JP2009048989A - Illumination apparatus - Google Patents

Illumination apparatus Download PDF

Info

Publication number
JP2009048989A
JP2009048989A JP2007284572A JP2007284572A JP2009048989A JP 2009048989 A JP2009048989 A JP 2009048989A JP 2007284572 A JP2007284572 A JP 2007284572A JP 2007284572 A JP2007284572 A JP 2007284572A JP 2009048989 A JP2009048989 A JP 2009048989A
Authority
JP
Japan
Prior art keywords
light
light source
component
red
green
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007284572A
Other languages
Japanese (ja)
Inventor
Tomoko Ishiwatari
朋子 石渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP2007284572A priority Critical patent/JP2009048989A/en
Publication of JP2009048989A publication Critical patent/JP2009048989A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an illumination apparatus which can show a red or green color more clearly in accordance with color components of an illumination object. <P>SOLUTION: The illumination apparatus is provided with a light source portion 12 with a light source for irradiating at least two kinds out of a red color light, a green color light and a blue color light of different peak wavelengths, an image sensor 13 photographing an illumination object 11 to which light from the light source portion 12 is illuminated, a color information abstracting means 14 to abstract color information from the image photographed by the image sensor, a color component calculating means 15 to calculate a component ratio of a red color component and a green color component from the color information abstracted at the color information abstracting means, a light source combination deciding means 16 for deciding a combination of the light sources for lighting up the light source portion based on compared results between the red color component ration and the green color component ratio which are calculated by the color component calculating means, and a lighting controlling means 17 for controlling a lighting of the light source portion by the combination of light sources which are decided by the light source combination deciding means 16. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光照射の対象物の色をより鮮やかに見せる照明装置に関する。   The present invention relates to an illuminating device that makes a color of an object irradiated with light more vivid.

例えば、光照射の対象物として、鮮肉や鮮魚などの食品は黄ばみを取ることによって鮮やかに演色され、新鮮に見える効果がある。そのため、白熱電球のバルブにネオジウムを混入し、ピーク波長が580nm付近の黄色成分の発光エネルギーを吸収するネオジウム電球が既に各照明メーカから販売されている。また、この効果は、蛍光ランプなどの他の照明ランプにおいても同等の効果があることが知られている。   For example, as an object to be irradiated with light, food such as fresh meat and fresh fish is vividly rendered by removing yellowing, and has the effect of appearing fresh. For this reason, neodymium bulbs that mix neodymium in the bulbs of incandescent bulbs and absorb the emission energy of the yellow component having a peak wavelength near 580 nm have already been sold by lighting manufacturers. This effect is also known to be equivalent in other illumination lamps such as fluorescent lamps.

また、目立ち感の概念から発展させた目立ち指数により照明色彩環境を評価できるようにし、屋内の花、草木などを好ましい色に再現し、屋内照明の色彩環境をより向上させた一般照明用の放電ランプや照明器具がある(例えば、特許文献1参照)。すなわち、これは、4色試験色が鮮やかに見える目立ち指数を定義し、それらの色が好ましく見えるようにしたものである。
特許第3040719号公報
In addition, the lighting color environment can be evaluated based on the conspicuous index developed from the concept of conspicuousness, and indoor flowers, plants, etc. are reproduced in favorable colors, and the indoor lighting color environment is further improved. There are lamps and lighting fixtures (see, for example, Patent Document 1). That is, this defines a conspicuous index that makes the four-color test colors look vivid, and makes these colors look good.
Japanese Patent No. 3040719

しかしながら、ネオジウム電球や特許文献1に示される照明装置では、固定された単一の色光によって対象物を照射するものであるので、照明される対象物が変化した場合に対応することができない。例えば、対象物が鮮肉のように赤色成分が多い場合には赤色をより鮮やかに見せることが好ましく、対象物が野菜のように緑色成分が多い場合には緑色をより鮮やかに見せることが好ましい。同様に、対象物が青味の魚のように青色成分が多い場合には青色をより鮮やかに見せることが好ましく、対象物がレモンやオレンジのように黄色成分が多い場合には黄色をより鮮やかに見せることが好ましい。   However, the neodymium bulb and the illumination device disclosed in Patent Document 1 irradiate an object with a fixed single color light, and thus cannot cope with a change in the object to be illuminated. For example, when the object has a large amount of red component such as fresh meat, it is preferable to make red appear more vivid, and when the object has a larger amount of green component such as vegetable, it is preferable to display green more vividly. Similarly, when the object has a large blue component such as a blue fish, it is preferable to make the blue appear more vivid, and when the object has a large yellow component such as lemon or orange, the yellow becomes more vivid. It is preferable to show.

本発明の目的は、照明対象物の色成分に応じて、赤色、緑色、青色あるいは黄色をより鮮やかに見せることができる照明装置を提供することである。   The objective of this invention is providing the illuminating device which can show red, green, blue, or yellow more vividly according to the color component of the illumination target object.

請求項1の発明に係わる照明装置は、ピーク波長が異なる少なくとも2種類の赤色光を照射する光源と、ピーク波長が異なる少なくとも2種類の緑色光を照射する光源と、ピーク波長が異なる少なくとも2種類の青色光を照射する光源とを有した光源部と;前記光源部からの光が照明される対象物を撮影する画像センサと;前記画像センサで撮影した画像から色情報を抽出する色情報抽出手段と;前記色情報抽出手段で抽出された色情報から赤色成分と緑色成分との成分比率を算出する色成分算出手段と;前記色成分算出手段で算出された赤色成分比率と緑色成分比率との比較結果に基づいて前記光源部の点灯する光源の組合せを決定する光源組合せ決定手段と;前記光源組合せ決定手段で決定された光源の組合せで前記光源部を点灯制御する点灯制御手段と;を備えたことを特徴とする。   The illumination device according to the invention of claim 1 is a light source that emits at least two types of red light having different peak wavelengths, a light source that emits at least two types of green light having different peak wavelengths, and at least two types having different peak wavelengths. A light source unit that emits blue light; an image sensor that captures an object illuminated by light from the light source unit; and color information extraction that extracts color information from an image captured by the image sensor Means for calculating a component ratio of a red component and a green component from the color information extracted by the color information extraction unit; a red component ratio and a green component ratio calculated by the color component calculation unit; A light source combination determining unit that determines a combination of light sources to be turned on based on the comparison result; and lighting control of the light source unit by a combination of light sources determined by the light source combination determining unit Characterized by comprising a; a lighting control unit.

本発明及び以下の発明において、特に指定しない限り用語の定義及び技術的意義は以下による。   In the present invention and the following inventions, definitions and technical meanings of terms are as follows unless otherwise specified.

光源部は、赤色光、緑色光、青色光の3色の各光色につき、各々ピーク波長が異なる少なくとも2種類の光源を有する。各々の光源はLEDであってもよいし、赤色光、緑色光、青色光を発光する蛍光体を塗布した放電灯であってもよい。   The light source unit includes at least two types of light sources having different peak wavelengths for each of the three light colors of red light, green light, and blue light. Each light source may be an LED, or a discharge lamp coated with a phosphor that emits red light, green light, and blue light.

画像センサは、例えばRGB色フィルタやXYZフィルタを備えたCCDやCMOSセンサで構成されている。   The image sensor is composed of a CCD or CMOS sensor provided with, for example, an RGB color filter or an XYZ filter.

色情報抽出手段、色成分算出手段、光源組合せ決定手段及び点灯制御手段は、例えば、マイクロコンピュータ、マイクロプロセッサ、CPU(中央演算処理装置)またはDSP(デジタルシグナルプロセッサ)などで構成される。   The color information extraction unit, the color component calculation unit, the light source combination determination unit, and the lighting control unit include, for example, a microcomputer, a microprocessor, a CPU (Central Processing Unit) or a DSP (Digital Signal Processor).

色情報には色相及び明度(階調値)を含む。赤色成分と緑色成分との成分比率とは、例えば、撮影された画像全体の画素に対しての赤色成分画素の比率、緑色成分画素の比率をいう。   The color information includes hue and brightness (gradation value). The component ratio between the red component and the green component refers to, for example, the ratio of the red component pixel and the ratio of the green component pixel to the pixels of the entire captured image.

「光源部の点灯する光源の組合せ」とは、赤色光、緑色光、青色光の各光色の各々ピーク波長が異なる少なくとも2種類の光源のうちから、一つの光源を選択した赤色光、緑色光、青色光の3色の組合せをいう。点灯制御には、対象物の周辺の色温度や各光色の混光比を含むことを許容する。   “Combination of light sources that turn on the light source unit” means red light, green light selected from one of at least two light sources having different peak wavelengths of red light, green light, and blue light. A combination of light and blue light. The lighting control is allowed to include the color temperature around the object and the light mixture ratio of each light color.

請求項2の発明に係わる照明装置は、請求項1の発明において、前記光源組合せ決定手段は、各光色の光源のうち短波長側にピークを持つ光源の組合せと、長波長側にピークを持つ光源の組合せとを作成し、前記色成分算出手段で算出された赤色成分比率が緑色成分比率よりも多い場合は長波長側にピークを持つ光源の組合せを決定し、前記色成分算出手段で算出された緑色成分比率が赤色成分比率よりも多い場合は短波長側にピークを持つ光源の組合せを決定することを特徴とする。   According to a second aspect of the present invention, there is provided the lighting device according to the first aspect, wherein the light source combination determining means includes a combination of a light source having a peak on the short wavelength side and a peak on the long wavelength side among the light sources of each light color. A light source combination having a light source having a peak on the long wavelength side when the red component ratio calculated by the color component calculation means is greater than the green component ratio, and the color component calculation means When the calculated green component ratio is larger than the red component ratio, a combination of light sources having a peak on the short wavelength side is determined.

本発明は、「光源部の点灯する光源の組合せ」として、各光色の光源のうち短波長側にピークを持つ光源の組合せと、長波長側にピークを持つ光源の組合せとを作成するようにしたものである。すなわち、赤色光、緑色光、青色光の各光色につき、短波長側にピークを持つ光源と長波長側にピークを持つ光源とを有し、赤色光、緑色光、青色光の各光色ともに短波長側にピークを持つ光源の組合せと、赤色光、緑色光、青色光の各光色ともに長波長側にピークを持つ光源の組合せとの二組の組合せとしたものである。   The present invention creates a combination of light sources having a peak on the short wavelength side and a combination of light sources having a peak on the long wavelength side among the light sources of the respective light colors as the “combination of light sources that light the light source section”. It is a thing. That is, for each light color of red light, green light, and blue light, it has a light source having a peak on the short wavelength side and a light source having a peak on the long wavelength side, and each light color of red light, green light, and blue light Both are a combination of a light source having a peak on the short wavelength side and a combination of a light source having a peak on the long wavelength side for each light color of red light, green light, and blue light.

