TW202001979A - A plasma generating arrangement - Google Patents

A plasma generating arrangement Download PDF

Info

Publication number
TW202001979A
TW202001979A TW108107301A TW108107301A TW202001979A TW 202001979 A TW202001979 A TW 202001979A TW 108107301 A TW108107301 A TW 108107301A TW 108107301 A TW108107301 A TW 108107301A TW 202001979 A TW202001979 A TW 202001979A
Authority
TW
Taiwan
Prior art keywords
plasma
antenna coil
plasma generating
generating apparatus
transmission line
Prior art date
Application number
TW108107301A
Other languages
Chinese (zh)
Other versions
TWI822735B (en
Inventor
保羅 班納特
Original Assignee
英商Spts科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英商Spts科技公司 filed Critical 英商Spts科技公司
Publication of TW202001979A publication Critical patent/TW202001979A/en
Application granted granted Critical
Publication of TWI822735B publication Critical patent/TWI822735B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32899Multiple chambers, e.g. cluster tools
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • H03H7/40Automatic matching of load impedance to source impedance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/327Arrangements for generating the plasma

Abstract

A plasma generating arrangement is disclosed. The arrangement comprises a plurality of plasma sources, each plasma source comprising a respective antenna coil assembly electrically coupled to a common electrical terminal via a respective transmission line. Each transmission line is configured to communicate a radio frequency electrical power signal from the common electrical terminal to the respective antenna coil assembly, and comprises a length which is an odd multiple of 1/4 of the wavelength of the radio frequency electrical power signal.

Description

電漿產生設備Plasma production equipment

發明領域 本發明係關於一種電漿產生設備。Field of invention The invention relates to a plasma generating device.

發明背景 眾所周知,電漿可藉由使射頻電流穿過安置為接近製程腔室之天線而在低壓電漿腔室內產生。天線可取決於電漿製程要求而處於真空容器內抑或外部。此類型之電漿可用以蝕刻、沈積或處理在電漿附近之表面。迅速改變之電流產生磁場,該磁場與腔室內之氣體相互作用以產生電漿。所謂的電感耦合電漿通常每腔室包含一或多個射頻(RF)電功率源(若對於製程需要一個以上RF頻率則甚至更多),用於在各別天線中產生電流。每一RF電源經由RF匹配網路之使用與天線阻抗匹配。對於每一天線使用專用之RF電源供應器及匹配網路的必要性對系統設計者施加約束。以下情況將為合乎需要的:能夠與多個天線共用在固定頻率(例如,13.56MHz)下操作之RF電源供應器以簡化系統設計、節約空間且降低成本。Background of the invention It is well known that plasma can be generated in a low-pressure plasma chamber by passing radio frequency current through an antenna disposed close to the process chamber. The antenna can be inside or outside the vacuum container depending on the plasma process requirements. This type of plasma can be used to etch, deposit, or treat surfaces near the plasma. The rapidly changing current generates a magnetic field that interacts with the gas in the chamber to generate plasma. So-called inductively coupled plasmas usually contain one or more radio frequency (RF) electrical power sources per chamber (or more if more than one RF frequency is required for the process) for generating current in individual antennas. Each RF power source is matched to the antenna impedance through the use of an RF matching network. The need to use a dedicated RF power supply and matching network for each antenna imposes constraints on the system designer. It would be desirable to be able to share an RF power supply operating at a fixed frequency (for example, 13.56 MHz) with multiple antennas to simplify system design, save space, and reduce costs.

實務上,當用作用於低壓製程腔室15之激發構件的兩個或兩個以上RF天線10a、10b與單一RF電源供應器20並行耦接時,如圖1b中所表示,則所產生之磁場將為異相的,且線圈10a、10b中之一者將變得佔優勢並自該源汲取所有電功率。然而,此表明作為對於佔優勢線圈為局部之電漿25形成,難以預測哪一線圈將汲取功率來產生電漿。變得佔優勢之線圈可藉由機械佈局或氣體條件之輕微差異來判定,但此通常為隨機過程。在兩個或兩個以上單獨的腔室自單一RF電源供應器並行驅動之情況下,類似結果將出現。In practice, when two or more RF antennas 10a, 10b used as excitation means for the low-voltage process chamber 15 are coupled in parallel with a single RF power supply 20, as shown in FIG. 1b, the resulting The magnetic field will be out of phase, and one of the coils 10a, 10b will become dominant and draw all electrical power from the source. However, this indicates that as the plasma 25 is local to the dominant coil, it is difficult to predict which coil will draw power to generate the plasma. The coil that becomes dominant can be judged by a slight difference in mechanical layout or gas conditions, but this is usually a random process. Similar results will occur when two or more separate chambers are driven in parallel from a single RF power supply.

