TW202001465A - Lighting system with integrated sensor - Google Patents

Lighting system with integrated sensor Download PDF

Info

Publication number
TW202001465A
TW202001465A TW108121838A TW108121838A TW202001465A TW 202001465 A TW202001465 A TW 202001465A TW 108121838 A TW108121838 A TW 108121838A TW 108121838 A TW108121838 A TW 108121838A TW 202001465 A TW202001465 A TW 202001465A
Authority
TW
Taiwan
Prior art keywords
light sources
spectrum
scene
image data
primary color
Prior art date
Application number
TW108121838A
Other languages
Chinese (zh)
Other versions
TWI728385B (en
Inventor
華特 索爾
史密特 喬哈奈 威廉 赫門 西里微
Original Assignee
美商亮銳公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/015,697 external-priority patent/US10582589B2/en
Application filed by 美商亮銳公司 filed Critical 美商亮銳公司
Publication of TW202001465A publication Critical patent/TW202001465A/en
Application granted granted Critical
Publication of TWI728385B publication Critical patent/TWI728385B/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • H05B45/22Controlling the colour of the light using optical feedback

Abstract

Techniques and devices are provided for sensing image data from a scene and activating primary light sources based on information sensed from the scene. Subsets of a plurality of primary light sources may be activated to emit sensing spectrum of light onto a scene. Combined image data may be sensed from the scene while the subsets of the plurality of primary light sources are activated. Reflectance information for the scene may be determined based on the combined image data and combined sensing spectra. Spectrum optimization criteria for the primary light sources may be determined based on the reference information and a desired output parameter provided by a user or determined by a controller. The plurality of primary light sources may be activated to emit a lighting spectrum based on the spectrum optimization criteria.

Description

具有積體感測器的照明系統Lighting system with integrated sensor

本申請係關於一種照明系統,且更特定言之,本申請案係關於一種具有一積體感測器之照明系統。This application relates to a lighting system, and more specifically, this application relates to a lighting system with an integrated sensor.

可調諧照明系統可用於照射含有物體之一或多個場景,且可調整使得由此等系統輸出之光基於使用者輸入來變動。此等可調諧照明系統可經調整以(例如)增加或減少照射至一場景上之光之量及/或類型。此外,此等可調諧照明系統可包含諸如多個燈泡之多個光源來照射一場景。The tunable lighting system can be used to illuminate one or more scenes containing objects, and can be adjusted so that the light output by these systems varies based on user input. These tunable lighting systems can be adjusted, for example, to increase or decrease the amount and/or type of light shining onto a scene. In addition, these tunable lighting systems may include multiple light sources such as multiple light bulbs to illuminate a scene.

以下描述包含經提供用於自一場景感測影像資料且基於該影像資料來啟動原色光源之技術及裝置。可啟動複數個原色光源之子集以將光之一感測光譜發射至一場景上。可在啟動該複數個原色光源之該等子集時自該場景感測影像資料。可基於該組合影像資料來判定該場景之反射資訊。可基於該參考資訊及由一使用者提供或由一控制器判定之一所要輸出參數來判定該等原色光源之光譜最佳化準則。可基於該光譜最佳化準則來啟動該複數個原色光源發射一照明光譜。The following description includes techniques and devices provided for sensing image data from a scene and activating primary color light sources based on the image data. A subset of multiple primary color light sources can be activated to emit a sensing spectrum of light onto a scene. The image data can be sensed from the scene when the subsets of the plurality of primary color light sources are activated. The reflection information of the scene can be determined based on the combined image data. The spectral optimization criteria of the primary color light sources can be determined based on the reference information and one of the desired output parameters provided by a user or determined by a controller. The plurality of primary color light sources can be activated to emit an illumination spectrum based on the spectrum optimization criterion.

相關申請案之交叉參考 本申請案主張2018年8月1日申請且名稱為「Lighting System With Integrated Sensor」之歐洲專利申請案第18186839.9號及2018年6月22日申請且名稱為「Lighting System With Integrated Sensor」之美國專利申請案第16/015,697號之優先權權利,該等案之各者之全部內容以引用的方式併入本文中。Cross-reference of related applications This application claims the European Patent Application No. 18186839.9 filed on August 1, 2018 and named ``Lighting System With Integrated Sensor'' and the U.S. patent filed on June 22, 2018 and named ``Lighting System With Integrated Sensor'' The priority right of the application No. 16/015,697, the entire contents of each of these cases are incorporated herein by reference.

下文將參考附圖來更完全描述不同照明、可調諧照明、感測器及/或發光二極體(「LED」)實施方案之實例。此等實例不相互排斥,且一實例中所見之特徵可與一或多個其他實例中所見之特徵組合以達成額外實施方案。因此,應瞭解,附圖中所展示之實例僅供說明,且其絕不意欲限制本發明。所有圖式中之相同元件符號係指相同元件。Examples of different lighting, tunable lighting, sensors, and/or light emitting diode ("LED") implementations will be described more fully below with reference to the drawings. These examples are not mutually exclusive, and the features seen in one example can be combined with the features seen in one or more other examples to achieve additional implementations. Therefore, it should be understood that the examples shown in the drawings are for illustration only, and they are by no means intended to limit the invention. The same element symbol in all drawings refers to the same element.

應瞭解,儘管術語「第一」、「第二」等等可在本文中用於描述各種元件,但此等元件不應受限於此等術語。此等術語僅用於使元件彼此區分。例如,在不背離本發明之範疇之情況下,一第一元件可稱為一第二元件,且類似地,一第二元件可稱為一第一元件。如本文中所使用,術語「及/或」包含相關聯列項之一或多者之任何及所有組合。It should be understood that although the terms "first", "second", etc. may be used herein to describe various elements, such elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, without departing from the scope of the present invention, a first element may be referred to as a second element, and similarly, a second element may be referred to as a first element. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.

應瞭解,當一元件(諸如一層、區域或基板)被認為「在另一元件上」或「延伸至另一元件上」時,其可直接在該另一元件上或直接延伸至該另一元件上或亦可存在介入元件。相比而言,當一元件被認為「直接在另一元件上」或「直接延伸至另一元件上」時,不存在介入元件。亦應瞭解,當一元件被認為「連接」或「耦合」至另一元件時,其可直接連接或耦合至該另一元件或可存在介入元件。相比而言,當一元件被認為「直接連接」或「直接耦合」至另一元件時,不存在介入元件。應瞭解,此等術語除涵蓋圖中所描繪之任何定向之外,亦意欲涵蓋元件之不同定向。It should be understood that when an element (such as a layer, region, or substrate) is considered "on another element" or "extended to another element", it can be directly on the other element or directly extended to the other element Intervening elements may also be present on the element. In contrast, when an element is considered "directly on another element" or "extended directly onto another element", there are no intervening elements. It should also be understood that when an element is considered to be “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is considered "directly connected" or "directly coupled" to another element, there are no intervening elements. It should be understood that, in addition to covering any orientation depicted in the figures, these terms are also intended to cover different orientations of the elements.

相對術語(諸如「下方」或「上方」或「上」或「下」或「水平」或「垂直」)可在本文中用於描述一元件、層或區域與另一元件、層或區域之一關係,如圖中所繪示。應瞭解,此等術語除涵蓋圖中所描繪之定向之外,亦意欲涵蓋裝置之不同定向。Relative terms (such as "below" or "above" or "upper" or "lower" or "horizontal" or "vertical" may be used herein to describe an element, layer or region and another element, layer or region A relationship, as shown in the figure. It should be understood that, in addition to covering the orientation depicted in the figures, these terms are also intended to cover different orientations of the device.

可調諧照明陣列(包含具有原色光源之可調諧照明陣列)可支援受益於光分佈之分佈式強度、空間及時間控制之應用。原色光源可為發射一給定色彩之發光裝置,諸如LED。基於可調諧照明陣列之應用可包含(但不限於)來自像素區塊或個別像素發射之光之精確空間圖案化。取決於應用,發射光可光譜不同、隨時間自適應及/或環境回應。發光陣列可提供各種強度、空間或時間圖案之基於場景之光分佈。發射光可至少部分基於所接收之感測器資料,如本文中所揭示。一像素、像素區塊或裝置層級處之相關聯光學器件可不同。由發光陣列支援之常見應用包含建築及區域照明、專業照明、零售照明及/或展覽照明及其類似者。Tunable lighting arrays (including tunable lighting arrays with primary color light sources) can support applications that benefit from distributed intensity, space, and time control of light distribution. The primary color light source may be a light emitting device that emits a given color, such as an LED. Applications based on tunable lighting arrays may include, but are not limited to, precise spatial patterning of light emitted from pixel blocks or individual pixels. Depending on the application, the emitted light can be different in spectrum, adaptive over time and/or environmentally responsive. The light emitting array can provide scene-based light distribution of various intensity, space or time patterns. The emitted light may be based at least in part on the received sensor data, as disclosed herein. The associated optics at a pixel, pixel block or device level can be different. Common applications supported by light emitting arrays include architectural and area lighting, professional lighting, retail lighting and/or exhibition lighting and the like.