そして、色成分算出手段で算出された赤色成分比率が緑色成分比率よりも多い場合は長波長側にピークを持つ光源の組合せを決定し、色成分算出手段で算出された緑色成分比率が赤色成分比率よりも多い場合は短波長側にピークを持つ光源の組合せを決定する。   If the red component ratio calculated by the color component calculation means is larger than the green component ratio, a combination of light sources having a peak on the long wavelength side is determined, and the green component ratio calculated by the color component calculation means is the red component. If the ratio is larger than the ratio, the combination of light sources having a peak on the short wavelength side is determined.

請求項3の発明に係わる照明装置は、請求項1または2の発明において、赤色光を照射する光源の分光分布のピーク波長が615nmから675nmの間にあり、緑色光を照射する光源の分光分布のピーク波長が515nmから555nmの間にあり、青色光を照射する光源の分光分布のピーク波長が435nmから485nmの間にあることを特徴とする。   A lighting device according to a third aspect of the present invention is the lighting device according to the first or second aspect, wherein the peak wavelength of the spectral distribution of the light source that emits red light is between 615 nm and 675 nm, and the spectral distribution of the light source that emits green light. The peak wavelength of the light source is between 515 nm and 555 nm, and the peak wavelength of the spectral distribution of the light source that emits blue light is between 435 nm and 485 nm.

本発明は、赤色光、緑色光、青色光の各光色の各々ピーク波長の範囲を特定したものである。   In the present invention, the range of the peak wavelength of each light color of red light, green light, and blue light is specified.

請求項4の発明に係わる照明装置は、少なくとも赤色光、緑色光、青色光、黄色光を照射する光源を有した光源部と;前記光源部からの光が照明される対象物を撮影する画像センサと;前記画像センサで撮影した画像から色情報を抽出する色情報抽出手段と;前記色情報抽出手段で抽出された色情報から赤色成分、緑色成分、青色成分及び黄色成分の成分比率を算出する色成分算出手段と;赤色成分及び緑色成分の混合成分比率と青色成分及び黄色成分の混合成分比率との比較結果に基づいて前記光源部の点灯する光源の組合せを決定する光源組合せ決定手段と;前記光源組合せ決定手段で決定された光源の混光比を演算する混光比演算手段と;前記混光比演算手段で演算された混光比で前記光源部を点灯制御する点灯制御手段と;を備えたことを特徴とする。   An illumination device according to a fourth aspect of the invention includes a light source unit having a light source that emits at least red light, green light, blue light, and yellow light; and an image that captures an object illuminated by light from the light source unit. A sensor; color information extraction means for extracting color information from an image taken by the image sensor; and calculating component ratios of red, green, blue and yellow components from the color information extracted by the color information extraction means Color component calculation means for performing light source combination determination means for determining a combination of light sources to be turned on based on a comparison result of a mixed component ratio of red and green components and a mixed component ratio of blue and yellow components A light mixture ratio calculating means for calculating the light mixture ratio of the light sources determined by the light source combination determining means; and a lighting control means for controlling lighting of the light source unit with the light mixture ratio calculated by the light mixture ratio calculating means; With And wherein the door.

光源部は、赤色光、緑色光、青色光、黄色光の4色の各光色につき、少なくとも4個の光源を有する。各々の光源はLEDであってもよいし、赤色光、緑色光、青色光、黄色光を発光する蛍光体を塗布した放電灯であってもよい。   The light source unit has at least four light sources for each of the four light colors of red light, green light, blue light, and yellow light. Each light source may be an LED, or a discharge lamp coated with a phosphor that emits red light, green light, blue light, and yellow light.

画像センサは、例えばRGB色フィルタやXYZフィルタを備えたCCDやCMOSセンサで構成されている。   The image sensor is composed of a CCD or CMOS sensor provided with, for example, an RGB color filter or an XYZ filter.

色情報抽出手段、色成分算出手段、光源組合せ決定手段、混光比演算手段及び点灯制御手段は、例えば、マイクロコンピュータ、マイクロプロセッサ、CPU(中央演算処理装置)またはDSP(デジタルシグナルプロセッサ)などで構成される。   The color information extraction unit, the color component calculation unit, the light source combination determination unit, the light mixture ratio calculation unit, and the lighting control unit are, for example, a microcomputer, a microprocessor, a CPU (Central Processing Unit) or a DSP (Digital Signal Processor). Composed.

色情報には色相及び明度(階調値)を含む。赤色成分、緑色成分、青色成分及び黄色成分の成分比率とは、例えば、撮影された画像全体の画素に対しての赤色成分画素の比率、緑色成分画素の比率、青色成分画素の比率、黄色成分画素の比率をいう。   The color information includes hue and brightness (gradation value). The component ratio of the red component, the green component, the blue component, and the yellow component is, for example, the ratio of the red component pixel to the pixels of the entire captured image, the ratio of the green component pixel, the ratio of the blue component pixel, and the yellow component. This is the pixel ratio.

「光源部の点灯する光源の組合せ」とは、赤色光、緑色光、青色光、黄色光のうちから、赤色光、緑色光、青色光の3個の光源を選択した赤色光、緑色光、青色光の3色の組合せ、あるいは、赤色光、緑色光、青色光、黄色光の4個の光源を選択した赤色光、緑色光、青色光、黄色光の4色の組合せをいう。   “Combination of light sources that light the light source unit” means red light, green light, red light, green light, blue light selected from three light sources among red light, green light, blue light, and yellow light, A combination of three colors of blue light, or a combination of four colors of red light, green light, blue light, and yellow light in which four light sources of red light, green light, blue light, and yellow light are selected.

光源の混光比とは、例えば、赤色光、緑色光、青色光の3個の光源を選択した場合には、赤色光、緑色光、青色光の強度比をいい、混光比を設定することによって白色光にしてもよい。また、赤色光、緑色光、青色光、黄色光の4個の光源を選択した場合には、赤色光、緑色光、青色光、黄色光の強度比をいい、混光比を設定することによって白色光にしてもよい。   The light mixture ratio is, for example, the intensity ratio of red light, green light, and blue light when three light sources of red light, green light, and blue light are selected, and the light mixture ratio is set. Depending on the situation, white light may be used. In addition, when four light sources of red light, green light, blue light, and yellow light are selected, the intensity ratio of red light, green light, blue light, and yellow light is used. It may be white light.

点灯制御には、対象物の周辺の色温度や各光色の混光比を含むことを許容する。   The lighting control is allowed to include the color temperature around the object and the light mixture ratio of each light color.

請求項5の発明に係わる照明装置は、請求項4の発明において、前記光源組合せ決定手段は、赤色成分及び緑色成分の混合比率と青色成分及び黄色成分の混合比率とを比較し、赤色成分及び緑色成分の混合比率が青色成分及び黄色成分の混合比率以上のときは、赤色光、緑色光、青色光を照射する光源の組合せとし、赤色成分及び緑色成分の混合比率が青色成分及び黄色成分の混合比率より小さいときは、赤色光、緑色光、青色光及び黄色光を照射する光源の組合せとすることを特徴とする。   According to a fifth aspect of the present invention, there is provided the lighting device according to the fourth aspect, wherein the light source combination determining means compares the mixing ratio of the red component and the green component with the mixing ratio of the blue component and the yellow component, When the mixing ratio of the green component is greater than or equal to the mixing ratio of the blue component and the yellow component, it is a combination of light sources that emit red light, green light, and blue light, and the mixing ratio of the red component and the green component is that of the blue component and the yellow component. When it is smaller than the mixing ratio, it is a combination of light sources that emit red light, green light, blue light, and yellow light.

本発明は、「光源部の点灯する光源の組合せ」として、照射対象物が赤色成分及び緑色成分を多く含む場合には、赤色及び緑色を鮮やかに見せるために、赤色光、緑色光、青色光を照射する3個の光源の組合せとし、照射対象物が青色成分及び黄色成分を多く含む場合には、青色及び黄色を鮮やかに見せるために、赤色光、緑色光、青色光、黄色光を照射する4個の光源の組合せとしたものである。   In the present invention, as a “combination of light sources for turning on a light source unit”, when an irradiation object contains a lot of red and green components, red light, green light, and blue light are used to make red and green appear vividly. If the object to be irradiated contains a large amount of blue and yellow components, red, green, blue, and yellow light are emitted to make the blue and yellow appear vivid. This is a combination of four light sources.

請求項6の発明に係わる照明装置は、請求項4または5の発明において、赤色光を照射する光源の分光分布のピーク波長が615nmから675nmの間にあり、黄色光を照射する光源の分光分布のピーク波長が555nmから615nmの間にあり、緑色光を照射する光源の分光分布のピーク波長が515nmから555nmの間にあり、青色光を照射する光源の分光分布のピーク波長が435nmから485nmの間にあることを特徴とする。   A lighting device according to a sixth aspect of the present invention is the lighting device according to the fourth or fifth aspect, wherein the peak wavelength of the spectral distribution of the light source that emits red light is between 615 nm and 675 nm, and the spectral distribution of the light source that emits yellow light. The peak wavelength of the light source that emits green light is between 515 nm and 555 nm, the peak wavelength of the light source that emits blue light is between 435 nm and 485 nm. It is characterized by being in between.

本発明は、赤色光、緑色光、青色光、黄色光の各光色の各々ピーク波長の範囲を特定したものである。   In the present invention, the range of each peak wavelength of each light color of red light, green light, blue light, and yellow light is specified.

請求項7の発明に係わる照明装置は、請求項4ないし6のいずれか一の発明において、前記黄色光の割合は混光全体の35%を超えないことを特徴とする。   A lighting device according to a seventh aspect of the invention is characterized in that, in the invention according to any one of the fourth to sixth aspects, the proportion of the yellow light does not exceed 35% of the total light mixture.