在單一腔室15上靠近地串聯操作多個天線例如具有有限益處,此係由於所產生之電磁場相互作用。例如參看圖1a,若兩個線圈10a、10b靠近地置放於同一腔室15上且以串聯組態來組配,則所產生之磁場將為同相的,且電漿將在線圈10a、10b之間形成穩定的中途。Operating multiple antennas in close proximity on a single chamber 15 in series, for example, has limited benefits due to the interaction of the generated electromagnetic fields. For example, referring to FIG. 1a, if two coils 10a, 10b are placed close to the same chamber 15 and assembled in a series configuration, the generated magnetic field will be in phase and the plasma will be on the coils 10a, 10b Form a stable halfway between.

現已設計出減輕上文所提及之問題中之至少一些的經改良之電漿產生設備。Improved plasma generation equipment has been designed to alleviate at least some of the problems mentioned above.

發明概要 根據本發明,提供一種電漿產生設備,其包含多個電漿源,每一電漿源包含經由一各別傳輸線電耦接至一共同電端子之一各別天線線圈總成,每一傳輸線經組配來將一射頻電功率信號自該共同電端子傳達至該各別天線線圈總成,其中每一傳輸線包含一長度,該長度為該射頻電功率信號之波長之¼的一奇數倍。Summary of the invention According to the present invention, there is provided a plasma generating apparatus including a plurality of plasma sources, each plasma source including a separate antenna coil assembly electrically coupled to a common electrical terminal via a separate transmission line, each transmission line Assembled to transmit an RF electrical power signal from the common electrical terminal to the respective antenna coil assembly, where each transmission line includes a length that is an odd multiple of ¼ of the wavelength of the RF electrical power signal.

該電漿產生設備迫使電功率對每一電漿源之共用,使得每一源可產生對於其在電漿腔室上之各別位置為局部的穩定電漿。The plasma generating device forces the sharing of electrical power to each plasma source so that each source can generate stable plasma local to its respective location on the plasma chamber.

在實施例中,每一傳輸線包含一長度,該長度實質上為該射頻電功率信號之一波長的四分之一。In an embodiment, each transmission line includes a length that is substantially a quarter of a wavelength of the RF electrical power signal.

在實施例中,每一電漿源以一並聯組態電連接在一起。In an embodiment, each plasma source is electrically connected together in a parallel configuration.

在實施例中,該設備之至少一傳輸線包含一阻抗匹配電路,該阻抗匹配電路用於匹配該各別天線線圈總成與該共同電端子之一電阻抗。該阻抗匹配電路可包含電感器及電容器。該等電感器及電容器可經組配為一π網路組態。在實施例中,該阻抗匹配電路包含一個四分之一波阻抗變壓器。In an embodiment, at least one transmission line of the device includes an impedance matching circuit for matching the electrical impedance of the respective antenna coil assembly and the common electrical terminal. The impedance matching circuit may include an inductor and a capacitor. These inductors and capacitors can be configured into a π network configuration. In an embodiment, the impedance matching circuit includes a quarter-wave impedance transformer.

在實施例中,該設備之每一傳輸線包含一阻抗匹配電路,該阻抗匹配電路用於匹配該各別天線線圈總成與該共同電端子之一電阻抗。每一阻抗匹配電路可包含電感器及電容器,該等電感器及電容器可經組配為一π網路組態。In an embodiment, each transmission line of the device includes an impedance matching circuit for matching the electrical impedance of the respective antenna coil assembly and the common electrical terminal. Each impedance matching circuit may include inductors and capacitors, which may be configured in a π network configuration.

在實施例中,每一傳輸線可進一步包含諸如一同軸纜線之一饋線,用於將該電功率信號傳達至該各別天線線圈總成。該饋線可安置於該各別阻抗匹配電路與該天線線圈總成之間。In an embodiment, each transmission line may further include a feeder line such as a coaxial cable for communicating the electrical power signal to the respective antenna coil assembly. The feeder can be placed between the respective impedance matching circuit and the antenna coil assembly.

在實施例中,每一天線線圈總成包含一天線線圈及一電共振器電路。該電共振器電路包含以一並聯組態與該各別天線線圈電耦接之一電容器。該天線線圈可安置於對每一線圈定位之一共同電漿腔室上,用於在同一腔室內產生單獨的電漿。或者,該等天線線圈可安置於單獨的電漿腔室上,用於在每一單獨腔室內產生一電漿。In an embodiment, each antenna coil assembly includes an antenna coil and an electric resonator circuit. The electric resonator circuit includes a capacitor electrically coupled to the respective antenna coils in a parallel configuration. The antenna coil can be placed on a common plasma chamber positioned for each coil, for generating separate plasma in the same chamber. Alternatively, the antenna coils can be placed on separate plasma chambers for generating a plasma in each separate chamber.

在實施例中,該設備進一步包含用於將射頻電功率供應至該共同電端子之一射頻電功率供應器。因此,單一電功率供應器可用以對數個單獨的電漿源供電。In an embodiment, the device further includes a radio frequency electrical power supply for supplying radio frequency electrical power to the common electrical terminal. Therefore, a single electrical power supply can be used to power several separate plasma sources.

