure 107119476-A0101-13-0003-22
如請求項5所述的天線遠場測試系統,其中該處理單元包含一編解碼器,該編解碼器編碼二位元兩極訊號,並用相同的編碼作褶積,以還原出該電磁互耦合部:X(t)=c(t)r(t)
Figure 107119476-A0101-13-0003-23
,t=nT
Figure 107119476-A0101-13-0003-24
其中,c(t)代表編碼, R cc ( τ)代表c(t)的褶積, R cn ( τ)代表c(t)與殘餘隨機雜訊之間的互相關係數,T代表積分周期,S( τ)代表該電磁互耦合部。
The antenna far-field test system according to claim 5, wherein the processing unit includes a codec that encodes a two-bit bipolar signal and uses the same code for convolution to restore the electromagnetic mutual coupling part : X(t)=c(t)r(t)
Figure 107119476-A0101-13-0003-23
,t=nT
Figure 107119476-A0101-13-0003-24
Where c(t) represents coding, R cc ( τ ) represents the convolution of c(t), R cn ( τ ) represents the correlation between c(t) and residual random noise, and T represents the integration period, S( τ ) represents the electromagnetic mutual coupling part.
如請求項6所述的天線遠場測試系統,其中該電磁互耦合部由下列公式轉換成相關的天線性能參數:
Figure 107119476-A0101-13-0003-25
其中,
Figure 107119476-A0101-13-0003-26
代表該待測天線單元的增益場型分布,AUT 代表該待測天線單元,(θ '')代表該待測天線單元的方位角, G TA 代表該和測試天線單元以及該差測試天線單元的增益場型分布,TA代表該和測試天線單元以及該差測試天線單元,(θ=0°,Φ=90°)代表該和測試天線單元以及該差測試天線單元的方位角,R代表該和測試天線單元以及該待測天線單元的間距,λ代表空中的訊號波長。
The antenna far-field test system according to claim 6, wherein the electromagnetic mutual coupling part is converted into related antenna performance parameters by the following formula:
Figure 107119476-A0101-13-0003-25
among them,
Figure 107119476-A0101-13-0003-26
Represents the gain pattern distribution of the antenna unit under test, AUT represents the antenna unit under test, (θ ' , Φ ' ) represents the azimuth of the antenna unit under test, G TA represents the sum test antenna unit and the difference test antenna The gain field distribution of the unit, TA stands for the sum test antenna unit and the difference test antenna unit, (θ=0°, Φ=90°) stands for the azimuth angle of the sum test antenna unit and the difference test antenna unit, R stands for The distance between the test antenna unit and the antenna unit to be tested, λ represents the signal wavelength in the air.
如請求項7所述的天線遠場測試系統,其中該待測天線單元的方位角(θ '')設為(θ=0°,Φ=90°),該電磁互耦合部由下列公式轉換成相關的天線性能參數:
Figure 107119476-A0101-13-0004-27
The antenna far-field test system according to claim 7, wherein the azimuth angle (θ , Φ ) of the antenna unit to be tested is set to (θ=0°, Φ=90°), and the electromagnetic mutual coupling part is composed of The formula is converted into related antenna performance parameters:
Figure 107119476-A0101-13-0004-27
TW107119476A 2018-06-06 2018-06-06 Far-field testing system for antenna TWI665825B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107119476A TWI665825B (en) 2018-06-06 2018-06-06 Far-field testing system for antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107119476A TWI665825B (en) 2018-06-06 2018-06-06 Far-field testing system for antenna

Publications (2)

Publication Number Publication Date
TWI665825B TWI665825B (en) 2019-07-11
TW202002408A true TW202002408A (en) 2020-01-01

Family

ID=68049598

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107119476A TWI665825B (en) 2018-06-06 2018-06-06 Far-field testing system for antenna

Country Status (1)

Country Link
TW (1) TWI665825B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114034937B (en) * 2021-11-18 2022-03-25 四川省冶勘设计集团有限公司 Unmanned aerial vehicle aviation frequency domain electromagnetic weak signal receiving device and method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3638108B2 (en) * 2000-01-19 2005-04-13 三菱電機株式会社 Antenna measuring apparatus and antenna measuring method
US7925253B2 (en) * 2006-09-08 2011-04-12 Qualcomm Incorporated Radiated performance of a wireless device
US9002287B2 (en) * 2009-10-09 2015-04-07 Apple Inc. System for testing multi-antenna devices
US8954014B2 (en) * 2009-10-26 2015-02-10 Anite Telecoms Oy Over-the air test
CN102148648B (en) * 2010-02-05 2015-04-01 中兴通讯股份有限公司 Space radio-frequency performance test method and system in multi-antenna system
US8824588B2 (en) * 2012-12-10 2014-09-02 Netgear, Inc. Near-field MIMO wireless transmit power measurement test systems, structures, and processes

Also Published As

Publication number Publication date
TWI665825B (en) 2019-07-11

Similar Documents

Publication Publication Date Title
CN107783087B (en) Self-correcting method for near-field channel calibration link of spherical phased array antenna
US20180164407A1 (en) On-site calibration of array antenna systems
US9699678B2 (en) Plane wave generation within a small volume of space for evaluation of wireless devices
CN108037374B (en) Array antenna near field calibration method
US11519949B2 (en) Measurement system and method of performing an over-the-air test
CN107547152B (en) Over-the-air transmission power detector and method
CN109557043B (en) System and method for detecting electromagnetic characteristics of object by using terahertz electromagnetic wave
Dürr et al. Highly efficient angular array calibration based on the modal wave expansion technique
TWI665825B (en) Far-field testing system for antenna
CN109813969B (en) Array antenna diagnosis method, equipment and system
KR20150076755A (en) Method for arranging array plane of phase array antenna and method for operating the same
Fordham An introduction to antenna test ranges, measurements and instrumentation
CN109839543B (en) System and method for testing amplitude-phase consistency of antenna
Chen et al. Limitations of the Free Space VSWR Measurements for chamber validations
Park et al. Dynamically reconfigurable direction-finding antenna array for unmanned arial systems
Chippendale et al. Recent developments in measuring signal and noise in phased array feeds at CSIRO
US20210311103A1 (en) Determination of gain characteristics of a linearly-polarized antenna
Han et al. Analysis of cross-polarization jamming for phase comparison monopulse radars
Henault et al. Effects of mutual coupling on the accuracy of adcock direction finding systems
US20210247432A1 (en) Determination of gain characteristics of a circularly-polarized antenna
Kuznetsov et al. Practical aspects of active phased arrays characterization during thermal testing
Chen et al. An improved method for determining normalized site attenuation using log periodic dipole arrays
Luchin et al. Algorithm of radio direction finding in the HF range in polarization fading conditions with collocated antennas
CN110850187A (en) Method for measuring complex cross polarization ratio by using two same antennas to be measured
Fujii et al. Uncertainty analysis for three antenna method and standard antenna method