使用包含原色光源之一可調諧照明系統可在一判定時間量內提供一場景之部分之受控照明。此可允許陣列(例如)突顯一場景內之特定色彩或色彩性質、突顯白色背景、突顯移動物體及/或其類似者。建築及區域照明亦可受益於本文中所揭示之照明。Using a tunable lighting system containing primary color light sources can provide controlled lighting of a portion of a scene within a determined amount of time. This may allow the array to, for example, highlight specific colors or color properties within a scene, highlight a white background, highlight moving objects, and/or the like. Architectural and area lighting can also benefit from the lighting disclosed herein.

在其中使用可調諧照明系統之各種應用中,一最佳照明光譜可基於照射場景來變動。變動可由於場景中所呈現之物體、色彩及角度且亦可基於一或多個預期所要輸出參數來變動。由於無法隨各場景改變來手動調整照明光譜,所以如本文中所揭示,一可調諧照明系統可基於待照射之場景及/或一或多個所要輸出參數來自動調整照明光譜。In various applications where a tunable lighting system is used, an optimal lighting spectrum can vary based on the illumination scene. Variations can be due to the objects, colors, and angles presented in the scene and can also vary based on one or more expected output parameters. Since the lighting spectrum cannot be adjusted manually with each scene change, as disclosed herein, a tunable lighting system can automatically adjust the lighting spectrum based on the scene to be illuminated and/or one or more desired output parameters.

根據本文中所揭示之實施方案,如圖1中經由流程圖100所展示,可在110中啟動複數個原色光源之一第一子集以將一第一感測光譜發射至一場景上。如本文中所描述,感測光譜可係指在經由一影像感測器收集影像資料時由複數個原色光源之一子集發射之光。感測光譜可包含觀看場景之人不可見之光。在120中,可在啟動複數個原色光源之第一子集時自場景感測第一影像資料。在130中,可啟動複數個原色光源之一第二子集以將一第二感測光譜發射至一場景上。在140中,可在啟動複數個原色光源之第二子集時自場景感測第二影像資料。值得注意的是,可啟動子集中之複數個光源,使得啟動一子集,在啟動該子集時收集影像資料,且接著啟動另一子集且收集額外影像資料。可重複此程序,使得複數個原色光源之各子集對應於原色光源且在啟動各原色光源時收集影像資料。較佳地,可在本文中所揭示之一照明系統中提供至少四個或五個原色光源。According to the implementation disclosed herein, as shown in flow chart 100 in FIG. 1, a first subset of a plurality of primary color light sources can be activated in 110 to emit a first sensing spectrum onto a scene. As described herein, the sensing spectrum may refer to the light emitted by a subset of the plurality of primary color light sources when collecting image data via an image sensor. The sensing spectrum may include light that is not visible to the person watching the scene. In 120, the first image data may be sensed from the scene when the first subset of the plurality of primary color light sources is activated. In 130, a second subset of the plurality of primary color light sources may be activated to emit a second sensing spectrum onto a scene. In 140, the second image data may be sensed from the scene when the second subset of the plurality of primary color light sources is activated. It is worth noting that multiple light sources in the subset can be activated so that a subset is activated, image data is collected when the subset is activated, and then another subset is activated and additional image data is collected. This procedure can be repeated so that each subset of the plurality of primary color light sources corresponds to the primary color light sources and image data is collected when each primary color light source is activated. Preferably, at least four or five primary color light sources can be provided in one of the lighting systems disclosed herein.

在150中,可基於組合影像資料來判定場景之參考資訊,其中組合影像資料係第一影像資料及第二影像資料之一組合。可藉由在啟動複數個原色光源之不同子集時組合影像資料來收集此組合影像資料。應注意,組合影像資料未必係指加在一起之不同影像資料,因為組合影像資料可僅為數個不同影像資料之集合。在160中,可基於參考資訊及一或多個所要輸出參數來判定複數個原色光源之光譜最佳化準則。所要輸出參數可由一使用者或一組件輸入或可基於場景來判定,如本文進一步所揭示。在170中,可基於光譜最佳化準則來啟動複數個原色光源發射一照明光譜。如本文中所描述,照明光譜可係指由複數個原色光源基於光譜最佳化準則來發射使得照明光譜可由觀看場景之人看見之光。In 150, the reference information of the scene may be determined based on the combined image data, where the combined image data is a combination of the first image data and the second image data. This combined image data can be collected by combining image data when starting different subsets of a plurality of primary color light sources. It should be noted that the combined image data does not necessarily refer to different image data added together, because the combined image data may only be a collection of several different image data. In 160, based on the reference information and one or more desired output parameters, the spectral optimization criteria of the plurality of primary color light sources may be determined. The desired output parameter can be input by a user or a component or can be determined based on the scenario, as further disclosed herein. At 170, a plurality of primary color light sources can be activated to emit an illumination spectrum based on spectral optimization criteria. As described herein, the lighting spectrum may refer to light emitted by a plurality of primary color light sources based on a spectrum optimization criterion so that the lighting spectrum can be seen by a person viewing the scene.

圖2展示本文中所揭示之一照明系統200之一實例圖。一基板210可為照明系統200之組件附接至其或放置於其上的一安裝座或外殼。可提供複數個原色光源260且其等可發射光,如本文中所揭示。複數個原色光源260可為可單獨定址通道,使得一第一通道可對應於一第一原色光源(例如發射紅光之LED)且一第二通道可對應於一第二原色光源(例如發射寶藍光之LED)。一第一光學透鏡240可接近原色光源260,使得由原色光源260發射之所有或部分光可穿過第一透鏡240且可由第一光學透鏡240成形或調整。應注意,儘管第一光學透鏡240經展示為一個組件,但其可為多個組件之一組合且多個組件可經組態使得一組件或一組件子集與複數個原色光源之一者或一子集對準。FIG. 2 shows an example diagram of a lighting system 200 disclosed herein. A substrate 210 may be a mount or housing to which components of the lighting system 200 are attached to or placed on. A plurality of primary color light sources 260 may be provided and the others may emit light, as disclosed herein. The plurality of primary color light sources 260 may be individually addressable channels, such that a first channel may correspond to a first primary color light source (such as an LED emitting red light) and a second channel may correspond to a second primary color light source (such as launch treasure) Blue LED). A first optical lens 240 can be close to the primary color light source 260, so that all or part of the light emitted by the primary color light source 260 can pass through the first lens 240 and can be shaped or adjusted by the first optical lens 240. It should be noted that although the first optical lens 240 is shown as one component, it may be a combination of multiple components and multiple components may be configured such that a component or a subset of components and one of a plurality of primary color light sources or A subset is aligned.

另外,可提供一影像感測器220且其可與基板210連接或大體上在相同於複數個原色光源260之外殼內。替代地,影像感測器220可與複數個原色光源260分離且可提供於一單獨外殼中。一第二光學透鏡230可接近影像感測器220,使得由影像感測器220感測或收集之所有或部分影像資料可穿過第二光學透鏡230且可由第二光學透鏡230成形或調整。In addition, an image sensor 220 may be provided and may be connected to the substrate 210 or substantially within the same housing as the plurality of primary color light sources 260. Alternatively, the image sensor 220 can be separated from the plurality of primary color light sources 260 and can be provided in a separate housing. A second optical lens 230 can be close to the image sensor 220, so that all or part of the image data sensed or collected by the image sensor 220 can pass through the second optical lens 230 and can be shaped or adjusted by the second optical lens 230.

另外,可提供一控制器250且其可與基板210連接或大體上在相同於複數個原色光源260及影像感測器220之外殼內。替代地,控制器250可與複數個原色光源260及/或影像感測器220分離且可提供於一單獨外殼中。控制器250可經組態以自影像感測器220及/或複數個原色光源260接收資料且亦可提供控制或其他資訊至複數個原色光源260及/或影像感測器220。In addition, a controller 250 may be provided and may be connected to the substrate 210 or substantially in the same housing as the plurality of primary color light sources 260 and the image sensor 220. Alternatively, the controller 250 may be separated from the plurality of primary color light sources 260 and/or the image sensor 220 and may be provided in a separate housing. The controller 250 may be configured to receive data from the image sensor 220 and/or the plurality of primary color light sources 260 and may also provide control or other information to the plurality of primary color light sources 260 and/or image sensor 220.

根據所揭示標的之一實施方案,如圖1之110中所展示,可啟動複數個原色光源之一第一子集以將一第一感測光譜發射至一場景上。複數個原色光源之第一子集可對應於啟動對應於一原色(例如紅色)之一或多個光源的一通道。作為一實例,可在110中啟動圖2之複數個原色光源260之發紅光二極體(LED)。對應於一原色之光源可群組在一起或較佳地,可跨一光源陣列展開。例如,如圖2中所展示,原色光源260包含複數個光源。紅色LED可在所有光源260中展開,使得其可到達一場景之各個區段。在圖1之110中,可啟動複數個光源之第一子集,使得其啟動歸因於(例如)啟動發生時之一高頻率、短持續時間及/或低振幅調變而不可被觀看場景之人看見。如圖2中所展示,來自原色光源260之第一子集的光可經由第一光學透鏡240來發射。According to one implementation of the disclosed subject, as shown in 110 of FIG. 1, a first subset of a plurality of primary color light sources can be activated to emit a first sensing spectrum onto a scene. The first subset of the plurality of primary color light sources may correspond to activating one channel of one or more light sources corresponding to a primary color (such as red). As an example, the red light emitting diodes (LEDs) of the plurality of primary color light sources 260 of FIG. 2 may be activated in 110. The light sources corresponding to a primary color can be grouped together or, preferably, can be spread across an array of light sources. For example, as shown in FIG. 2, the primary color light source 260 includes a plurality of light sources. The red LED can be deployed in all light sources 260 so that it can reach various sections of a scene. In 110 of FIG. 1, the first subset of the plurality of light sources can be activated, so that its activation is due to, for example, a high frequency, short duration, and/or low amplitude modulation at the time of activation, and the scene cannot be viewed People see. As shown in FIG. 2, light from the first subset of primary color light sources 260 may be emitted through the first optical lens 240.