在實施例中,該設備包含用於將該共同電端子之一電阻抗匹配至該射頻電功率供應器之一另外阻抗匹配電路。In an embodiment, the device includes an additional impedance matching circuit for matching an electrical impedance of the common electrical terminal to an RF electrical power supply.

儘管上文已描述了本發明,但其延伸至上文或在以下描述中陳述之特徵的任何發明性組合。儘管本文參看隨附圖式詳細地描述本發明之說明性實施例,但應理解,本發明不限於此等精確實施例。Although the invention has been described above, it extends to any inventive combination of features stated above or in the following description. Although the illustrative embodiments of the present invention are described in detail herein with reference to the accompanying drawings, it should be understood that the present invention is not limited to such precise embodiments.

此外,預期個別地抑或作為實施例之部分描述的特定特徵可與其他個別描述之特徵或其他實施例的部分組合,即使其他特徵及實施例未提及該特定特徵亦如此。因此,本發明延伸至尚未描述之此等特定組合。Furthermore, it is expected that a particular feature described individually or as part of an embodiment may be combined with other individually described features or parts of other embodiments, even if other features and embodiments do not mention that particular feature. Therefore, the present invention extends to these specific combinations that have not been described.

較佳實施例之詳細說明 參看圖式之圖2,提供根據本發明之實施例的電漿產生設備100之示意性說明。所說明設備包含兩個電漿源110、120,各自與單獨的電漿腔室130相關聯,諸如含有諸如氮之氣體的電漿管。然而,每一電漿源可替代地與共同電漿腔室相關聯。此外,儘管所說明實施例僅包含兩個電漿源,但應瞭解,設備可按比例放大以包括操作形成單一RF電源供應器之另外電漿源。Detailed description of the preferred embodiment Referring to FIG. 2 of the drawings, a schematic illustration of a plasma generating apparatus 100 according to an embodiment of the present invention is provided. The illustrated device contains two plasma sources 110, 120, each associated with a separate plasma chamber 130, such as a plasma tube containing a gas such as nitrogen. However, each plasma source may instead be associated with a common plasma chamber. Furthermore, although the illustrated embodiment contains only two plasma sources, it should be understood that the device can be scaled up to include additional plasma sources that operate to form a single RF power supply.

電漿源110、120經由各別傳輸線140、150以並聯組態電耦接。每一傳輸線140、150在一末端處電連接至共同電端子160或節點且在另一末端處電連接至各別天線線圈總成170、180,天線線圈總成170、180各自經配置來在對線圈170、180為局部的腔室130內電磁地誘發電漿200。電漿源110、120及因此天線線圈總成170、180係使用電耦接至共同節點160之射頻(RF)電功率源190來供電。在此方面,單一RF電源190經組配來對多個電漿源110、120供電。The plasma sources 110, 120 are electrically coupled in a parallel configuration via respective transmission lines 140, 150. Each transmission line 140, 150 is electrically connected to a common electrical terminal 160 or node at one end and to the respective antenna coil assembly 170, 180 at the other end, and the antenna coil assembly 170, 180 are each configured to The plasma 200 is electromagnetically induced in the chamber 130 where the coils 170 and 180 are local. The plasma sources 110, 120 and therefore the antenna coil assemblies 170, 180 are powered using a radio frequency (RF) electric power source 190 electrically coupled to the common node 160. In this regard, a single RF power supply 190 is configured to power multiple plasma sources 110, 120.

將天線線圈總成170、180耦接至共同節點160之傳輸線140、150經定大小來與來自RF源190之電功率信號的波長之¼的奇數倍對應,且在較佳實施例中,每一傳輸線140、150包含實質上為電功率信號之一波長之四分之一的有效路徑長度來在橫越傳輸線140、150時產生π/2弧度之相變。大體而言,電漿源具有負電阻特性且因此若電漿源以並聯組態置放,則正回饋導致線圈中之一者接收所有電功率且以其他線圈為代價變為佔優勢的。然而,藉由將每一天線線圈總成170、180電耦接至共同電節點160以使得每一總成170、180為來自節點160之一波長的四分之一,則此有效地使線圈170、180如同以電串聯組態配置一樣來表現。在此狀況下,傳輸線140、150之有效輸入阻抗(Z)可表達為Z=Z0 2 /ZL ,其中Z0 為傳輸線之特性阻抗且ZL 為各別天線線圈總成170、180的阻抗。因此,若與設備之特定電漿源110、120相關聯的電漿開始熄滅,則ZL 將開始增大,從而使傳輸線140、150之有效阻抗減小。減小之阻抗導致電功率被吸引遠離其他電漿源以維持電漿,且因此提供穩定的負回饋。The transmission lines 140, 150 coupling the antenna coil assemblies 170, 180 to the common node 160 are sized to correspond to an odd multiple of ¼ of the wavelength of the electrical power signal from the RF source 190, and in the preferred embodiment, each A transmission line 140, 150 includes an effective path length that is substantially a quarter of a wavelength of an electrical power signal to produce a phase change of π/2 radians when traversing the transmission line 140, 150. In general, the plasma source has a negative resistance characteristic and therefore if the plasma source is placed in a parallel configuration, positive feedback causes one of the coils to receive all electrical power and becomes dominant at the expense of the other coils. However, by electrically coupling each antenna coil assembly 170, 180 to a common electrical node 160 such that each assembly 170, 180 is a quarter of a wavelength from node 160, this effectively enables the coil 170 and 180 behave as if they were configured in electrical series configuration. In this situation, the effective input impedance (Z) of the transmission lines 140, 150 can be expressed as Z = Z 0 2 /Z L , where Z 0 is the characteristic impedance of the transmission line and Z L is the respective antenna coil assembly 170, 180 impedance. Therefore, if the plasma associated with the specific plasma source 110, 120 of the device begins to extinguish, Z L will begin to increase, thereby reducing the effective impedance of the transmission lines 140, 150. The reduced impedance causes electrical power to be attracted away from other plasma sources to maintain the plasma, and thus provides stable negative feedback.