赤色光、緑色光、青色光に黄色光を混光した場合には、青色光及び黄色光が鮮やかになるが、黄色光の混光割合が多くなると、赤色光及び緑色光がくすんだ色となる。そこで、3波長形蛍光ランプより赤色光及び緑色光の鮮やかさを保ちつつ青色光及び黄色光を鮮やにするために、黄色光の割合は混光全体の35%を超えないようにしたものである。   When red light, green light, and blue light are mixed with yellow light, blue light and yellow light become vivid, but when the mixing ratio of yellow light increases, red light and green light become dull color. Become. Therefore, in order to keep blue light and yellow light clearer while maintaining the vividness of red light and green light than a three-wavelength fluorescent lamp, the ratio of yellow light does not exceed 35% of the total light mixture. It is.

請求項1の発明によれば、照明される対象物に含まれる複数の色のうち、赤色成分が緑色成分よりも多い場合と、緑色成分が赤色成分よりも多い場合とで点灯する光源の組合せを変更するので、対象物が変化しても照明される対象物の色に合わせて対象物を鮮やかに見せることが可能となる。   According to the invention of claim 1, among the plurality of colors included in the object to be illuminated, a combination of light sources that is turned on when the red component is greater than the green component and when the green component is greater than the red component. Therefore, even if the object changes, it becomes possible to make the object appear vividly according to the color of the object to be illuminated.

請求項2の発明によれば、請求項1の発明の効果に加え、照明される対象物に含まれる複数の色のうち、赤色成分が多い場合はピーク波長が長波長側の光源の組合せとするので、赤色をより鮮やかに見せ、緑色成分が多い場合はピーク波長が短波長側の光源の組合せとするので、緑色をより鮮やかに見せることができる。   According to the invention of claim 2, in addition to the effect of the invention of claim 1, when there are many red components among the plurality of colors included in the object to be illuminated, the combination of the light source having a peak wavelength on the long wavelength side and As a result, red is displayed more vividly, and when the green component is large, the combination of light sources having shorter peak wavelengths is used, so that green can be displayed more vividly.

請求項3によれば、請求項1または2の発明の効果に加え、各光色のピーク波長をある範囲に特定することにより、正確に、赤色をより鮮やかに見せたり、緑色をより鮮やかに見せることができる。   According to claim 3, in addition to the effect of the invention of claim 1 or 2, by specifying the peak wavelength of each light color within a certain range, it is possible to accurately show red or make green more vivid. Can show.

請求項4の発明によれば、赤色光、緑色光、青色光の光源に加え、黄色光の光源を設け、照明される対象物に含まれる複数の色のうち、赤色成分、緑色成分、青色成分、黄色成分の割合により、点灯する光源の組み合わせを決定するので、照射対象物が変化しても照射対象物を鮮やかに見せることが可能となる。   According to invention of Claim 4, in addition to the light source of red light, green light, and blue light, the light source of yellow light is provided, and among a plurality of colors included in the object to be illuminated, red component, green component, blue color Since the combination of the light sources to be lit is determined by the ratio of the component and the yellow component, it is possible to make the irradiation object look vivid even when the irradiation object changes.

請求項5の発明によれば、請求項4の発明の効果に加え、赤色成分及び緑色成分の混合比率が青色成分及び黄色成分の混合比率以上であるときは、赤色光、緑色光、青色光を照射する光源の組合せとするので、赤色と緑色を鮮やかに見せることができ、赤色成分及び緑色成分の混合比率が青色成分及び黄色成分の混合比率より小さいときは、黄色光の光源を加えて、赤色光、緑色光、青色光及び黄色光を照射する光源の組合せとするので、青色と黄色を鮮やかに見せることができる。   According to the invention of claim 5, in addition to the effect of the invention of claim 4, when the mixing ratio of the red component and the green component is equal to or higher than the mixing ratio of the blue component and the yellow component, red light, green light, blue light As the combination of light sources that irradiate the light, red and green can be seen vividly. When the mixing ratio of the red and green components is smaller than the mixing ratio of the blue and yellow components, add a yellow light source. Since the combination of light sources that emit red light, green light, blue light and yellow light is used, blue and yellow can be seen vividly.

請求項6の発明によれば、請求項4または5の発明の効果に加え、各光色のピーク波長をある範囲に特定することにより、赤色と緑色との鮮やかさを保持しつつ、青色と黄色とを鮮やかに見せることができる。   According to the invention of claim 6, in addition to the effect of the invention of claim 4 or 5, by specifying the peak wavelength of each light color within a certain range, while maintaining the vividness of red and green, Can show yellow and vividly.

請求項7の発明によれば、黄色光の割合が全体の35%を超えないとしているので、3波長形蛍光ランプより赤色光及び緑色光の鮮やかさを保ちつつ青色光及び黄色光を鮮やに見せることができる。   According to the invention of claim 7, since the ratio of yellow light does not exceed 35% of the whole, blue light and yellow light are brightened while maintaining the vividness of red light and green light from the three-wavelength fluorescent lamp. Can show.

図1は本発明の第1の実施の形態に係わる照明装置の構成図である。照明対象物11に光を照射する光源部12は、RGB(赤色、緑色、青色)の3色の光を照射する光源を有し、赤色の光源18a、緑色の光源18b、青色の光源18cは、それぞれピーク波長が異なる少なくとも2種類の光源を有する。従って、光源部12は少なくとも6種類の光源18a1、18a2、18b1、18b2、18c1、18c2を有する。   FIG. 1 is a configuration diagram of an illumination apparatus according to the first embodiment of the present invention. The light source unit 12 that irradiates light to the illumination target 11 includes light sources that irradiate light of three colors of RGB (red, green, and blue). The red light source 18a, the green light source 18b, and the blue light source 18c are And at least two light sources having different peak wavelengths. Accordingly, the light source unit 12 includes at least six types of light sources 18a1, 18a2, 18b1, 18b2, 18c1, and 18c2.

図2は光源部12の各々の光源18a1、18a2、18b1、18b2、18c1、18c2の分光分布図である。図2では、赤色の光源18a、緑色の光源18b、青色の光源18cのそれぞれが、ピーク波長が異なる2種類の光源を有し、全体として6種類の光源18a1、18a2、18b1、18b2、18c1、18c2を有する場合を示している。以下の説明では、赤色の光源18a、緑色の光源18b、青色の光源18cのそれぞれが、ピーク波長が異なる2種類の光源を有し、全体として6種類の光源18a1、18a2、18b1、18b2、18c1、18c2を有する場合について説明する。   FIG. 2 is a spectral distribution diagram of each of the light sources 18a1, 18a2, 18b1, 18b2, 18c1, and 18c2 of the light source unit 12. In FIG. 2, each of the red light source 18a, the green light source 18b, and the blue light source 18c has two types of light sources having different peak wavelengths, and six types of light sources 18a1, 18a2, 18b1, 18b2, 18c1, The case of having 18c2 is shown. In the following description, each of the red light source 18a, the green light source 18b, and the blue light source 18c has two types of light sources having different peak wavelengths, and six types of light sources 18a1, 18a2, 18b1, 18b2, and 18c1 as a whole. , 18c2 will be described.

赤色、緑色、青色のそれぞれ同じ色相の範囲内でピーク波長が異なる2種類の光源を用意し、色相のずれを小さく抑えつつ緑色または赤色を鮮やかに見せるようにする。赤色光についてはピーク波長が615nm〜675nmの中から2種類、緑色光についてはピーク波長が515nm〜555nmの中から2種類、青色光についてはピーク波長が435nm〜485nmの中から2種類とする。   Two types of light sources having different peak wavelengths within the same hue range of red, green, and blue are prepared so that green or red can be seen vividly while suppressing a deviation in hue. The red light has two types of peak wavelengths from 615 nm to 675 nm, the green light has two types of peak wavelengths from 515 nm to 555 nm, and the blue light has two types of peak wavelengths from 435 nm to 485 nm.

図2に示すように、本発明の第1の実施の形態では、赤色の光源はピーク波長が約630nmである光源R1とピーク波長が約660nmである光源R2とし、緑色の光源はピーク波長が約530nmである光源G1とピーク波長が約545nmである光源G2とし、青色の光源はピーク波長が約450nmである光源B1とピーク波長が約470nmである光源B2とする。   As shown in FIG. 2, in the first embodiment of the present invention, the red light source is a light source R1 having a peak wavelength of about 630 nm and a light source R2 having a peak wavelength of about 660 nm, and the green light source has a peak wavelength. A light source G1 having a wavelength of about 530 nm and a light source G2 having a peak wavelength of about 545 nm are used, and a blue light source is a light source B1 having a peak wavelength of about 450 nm and a light source B2 having a peak wavelength of about 470 nm.

なお、各光源のピーク波長は、波長の大小関係を維持した状態でそれぞれ±15nm程度ずれていてもよい。   Note that the peak wavelength of each light source may be shifted by about ± 15 nm in a state where the magnitude relationship of the wavelengths is maintained.

次に、画像センサ13は光源部12からの光が照明される照明対象物11を撮影して画像を得るものであり、画像センサ13で得られた画像は色情報抽出手段14に入力される。色情報抽出手段14は画像センサ13で撮影した画像から色情報を抽出するものである。   Next, the image sensor 13 obtains an image by photographing the illumination object 11 illuminated by the light from the light source unit 12, and the image obtained by the image sensor 13 is input to the color information extraction unit 14. . The color information extraction means 14 extracts color information from the image photographed by the image sensor 13.

色情報抽出手段14で色情報を抽出する方法は、撮影された画像の各画素のRGB階調値を検出してもよいし、画像センサ13にCIE1931等色関数に近似したXYZフィルタを具備し、画像の複数の点においてxy色度を求めてもよい。   As a method of extracting color information by the color information extracting means 14, the RGB gradation value of each pixel of the photographed image may be detected, or the image sensor 13 includes an XYZ filter approximating a CIE1931 color matching function. The xy chromaticity may be obtained at a plurality of points in the image.

色情報抽出手段14で抽出された色情報は色成分算出手段15に入力され、色成分算出手段15で赤色成分と緑色成分との成分比率が算出される。色成分算出手段15での赤色成分と緑色成分との成分比率の算出は、RGB階調値の検出では、R階調値とG階調値とを比較して行い、また、XYZフィルタを具備した画像センサ13では、色を検出する点のxy色度を色度図上にプロットしたときに赤色の範囲と緑色の範囲にプロットされた点の数を比較して行う。   The color information extracted by the color information extraction unit 14 is input to the color component calculation unit 15, and the component ratio between the red component and the green component is calculated by the color component calculation unit 15. The calculation of the component ratio between the red component and the green component in the color component calculation means 15 is performed by comparing the R gradation value and the G gradation value when detecting the RGB gradation value, and an XYZ filter is provided. In the image sensor 13, when the xy chromaticity of the point for detecting the color is plotted on the chromaticity diagram, the number of points plotted in the red range and the green range is compared.