原色光源260可包含(例如)原色寶藍色、青色、綠黃色、琥珀色及紅色。根據本文中所揭示之標的所使用之原色光源260之性質可已為系統所知,且明確言之,(例如)可已為控制器250所知。作為一實例,原色光源260可具有圖3A中所展示之色度及圖3B中所展示之波長光譜。在此實例中,圖3A中之各點(包含310、311、312、313及314)可對應於原色光源260之五個原色之一者。虛線可對應於一單一波長。如所展示,可(例如)在一可調諧白色系統中藉由使用至少三個原色來更緊密跟隨一彎曲黑體軌跡320。根據一實施方案,由圖2之原色光源260輸出之色彩可具有對應於由圖3A中之點(包含310、311、312、313及314)圍封之區域的色度。此外,圖3B展示對應於此實例中之五個原色的光譜341、342、343、344及345。The primary color light source 260 may include, for example, primary colors sapphire blue, cyan, green yellow, amber, and red. The nature of the primary color light source 260 used according to the targets disclosed herein may already be known to the system, and specifically, for example, may be known to the controller 250. As an example, the primary color light source 260 may have the chromaticity shown in FIG. 3A and the wavelength spectrum shown in FIG. 3B. In this example, each point in FIG. 3A (including 310, 311, 312, 313, and 314) may correspond to one of the five primary colors of the primary color light source 260. The dotted line may correspond to a single wavelength. As shown, a curved blackbody locus 320 can be followed more closely, for example, by using at least three primary colors in a tunable white system. According to an embodiment, the color output by the primary color light source 260 of FIG. 2 may have a chromaticity corresponding to the area enclosed by the points in FIG. 3A (including 310, 311, 312, 313, and 314). In addition, FIG. 3B shows the spectra 341, 342, 343, 344, and 345 corresponding to the five primary colors in this example.

此外,圖4A展示根據本發明之實施方案之藉由以不同比率啟動多個原色光源來產生以產生不同演色模式之光譜之光譜功率分佈410之一圖形描繪。光譜功率分佈415對應於給出原色範圍(明確言之,此實例中之五個原色)內之最大色彩保真度的一演色模式。圖4B展示色域指數Rg 及保真度指數Rf 之一圖形描繪420,其中色域指數Rg 係平均相對色域之TM-30量測且保真度指數Rf 係平均色彩保真度之TM-30量測。如所展示,點430、431、432、433及434對應於不同演色模式且方形435對應於一最大色彩保真度模式。圖4C展示依據TM-30之16個色調分格而變化之Rf 值之一圖形描繪440。如所展示,資料線442、443、444、445及446對應於不同演色模式之對應色調分格之Rf 值。資料線441對應於一最大色彩保真度模式。圖4D展示依據TM-30之16個色調分格而變化之Rcs 值之一圖形描繪450。如所展示,資料線451、452、453、454及455對應於不同演色模式之對應色調分格之RCS 值。資料線456對應於一最大色彩保真度模式。In addition, FIG. 4A shows a graphical depiction of the spectral power distribution 410 generated by activating multiple primary color light sources at different ratios to generate spectra of different color rendering modes according to an embodiment of the present invention. The spectral power distribution 415 corresponds to a color rendering mode that gives the maximum color fidelity within the range of primary colors (specifically, the five primary colors in this example). 4B shows a graphical depiction of one of the color gamut index R g and the fidelity index R f 420, where the color gamut index R g is the average relative color gamut TM-30 measurement and the fidelity index R f is the average color fidelity TM-30 measurement of degrees. As shown, points 430, 431, 432, 433, and 434 correspond to different color rendering modes and square 435 corresponds to a maximum color fidelity mode. FIG. 4C shows a graphical depiction 440 of R f values that vary according to the 16 tone divisions of TM-30. As shown, the data lines 442, 443, 444, 445, and 446 correspond to the R f values of the corresponding tone divisions of different color rendering modes. The data line 441 corresponds to a maximum color fidelity mode. FIG. 4D shows a graphical depiction 450 of R cs values that vary according to the 16 tone divisions of TM-30. As shown, the data lines 451, 452, 453, 454, and 455 correspond to the R CS values of the corresponding tonal divisions of different color rendering modes. The data line 456 corresponds to a maximum color fidelity mode.

在圖1之120中,可在啟動複數個原色光源之第一子集時自場景感測第一影像資料。如圖2中所展示,可使用一影像感測器220來感測第一影像資料且由影像感測器220感測之第一影像資料可經由第二光學透鏡230來到達影像感測器220。如本文進一步所揭示,影像資料可包含關於場景之特性,其可使控制器250能夠近似影像感測器之各像素之反射光譜及/或產生場景之一色彩圖。In 120 of FIG. 1, the first image data can be sensed from the scene when the first subset of the plurality of primary color light sources is activated. As shown in FIG. 2, an image sensor 220 can be used to sense the first image data and the first image data sensed by the image sensor 220 can reach the image sensor 220 through the second optical lens 230 . As further disclosed herein, the image data may include characteristics about the scene, which may enable the controller 250 to approximate the reflection spectrum of each pixel of the image sensor and/or generate a color map of the scene.

影像感測器220可為具有空間解析度之一光感測器,使得影像感測器220及/或控制器250可避免平均化存在於由圖1之步驟110描述之程序照射之一場景中的不同色彩。值得注意的是,因為控制器250在啟動複數個原色光源之子集以將感測光譜發射至一場景上時控制該等子集,所以影像感測器無需具有波長解析能力來獲得資訊。為清楚起見,控制器250可在原色光源260之子集將光發射至一場景上時利用關於原色光源260之已知資訊來獲得關於場景之色彩資訊。因此,藉由調變原色光源260之子集且藉由感測反射影像,如本文進一步所揭示,可在不使用一光譜選擇性感測器之情況下獲得關於場景之光譜資訊。應注意,因為基於由原色光源260之子集發射之光來獲得經由影像資料之光譜資訊,所以光譜資訊之解析度受原色光源260之頻寬限制。然而,應注意,此光譜資訊足以最佳化原色光源260之演色,因為原色光源260將在發射一照明光譜時具有相同於其在發射感測光譜時具有之光譜演現限制的光譜演現限制。The image sensor 220 may be a light sensor with spatial resolution, so that the image sensor 220 and/or the controller 250 can avoid averaging in a scene illuminated by the procedure described in step 110 of FIG. 1 Different colors. It is worth noting that because the controller 250 controls a subset of the plurality of primary color light sources to emit the sensing spectrum onto a scene, the image sensor does not need to have wavelength resolution capability to obtain information. For clarity, the controller 250 may use known information about the primary color light source 260 to obtain color information about the scene when a subset of the primary color light source 260 emits light onto a scene. Therefore, by modulating a subset of the primary color light sources 260 and by sensing reflected images, as further disclosed herein, spectral information about the scene can be obtained without using a spectrally selective sensor. It should be noted that since the spectral information via the image data is obtained based on the light emitted by the subset of primary color light sources 260, the resolution of the spectral information is limited by the bandwidth of the primary color light sources 260. However, it should be noted that this spectral information is sufficient to optimize the color rendering of the primary color light source 260 because the primary color light source 260 will emit a lighting spectrum with the same spectral rendering limit as the spectral rendering limit it has when emitting the sensing spectrum .

在130中,可啟動複數個原色光源之一第二子集以將一第二感測光譜發射至場景上。複數個原色光源之第二子集可對應於一通道,該通道啟動對應於不同於複數個原色光源之第一子集之一色彩(例如寶藍色)的一或多個光源。作為一實例,在130中,可啟動圖2之複數個原色光源260之發寶藍光二極體(LED)。對應於寶藍色之光源可群組在一起或較佳地,可跨原色光源260之一陣列展開。例如,如圖2中所展示,原色光源260包含複數個光源。寶藍色LED可在所有原色光源260中展開,使得其可到達一場景之各個區段。在圖1之130中,類似於110,可啟動複數個光源之第二子集,使得其啟動歸因於(例如)啟動發生時之一高頻率、短持續時間及/或低振幅調變而不可被觀看場景之人看見。如圖2中所展示,來自原色光源260之第二子集的光可經由第一光學透鏡240來發射。In 130, a second subset of the plurality of primary color light sources can be activated to emit a second sensing spectrum onto the scene. The second subset of the plurality of primary color light sources may correspond to a channel that activates one or more light sources corresponding to a color (eg, sapphire blue) that is different from the first subset of the plurality of primary color light sources. As an example, in 130, the blue light emitting diode (LED) of the plurality of primary color light sources 260 of FIG. 2 may be activated. The light sources corresponding to the royal blue can be grouped together or, preferably, can be spread across an array of primary color light sources 260. For example, as shown in FIG. 2, the primary color light source 260 includes a plurality of light sources. The royal blue LED can be deployed in all primary color light sources 260 so that it can reach various sections of a scene. In 130 of FIG. 1, similar to 110, the second subset of the plurality of light sources can be activated so that its activation is due to, for example, a high frequency, short duration, and/or low amplitude modulation when the activation occurs It cannot be seen by the person watching the scene. As shown in FIG. 2, light from the second subset of primary color light sources 260 may be emitted through the first optical lens 240.