為了使功率自傳輸線140、150至各別天線線圈總成170、180之電耦合最大化,傳輸線140、150之阻抗必須匹配至各別天線線圈總成170、180的阻抗。同軸纜線傳輸線之特性阻抗通常為50Ω,且因此假設天線線圈總成170、180包含類似阻抗,則在與各別天線線圈總成170、180之耦合處反射之電功率將最小化。在電漿反應器中所使用之13.56MHz的共同RF頻率下,¼波長為大約4m。然而,若天線線圈總成170、180包含明顯地不同於傳輸線140、150之阻抗或需要較短之纜線長度,則較短的纜線可使用低通π網路或電路與同軸纜線之「集總」等效電路組合,如圖式之圖3中所說明,以便定製傳輸線的阻抗。In order to maximize the electrical coupling of power from the transmission lines 140, 150 to the individual antenna coil assemblies 170, 180, the impedance of the transmission lines 140, 150 must match the impedance of the individual antenna coil assemblies 170, 180. The characteristic impedance of the coaxial cable transmission line is usually 50Ω, and therefore assuming that the antenna coil assemblies 170, 180 contain similar impedances, the electric power reflected at the coupling with the respective antenna coil assemblies 170, 180 will be minimized. At the common RF frequency of 13.56 MHz used in the plasma reactor, the ¼ wavelength is about 4 m. However, if the antenna coil assembly 170, 180 contains an impedance that is significantly different from the transmission line 140, 150 or requires a shorter cable length, the shorter cable can use a low-pass π network or a circuit and a coaxial cable The "lumped" equivalent circuit combination is illustrated in Figure 3 of the equation to customize the impedance of the transmission line.

例如參看圖式之圖3,每一傳輸線140、150包含π網路141、151及諸如同軸纜線之饋線142、152的串聯組態,用於將電功率自共同節點160耦合至各別天線線圈總成170、180。π網路141、151包含與饋線142、152串聯配置之電感器143、153及以並聯組態單獨配置於電感器143、153之任一側中的兩個電容器144、154。在天線線圈總成170、180包含與傳輸線140、150不匹配之阻抗的情形中,則傳輸線140、150之有效阻抗(即π網路141、151及饋線142、152之組合式阻抗)可藉由分別選擇對於電感器143、153及電容器144、154之適當的電感及電容值來選擇。For example, referring to FIG. 3 of the drawings, each transmission line 140, 150 includes a series configuration of a pi network 141, 151 and feeders 142, 152 such as coaxial cables for coupling electrical power from a common node 160 to respective antenna coils Assembly 170, 180. The π network 141, 151 includes inductors 143, 153 arranged in series with the feeders 142, 152, and two capacitors 144, 154 individually arranged in either side of the inductors 143, 153 in a parallel configuration. In the case where the antenna coil assembly 170, 180 includes an impedance that does not match the transmission lines 140, 150, the effective impedance of the transmission lines 140, 150 (that is, the combined impedance of the π network 141, 151 and the feed lines 142, 152) can be borrowed It is selected by selecting appropriate inductance and capacitance values for the inductors 143 and 153 and the capacitors 144 and 154, respectively.

每一天線線圈總成170、180包含耦合線圈171、181,耦合線圈171、181延伸靠近諸如電漿管之電漿腔室130或可安置於腔室130上且藉由相關聯之電共振器電路173、183之各別電容器172、182調諧至並聯共振。四分之一波長傳輸線140、150係藉由各別π網路141、151及饋線142、152形成且經配置來跨越該線產生π/2弧度相移。跨越饋線142、152之相移定義為長度/(波長X饋線速度因數)。對於諸如RG213之典型饋線,速度因數Vp為0.66。因此,在13.56MHz之頻率(f)下支援電信號的1m長RG213饋線將產生240 (大約2π/15弧度)之相移。自π網路所要求以產生900 位移之剩餘相移因此為660Each antenna coil assembly 170, 180 includes coupling coils 171, 181 that extend close to the plasma chamber 130, such as a plasma tube, or can be placed on the chamber 130 and through associated electrical resonators The respective capacitors 172, 182 of the circuits 173, 183 are tuned to parallel resonance. Quarter-wavelength transmission lines 140, 150 are formed by respective π networks 141, 151 and feed lines 142, 152 and are configured to produce a π/2 radian phase shift across the line. The phase shift across the feeders 142, 152 is defined as length/(wavelength X feeder speed factor). For a typical feeder such as RG213, the speed factor Vp is 0.66. Therefore, a 1 m long RG213 feeder supporting electrical signals at a frequency (f) of 13.56 MHz will produce a phase shift of 24 0 (approximately 2π/15 radians). The remaining phase shift required to generate a 90 0 shift from the π network is therefore 66 0 .