色成分算出手段15で算出された赤色成分比率と緑色成分比率との比較結果は光源組合せ決定手段16に入力される。光源組合せ決定手段16では、赤色成分比率と緑色成分比率との比較結果に基づいて光源部12の点灯する光源の組合せを決定する。   The comparison result between the red component ratio and the green component ratio calculated by the color component calculation unit 15 is input to the light source combination determination unit 16. The light source combination determining unit 16 determines a combination of light sources to be turned on by the light source unit 12 based on a comparison result between the red component ratio and the green component ratio.

光源の組合せは、赤色、緑色、青色のそれぞれの2種類の光源のうち、短波長側にピークを持つ光源の組合せAと、長波長側にピークを持つ光源の組合せBとする。すなわち、赤色の光源R1、緑色の光源G1、青色の光源B1の組合せAと、赤色の光源R2、緑色の光源G2、青色の光源B2の組合せBとの二つの組合せとする。光源の組合せAは、緑色をより鮮やかに見せることを意図する場合の波長の組合せであり、光源の組合せBは、赤色をより鮮やかに見せることを意図する場合の波長の組合せである。   The light source combination is a light source combination A having a peak on the short wavelength side and a light source combination B having a peak on the long wavelength side among the two types of light sources of red, green, and blue. That is, there are two combinations of the combination A of the red light source R1, the green light source G1, and the blue light source B1, and the combination B of the red light source R2, the green light source G2, and the blue light source B2. The light source combination A is a combination of wavelengths when the green color is intended to appear more vivid, and the light source combination B is a wavelength combination when the red color is intended to appear more vivid.

光源組合せ決定手段16では、色成分算出手段15で算出された赤色成分比率が緑色成分比率よりも多い場合は、赤色を鮮やかに見せるために長波長側にピークを持つ光源の組合せBを決定し、色成分算出手段15で算出された緑色成分比率が赤色成分比率よりも多い場合は短波長側にピークを持つ光源の組合せAを決定する。   When the red component ratio calculated by the color component calculating unit 15 is larger than the green component ratio, the light source combination determining unit 16 determines a light source combination B having a peak on the long wavelength side in order to make red appear vividly. When the green component ratio calculated by the color component calculation means 15 is larger than the red component ratio, the light source combination A having a peak on the short wavelength side is determined.

そして、点灯制御手段17は、光源組合せ決定手段16で決定された光源の組合せで光源部12を点灯制御し、照明対象物11が赤色である場合には赤色をより鮮やかに、照明対象物11が緑色である場合には緑色をより鮮やかに照明する。   Then, the lighting control unit 17 controls the lighting of the light source unit 12 with the combination of the light sources determined by the light source combination determining unit 16, and when the illumination object 11 is red, the illumination object 11 is more vividly red. When is green, the green color is illuminated more vividly.

ここで、色を鮮やかに見せる程度の評価指標としては、演色(色の見え)の主観的な好ましさを評価するJISZ8726の付属書(演色評価数による以外の演色性評価方法)に記載される色域面積比(以後Gaと称す。)がある。色域面積比Gaは、JISZ8726で定められた表1に示す試験色1〜8の色度をプロットして得られる八角形の面積について、基準光(この場合は色温度が等しい黒体放射)による面積を100とした場合の相対値で表され、100よりも大きい場合は平均的に彩度が増加する方向にあり、色がより鮮やかに見えることが期待される。

Figure 2009048989
Here, as an evaluation index to the extent that the color is vividly shown, it is described in an appendix of JISZ8726 for evaluating the subjective preference of color rendering (color appearance) (color rendering property evaluation method other than by color rendering index). Color gamut area ratio (hereinafter referred to as Ga). The color gamut area ratio Ga is an octagonal area obtained by plotting the chromaticities of test colors 1 to 8 shown in Table 1 defined in JISZ8726. It is represented by a relative value when the area by 100 is 100, and when it is larger than 100, the saturation is on the average and the color is expected to look more vivid.
Figure 2009048989

しかし、試験色1〜8はクロマが4〜8の比較的彩度が低い色である。そこで、本発明の第1の実施の形態では、色が鮮やかに見えるかどうかは、彩度が高い試験色9〜12の色度をプロットして得られる四角形の色域面積Sを基準光による四角形の色域面積S0と比較し、その面積比を色域面積比Ga9−12とする。   However, the test colors 1 to 8 are colors with relatively low chroma with 4 to 8 chroma. Therefore, in the first embodiment of the present invention, whether the color looks vivid or not is determined by using the square color gamut area S obtained by plotting the chromaticities of the test colors 9 to 12 having high saturation based on the reference light. Compared with the square color gamut area S0, the area ratio is defined as a color gamut area ratio Ga9-12.

図3は、短波長側にピークを持つ光源の組合せAと長波長側にピークを持つ光源の組合せBとにおいて、混光により相関色温度5000Kの白色光を作成した場合の試験色9〜12の色座標のグラフである。   FIG. 3 shows test colors 9 to 12 when white light having a correlated color temperature of 5000 K is created by mixing light in the combination A of light sources having a peak on the short wavelength side and the combination B of light sources having a peak on the long wavelength side. It is a graph of the color coordinate.

図3中の白抜き四角は短波長側にピークを持つ光源の組合せAの場合の試験色9〜12の色座標、黒三角は長波長側にピークを持つ光源の組合せBの場合の試験色9〜12の色座標、黒四角は5000Kの黒体放射である基準光源下における試験色9〜12の色座標である。実線A1は短波長側にピークを持つ光源の組合せAの場合の試験色9〜12をプロットして得られる四角形、点線B1は長波長側にピークを持つ光源の組合せBの場合の試験色9〜12をプロットして得られる四角形、太い実線Cは5000Kの黒体放射である基準光源下における試験色9〜12をプロットして得られる四角形である。   The white squares in FIG. 3 are the color coordinates of the test colors 9 to 12 when the light source combination A has a peak on the short wavelength side, and the black triangles are the test colors when the light source combination B has a peak on the long wavelength side. The color coordinates 9 to 12 and the black squares are the color coordinates of the test colors 9 to 12 under a reference light source which is a black body radiation of 5000K. The solid line A1 is a quadrangle obtained by plotting the test colors 9 to 12 for the light source combination A having a peak on the short wavelength side, and the dotted line B1 is the test color 9 for the light source combination B having a peak on the long wavelength side. A square obtained by plotting ~ 12 and a thick solid line C are squares obtained by plotting test colors 9 to 12 under a reference light source that is a black body radiation of 5000K.

図3から分かるように、光源の組合せA及び光源の組合せBで照明したときの試験色10(黄色)と試験色12(青色)の色座標は、5000Kの黒体放射である基準光源下における色座標と大きく違わないことから、光源の組合せAまたは光源の組合せBのいずれを選択しても黄色と青色の見え方はほとんど変化しない。一方、試験色9(赤色)は、光源の組合せA及び光源の組合せBで照明した場合、いずれの場合も基準光よりも色座標が原点から離れる方向にずれていることから、どちらも赤色を鮮やかに見せる効果はあるが、光源の組合せBの方が光源の組合せAよりも原点から離れているので、より赤色を鮮やかに見せることができる。また、試験色11(緑色)は、光源の組合せBよりも光源の組合せAの方が原点から離れていることから、光源の組合せBよりも光源の組合せAで照明した方が緑色を鮮やかに見せることができる。   As can be seen from FIG. 3, the color coordinates of the test color 10 (yellow) and the test color 12 (blue) when illuminated with the light source combination A and the light source combination B are under the reference light source which is a black body radiation of 5000K. Since it is not greatly different from the color coordinates, the appearance of yellow and blue hardly changes even when either the light source combination A or the light source combination B is selected. On the other hand, when the test color 9 (red) is illuminated with the light source combination A and the light source combination B, the color coordinates are shifted in the direction away from the origin from the reference light in both cases. Although there is an effect of making it appear vivid, since the light source combination B is farther from the origin than the light source combination A, the red color can be seen more vividly. The test color 11 (green) is more vivid in green when illuminated with the light source combination A than with the light source combination B because the light source combination A is farther from the origin than the light source combination B. Can show.

つまり、黄色及び青色の見え方をほとんど変化させること無く対象物の赤色または緑色を鮮やかに見せることができる。   In other words, the red or green color of the object can be shown vividly with almost no change in the appearance of yellow and blue.

さらに、色域面積比Ga9−12は、基準光を100としたとき、光源の組合せAは約174、光源の組合せBは約192であり、どちらの組合せも基準光より試験色9〜12を鮮やかに見せる効果がある。   Furthermore, when the reference light is 100, the color gamut area ratio Ga9-12 is about 174 for the light source combination A and about 192 for the light source combination B, and both combinations give the test colors 9 to 12 based on the reference light. There is an effect to show vividly.

図4は、短波長側にピークを持つ光源の組合せAと長波長側にピークを持つ光源の組合せBとにおいて、混光により相関色温度3000Kの白色光を作成した場合の試験色9〜12の色座標のグラフである。   FIG. 4 shows test colors 9 to 12 when white light having a correlated color temperature of 3000 K is created by mixing light in a combination A of light sources having a peak on the short wavelength side and a combination B of light sources having a peak on the long wavelength side. It is a graph of the color coordinate.