在圖1之140中,可在啟動圖2之複數個原色光源260之第二子集時自場景感測第二影像資料。可使用一影像感測器220來感測第二影像資料且由影像感測器220感測之第二影像資料可經由第二光學透鏡230來到達影像感測器220。如本文進一步所揭示,影像資料可包含關於場景之特性,其可使控制器250能夠近似影像感測器之各像素之反射光譜及/或產生場景之一色彩圖。In 140 of FIG. 1, the second image data can be sensed from the scene when the second subset of the plurality of primary color light sources 260 of FIG. 2 is activated. An image sensor 220 can be used to sense the second image data and the second image data sensed by the image sensor 220 can reach the image sensor 220 through the second optical lens 230. As further disclosed herein, the image data may include characteristics about the scene, which may enable the controller 250 to approximate the reflection spectrum of each pixel of the image sensor and/or generate a color map of the scene.

如本文進一步所揭示,可經工廠程式化或可使用者程式化以提供所要回應之控制器250可調變原色光源260,使得第一子集被啟動且影像感測器220收集第一影像資料及接著第二子集被啟動且接著影像感測器220收集第二影像資料。應瞭解,儘管本發明參考分別對應於一第一光譜及一第二光譜之一第一影像資料及一第二影像資料,但可針對額外可用原色光源感測影像資料。較佳地,四個或四個以上且更佳地,五個或五個以上原色光源可用。因此,可感測分別對應於第三光譜、第四光譜及第五光譜之第三影像資料、第四影像資料及第五影像資料且將其等提供至一控制器,諸如圖2之控制器250。As further disclosed herein, the controller 250, which can be factory-programmed or user-programmable to provide the response to the adjustable primary color light source 260, causes the first subset to be activated and the image sensor 220 to collect the first image data And then the second subset is activated and then the image sensor 220 collects the second image data. It should be understood that although the present invention refers to a first image data and a second image data corresponding to a first spectrum and a second spectrum, respectively, the image data can be sensed for additional available primary color light sources. Preferably, four or more and more preferably five or more primary color light sources are available. Therefore, the third image data, the fourth image data, and the fifth image data corresponding to the third spectrum, the fourth spectrum, and the fifth spectrum, respectively, can be sensed and provided to a controller, such as the controller of FIG. 2 250.

在圖1之150中,可基於組合影像資料來判定場景之參考資訊,其中組合影像資料係可用影像資料(諸如第一影像資料及第二影像資料)之一組合。一控制器(諸如圖2之控制器250)可基於組合影像資料(諸如第一影像資料及第二影像資料之組合)來判定參考資訊。另外,根據一實施方案,控制器亦可具有關於原色光源260之感測光譜資訊。如本文中所描述,圖4A至圖4D提供控制器可具有或存取且可使用圖3A及圖3B之原色光源來實現之光譜及對應TM-30指數之實例圖形描繪。In 150 of FIG. 1, the reference information of the scene can be determined based on the combined image data, where the combined image data can be a combination of image data (such as the first image data and the second image data). A controller (such as the controller 250 of FIG. 2) may determine the reference information based on the combined image data (such as the combination of the first image data and the second image data). In addition, according to an embodiment, the controller may also have sensing spectrum information about the primary color light source 260. As described herein, FIGS. 4A-4D provide example graphical depictions of the spectrum and corresponding TM-30 index of the spectrum and corresponding TM-30 index that the controller can have or have access to and can use the primary color light sources of FIGS. 3A and 3B.

參考資訊可對應於影像感測器之各像素之一近似反射光譜之一估計且因此可對應於場景之一色彩圖。根據一實施方案,色彩圖可表示為各像素對圖2之原色光源260之各子集的相對回應。作為一實例,表1包含針對四個不同實例反射光譜之由一影像感測器之一單一像素感測之相對反射強度。如表1中所展示,感測五個原色光源之相對強度,使得當一給定原色光源(即,通道)將光發射至場景上時,感測該原色光源之一相對反射強度。在此實例中,四個實例反射光譜對應於TM-30中所界定之四個色彩評估樣本(CES)且對應於CES 5 (近似褐紅色)、CES 64 (近似藍綠色)、CES 32 (近似褐黃色)及CES 81 (近似紫色)。作為一具體實例,表1展示在一寶藍原色光源將寶藍光發射至一場景之一褐紅色部分上時由感測場景之該部分之影像感測器220感測的相對反射強度係.098。類似地,如表1中所展示,在一紅原色光源將紅光發射至一場景之一褐紅色部分上時由感測場景之該部分之影像感測器220感測的相對反射強度係.5468。因為紅色較接近場景之近似褐紅色,所以啟動紅原色光源時所感測之相對反射強度(即,.5468)高於啟動寶藍原色光源時之相對反射強度(即,.098)。使用此技術,根據此實施方案,控制器可基於經由影像感測器之(若干)像素所收集之資料來開發場景之一色彩圖。

Figure 108121838-A0304-0001
The reference information may correspond to an estimate of an approximate reflection spectrum of each pixel of the image sensor and thus may correspond to a color map of the scene. According to an embodiment, the color map can be expressed as the relative response of each pixel to each subset of the primary color light sources 260 of FIG. 2. As an example, Table 1 includes the relative reflection intensities sensed by a single pixel of an image sensor for the reflection spectra of four different examples. As shown in Table 1, the relative intensity of five primary color light sources is sensed so that when a given primary color light source (ie, channel) emits light onto the scene, the relative reflection intensity of one of the primary color light sources is sensed. In this example, the four example reflection spectra correspond to the four color evaluation samples (CES) defined in TM-30 and correspond to CES 5 (approximately maroon), CES 64 (approximately cyan), CES 32 (approximately Brownish yellow) and CES 81 (approximately purple). As a specific example, Table 1 shows the relative reflection intensity of .098 that is sensed by the image sensor 220 that senses a part of a scene when a sapphire primary color light source emits a sapphire blue light onto a maroon part of a scene. Similarly, as shown in Table 1, when a red primary color light source emits red light onto a maroon part of a scene, the relative reflection intensity system sensed by the image sensor 220 sensing that part of the scene. 5468. Because red is closer to the approximate maroon color of the scene, the relative reflection intensity sensed when the red primary color light source is activated (ie, .5468) is higher than when the sapphire primary color light source is activated (ie, .098). Using this technique, according to this implementation, the controller can develop a color map of the scene based on the data collected through the pixel(s) of the image sensor.
Figure 108121838-A0304-0001

根據另一實施方案,一色彩圖可表示於一標準化色彩空間(諸如CIE1931、CIE1976、CAM02-UCS或其類似者)中。在此一標準化色彩空間中表示色彩圖可允許更高級光譜最佳化演算法及/或所要回應之更直觀程式化。可估計一影像感測器之各像素之反射光譜,且隨後可基於所估計之反射光譜來計算像素之相關聯色彩座標。圖5展示包含分別由實線511、512、513及514表示之來自TM-30之CES 5、CES 64、CES 32及CES 81色彩之反射光譜的一實例實施方案。虛線521、522、523及524展示使用圖3A及圖3B之五個原色光源之各自估計反射光譜。According to another embodiment, a color map may be represented in a standardized color space (such as CIE1931, CIE1976, CAM02-UCS, or the like). Representing the color map in this standardized color space may allow more advanced spectral optimization algorithms and/or more intuitive stylization of the desired response. The reflection spectrum of each pixel of an image sensor can be estimated, and then the associated color coordinates of the pixel can be calculated based on the estimated reflection spectrum. FIG. 5 shows an example implementation including the reflection spectra of CES 5, CES 64, CES 32, and CES 81 colors from TM-30 represented by solid lines 511, 512, 513, and 514, respectively. Dotted lines 521, 522, 523, and 524 show the respective estimated reflection spectra using the five primary color light sources of FIGS. 3A and 3B.