對於低通π網路,電感(L)定義為(Z0 sinθ)/ω,其中ω=2 π f為角頻率且對於每一電容器之電容(C)為(1-Cosθ)/ωZ0 sinθ。因此,為了產生660 之另外相移,對於電感器及電容器之所要求電感及電容值分別計算為532nH及150pF。For a low-pass π network, the inductance (L) is defined as (Z 0 sinθ)/ω, where ω=2 π f is the angular frequency and the capacitance (C) for each capacitor is (1-Cosθ)/ωZ 0 sinθ . Accordingly, in order to generate additional phase shift of 660, an inductor and capacitor to the desired inductance and capacitance values were calculated as 532nH and 150pF.

RF電源190進一步經由各別阻抗匹配電路191阻抗匹配至共同節點160,阻抗匹配電路191包含電感器192及電容器193。電感器192以串聯組態與RF電源190及共同節點160耦接,而電容器193以並聯組態耦接於RF源190與電感器192之間。The RF power supply 190 is further impedance-matched to the common node 160 via respective impedance matching circuits 191. The impedance matching circuit 191 includes an inductor 192 and a capacitor 193. The inductor 192 is coupled to the RF power source 190 and the common node 160 in a series configuration, and the capacitor 193 is coupled between the RF source 190 and the inductor 192 in a parallel configuration.

本發明實務上係使用具有類似多匝線圈天線的由Al2 O3 製成之2個平行的圓柱形水冷卻電漿管來測試。此示意性地表示於圖2中。電漿源110、120兩者係使用共同泵自單一13.56MHz電源供應器饋飼,該電源供應器係在N2之4Torr壓力下在~2kW下操作。電壓係使用示波器監視。In practice, the present invention was tested using two parallel cylindrical water-cooled plasma tubes made of Al 2 O 3 with similar multi-turn coil antennas. This is shown schematically in FIG. 2. Both plasma sources 110 and 120 are fed from a single 13.56MHz power supply using a common pump, which operates at ~2kW under 4Torr pressure of N2. The voltage is monitored using an oscilloscope.

參看圖式之圖4,說明展示隨時間而變的跨越每一電漿源之電壓之變化的儀器顯示300。圖4a及圖4b說明在電漿點燃序列期間跨越每一電漿源110、120之電壓。圖4a說明相對粗的時間尺度(20ms/div)上之電壓變化,且自此圖明顯地,兩個電漿源110、120在幾乎相同時間產生各別電漿,如藉由電壓之突然下降所指示。圖4b提供使用相對較小之時間尺度(1ms/div)在燃點處之電壓變化的仔細檢驗。以此規模,明顯地,跨越第二電漿源120之電壓(圖4a及圖4b中之下部跡線)下降且跨越第一電漿源110之電壓上升,此係由於第二源120首先點燃電漿。在藉由第二源120對電漿之點燃之後不久,跨越第一源110之電壓上升直至電漿亦點燃接近第一源110為止,藉此證明兩種穩定電漿(在同一腔室130中或單獨的腔室中)使用單一電源190之產生。Referring to Figure 4 of the drawings, an instrument display 300 showing changes in voltage across each plasma source over time is shown. 4a and 4b illustrate the voltage across each plasma source 110, 120 during the plasma ignition sequence. Fig. 4a illustrates the voltage variation on a relatively coarse time scale (20ms/div), and from this figure it is clear that the two plasma sources 110, 120 generate different plasmas at almost the same time, such as by a sudden drop in voltage As directed. Figure 4b provides a careful examination of the voltage change at the ignition point using a relatively small time scale (1ms/div). At this scale, it is obvious that the voltage across the second plasma source 120 (the lower trace in FIGS. 4a and 4b) drops and the voltage across the first plasma source 110 rises, because the second source 120 ignites first Plasma. Shortly after the plasma is ignited by the second source 120, the voltage across the first source 110 rises until the plasma also ignites close to the first source 110, thereby proving that two stable plasmas (in the same chamber 130 Or in a separate chamber) using a single power supply 190.

自前述內容,因此明顯地,電漿產生設備提供用於自單一電源產生多種電漿的簡單而有效之設備。From the foregoing, it is therefore obvious that the plasma generating device provides a simple and effective device for generating multiple plasmas from a single power source.