相関色温度3000Kの白色光を作成した場合も、図4に示すとおり、5000Kと同様の傾向が見られる。すなわち、光源の組合せA及び光源の組合せBで照明したときの試験色10(黄色)と試験色12(青色)の色座標は、3000Kの黒体放射である基準光源下における色座標と大きく違わないことから、黄色と青色とは忠実な色再現が可能と考えられる。一方、試験色9(赤色)は、光源の組合せA及び光源の組合せBで照明した場合、いずれの場合も基準光よりも色座標が原点から離れる方向にずれていることから、どちらも赤色を鮮やかに見せる効果はあるが、光源の組合せBの方が光源の組合せAよりも原点から離れているので、より赤色を鮮やかに見せることができる。また、試験色11(緑色)は、光源の組合せBよりも光源の組合せAの方が原点から離れていることから、光源の組合せBよりも光源の組合せAで照明した方が緑色を鮮やかに見せることができる。また、色域面積比Ga9−12は、基準光を100としたとき、光源の組合せA、光源の組合せBのどちらの組合せの場合も基準光よりも大きいので、試験色9〜12を鮮やかに見せる効果がある。   When white light having a correlated color temperature of 3000K is created, the same tendency as 5000K is observed as shown in FIG. That is, the color coordinates of the test color 10 (yellow) and the test color 12 (blue) when illuminated with the light source combination A and the light source combination B are greatly different from the color coordinates under the reference light source that is 3000K black body radiation. Therefore, it is considered that yellow and blue can be faithfully reproduced. On the other hand, when the test color 9 (red) is illuminated with the light source combination A and the light source combination B, the color coordinates are shifted in the direction away from the origin from the reference light in both cases. Although there is an effect of making it appear vivid, since the light source combination B is farther from the origin than the light source combination A, the red color can be seen more vividly. The test color 11 (green) is more vivid in green when illuminated with the light source combination A than with the light source combination B because the light source combination A is farther from the origin than the light source combination B. Can show. Further, the color gamut area ratio Ga9-12 is larger than the reference light in both the combination of the light source A and the combination B of the light source when the reference light is 100, so the test colors 9 to 12 are vividly displayed. There is an effect to show.

ここで、点灯制御手段17は、照射対象物11が置かれている環境に応じて予め相関色温度を設定しておき、その相関色温度において光源部12の各光源の混光によって得たい光色に基づいて各光源の混光比を演算することになる。また、点灯制御手段17は、照明対象物11が変化して光源が切り替わる際に、ゆっくりと光源が切り替わるようにフェード機能を有するようにしてもよい。   Here, the lighting control means 17 sets a correlated color temperature in advance according to the environment where the irradiation object 11 is placed, and the light desired to be obtained by the mixed light of each light source of the light source unit 12 at the correlated color temperature. The light mixture ratio of each light source is calculated based on the color. Further, the lighting control means 17 may have a fade function so that the light source is switched slowly when the illumination object 11 is changed and the light source is switched.

本発明の第1の実施の形態によれば、照明対象物11を画像センサ13により撮影し、照明対象物11に含まれる色情報を抽出し、照明対象物11に含まれる複数の色のうち、赤色成分が緑色成分よりも多い場合はピーク波長が長波長側の光源の組合せとするので、赤色をより鮮やかに見せ、緑色成分が多い場合はピーク波長が短波長側の光源の組合せとするので、緑色をより鮮やかに見せることができる。すなわち、照射対象物11が変化しても照射対象物11の色に応じて、その色を鮮やかに見せることができる。   According to the first embodiment of the present invention, the illumination object 11 is photographed by the image sensor 13, color information included in the illumination object 11 is extracted, and a plurality of colors included in the illumination object 11 are extracted. When the red component is greater than the green component, the peak wavelength is a combination of light sources on the longer wavelength side, so the red color appears more vivid, and when there is more green component, the peak wavelength is the combination of light sources on the shorter wavelength side. So you can see green more vividly. That is, even if the irradiation object 11 changes, according to the color of the irradiation object 11, the color can be shown vividly.

図5は本発明の第2の実施の形態に係わる照明装置の構成図である。この第2の実施の形態は、図1に示した第1の実施の形態に対し、赤色及び緑色を鮮やかに見せることに加え、青色及び黄色も鮮やかに見せるようにしたものである。すなわち、光源部12は、赤色光を照射する光源18a、緑色光を照射する光源18b、青色光を照射する光源18c、黄色光を照射する光源18dを有し、光源組合せ決定手段16は、赤色成分及び緑色成分の混合成分比率と青色成分及び黄色成分の混合成分比率との比較結果に基づいて光源部12の点灯する光源18a、18b、18c、18dの組合せを決定し、混光比演算手段19は光源組合せ決定手段16で決定された光源の混光比を演算し、点灯制御手段17は混光比演算手段19で演算された混光比で光源部12を点灯制御するようにしたものである。これにより、光が照射対象物11に赤色成分あるいは緑色成分が多い場合は、赤色光、緑色光、青色光を混光し、青色成分あるいは黄色成分が多い場合は、赤色光、緑色光、青色光に加えて黄色光を混光する。   FIG. 5 is a block diagram of an illumination apparatus according to the second embodiment of the present invention. In the second embodiment, in contrast to the first embodiment shown in FIG. 1, in addition to making red and green appear vividly, blue and yellow are also made vivid. That is, the light source unit 12 includes a light source 18a that emits red light, a light source 18b that emits green light, a light source 18c that emits blue light, and a light source 18d that emits yellow light. Based on the comparison result between the mixed component ratio of the component and the green component and the mixed component ratio of the blue component and the yellow component, the combination of the light sources 18a, 18b, 18c, and 18d to be turned on is determined, and the light mixture ratio calculating means 19 calculates the light mixture ratio of the light sources determined by the light source combination determining means 16, and the lighting control means 17 controls the lighting of the light source section 12 with the light mixture ratio calculated by the light mixture ratio calculating means 19. It is. Thereby, when there are many red components or green components in the irradiation object 11, red light, green light, and blue light are mixed, and when there are many blue components or yellow components, red light, green light, blue light is mixed. In addition to light, yellow light is mixed.

図5において、画像センサ13は光源部12からの光が照明される照明対象物11を撮影して画像を得るものであり、画像センサ13で得られた画像は色情報抽出手段14に入力される。色情報抽出手段14は画像センサ13で撮影した画像から色情報を抽出するものである。   In FIG. 5, an image sensor 13 obtains an image by photographing the illumination object 11 illuminated with light from the light source unit 12, and the image obtained by the image sensor 13 is input to the color information extraction unit 14. The The color information extraction means 14 extracts color information from the image photographed by the image sensor 13.

色情報抽出手段14で色情報を抽出する方法は、例えば、撮影された画像の各画素のRGB階調値を検出し、画像センサ13にCIE1931等色関数に近似したXYZフィルタを具備し、画像の複数の点においてxy色度を求める。   The color information extracting unit 14 extracts color information by, for example, detecting an RGB gradation value of each pixel of a photographed image and providing the image sensor 13 with an XYZ filter approximating a CIE1931 color matching function. Xy chromaticity is obtained at a plurality of points.

例えば、照射対象物11の赤色成分、緑色成分、青色成分、黄色成分を以下のようにして抽出する。撮影した画像の各画素のRGB階調値は、0〜255の値として取得できる。そして、NTSC方式のRGB表色系をCIE表色系へ式(1)の変換式で変換する(色彩科学ハンドブック 日本色彩学会編 p.988)。X、Y、Zは三刺激値である。   For example, the red component, green component, blue component, and yellow component of the irradiation object 11 are extracted as follows. The RGB gradation value of each pixel of the photographed image can be acquired as a value from 0 to 255. Then, the RGB color system of the NTSC system is converted into the CIE color system using the conversion formula (1) (Color Science Handbook, Color Society of Japan, p. 988). X, Y, and Z are tristimulus values.

X=0.6067R+0.1736G+0.2001B
Y=0.2998R+0.5868G+0.1144B …(1)
Z=0.0661G+1.1150B
このように、式(1)の変換式を用いて、画像全体あるいは鮮やかに見せたい照射対象物11のエリアについて平均したRGB成分を三刺激値X、Y、Zに変換し、さらに、三刺激値X、Y、Zをxy色度に変換する。
X = 0.0.667R + 0.1736G + 0.2001B
Y = 0.2998R + 0.5868G + 0.1144B (1)
Z = 0.0661G + 1.1150B
In this way, using the conversion formula of Formula (1), the RGB components averaged over the entire image or the area of the irradiation object 11 that is desired to be displayed vividly are converted into tristimulus values X, Y, Z, and further, tristimulus The values X, Y, and Z are converted to xy chromaticity.

そして、色情報抽出手段14で抽出された色情報は色成分算出手段15に入力され、色成分算出手段15で赤色成分、緑色成分、青色成分、黄色成分の成分比率が算出される。色成分算出手段15での赤色成分、緑色成分、青色成分、黄色成分の成分比率の算出は、色を検出する点のxy色度を色度図上にプロットしたときに赤色の範囲と緑色の範囲にプロットされた点の数を比較して行う。   The color information extracted by the color information extraction unit 14 is input to the color component calculation unit 15, and the component ratio of the red component, the green component, the blue component, and the yellow component is calculated by the color component calculation unit 15. The calculation of the component ratio of the red component, green component, blue component, and yellow component by the color component calculation means 15 is performed by plotting the xy chromaticity of the point where the color is detected on the chromaticity diagram and the red range and the green component. Compare the number of points plotted in the range.

色成分算出手段15で算出された赤色成分比率、緑色成分比率、青色成分比率、黄色成分比率は光源組合せ決定手段16に入力される。光源組合せ決定手段16では、赤色成分及び緑色成分の混合比率と青色成分及び黄色成分の混合比率とを比較し、その比較結果に基づいて光源部12の点灯する光源の組合せを決定する。光源組合せ決定手段16は、赤色成分及び緑色成分の混合比率が青色成分及び黄色成分の混合比率以上のときは、照射対象物11が赤色成分及び緑色成分を多く含むので、赤色及び緑色を鮮やかに見せるために、赤色光、緑色光、青色光を照射する光源18a、18b、18cの組合せとする。   The red component ratio, the green component ratio, the blue component ratio, and the yellow component ratio calculated by the color component calculation unit 15 are input to the light source combination determination unit 16. The light source combination determining means 16 compares the mixing ratio of the red component and the green component with the mixing ratio of the blue component and the yellow component, and determines the combination of the light sources to be turned on based on the comparison result. When the mixing ratio of the red component and the green component is equal to or higher than the mixing ratio of the blue component and the yellow component, the light source combination determining unit 16 vividly displays red and green since the irradiation object 11 includes a large amount of the red component and the green component. In order to show, the light sources 18a, 18b, and 18c that emit red light, green light, and blue light are combined.

また、赤色成分及び緑色成分の混合比率が青色成分及び黄色成分の混合比率より小さいときは、照射対象物11が青色成分及び黄色成分を多く含むので、青色及び黄色を鮮やかに見せるために、赤色光、緑色光、青色光及び黄色光を照射する光源18a、18b、18c、18dの組合せとする。   In addition, when the mixing ratio of the red component and the green component is smaller than the mixing ratio of the blue component and the yellow component, the irradiation object 11 contains a large amount of the blue component and the yellow component. A combination of light sources 18a, 18b, 18c, and 18d that emit light, green light, blue light, and yellow light is used.