基於由一影像感測器收集之影像資料來估計虛線521、522、523及524。作為一具體實例,如圖3B中所展示,寶藍原色通道發射由541展示之450 nm處之一峰值波長。因此,圖5展示由一影像感測器(諸如圖2之影像感測器220)感測之相對反射強度在啟動寶藍原色通道時感測四個不同CES色點531、532、533及534,且發射由541展示之450 nm處之一峰值波長。在此實例中,四個不同CES色點對應於褐紅色(CES 5) 531、藍綠色(CES 64) 532、褐黃色(CES 32) 533及紫色(CES 81) 534。對應於五個原色光源之五個波長由用於寶藍色之541、用於青色之542、用於綠黃色之543、用於琥珀色之544及用於紅色之545展示。作為一具體實例,當啟動寶藍原色光源以發射450 nm之感測光(由541展示)時,影像感測器可登記對應於褐紅色CES 5之約.098之一相對反射強度(如由圖5中之點531所展示)及對應於藍綠色CES 64之約.3621之一相對反射強度(如由點534所展示)。類似地,在圖5所展示之實例中,影像感測器220可捕獲圖3A及圖3B之五個原色光源之各者的峰值波長處之四個CES色點,在此實例中,總計20個SPD資料點。總言之,藉由循環通過五個原色且經由影像感測器記錄反射強度來獲得各原色之質心波長處之SPD資料點。隨後,可基於經由多項式擬合(諸如由虛線521、522、523及524展示之多項式擬合)之此等資料點來估計一近似反射光譜。在380 nm及780 nm處所界定之條件下,各虛線521、522、523及524表示基於五個原色光源之峰值波長處所收集之資料點的一各自CES色彩之一最佳多項式擬合。應注意,亦可使用其他內插法,諸如一線性內插、樣條內插或移動平均內插。The dotted lines 521, 522, 523, and 524 are estimated based on the image data collected by an image sensor. As a specific example, as shown in FIG. 3B, the sapphire primary color channel emits a peak wavelength at 450 nm shown by 541. Therefore, FIG. 5 shows that the relative reflection intensity sensed by an image sensor (such as the image sensor 220 of FIG. 2) senses four different CES color points 531, 532, 533, and 534 when the sapphire primary color channel is activated. And emit a peak wavelength at 450 nm shown by 541. In this example, the four different CES color points correspond to maroon (CES 5) 531, cyan (CES 64) 532, maroon (CES 32) 533, and purple (CES 81) 534. The five wavelengths corresponding to the five primary color light sources are shown by 541 for royal blue, 542 for cyan, 543 for green and yellow, 544 for amber and 545 for red. As a specific example, when the sapphire primary color light source is activated to emit sensing light at 450 nm (shown by 541), the image sensor can register a relative reflection intensity of about .098 corresponding to the maroon CES 5 (as shown in Figure 5). Relative reflection intensity of approximately .3621 corresponding to the blue-green CES 64 (as shown by point 534). Similarly, in the example shown in FIG. 5, the image sensor 220 can capture four CES color points at the peak wavelengths of each of the five primary color light sources of FIGS. 3A and 3B, in this example, a total of 20 SPD data points. In summary, the SPD data points at the centroid wavelength of each primary color are obtained by cycling through the five primary colors and recording the reflection intensity through the image sensor. Subsequently, an approximate reflection spectrum can be estimated based on these data points via polynomial fitting, such as the polynomial fitting shown by dashed lines 521, 522, 523, and 524. Under the conditions defined at 380 nm and 780 nm, each dotted line 521, 522, 523, and 524 represents one of the best polynomial fits of a respective CES color based on the data points collected at the peak wavelengths of the five primary color light sources. It should be noted that other interpolation methods can also be used, such as a linear interpolation, spline interpolation or moving average interpolation.

一般而言,近似之準確度可隨原色光源之數目增加而提高且可在原色光源具有窄頻寬且在可見光譜上均勻展開時為最高。作為一參考,圖6展示使用圖3A及圖3B之五個原色的多項式擬合之一分析,其中藉由循序啟動五個原色之各者來計算來自TM-30之所有99 CES色彩之資料點。圖6展示一圖形600,其中來自TM-30之99 CES、58 CES色彩由其正確TM-30色調分格(1-16)識別,且96 CES色彩被正確識別於±1個色調分格內。在圖6中,圓點表示原始CES色點且對應菱形表示藉由使用五個原色光源所判定之估計色點。Generally speaking, the accuracy of the approximation can be increased as the number of primary color light sources increases and can be the highest when the primary color light sources have a narrow bandwidth and spread evenly across the visible spectrum. As a reference, FIG. 6 shows an analysis of polynomial fitting using the five primary colors of FIGS. 3A and 3B, in which all 99 CES color data points from TM-30 are calculated by sequentially starting each of the five primary colors . Figure 6 shows a graph 600 where the 99 CES and 58 CES colors from TM-30 are identified by their correct TM-30 tonal divisions (1-16), and 96 CES colors are correctly identified within ±1 tonal division . In FIG. 6, the dots represent the original CES color points and the corresponding diamonds represent the estimated color points determined by using five primary color light sources.

在圖1之160中,可基於參考資訊及一或多個所要輸出參數來判定原色光源之光譜最佳化準則。如本文進一步所論述,光譜最佳化準則可為基於將一照明光譜發射至一場景上之時間來操作原色光源之準則。因此,光譜最佳化準則係基於場景之參考資訊來達成所要輸出之準則。可基於本文參考圖1之150所揭示之組合影像資料來判定參考資訊。可經由任何適用方式(諸如基於使用者輸入、基於一裝置或組件之位置、基於影像資料、基於預定準則或其類似者)來產生所要輸出參數。一使用者可經由一無線信號(諸如經由Bluetooth、WiFi、RFID、紅外線或其類似者)來提供輸入。替代地,一使用者可經由一鍵盤、滑鼠、觸控板、觸覺回應、語音命令或其類似者來提供輸入。一控制器(諸如圖2之控制器250)可利用參考資訊及(若干)所要輸出參數來產生光譜最佳化準則。In 160 of FIG. 1, the spectral optimization criterion of the primary color light source can be determined based on the reference information and one or more desired output parameters. As discussed further herein, the spectrum optimization criterion may be a criterion for operating primary color light sources based on the time it takes to emit an illumination spectrum onto a scene. Therefore, the spectrum optimization criterion is based on the reference information of the scene to achieve the criterion to be output. The reference information may be determined based on the combined image data disclosed herein with reference to 150 of FIG. 1. The desired output parameters can be generated via any suitable means (such as based on user input, based on the location of a device or component, based on image data, based on predetermined criteria, or the like). A user can provide input via a wireless signal (such as via Bluetooth, WiFi, RFID, infrared, or the like). Alternatively, a user may provide input via a keyboard, mouse, touchpad, tactile response, voice command, or the like. A controller (such as the controller 250 of FIG. 2) may use the reference information and the desired output parameter(s) to generate the spectral optimization criterion.

根據一實施方案,光譜最佳化準則可基於潛在影像資料及輸出參數來離線預計算且可經由一適用技術(諸如一查找表)來儲存於一控制器或可由控制器存取之一記憶體上。此預計算及儲存可減少其運算能力會受限制之一板上控制器之複雜計算需要。圖8展示此一實施方案之一實例流程圖。如所展示,可提供工廠輸入資料810至一板上處理系統820。明確言之,可提供工廠輸入資料810至一場景色彩映射模組821以基於(例如)原色光源發射一感測光譜時所收集之影像資料及強度值及工廠輸入資料810來產生光譜資料點。亦可提供工廠輸入資料810至一源光譜最佳化模組822,源光譜最佳化模組822可基於來自場景色彩映射模組821之輸出及來自使用者程式化模組815之指定回應行為(輸出參數)來計算所要指數/光譜最佳化準則。光譜最佳化模組822亦可基於所判定之光譜最佳化準則來設定通道驅動電流。According to an embodiment, the spectral optimization criterion may be pre-computed offline based on the latent image data and output parameters and may be stored in a controller or accessible by the controller via a suitable technique such as a look-up table on. This pre-calculation and storage can reduce the complex computing needs of one of the on-board controllers whose computing power is limited. FIG. 8 shows an example flowchart of this implementation. As shown, factory input data 810 can be provided to an on-board processing system 820. Specifically, factory input data 810 can be provided to a scene color mapping module 821 to generate spectral data points based on, for example, image data and intensity values collected when the primary color light source emits a sensing spectrum and factory input data 810. Factory input data 810 can also be provided to a source spectrum optimization module 822, which can be based on the output from the scene color mapping module 821 and the specified response behavior from the user programming module 815 (Output parameter) to calculate the desired index/spectrum optimization criterion. The spectrum optimization module 822 can also set the channel drive current based on the determined spectrum optimization criterion.

在圖1之170中,可基於光譜最佳化準則來啟動複數個原色光源發射一照明光譜。可由控制器直接或經由適用通信通道(諸如本文進一步所揭示之一有線或無線通信通道)提供光譜最佳化準則至複數個原色光源。In 170 of FIG. 1, a plurality of primary color light sources can be activated to emit an illumination spectrum based on the spectrum optimization criterion. The spectrum optimization criterion can be provided to the plurality of primary color light sources directly by the controller or via an appropriate communication channel such as one of the wired or wireless communication channels further disclosed herein.