10a、10b‧‧‧RF天線、線圈 15‧‧‧低壓製程腔室 20‧‧‧RF電源供應器 25、200‧‧‧電漿 100‧‧‧電漿產生設備 110、120‧‧‧電漿源 130‧‧‧電漿腔室 140、150‧‧‧傳輸線 141、151‧‧‧π網路 142、152‧‧‧饋線 143、153、192‧‧‧電感器 144、154、172、182、193‧‧‧電容器 160‧‧‧共同電端子/共同節點 170、180‧‧‧天線線圈總成 171、181‧‧‧耦合線圈 173、183‧‧‧電共振器電路 190‧‧‧射頻(RF)電功率源/RF電源 191‧‧‧阻抗匹配電路 300‧‧‧儀器顯示10a, 10b‧‧‧‧RF antenna, coil 15‧‧‧Low pressure process chamber 20‧‧‧RF power supply 25、200‧‧‧Plasma 100‧‧‧Plasma production equipment 110、120‧‧‧Plasma source 130‧‧‧ plasma chamber 140, 150‧‧‧ transmission line 141, 151‧‧‧π network 142, 152‧‧‧ feeder 143, 153, 192 144, 154, 172, 182, 193‧‧‧ capacitor 160‧‧‧Common electrical terminal/common node 170, 180‧‧‧ antenna coil assembly 171,181‧‧‧Coupling coil 173、183‧‧‧Electric resonator circuit 190‧‧‧radio frequency (RF) electric power source/RF power supply 191‧‧‧ impedance matching circuit 300‧‧‧ instrument display

本發明可以各種方式且僅藉由實例來執行,其實施例將參看隨附圖式得以描述,其中: 圖1為包含用於在電漿腔室內產生電漿之兩個天線線圈的已知電漿產生設備之示意性說明,天線係以(a)串聯組態及(b)並聯組態配置; 圖2為根據本發明之實施例的電漿產生設備之示意性說明; 圖3為說明圖1中所說明之實施例之電組件的電路圖,其中電漿腔室經移除; 圖4a為展示在電漿之點燃期間隨時間而變的跨越每一電漿源之電壓之變化的儀器顯示之視圖,其中時間刻度表示20ms分割區;及 圖4b為展示在電漿之點燃期間隨時間而變的跨越每一電漿源之電壓之變化的儀器顯示之視圖,其中時間刻度表示1ms分割區。The present invention can be implemented in various ways and by examples only, and embodiments thereof will be described with reference to the accompanying drawings, in which: FIG. 1 is a schematic illustration of a known plasma generating device including two antenna coils for generating plasma in a plasma chamber, the antenna is configured in (a) series configuration and (b) parallel configuration; 2 is a schematic illustration of a plasma generating device according to an embodiment of the invention; 3 is a circuit diagram illustrating the electrical component of the embodiment illustrated in FIG. 1 with the plasma chamber removed; Figure 4a is a view of an instrument display showing the change in voltage across each plasma source with time during the ignition of the plasma, where the time scale represents a 20 ms partition; and Figure 4b is a view of an instrument display showing the change in voltage across each plasma source as a function of time during the ignition of the plasma, where the time scale represents a 1 ms partition.

200‧‧‧電漿 200‧‧‧Plasma

100‧‧‧電漿產生設備 100‧‧‧Plasma production equipment

110、120‧‧‧電漿源 110、120‧‧‧Plasma source

130‧‧‧電漿腔室 130‧‧‧ plasma chamber

140、150‧‧‧傳輸線 140, 150‧‧‧ transmission line

160‧‧‧共同電端子/共同節點 160‧‧‧Common electrical terminal/common node

170、180‧‧‧天線線圈總成 170, 180‧‧‧ antenna coil assembly

171、181‧‧‧耦合線圈 171,181‧‧‧Coupling coil

190‧‧‧射頻(RF)電功率源/RF電源 190‧‧‧radio frequency (RF) electric power source/RF power supply

191‧‧‧阻抗匹配電路 191‧‧‧ impedance matching circuit

Claims (15)