そして、混光比演算手段19は、光源組合せ決定手段16で決定された光源18a、18b、18cの混光比、または光源18a、18b、18c、18dの混光比を演算する。例えば、赤色光、緑色光、青色光の3個の光源18a、18b、18cを選択した場合には、赤色光、緑色光、青色光の混光が白色光になるような混光比を演算する。また、赤色光、緑色光、青色光、黄色光の4個の光源18a、18b、18c、18dを選択した場合には、赤色光、緑色光、青色光、黄色光の混光が白色光になるような混光比を演算する。点灯制御手段17は混光比演算手段19で演算された混光比で光源部12の光源18a、18b、18c、18dを点灯制御する。   The light mixture ratio calculating means 19 calculates the light mixture ratio of the light sources 18a, 18b, 18c determined by the light source combination determining means 16, or the light mixture ratio of the light sources 18a, 18b, 18c, 18d. For example, when three light sources 18a, 18b, and 18c of red light, green light, and blue light are selected, the light mixture ratio is calculated so that the mixed light of red light, green light, and blue light becomes white light. To do. When four light sources 18a, 18b, 18c, and 18d of red light, green light, blue light, and yellow light are selected, the mixed light of red light, green light, blue light, and yellow light becomes white light. Calculate the light mixture ratio. The lighting control unit 17 controls the lighting of the light sources 18a, 18b, 18c, and 18d of the light source unit 12 with the light mixture ratio calculated by the light mixture ratio calculating unit 19.

次に、赤色光、緑色光、青色光を混光した場合と、さらに黄色光を付加した場合とを例に取り、色が鮮やかに見える程度についてを説明する。前述したように、試験色1〜8はクロマが4〜8の比較的彩度が低い色であるので、本発明の第2の実施の形態においても、色が鮮やかに見えるかどうかは、彩度が高い試験色9〜12の色度をプロットして得られる四角形の色域面積Sを基準光による四角形の色域面積S0と比較して行う。いま、その面積比を色域面積比Ga9−12とする。   Next, taking the case where red light, green light, and blue light are mixed and the case where yellow light is further added as an example, the extent to which the color looks vivid will be described. As described above, since the test colors 1 to 8 are relatively low-saturation colors having a chroma of 4 to 8, even in the second embodiment of the present invention, whether or not the colors look vivid is determined by the saturation. The square color gamut area S obtained by plotting the chromaticities of the test colors 9 to 12 having a high degree is compared with the square color gamut area S0 of the reference light. Now, let the area ratio be the color gamut area ratio Ga9-12.

図6は、第2の実施の形態での混光により白色光を作成した場合の試験色9〜12の色座標のグラフである。図6中の黒四角はピーク波長がそれぞれ赤色光:636nm、緑色光:532nm、青色光:458nmの色光を混光して白色光とした場合の試験色9〜12の色座標、黒三角はピーク波長がそれぞれ赤色光:636nm、黄色光:589nm、緑色光:532nm、青色光:458nmで黄色光を全体の30%とした色光を混光して白色光とした場合の試験色9〜12の色座標、白三角は3波長蛍光ランプの光源下における試験色9〜12の色座標、黒丸はピーク波長がそれぞれ赤色光:636nm、黄色光:589nm、緑色光:532nm、青色光:458nmで黄色光を全体の40%とした色光を混光して白色光とした場合の試験色9〜12の色座標である。   FIG. 6 is a graph of the color coordinates of the test colors 9 to 12 when white light is created by the mixed light in the second embodiment. The black squares in FIG. 6 are the color coordinates of the test colors 9 to 12 when the peak wavelengths of the red light: 636 nm, the green light: 532 nm, and the blue light: 458 nm are mixed into white light, and the black triangle is Test colors 9 to 12 when the peak wavelengths are red light: 636 nm, yellow light: 589 nm, green light: 532 nm, blue light: 458 nm, and mixed with colored light that is 30% of the whole yellow light, resulting in white light. The white triangles are the color coordinates of the test colors 9 to 12 under the light source of the three-wavelength fluorescent lamp, and the black circles are the peak wavelengths of red light: 636 nm, yellow light: 589 nm, green light: 532 nm, and blue light: 458 nm, respectively. It is a color coordinate of the test colors 9-12 when mixing the color light which made 40% of the whole yellow light, and making it white light.

実線Dはピーク波長がそれぞれ赤色光:636nm、緑色光:532nm、青色光:458nmの色光を混光して白色光とした場合(RGB)の試験色9〜12(黒四角)をプロットして得られる四角形、二点鎖線Eはピーク波長がそれぞれ赤色光:636nm、黄色光(30%):589nm、緑色光:532nm、青色光:458nmの色光を混光して白色光とした場合(RGBY30)の試験色9〜12(黒三角)をプロットして得られる四角形、一点鎖線Fは3波長蛍光ランプの光源下における試験色9〜12をプロット(白三角)して得られる四角形、点線Gはピーク波長がそれぞれ赤色光:636nm、黄色光(40%):589nm、緑色光:532nm、青色光:458nmの色光を混光して白色光とした場合(RGBY40)の試験色9〜12の色座標(黒丸)をプロットして得られる四角形である。   The solid line D plots the test colors 9 to 12 (black squares) when RGB light is mixed into white light (RGB) with red light: 636 nm, green light: 532 nm, and blue light: 458 nm. When the obtained quadrilateral and two-dot chain line E has a peak wavelength of red light: 636 nm, yellow light (30%): 589 nm, green light: 532 nm, blue light: 458 nm, and mixed into white light (RGBY30) ) Of test colors 9 to 12 (black triangles) and a dashed line F are obtained by plotting test colors 9 to 12 under a light source of a three-wavelength fluorescent lamp (white triangles) and dotted line G When the peak wavelengths are red light: 636 nm, yellow light (40%): 589 nm, green light: 532 nm, and blue light: 458 nm are mixed into white light (RGBY4) ) Color coordinates of the test colors 9-12 (a rectangle obtained by plotting solid circles).

図6の色座標グラフにおいて、原点から離れた方が色が鮮やかであることを表している。図6から分かるように、実線D(RGB)、二点鎖線E(RGBY30)ともに一点鎖線(3波長形蛍光ランプ)よりも各色票の色座標が原点よりも離れていることから、色票の色が鮮やかに見えることを表している。   In the color coordinate graph of FIG. 6, the color farther from the origin represents a brighter color. As can be seen from FIG. 6, since the solid line D (RGB) and the alternate long and two short dashes line E (RGBY30) are separated from the origin by the color coordinates of the respective color charts than the one-dot chain line (three-wavelength fluorescent lamp), It means that the color looks vivid.

また、実線D(RGB)は二点鎖線E(RGBY30)よりも試験色9、11が原点より離れているので、赤色及び緑色が特に鮮やかに見える光であり、二点鎖線E(RGBY30)は、実線D(RGB)よりも試験色9、11が原点に近いので、赤色と緑色とは実線D(RGB)より鮮やかさが低下する。しかし、試験色10、11に関しては、二点鎖線E(RGBY30)は実線D(RGB)よりも試験色10、11が原点より離れているので、青色と黄色とが鮮やかに見えることがわかる。   The solid line D (RGB) is light that the red and green colors look particularly vivid because the test colors 9 and 11 are farther from the origin than the two-dot chain line E (RGBY30), and the two-dot chain line E (RGBY30) is Since the test colors 9 and 11 are closer to the origin than the solid line D (RGB), the red and green colors are less vivid than the solid line D (RGB). However, regarding the test colors 10 and 11, the two-dot chain line E (RGBY30) is more distant from the origin than the solid line D (RGB), so it can be seen that blue and yellow appear vivid.

ここで、黄色光を全体の40%まで増加させた点線G(RGBY40)は、一点鎖線F(3波長形蛍光ランプ)よりも原点に近い内側にプロットされる傾向があり、つまり色が鮮やかに見えない傾向があることから、黄色光は全体の35%を超えないように混光する。また、光源は白色光をベースにし、赤色光、緑色光、青色光、黄色光を付加しても良く、その方が単色光のみを混光する場合に比べて、周囲の雰囲気を変化させることなく、照明対象物だけを鮮やかに見せることができる。   Here, a dotted line G (RGBY40) in which yellow light is increased to 40% of the whole tends to be plotted closer to the origin than a one-dot chain line F (three-wavelength fluorescent lamp), that is, the color is vivid. Since it tends to be invisible, yellow light mixes so that it does not exceed 35% of the total. The light source is based on white light, and may add red light, green light, blue light, and yellow light, which changes the surrounding atmosphere compared to the case where only monochromatic light is mixed. It is possible to show only the illumination object vividly.

ここで、点灯制御手段17は、照射対象物11が置かれている環境に応じて予め相関色温度を設定しておき、その相関色温度において光源部12の各光源の混光によって得たい光色に基づいて各光源の混光比を演算することになる。また、点灯制御手段17は、照明対象物11が変化して光源が切り替わる際に、ゆっくりと光源が切り替わるようにフェード機能を有するようにしてもよい。   Here, the lighting control means 17 sets a correlated color temperature in advance according to the environment where the irradiation object 11 is placed, and the light desired to be obtained by the mixed light of each light source of the light source unit 12 at the correlated color temperature. The light mixture ratio of each light source is calculated based on the color. Further, the lighting control means 17 may have a fade function so that the light source is switched slowly when the illumination object 11 is changed and the light source is switched.

以上の説明では、各色光のピーク波長は、赤色光:636nm、黄色光(30%):589nm、緑色光:532nm、青色光:458nmとしたが、赤色光を照射する光源の分光分布のピーク波長が615nmから675nmの間、黄色光を照射する光源の分光分布のピーク波長が555nmから615nmの間、緑色光を照射する光源の分光分布のピーク波長が515nmから555nmの間、青色光を照射する光源の分光分布のピーク波長が435nmから485nmの間であればよい。   In the above description, the peak wavelengths of each color light are red light: 636 nm, yellow light (30%): 589 nm, green light: 532 nm, blue light: 458 nm, but the peak of the spectral distribution of the light source that emits red light. Blue light is emitted when the wavelength is between 615 nm and 675 nm, the peak wavelength of the spectral distribution of the light source emitting yellow light is between 555 nm and 615 nm, and the peak wavelength of the spectral distribution of the light source emitting green light is between 515 nm and 555 nm The peak wavelength of the spectral distribution of the light source may be between 435 nm and 485 nm.