根據所揭示標的之一實施方案,光譜最佳化準則可導致發射不同演色模式。例如,所要輸出參數可最大化一場景中最鮮明對比主色之飽和度或保真度。一控制器可利用影像資料來判定一給定場景中之最鮮明對比主色且產生待發射光源之光譜最佳化準則以最大化該等色彩之飽和度或保真度。作為一實例,圖3A至圖3B之五個原色光源可用於色彩飽和度。圖7A展示包含TM-30色調分格1、5、9及13之各者中之若干CES色彩之估計及實際色點的圖表710。如圖7A中經由圖表710所展示,可主要在兩個方向之任一者上達成色彩飽和度:沿圖7A中之水平軸所展示之沿紅色至青色軸(例如TM-30色調分格1及9)或沿圖7A中之垂直軸所展示之綠黃色至紫色軸(例如分格5及13)。因此,作為一具體實例,如圖7B中所展示,一控制器可基於三個演色模式之一者來選擇光譜最佳化準則,其中分格對應於TM-30色調分格且730對應於一完美TM-30圓:(1)若主要偵測到紅色及/或青色(由跡線721表示),則分格1及分格9過飽和;(2)若主要偵測綠黃色及/或紫色(由跡線722表示),則分格5及分格13過飽和;及(3)若此等色調分格之一者中未偵測到主色(由跡線723表示),則為一高保真度光譜。According to one implementation of the disclosed subject matter, the spectral optimization criterion can result in the emission of different color rendering modes. For example, the desired output parameters can maximize the saturation or fidelity of the most contrasting primary colors in a scene. A controller can use the image data to determine the most contrasting primary colors in a given scene and generate spectral optimization criteria for the light source to be emitted to maximize the saturation or fidelity of those colors. As an example, the five primary color light sources of FIGS. 3A to 3B can be used for color saturation. 7A shows a graph 710 that includes estimated and actual color points for several CES colors in each of TM-30 tonal divisions 1, 5, 9, and 13. As shown by graph 710 in FIG. 7A, color saturation can be achieved mainly in either of two directions: along the red-to-cyan axis (e.g. TM-30 tonal division 1 along the horizontal axis shown in FIG. 7A) And 9) or the green-yellow to purple axes (for example, divisions 5 and 13) shown along the vertical axis in FIG. 7A. Therefore, as a specific example, as shown in FIG. 7B, a controller may select a spectral optimization criterion based on one of the three color rendering modes, where the division corresponds to the TM-30 hue division and 730 corresponds to a Perfect TM-30 circle: (1) If red and/or cyan are mainly detected (represented by trace 721), division 1 and division 9 are supersaturated; (2) If mainly green, yellow and/or purple are detected (Represented by trace 722), then division 5 and division 13 are oversaturated; and (3) if the main color is not detected in one of these tonal divisions (represented by trace 723), it is a high security Truth spectrum.

根據一實施方案,一控制器可基於輸出參數來選擇最大化所偵測之主色之過飽和之一光譜或最大化由其發生率加權之所有偵測色彩之過飽和之一光譜之最佳化準則。在一些實施方案中,可主觀上偏好略微過飽和色彩,如可由輸出參數指示。此外,根據一實施方案,過飽和可由色度偏移(諸如(例如) TM-30中之Rcs指數)量化。Rcs之一典型較佳範圍可為0%至20%,且一更佳範圍可為5%至10%。According to an embodiment, a controller may select an optimization criterion that maximizes a spectrum of supersaturation of the detected main color or maximizes a spectrum of supersaturation of all detected colors weighted by its incidence based on output parameters . In some embodiments, slightly supersaturated colors may be subjectively preferred, as may be indicated by output parameters. Furthermore, according to an embodiment, supersaturation can be quantified by a chromatic shift (such as, for example, the Rcs index in TM-30). A typical preferred range for Rcs may be 0% to 20%, and a more preferred range may be 5% to 10%.

此外,根據一實施方案,可比較影像資料與一先前記錄之影像資料以判定一移動或新關注物體之色彩,使得可針對此物體最佳化光譜。替代地,影像之平均反射光譜可用於最佳化平均色彩之光譜。在光譜之最佳化中,可使色度保持恆定或允許其改變。In addition, according to an embodiment, the image data and a previously recorded image data can be compared to determine the color of a moving or new object of interest, so that the spectrum can be optimized for this object. Alternatively, the average reflection spectrum of the image can be used to optimize the spectrum of the average color. In the optimization of the spectrum, the chromaticity can be kept constant or allowed to change.

根據一實施方案,輸出參數可對應於針對基於一給定場景(如基於影像資料所判定)之發射光之一特定色度。例如,可在場景含有冷色調(諸如藍色、青色及綠色)時期望一冷白色,而一暖白色可照射黃、橙及紅色調。此一方案可增強場景之色域及視覺亮度。根據此實例,一控制器可提供對應於三個或三個以上原色之光譜最佳化準則。According to an embodiment, the output parameter may correspond to a specific chromaticity for the emitted light based on a given scene (as determined based on image data). For example, a cool white color may be desired when the scene contains cool colors (such as blue, cyan, and green), and a warm white color may illuminate yellow, orange, and red tones. This scheme can enhance the color gamut and visual brightness of the scene. According to this example, a controller can provide spectral optimization criteria corresponding to three or more primary colors.

根據一實施方案,輸出參數可對應於達成一所要色點。根據此實施方案,一控制器可利用影像內之反射光資訊來判定達成一所要總體色點所需之發射光譜之光譜最佳化準則。例如,在其中在一白色背景附近照射一彩色物體或壁之一空間中,自彩色物體或壁反射之光可引起白色背景呈非白色,如由輸出參數所指示,可為不期望的。因此,一控制器可產生光譜最佳化準則,使得原色光源發射使白色背景保持為白色之一照明光譜。According to an embodiment, the output parameter may correspond to achieving a desired color point. According to this embodiment, a controller can use the reflected light information in the image to determine the spectral optimization criterion of the emission spectrum required to achieve a desired overall color point. For example, in a space where a colored object or wall is illuminated near a white background, light reflected from the colored object or wall may cause the white background to be non-white, as indicated by the output parameters, which may be undesirable. Therefore, a controller can generate spectrum optimization criteria such that the primary color light source emits an illumination spectrum that maintains the white background as white.

表2展示實例輸出參數、實例影像資料及對應實例光譜最佳化準則之一彙總。

Figure 108121838-A0304-0002
Table 2 shows a summary of example output parameters, example image data, and corresponding example spectrum optimization criteria.
Figure 108121838-A0304-0002

根據一實施方案,本文中所揭示之照明系統可包含可實現與一外部組件或系統之通信的一通信介面。通信可由有線或無線傳輸促成且可併入包含Bluetooth、WiFi、蜂巢式、紅外線或其類似者之任何適用模式。根據一實施方案,控制器可在照明系統外,使得影像資料提供至外部控制器且光譜最佳化準則由外部控制器判定及/或提供。另外或替代地,輸出準則可經由一外部輸入裝置(例如一行動電話)來提供及/或可提供至一外部組件(諸如一外部控制器)。According to an implementation, the lighting system disclosed herein may include a communication interface that enables communication with an external component or system. Communication can be facilitated by wired or wireless transmission and can be incorporated into any suitable mode including Bluetooth, WiFi, cellular, infrared, or the like. According to an embodiment, the controller may be outside the lighting system so that the image data is provided to the external controller and the spectrum optimization criterion is determined and/or provided by the external controller. Additionally or alternatively, the output criteria may be provided via an external input device (eg, a mobile phone) and/or may be provided to an external component (such as an external controller).

根據一實施方案,感測光譜可由原色光源之一第一子集發射,而一照明光譜由原色光源之剩餘或其他子集發射。第一子集可發射感測光譜,使得感測光譜不可被人看見(例如,以一高頻率)。如本文中所揭示,可基於第一子集發射感測光譜來收集影像資料且可隨後在第一子集切換至發射一照明光譜之後一第二子集發射一感測光譜時收集影像資料。According to an embodiment, the sensing spectrum may be emitted by a first subset of the primary color light sources, and an illumination spectrum may be emitted by the remaining or other subset of the primary color light sources. The first subset may emit the sensing spectrum so that the sensing spectrum is not visible to humans (eg, at a high frequency). As disclosed herein, image data may be collected based on a first subset of emission sensing spectra and then image data may be collected when a second subset emits a sensing spectrum after the first subset switches to emitting an illumination spectrum.

儘管上文以特定組合描述特徵及元件,但一般技術者應瞭解,各特徵或元件可單獨或與其他特徵及元件之任何組合使用。另外,本文中所描述之方法可實施於併入於一電腦可讀媒體中之一電腦程式、軟體或韌體中以由一電腦或處理器執行。電腦可讀媒體之實例包含電子信號(通過有線或無線連接來傳輸)及電腦可讀儲存媒體。電腦可讀儲存媒體之實例包含(但不限於)一唯讀記憶體(ROM)、一隨機存取記憶體(RAM)、一暫存器、快取記憶體、半導體記憶體裝置、磁性媒體(諸如內部硬碟及可抽換式磁碟)、磁光媒體及光學媒體(諸如CD-ROM磁碟及數位多功能光碟(DVD))。Although features and elements are described above in specific combinations, those of ordinary skill should understand that each feature or element may be used alone or in any combination with other features and elements. In addition, the methods described herein may be implemented in a computer program, software, or firmware incorporated in a computer-readable medium to be executed by a computer or processor. Examples of computer-readable media include electronic signals (transmitted through wired or wireless connections) and computer-readable storage media. Examples of computer-readable storage media include, but are not limited to, a read-only memory (ROM), a random access memory (RAM), a register, cache memory, semiconductor memory devices, magnetic media ( Such as internal hard disks and removable disks, magneto-optical media and optical media (such as CD-ROM disks and digital versatile disks (DVD)).