一種電漿產生設備,其包含多個電漿源,每一電漿源包含經由一各別傳輸線電耦接至一共同電端子之一各別天線線圈總成,每一傳輸線經組配來將一射頻電功率信號自該共同電端子傳達至該各別天線線圈總成,其中每一傳輸線包含一長度,該長度為該射頻電功率信號之波長之¼的一奇數倍。A plasma generating device includes a plurality of plasma sources, each plasma source includes a separate antenna coil assembly electrically coupled to a common electrical terminal via a separate transmission line, and each transmission line is An RF electrical power signal is transmitted from the common electrical terminal to the respective antenna coil assembly, wherein each transmission line includes a length that is an odd multiple of ¼ of the wavelength of the RF electrical power signal. 如請求項1之電漿產生設備,其中每一傳輸線包含一長度,該長度實質上為該射頻電功率信號之一波長的四分之一。The plasma generating apparatus of claim 1, wherein each transmission line includes a length which is substantially a quarter of a wavelength of the radio frequency electrical power signal. 如請求項1或2之電漿產生設備,其中每一電漿源以一並聯組態電連接在一起。As in the plasma generation equipment of claim 1 or 2, each plasma source is electrically connected together in a parallel configuration. 如請求項1至3中任一項之電漿產生設備,其中該設備之至少一傳輸線包含一阻抗匹配電路,該阻抗匹配電路用於將該各別天線線圈總成之一電阻抗與該共同電端子匹配。The plasma generating device according to any one of claims 1 to 3, wherein at least one transmission line of the device includes an impedance matching circuit for impedance of the respective antenna coil assembly and the common The electrical terminals are matched. 如請求項1至4中任一項之電漿產生設備,其中該設備之每一傳輸線包含一阻抗匹配電路,該阻抗匹配電路用於將該各別天線線圈總成之一電阻抗與該共同電端子匹配。The plasma generating apparatus according to any one of claims 1 to 4, wherein each transmission line of the apparatus includes an impedance matching circuit for impedance of the respective antenna coil assembly and the common The electrical terminals are matched. 如請求項4或5之電漿產生設備,其中該至少一或每一阻抗匹配電路可包含電感器及電容器。The plasma generating apparatus according to claim 4 or 5, wherein the at least one or each impedance matching circuit may include an inductor and a capacitor. 如請求項6之電漿產生設備,其中該等電感器及電容器經組配為一π網路組態。The plasma generating apparatus of claim 6, wherein the inductors and capacitors are configured in a π network configuration. 如請求項1至7中任一項之電漿產生設備,其中每一傳輸線進一步包含用於將該電功率信號傳達至該各別天線線圈總成之一饋線。The plasma generating apparatus according to any one of claims 1 to 7, wherein each transmission line further includes a feeder for transmitting the electric power signal to the respective antenna coil assembly. 如請求項8之電漿產生設備,其中該饋線安置於該各別阻抗匹配電路與該天線線圈總成之間。The plasma generating apparatus according to claim 8, wherein the feeder line is disposed between the respective impedance matching circuit and the antenna coil assembly. 如請求項1至9中任一項之電漿產生設備,其中每一天線線圈總成包含一天線線圈及一電共振器電路。The plasma generating apparatus according to any one of claims 1 to 9, wherein each antenna coil assembly includes an antenna coil and an electric resonator circuit. 如請求項10之電漿產生設備,其中該電共振器電路包含以一並聯組態與該各別天線線圈電耦接之一電容器。The plasma generating apparatus of claim 10, wherein the electric resonator circuit includes a capacitor electrically coupled to the respective antenna coils in a parallel configuration. 如請求項10或11之電漿產生設備,其進一步包含一電漿腔室,其中每一天線線圈安置於對每一線圈定位之該電漿腔室上,用於在該腔室內產生單獨的電漿。The plasma generating apparatus according to claim 10 or 11, further comprising a plasma chamber, wherein each antenna coil is disposed on the plasma chamber positioned for each coil, for generating a separate Plasma. 如請求項10或11之電漿產生設備,其進一步包含多個電漿腔室,其中每一天線線圈安置於一單獨電漿腔室上,用於在每一腔室內產生一電漿。The plasma generating apparatus according to claim 10 or 11, further comprising a plurality of plasma chambers, wherein each antenna coil is disposed on a separate plasma chamber for generating a plasma in each chamber. 如請求項1至13中任一項之電漿產生設備,其中進一步包含用於將射頻電功率供應至該共同電端子之一射頻電功率供應器。The plasma generating apparatus according to any one of claims 1 to 13, further comprising a radio frequency electrical power supply for supplying radio frequency electrical power to the common electrical terminal. 如請求項14之電漿產生設備,其進一步包含用於將該共同電端子之一電阻抗匹配至該射頻電功率供應器的一阻抗匹配電路。The plasma generating apparatus of claim 14, further comprising an impedance matching circuit for matching the electrical impedance of one of the common electrical terminals to the radio frequency electric power supply.
TW108107301A 2018-04-25 2019-03-05 A plasma generating arrangement TWI822735B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB1806783.5A GB201806783D0 (en) 2018-04-25 2018-04-25 A plasma generating arrangement
GB1806783.5 2018-04-25

Publications (2)

Publication Number Publication Date
TW202001979A true TW202001979A (en) 2020-01-01
TWI822735B TWI822735B (en) 2023-11-21

Family

ID=62236296

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108107301A TWI822735B (en) 2018-04-25 2019-03-05 A plasma generating arrangement

Country Status (6)

Country Link
US (1) US11189463B2 (en)
EP (1) EP3561851B1 (en)
KR (1) KR102454531B1 (en)
CN (1) CN110402009B (en)
GB (1) GB201806783D0 (en)
TW (1) TWI822735B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111997853A (en) * 2020-06-05 2020-11-27 中国科学院合肥物质科学研究院 Near space environment air suction type radio frequency plasma propeller
CN113285223B (en) * 2021-05-24 2023-10-10 中国科学院合肥物质科学研究院 Discrete pi/2 phase difference ion cyclotron resonance heating antenna
KR20220168428A (en) * 2021-06-16 2022-12-23 (주)펨토사이언스 Inductively Coupled Plasma Generating Apparatus