本発明の第2の実施の形態によれば、赤色光、緑色光、青色光の光源に加え、黄色光の光源を設け、照明される対象物に含まれる複数の色のうち、赤色成分、緑色成分、青色成分、黄色成分の割合により、点灯する光源の組み合わせを決定するので、照射対象物が変化しても照射対象物を鮮やかに見せることができる。また、赤色成分及び緑色成分の混合比率が青色成分及び黄色成分の混合比率以上であるときは、赤色光、緑色光、青色光を照射する光源の組合せとするので、赤色と緑色を鮮やかに見せることができ、赤色成分及び緑色成分の混合比率が青色成分及び黄色成分の混合比率より小さいときは、黄色光の光源を加えて、赤色光、緑色光、青色光及び黄色光を照射する光源の組合せとするので、青色と黄色を鮮やかに見せることができる。   According to the second embodiment of the present invention, in addition to the light source of red light, green light, and blue light, the light source of yellow light is provided, and among the plurality of colors included in the illuminated object, the red component, Since the combination of the light sources to be lit is determined by the ratio of the green component, the blue component, and the yellow component, the irradiation target can be displayed vividly even if the irradiation target changes. In addition, when the mixing ratio of the red component and the green component is equal to or higher than the mixing ratio of the blue component and the yellow component, it is a combination of light sources that emit red light, green light, and blue light, so that red and green can be seen vividly. When the mixing ratio of the red component and the green component is smaller than the mixing ratio of the blue component and the yellow component, a light source for yellow light is added to irradiate red light, green light, blue light, and yellow light. Because it is a combination, blue and yellow can be seen vividly.

また、各光色のピーク波長をある範囲に特定することにより、赤色と緑色との鮮やかさを保持しつつ、青色と黄色とを鮮やかに見せることができ、黄色光の割合が全体の35%を超えないとしているので、3波長形蛍光ランプより赤色光及び緑色光の鮮やかさを保ちつつ青色光及び黄色光を鮮やに見せることができる。   Moreover, by specifying the peak wavelength of each light color within a certain range, it is possible to make the blue and yellow appear vivid while maintaining the vividness of red and green, and the proportion of yellow light is 35% of the total Therefore, blue light and yellow light can be clearly displayed while maintaining the vividness of red light and green light from the three-wavelength fluorescent lamp.

本発明の第1の実施の形態に係わる照明装置の構成図。The block diagram of the illuminating device concerning the 1st Embodiment of this invention. 本発明の第1の実施の形態における光源部の各々の光源の分光分布図。The spectral distribution figure of each light source of the light source part in the 1st Embodiment of this invention. 本発明の第1の実施の形態での相関色温度5000K白色光になるよう混光したときの試験色9〜12の色座標グラフ。The color coordinate graph of the test colors 9-12 when it mixes so that it may become correlated color temperature 5000K white light in the 1st Embodiment of this invention. 本発明の第1の実施の形態での相関色温度3000K白色光になるよう混光したときの試験色9〜12の色座標のグラフ。The graph of the color coordinate of the test colors 9-12 when light-mixing so that it may become correlated color temperature 3000K white light in the 1st Embodiment of this invention. 本発明の第2の実施の形態に係わる照明装置の構成図。The block diagram of the illuminating device concerning the 2nd Embodiment of this invention. 本発明の第2の実施の形態での混光により白色光を作成した場合の試験色9〜12の色座標のグラフ。The graph of the color coordinate of the test colors 9-12 at the time of producing white light by the light mixture in the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

11…照明対象物、12…光源部、13…画像センサ、14…色情報抽出手段、15…色成分算出手段、16…光源組合せ決定手段、17…点灯制御手段、18…光源、19…混光比演算手段 DESCRIPTION OF SYMBOLS 11 ... Illumination target object, 12 ... Light source part, 13 ... Image sensor, 14 ... Color information extraction means, 15 ... Color component calculation means, 16 ... Light source combination determination means, 17 ... Lighting control means, 18 ... Light source, 19 ... Mixed Optical ratio calculation means

Claims (7)

ピーク波長が異なる少なくとも2種類の赤色光を照射する光源と、ピーク波長が異なる少なくとも2種類の緑色光を照射する光源と、ピーク波長が異なる少なくとも2種類の青色光を照射する光源とを有した光源部と;
前記光源部からの光が照明される対象物を撮影する画像センサと;
前記画像センサで撮影した画像から色情報を抽出する色情報抽出手段と;
前記色情報抽出手段で抽出された色情報から赤色成分と緑色成分との成分比率を算出する色成分算出手段と;
前記色成分算出手段で算出された赤色成分比率と緑色成分比率との比較結果に基づいて前記光源部の点灯する光源の組合せを決定する光源組合せ決定手段と;
前記光源組合せ決定手段で決定された光源の組合せで前記光源部を点灯制御する点灯制御手段と;
を備えたことを特徴とする照明装置。
A light source that emits at least two types of red light having different peak wavelengths, a light source that emits at least two types of green light having different peak wavelengths, and a light source that emits at least two types of blue light having different peak wavelengths A light source unit;
An image sensor for photographing an object illuminated with light from the light source unit;
Color information extracting means for extracting color information from an image photographed by the image sensor;
Color component calculation means for calculating a component ratio of a red component and a green component from the color information extracted by the color information extraction means;
Light source combination determining means for determining a combination of light sources to be turned on by the light source unit based on a comparison result between the red component ratio and the green component ratio calculated by the color component calculating means;
Lighting control means for controlling lighting of the light source unit with a combination of light sources determined by the light source combination determining means;
An illumination device comprising:
前記光源組合せ決定手段は、各光色の光源のうち短波長側にピークを持つ光源の組合せと、長波長側にピークを持つ光源の組合せとを作成し、前記色成分算出手段で算出された赤色成分比率が緑色成分比率よりも多い場合は長波長側にピークを持つ光源の組合せを決定し、前記色成分算出手段で算出された緑色成分比率が赤色成分比率よりも多い場合は短波長側にピークを持つ光源の組合せを決定することを特徴とする請求項1記載の照明装置。   The light source combination determining means creates a light source combination having a peak on the short wavelength side and a light source combination having a peak on the long wavelength side among the light sources of the respective light colors, and is calculated by the color component calculating means. When the red component ratio is greater than the green component ratio, the combination of light sources having a peak on the long wavelength side is determined, and when the green component ratio calculated by the color component calculation means is greater than the red component ratio, the short wavelength side The lighting device according to claim 1, wherein a combination of light sources having a peak at the center is determined. 赤色光を照射する光源の分光分布のピーク波長が615nmから675nmの間にあり、緑色光を照射する光源の分光分布のピーク波長が515nmから555nmの間にあり、青色光を照射する光源の分光分布のピーク波長が435nmから485nmの間にあることを特徴とする請求項1または2記載の照明装置。   The peak wavelength of the spectral distribution of the light source emitting red light is between 615 nm and 675 nm, the peak wavelength of the spectral distribution of the light source emitting green light is between 515 nm and 555 nm, and the spectrum of the light source emitting blue light 3. The illumination device according to claim 1, wherein a peak wavelength of the distribution is between 435 nm and 485 nm. 少なくとも赤色光、緑色光、青色光、黄色光を照射する光源を有した光源部と;
前記光源部からの光が照明される対象物を撮影する画像センサと;
前記画像センサで撮影した画像から色情報を抽出する色情報抽出手段と;
前記色情報抽出手段で抽出された色情報から赤色成分、緑色成分、青色成分及び黄色成分の成分比率を算出する色成分算出手段と;
赤色成分及び緑色成分の混合成分比率と青色成分及び黄色成分の混合成分比率との比較結果に基づいて前記光源部の点灯する光源の組合せを決定する光源組合せ決定手段と;
前記光源組合せ決定手段で決定された光源の混光比を演算する混光比演算手段と;
前記混光比演算手段で演算された混光比で前記光源部を点灯制御する点灯制御手段と;
を備えたことを特徴とする照明装置。
A light source unit having a light source that emits at least red light, green light, blue light, and yellow light;
An image sensor for photographing an object illuminated with light from the light source unit;
Color information extracting means for extracting color information from an image photographed by the image sensor;
Color component calculation means for calculating a component ratio of a red component, a green component, a blue component and a yellow component from the color information extracted by the color information extraction means;
Light source combination determining means for determining a combination of light sources to be lit by the light source unit based on a comparison result between a mixed component ratio of the red component and the green component and a mixed component ratio of the blue component and the yellow component;
A light mixture ratio calculating means for calculating a light mixture ratio of the light sources determined by the light source combination determining means;
Lighting control means for controlling lighting of the light source unit with the light mixture ratio calculated by the light mixture ratio calculating means;
An illumination device comprising:
前記光源組合せ決定手段は、赤色成分及び緑色成分の混合比率と青色成分及び黄色成分の混合比率とを比較し、赤色成分及び緑色成分の混合比率が青色成分及び黄色成分の混合比率以上のときは、赤色光、緑色光、青色光を照射する光源の組合せとし、赤色成分及び緑色成分の混合比率が青色成分及び黄色成分の混合比率より小さいときは、赤色光、緑色光、青色光及び黄色光を照射する光源の組合せとすることを特徴とする請求項4記載の照明装置。   The light source combination determining means compares the mixing ratio of the red and green components with the mixing ratio of the blue and yellow components, and when the mixing ratio of the red and green components is equal to or higher than the mixing ratio of the blue and yellow components. Red light, green light, blue light, and yellow light when the mixture ratio of red and green components is less than that of blue and yellow components. The illumination device according to claim 4, wherein the illumination device is a combination of light sources that emit light. 赤色光を照射する光源の分光分布のピーク波長が615nmから675nmの間にあり、黄色光を照射する光源の分光分布のピーク波長が555nmから615nmの間にあり、緑色光を照射する光源の分光分布のピーク波長が515nmから555nmの間にあり、青色光を照射する光源の分光分布のピーク波長が435nmから485nmの間にあることを特徴とする請求項4または5記載の照明装置。   The peak wavelength of the spectral distribution of the light source that emits red light is between 615 nm and 675 nm, the peak wavelength of the spectral distribution of the light source that emits yellow light is between 555 nm and 615 nm, and the spectrum of the light source that emits green light 6. The illumination device according to claim 4, wherein the peak wavelength of the distribution is between 515 nm and 555 nm, and the peak wavelength of the spectral distribution of the light source that emits blue light is between 435 nm and 485 nm. 前記黄色光の割合は混光全体の35%を超えないことを特徴とする請求項4ないし6のいずれか一に記載の照明装置。   The lighting device according to any one of claims 4 to 6, wherein the ratio of the yellow light does not exceed 35% of the total mixed light.
JP2007284572A 2007-07-20 2007-10-31 Illumination apparatus Pending JP2009048989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007284572A JP2009048989A (en) 2007-07-20 2007-10-31 Illumination apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007190215 2007-07-20
JP2007284572A JP2009048989A (en) 2007-07-20 2007-10-31 Illumination apparatus