100‧‧‧流程圖 110‧‧‧步驟 120‧‧‧步驟 130‧‧‧步驟 140‧‧‧步驟 150‧‧‧步驟 160‧‧‧步驟 170‧‧‧步驟 200‧‧‧照明系統 210‧‧‧基板 220‧‧‧影像感測器 230‧‧‧第二光學透鏡 240‧‧‧第一光學透鏡 250‧‧‧控制器 260‧‧‧原色光源 310‧‧‧點 311‧‧‧點 312‧‧‧點 313‧‧‧點 314‧‧‧點 320‧‧‧彎曲黑體軌跡 341‧‧‧光譜 342‧‧‧光譜 343‧‧‧光譜 344‧‧‧光譜 345‧‧‧光譜 410‧‧‧光譜功率分佈 415‧‧‧光譜功率分佈 420‧‧‧圖形描繪 430‧‧‧點 431‧‧‧點 432‧‧‧點 433‧‧‧點 434‧‧‧點 435‧‧‧方形 440‧‧‧圖形描繪 441‧‧‧資料線 442‧‧‧資料線 443‧‧‧資料線 444‧‧‧資料線 445‧‧‧資料線 446‧‧‧資料線 450‧‧‧圖形描繪 451‧‧‧資料線 452‧‧‧資料線 453‧‧‧資料線 454‧‧‧資料線 455‧‧‧資料線 456‧‧‧資料線 511‧‧‧實線 512‧‧‧實線 513‧‧‧實線 514‧‧‧實線 521‧‧‧虛線 522‧‧‧虛線 523‧‧‧虛線 524‧‧‧虛線 531‧‧‧CES色點 532‧‧‧CES色點 533‧‧‧CES色點 534‧‧‧CES色點 600‧‧‧圖形 710‧‧‧圖表 721‧‧‧跡線 722‧‧‧跡線 723‧‧‧跡線 730‧‧‧完美TM-30圓 810‧‧‧工廠輸入資料 815‧‧‧使用者程式化模組 820‧‧‧板上處理系統 821‧‧‧場景色彩映射模組 822‧‧‧源光譜最佳化模組100‧‧‧Flowchart 110‧‧‧Step 120‧‧‧Step 130‧‧‧Step 140‧‧‧Step 150‧‧‧Step 160‧‧‧Step 170‧‧‧Step 200‧‧‧Lighting system 210‧‧‧ substrate 220‧‧‧Image sensor 230‧‧‧Second optical lens 240‧‧‧First optical lens 250‧‧‧Controller 260‧‧‧primary color light source 310‧‧‧ points 311‧‧‧ points 312‧‧‧ points 313‧‧‧ points 314‧‧‧ points 320‧‧‧ Curved blackbody locus 341‧‧‧ Spectrum 342‧‧‧ Spectrum 343‧‧‧ Spectrum 344‧‧‧ Spectrum 345‧‧‧ Spectrum 410‧‧‧Spectral power distribution 415‧‧‧Spectral power distribution 420‧‧‧Graphic depiction 430‧‧‧ 431‧‧‧ points 432‧‧‧ points 433‧‧‧ points 434‧‧‧ points 435‧‧‧square 440‧‧‧Graphic depiction 441‧‧‧Data cable 442‧‧‧Data cable 443‧‧‧Data cable 444‧‧‧Data cable 445‧‧‧Data cable 446‧‧‧Data cable 450‧‧‧Graphic depiction 451‧‧‧Data cable 452‧‧‧Data cable 453‧‧‧Data cable 454‧‧‧Data cable 455‧‧‧Data cable 456‧‧‧Data cable 511‧‧‧Solid line 512‧‧‧Solid line 513‧‧‧Solid line 514‧‧‧Solid line 521‧‧‧ dotted line 522‧‧‧ dotted line 523‧‧‧ dotted line 524‧‧‧ dotted line 531‧‧‧CES color point 532‧‧‧CES color point 533‧‧‧CES color point 534‧‧‧CES color point 600‧‧‧Graphics 710‧‧‧Graph 721‧‧‧trace 722‧‧‧Trace 723‧‧‧trace 730‧‧‧PerfectTM-30 Yuan 810‧‧‧Factory input data 815‧‧‧User programmable module 820‧‧‧Onboard processing system 821‧‧‧Scene color mapping module 822‧‧‧ source spectrum optimization module

可自結合附圖依舉例方式給出之以下描述獲得一更詳細理解,其中:A more detailed understanding can be obtained from the following description given by way of example in conjunction with the drawings, in which:

圖1係用於基於光譜最佳化準則來啟動原色光源之一流程圖;Figure 1 is a flow chart for starting primary color light sources based on spectral optimization criteria;

圖2係一影像感測器、控制器及複數個原色光源之一實例圖;Figure 2 is an example diagram of an image sensor, controller and a plurality of primary color light sources;

圖3A係五個原色之色度之一實例圖表;Figure 3A is an example chart of the chromaticity of the five primary colors;

圖3B係圖3A之五個原色之光譜之一實例圖表;Figure 3B is an example chart of the spectrum of the five primary colors of Figure 3A;

圖4A係圖3A及圖3B之五個原色之光譜及其對應TM-30指數之一實例圖表,其包含光譜功率與波長之曲線圖;4A is an example graph of the spectrum of the five primary colors of FIGS. 3A and 3B and their corresponding TM-30 index, which includes a graph of spectral power and wavelength;

圖4B係圖3A及圖3B之五個原色之光譜及其對應TM-30指數之一實例圖表,其包含Rg與Rf之曲線圖;4B is an example chart of the spectrums of the five primary colors of FIGS. 3A and 3B and their corresponding TM-30 index, which includes Rg and Rf graphs;

圖4C係圖3A及圖3B之五個原色之光譜及其對應TM-30指數之一實例圖表,其包含Rf與色調分格之曲線圖;4C is an example chart of the spectrums of the five primary colors of FIGS. 3A and 3B and their corresponding TM-30 index, which includes a graph of Rf and hue division;

圖4D係圖3A及圖3B之五個原色之光譜及其對應TM-30指數之一實例圖表,其包含Rcs與色調分格之曲線圖;4D is an example chart of the spectrums of the five primary colors of FIGS. 3A and 3B and their corresponding TM-30 index, which includes a graph of Rcs and hue division;

圖5展示使用圖3A及圖3B之五個原色及一多項式擬合演算法之具有估計參考光譜之參考光譜之一實例圖表;5 shows an example chart of a reference spectrum with an estimated reference spectrum using the five primary colors of FIGS. 3A and 3B and a polynomial fitting algorithm;

圖6展示CAM02-USC中TM-30 CES 1-99之實際色點及使用圖3A及圖3B之五個原色之估計色點;Figure 6 shows the actual color point of TM-30 CES 1-99 in CAM02-USC and the estimated color point using the five primary colors of Figures 3A and 3B;

圖7A展示色調分格1、5、9及13之各者中若干CES之實例色點;7A shows example color points of several CES in each of the tonal divisions 1, 5, 9, and 13;

圖7B展示一實例色彩向量圖,其展示用於圖7A之高保真度之色調分格之高飽和度的三種演色模式;及7B shows an example color vector diagram showing the three color rendering modes for the high fidelity hue division and high saturation of FIG. 7A; and

圖8展示提供至一板上處理單元之工廠輸入資料之一流程圖。FIG. 8 shows a flowchart of factory input data provided to a processing unit on a board.

100‧‧‧流程圖 100‧‧‧Flowchart

110‧‧‧步驟 110‧‧‧Step

120‧‧‧步驟 120‧‧‧Step

130‧‧‧步驟 130‧‧‧Step

140‧‧‧步驟 140‧‧‧Step

150‧‧‧步驟 150‧‧‧Step

160‧‧‧步驟 160‧‧‧Step

170‧‧‧步驟 170‧‧‧Step

Claims (16)