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB654498A (en) * 1948-09-23 1951-06-20 British Broadcasting Corp Improvements in and relating to aerial systems
JPH06151373A (en) * 1992-11-12 1994-05-31 Canon Inc Semiconductor device manufacturing equipment
AU2003195A (en) * 1994-06-21 1996-01-04 Boc Group, Inc., The Improved power distribution for multiple electrode plasma systems using quarter wavelength transmission lines
US6264812B1 (en) 1995-11-15 2001-07-24 Applied Materials, Inc. Method and apparatus for generating a plasma
US5866985A (en) * 1996-12-03 1999-02-02 International Business Machines Corporation Stable matching networks for plasma tools
KR100396214B1 (en) 2001-06-19 2003-09-02 주성엔지니어링(주) Plasma processing apparatus having parallel resonance antenna for very high frequency
JP4519695B2 (en) * 2005-03-29 2010-08-04 三菱重工業株式会社 Thin film manufacturing apparatus and thin film manufacturing method
US8992725B2 (en) * 2006-08-28 2015-03-31 Mattson Technology, Inc. Plasma reactor with inductie excitation of plasma and efficient removal of heat from the excitation coil
KR20110094346A (en) * 2009-01-15 2011-08-23 가부시키가이샤 히다치 하이테크놀로지즈 Plasma processing equipment and plasma generation equipment
KR101151414B1 (en) 2010-02-23 2012-06-04 주식회사 플라즈마트 Impedance matching apparatus
KR101920034B1 (en) 2012-01-30 2018-11-19 에이에스엠 아이피 홀딩 비.브이. Deposition apparatus and deposition method
JP5534366B2 (en) * 2012-06-18 2014-06-25 株式会社京三製作所 High frequency power supply device and ignition voltage selection method
US9082590B2 (en) 2012-07-20 2015-07-14 Applied Materials, Inc. Symmetrical inductively coupled plasma source with side RF feeds and RF distribution plates
US8809803B2 (en) * 2012-08-13 2014-08-19 Varian Semiconductor Equipment Associates, Inc. Inductively coupled plasma ion source with multiple antennas for wide ion beam
US9779196B2 (en) * 2013-01-31 2017-10-03 Lam Research Corporation Segmenting a model within a plasma system
CN104684235B (en) * 2013-11-28 2017-07-07 中微半导体设备(上海)有限公司 A kind of inductance coil group and inductance coupling plasma processing device
WO2016136444A1 (en) * 2015-02-27 2016-09-01 株式会社日立国際電気 Matching device and matching method
US9721759B1 (en) 2016-04-04 2017-08-01 Aixtron Se System and method for distributing RF power to a plasma source

Also Published As

Publication number Publication date
EP3561851B1 (en) 2021-04-21
GB201806783D0 (en) 2018-06-06
US11189463B2 (en) 2021-11-30
CN110402009B (en) 2023-03-28
KR102454531B1 (en) 2022-10-13
CN110402009A (en) 2019-11-01
TWI822735B (en) 2023-11-21
KR20190124140A (en) 2019-11-04
US20190333740A1 (en) 2019-10-31
EP3561851A1 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
TWI822735B (en) A plasma generating arrangement
US4849675A (en) Inductively excited ion source
KR101687566B1 (en) Plasma processing apparatus
US6164241A (en) Multiple coil antenna for inductively-coupled plasma generation systems
EP2281321B1 (en) Power splitter
US8404080B2 (en) Apparatus to treat a substrate
KR100444189B1 (en) Impedance matching circuit for inductive coupled plasma source
JPH08339897A (en) Guidance plasma generator and method of giving capacitive coupling
US20080017317A1 (en) Substrate processing apparatus
US20150000844A1 (en) Multiple-mode plasma generation apparatus
JPH1083898A (en) Plasma system
KR20040076850A (en) Plasma Production Device and Method and RF Driver Circuit
US5065118A (en) Electronically tuned VHF/UHF matching network
JP5506826B2 (en) Large area plasma processing equipment
KR102378573B1 (en) Plasma generator
CN104918401A (en) Inductive coupling type plasma processing apparatus
US20230054430A1 (en) Apparatus for Plasma Processing
US20130328483A1 (en) Microwave icp resonator
US20220247219A1 (en) Apparatus, systems and methods for scalable 3d wireless charging utilizing multiple coils
US20220344130A1 (en) Dual Frequency Matching Circuit for Inductively Coupled Plasma (ICP) Loads
JP2002100610A (en) Plasma apparatus
WO2023023289A1 (en) Apparatus for plasma processing
JP2005050776A (en) Electromagnetic field feeder and plasma device
JP2009025118A (en) Nmr detector
WO2012099548A1 (en) Device for high-frequency gas plasma excitation