一種方法,其包括: 啟動複數個原色光源之一第一子集以將一第一感測光譜發射至一場景上; 在啟動該複數個原色光源之該第一子集時,自該場景感測複數個像素之第一影像資料; 啟動該複數個原色光源之一第二子集以將一第二感測光譜發射至該場景上; 在啟動該複數個原色光源之該第二子集時,自該場景感測該複數個像素之第二影像資料; 基於該第一感測光譜、該第一影像資料、該第二感測光譜及該第二影像資料來產生將一色彩空間中之一色點分配給該等像素之各者的該場景之一色彩圖; 自該色彩圖及一所要輸出參數判定該等原色光源之光譜最佳化準則;及 基於該光譜最佳化準則來啟動該複數個原色光源發射一照明光譜。A method, including: Starting a first subset of the plurality of primary color light sources to emit a first sensing spectrum onto a scene; When starting the first subset of the plurality of primary color light sources, sensing the first image data of the plurality of pixels from the scene; Starting a second subset of the plurality of primary color light sources to emit a second sensing spectrum onto the scene; When starting the second subset of the plurality of primary color light sources, sensing the second image data of the plurality of pixels from the scene; Generating a color of the scene that assigns a color point in a color space to each of the pixels based on the first sensing spectrum, the first image data, the second sensing spectrum, and the second image data Figure; Determine the spectral optimization criteria for the primary color light sources from the color map and a desired output parameter; and Based on the spectrum optimization criterion, the plurality of primary color light sources are activated to emit an illumination spectrum. 如請求項1之方法,其進一步包括: 啟動該複數個原色光源之一第三子集以將一第三感測光譜發射至一場景上; 在啟動該複數個原色光源之該第三子集時,自該場景感測該複數個像素之第三影像資料; 啟動該複數個原色光源之一第四子集以將一第四感測光譜發射至該場景上; 在啟動該複數個原色光源之該第四子集時,自該場景感測該複數個像素之第四影像資料; 啟動該複數個原色光源之一第五子集以將一第五感測光譜發射至該場景上; 在啟動該複數個原色光源之該第五子集時,自該場景感測該複數個像素之第五影像資料; 其中產生該場景之一色彩圖包括基於該第一感測光譜、該第一影像資料、該第二感測光譜、該第二影像資料、該第三感測光譜、該第三影像資料、該第四感測光譜、該第四影像資料、該第五感測光譜及該第五影像資料來將一色彩空間中之一色點分配給該等像素之各者。The method of claim 1 further includes: Activate a third subset of the plurality of primary color light sources to emit a third sensing spectrum onto a scene; When starting the third subset of the plurality of primary color light sources, sensing the third image data of the plurality of pixels from the scene; Starting a fourth subset of the plurality of primary color light sources to emit a fourth sensing spectrum onto the scene; When starting the fourth subset of the plurality of primary color light sources, sensing the fourth image data of the plurality of pixels from the scene; Starting a fifth subset of the plurality of primary color light sources to emit a fifth sensing spectrum onto the scene; Sensing the fifth image data of the plurality of pixels from the scene when starting the fifth subset of the plurality of primary color light sources; Wherein generating a color map of the scene includes based on the first sensing spectrum, the first image data, the second sensing spectrum, the second image data, the third sensing spectrum, the third image data, the The fourth sensing spectrum, the fourth image data, the fifth sensing spectrum, and the fifth image data are used to assign a color point in a color space to each of the pixels. 如請求項1或請求項2之方法,其中啟動該複數個原色光源之一子集以發射一感測光譜包括調變自該複數個原色光源之該子集輸出之光。The method of claim 1 or claim 2, wherein activating a subset of the plurality of primary color light sources to emit a sensing spectrum includes modulating light output from the subset of the plurality of primary color light sources. 如請求項3之方法,其中使用人類實質上不可見之一振幅調變來振幅調變自原色光源之該子集輸出之該調變光。The method of claim 3, wherein an amplitude modulation substantially invisible to humans is used to amplitude modulate the modulated light output from the subset of primary color light sources. 如請求項3之方法,其中使用人類實質上不可見之一頻率調變來頻率調變自原色光源之該子集輸出之該調變光。The method of claim 3, wherein a frequency modulation substantially invisible to humans is used to frequency modulate the modulated light output from the subset of primary color light sources. 如請求項1之方法,其中將該第一影像資料及該第二影像資料提供至經組態以產生該色彩圖之一控制器。The method of claim 1, wherein the first image data and the second image data are provided to a controller configured to generate the color map. 如請求項1之方法,其中經由一第一光學透鏡來發射該第一感測光譜、該第二感測光譜及該照明光譜。The method of claim 1, wherein the first sensing spectrum, the second sensing spectrum, and the illumination spectrum are emitted through a first optical lens. 如請求項7之方法,其中經由一第二光學透鏡來感測該第一影像資料及該第二影像資料。The method of claim 7, wherein the first image data and the second image data are sensed through a second optical lens. 如請求項1之方法,其中基於一查找表來判定該光譜最佳化準則。The method of claim 1, wherein the spectrum optimization criterion is determined based on a lookup table. 如請求項9之方法,其中將該查找表儲存於一控制器上或儲存於可由一控制器存取之一記憶體上。The method of claim 9, wherein the lookup table is stored on a controller or on a memory accessible by a controller. 如請求項1之方法,其中該所要輸出參數由一使用者提供或由一控制器基於參考資訊來提供。The method of claim 1, wherein the desired output parameter is provided by a user or by a controller based on reference information. 一種裝置,其包括: 複數個原色光源,其等經組態以透過一第一光學器件來將一第一感測光譜、一第二感測光譜及一照明光譜發射至一場景上; 一影像感測器,其經組態以當在場景由該第一感測光譜照射時透過一第二光學器件來自該場景感測複數個像素之第一影像資料且經組態以在該場景由該第二感測光譜照射時透過該第二光學器件來自該場景感測該複數個像素之第二影像資料;及 一控制器,其經組態以產生該場景之一色彩圖、自該色彩圖及一所要輸出參數判定該等原色光源之光譜最佳化準則及基於該光譜最佳化準則來控制該複數個原色光源產生該照明光譜,該色彩圖包括各像素之一色彩空間中之一色點,該等色點由該控制器自該第一感測光譜、該第一影像資料、該第二感測光譜及該第二影像資料產生。An apparatus including: A plurality of primary color light sources, which are configured to transmit a first sensing spectrum, a second sensing spectrum, and an illumination spectrum to a scene through a first optical device; An image sensor configured to sense the first image data of a plurality of pixels from the scene through a second optical device when the scene is illuminated by the first sensing spectrum and configured to be in the scene When illuminating from the second sensing spectrum through the second optical device, the second image data of the plurality of pixels is sensed from the scene; and A controller configured to generate a color map of the scene, determine the spectral optimization criteria of the primary color light sources from the color map and a desired output parameter, and control the plurality of the spectral optimization criteria based on the spectral optimization criteria The primary color light source generates the illumination spectrum. The color map includes a color point in a color space of each pixel. The color points are selected by the controller from the first sensing spectrum, the first image data, and the second sensing spectrum. And the second image data is generated. 如請求項12之裝置,其中該影像感測器不具有波長解析能力。The device of claim 12, wherein the image sensor does not have wavelength resolution capability. 如請求項12之裝置,其包括其中定位該控制器及該等原色光源之一外殼。The device of claim 12, which includes a housing in which the controller and the primary color light sources are located. 如請求項12之裝置,其中分開容置該控制器及該等原色光源。The device of claim 12, wherein the controller and the primary color light sources are separately accommodated. 如請求項12之裝置,其中該控制器存取一查找表以判定該光譜最佳化準則。The device of claim 12, wherein the controller accesses a look-up table to determine the spectrum optimization criterion.
TW108121838A 2018-06-22 2019-06-21 Lighting system and method for operating the same TWI728385B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US16/015,697 2018-06-22
US16/015,697 US10582589B2 (en) 2018-06-22 2018-06-22 Lighting system with integrated sensor
EP18186839.9 2018-08-01
EP18186839 2018-08-01

Publications (2)

Publication Number Publication Date
TW202001465A true TW202001465A (en) 2020-01-01
TWI728385B TWI728385B (en) 2021-05-21

Family

ID=67070918

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108121838A TWI728385B (en) 2018-06-22 2019-06-21 Lighting system and method for operating the same

Country Status (4)

Country Link
EP (1) EP3811736A1 (en)
JP (1) JP7036952B2 (en)
TW (1) TWI728385B (en)
WO (1) WO2019246431A1 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2591205C (en) * 2004-12-20 2015-02-17 Color Kinetics Incorporated Color management methods and apparatus for lighting devices
ATE541157T1 (en) 2005-11-22 2012-01-15 Koninkl Philips Electronics Nv LIGHTING SYSTEM WITH MULTIPLE SETS OF LIGHT SOURCES
JP2009048989A (en) * 2007-07-20 2009-03-05 Toshiba Lighting & Technology Corp Illumination apparatus
DE102011002437A1 (en) * 2011-01-04 2012-07-05 Zumtobel Lighting Gmbh Method and illumination device for illuminating an object with multiple light sources
TWI598639B (en) * 2012-03-05 2017-09-11 英克羅馬公司 Multi-band color vision filters and method by lp-optimization
JP6271544B2 (en) 2012-07-27 2018-01-31 フィリップス ライティング ホールディング ビー ヴィ Color enhancement and preservation of objects using reflection spectra.
US9851072B2 (en) 2013-04-09 2017-12-26 Philips Lighting Holding B.V. Arrangement for changing the visual appearance of a target object
US9565734B1 (en) * 2014-02-25 2017-02-07 Lumenetix, Inc. System and method for rapidly generating color models for LED-based lamps
US9704441B2 (en) * 2015-02-04 2017-07-11 Snaptrack, Inc. System and method to adjust displayed primary colors based on illumination
DE202016008521U1 (en) 2015-06-08 2018-05-17 Opple Lighting Co. Ltd. Lighting device and control system for it
TWI561797B (en) * 2015-12-02 2016-12-11 Chromatic detector of led light source

Also Published As

Publication number Publication date
EP3811736A1 (en) 2021-04-28
JP7036952B2 (en) 2022-03-15
JP2021527931A (en) 2021-10-14
WO2019246431A1 (en) 2019-12-26
TWI728385B (en) 2021-05-21

Similar Documents

Publication Publication Date Title
US11815789B2 (en) Full-spectrum flash for electronic devices
KR101011662B1 (en) Colour control for led-based luminaire
US11382195B2 (en) Lighting system with integrated sensor
JP5689476B2 (en) Lighting system for highlighting objects
US9294742B2 (en) Spectral improvement of digital camera color images
JP2012506614A (en) Color generation using multiple light source types
WO2015176935A1 (en) An image capturing system, a kit for an image capturing system, a mobile phone, use of an image capturing system and a method of configuring a color matched light source
US11640101B2 (en) Determining spectral properties of an object through sequential illumination with different colors
WO2008067005A2 (en) Adaptive illumination for color-corrected underwater imaging
US20100007752A1 (en) Spectral improvement of digital camera color images
TWI728385B (en) Lighting system and method for operating the same
US9980338B2 (en) Illumination system
KR20220040431A (en) White balance using a reference illuminant
TW201122707A (en) Method and apparatus of projector color enhancement
JP2007163887A (en) Display device