Publications (1)

Publication Number Publication Date
JP2009048989A true JP2009048989A (en) 2009-03-05

Family

ID=40501002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007284572A Pending JP2009048989A (en) 2007-07-20 2007-10-31 Illumination apparatus

Country Status (1)

Country Link
JP (1) JP2009048989A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100973078B1 (en) * 2009-03-06 2010-07-29 광주과학기술원 White light illumination device using light emitting diodes and color temperature control method
JP2011040241A (en) * 2009-08-10 2011-02-24 Stanley Electric Co Ltd Lighting system
JP2013041720A (en) * 2011-08-12 2013-02-28 Sharp Corp Illumination device, illumination system, and control device
WO2013031943A1 (en) * 2011-09-02 2013-03-07 三菱化学株式会社 Lighting method and light-emitting device
WO2013031942A1 (en) * 2011-09-02 2013-03-07 三菱化学株式会社 Lighting method and light-emitting device
WO2014034228A1 (en) * 2012-08-31 2014-03-06 三菱化学株式会社 Illumination method and light emitting device
WO2014057639A1 (en) * 2012-10-12 2014-04-17 パナソニック株式会社 Lighting equipment, lighting device, and light-emitting module
JP2014112513A (en) * 2012-11-09 2014-06-19 Toshiba Corp Controller and luminaire
JP2015076251A (en) * 2013-10-08 2015-04-20 パナソニックIpマネジメント株式会社 Led lighting device and lighting equipment
CN104641729A (en) * 2012-09-21 2015-05-20 皇家飞利浦有限公司 System and method for managing lighting systems
WO2015099115A1 (en) * 2013-12-27 2015-07-02 三菱化学株式会社 Light-emitting device and method for designing light emitting device
JP2016054044A (en) * 2014-09-03 2016-04-14 シチズン電子株式会社 Light emitting device including semiconductor light emitting element, light emitting device design method, light emitting device driving method and lighting method
CN106937446A (en) * 2013-03-04 2017-07-07 西铁城电子株式会社 Light-emitting device, means of illumination, method for designing, driving method, manufacture method
CN110832244A (en) * 2017-04-20 2020-02-21 西铁城电子株式会社 Illumination system and illumination method for illuminating a space in which a display is displayed
JP2020167063A (en) * 2019-03-29 2020-10-08 東芝ライテック株式会社 Lighting device
JP2021527931A (en) * 2018-06-22 2021-10-14 ルミレッズ リミテッド ライアビリティ カンパニー Lighting system with integrated sensor
US11450789B2 (en) 2013-12-27 2022-09-20 Citizen Electronics Co., Ltd. Illumination method using a light-emitting device

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100973078B1 (en) * 2009-03-06 2010-07-29 광주과학기술원 White light illumination device using light emitting diodes and color temperature control method
WO2010101336A1 (en) * 2009-03-06 2010-09-10 Park Kyo Yang Lighting device using light-emitting diode, and method for controlling color temperature using the same
JP2011040241A (en) * 2009-08-10 2011-02-24 Stanley Electric Co Ltd Lighting system
JP2013041720A (en) * 2011-08-12 2013-02-28 Sharp Corp Illumination device, illumination system, and control device
CN103299719B (en) * 2011-09-02 2014-10-22 三菱化学株式会社 Lighting method and light-emitting device
JP2014225463A (en) * 2011-09-02 2014-12-04 三菱化学株式会社 Lighting method and light emitting device
JP2013065555A (en) * 2011-09-02 2013-04-11 Mitsubishi Chemicals Corp Lighting method and light emitting device
JP2013093311A (en) * 2011-09-02 2013-05-16 Mitsubishi Chemicals Corp Illumination method and light-emitting device
CN103299718A (en) * 2011-09-02 2013-09-11 三菱化学株式会社 Lighting method and light-emitting device
CN103299719A (en) * 2011-09-02 2013-09-11 三菱化学株式会社 Lighting method and light-emitting device
JP2013201132A (en) * 2011-09-02 2013-10-03 Mitsubishi Chemicals Corp Lighting method and light-emitting device
WO2013031943A1 (en) * 2011-09-02 2013-03-07 三菱化学株式会社 Lighting method and light-emitting device
JP2019149573A (en) * 2011-09-02 2019-09-05 シチズン電子株式会社 Lighting method and light emitting device
US10355177B2 (en) 2011-09-02 2019-07-16 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
US9722150B2 (en) 2011-09-02 2017-08-01 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
WO2013031942A1 (en) * 2011-09-02 2013-03-07 三菱化学株式会社 Lighting method and light-emitting device
JP2014225464A (en) * 2011-09-02 2014-12-04 三菱化学株式会社 Lighting method and light emitting device
US10236424B2 (en) 2011-09-02 2019-03-19 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
CN105357796B (en) * 2011-09-02 2019-02-15 西铁城电子株式会社 Means of illumination and light emitting device
US20180198036A1 (en) 2011-09-02 2018-07-12 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
CN105357796A (en) * 2011-09-02 2016-02-24 西铁城电子株式会社 Lighting method and light-emitting device
US9305970B2 (en) 2011-09-02 2016-04-05 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
US9997677B2 (en) 2011-09-02 2018-06-12 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
US9373757B2 (en) 2011-09-02 2016-06-21 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
US9954149B2 (en) 2011-09-02 2018-04-24 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
US9478714B2 (en) 2011-09-02 2016-10-25 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
US9490399B2 (en) 2011-09-02 2016-11-08 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
US9818914B2 (en) 2011-09-02 2017-11-14 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
WO2014034228A1 (en) * 2012-08-31 2014-03-06 三菱化学株式会社 Illumination method and light emitting device
JPWO2014034228A1 (en) * 2012-08-31 2016-08-08 シチズン電子株式会社 Illumination method and light emitting device
CN104641729A (en) * 2012-09-21 2015-05-20 皇家飞利浦有限公司 System and method for managing lighting systems
CN104641729B (en) * 2012-09-21 2017-05-24 飞利浦灯具控股公司 System and method for managing lighting systems
WO2014057639A1 (en) * 2012-10-12 2014-04-17 パナソニック株式会社 Lighting equipment, lighting device, and light-emitting module
US9644802B2 (en) 2012-10-12 2017-05-09 Panasonic Intellectual Property Management Co., Ltd. Lighting equipment, lighting device, and light-emitting module
JP2014112513A (en) * 2012-11-09 2014-06-19 Toshiba Corp Controller and luminaire
US10930823B2 (en) 2013-03-04 2021-02-23 Citizen Electronics Co., Ltd. Light-emitting device, method for designing light-emitting device, method for driving light-emitting device, illumination method, and method for manufacturing light-emitting device
US9997678B2 (en) 2013-03-04 2018-06-12 Citizen Electronics Co. Ltd. Light-emitting device, method for designing light-emitting device, method for driving light-emitting device, illumination method, and method for manufacturing light-emitting device
CN106937446A (en) * 2013-03-04 2017-07-07 西铁城电子株式会社 Light-emitting device, means of illumination, method for designing, driving method, manufacture method
US9755118B2 (en) 2013-03-04 2017-09-05 Citizen Electronics Co., Ltd. Light-emitting device, method for designing light-emitting device, method for driving light-emitting device, illumination method, and method for manufacturing light-emitting device
JP2015076251A (en) * 2013-10-08 2015-04-20 パナソニックIpマネジメント株式会社 Led lighting device and lighting equipment
WO2015099115A1 (en) * 2013-12-27 2015-07-02 三菱化学株式会社 Light-emitting device and method for designing light emitting device
US11450789B2 (en) 2013-12-27 2022-09-20 Citizen Electronics Co., Ltd. Illumination method using a light-emitting device
JP2016054044A (en) * 2014-09-03 2016-04-14 シチズン電子株式会社 Light emitting device including semiconductor light emitting element, light emitting device design method, light emitting device driving method and lighting method
CN110832244A (en) * 2017-04-20 2020-02-21 西铁城电子株式会社 Illumination system and illumination method for illuminating a space in which a display is displayed
CN110832244B (en) * 2017-04-20 2022-01-14 西铁城电子株式会社 Illumination system and illumination method for illuminating a space in which a display is displayed
JP2021527931A (en) * 2018-06-22 2021-10-14 ルミレッズ リミテッド ライアビリティ カンパニー Lighting system with integrated sensor
JP2020167063A (en) * 2019-03-29 2020-10-08 東芝ライテック株式会社 Lighting device

Similar Documents

Publication Publication Date Title
JP2009048989A (en) Illumination apparatus
JP6530113B2 (en) Lighting method and light emitting device
WO2010126065A1 (en) Illuminating device
US20100194291A1 (en) Illumination apparatus
CN109496035B (en) Color matching method, color matching method and system for automatically realizing maximum brightness of colored lamp
EP2605619B1 (en) LED Lighting device
JP2009099510A (en) Lighting apparatus
CN105723146B (en) The white light that spectrum for better visual acuity enhances
CN105042365A (en) White light LED illuminating system with high light color quality and designing method thereof
CN105163419B (en) High color saturation White-light LED illumination system and its color mixing designs method
JP6126103B2 (en) Illumination method and light emitting device
CA2456784A1 (en) Circuit arrangement and method for an illumination device having settable color and brightness
JP2007250350A (en) Continuously variable color temperature lighting system and continuously variable color temperature lighting method
JP2008227490A (en) Illuminating module particularly for surgical microscope
US9596731B1 (en) Method for modulating color temperature in visible band
JP2012142163A (en) Light source device and lighting system
JP2014007142A (en) Spectral distribution design method for led lighting
JP6652785B2 (en) LED lighting spectral distribution design method
JP6145818B2 (en) Lighting system
CN106287293B (en) A kind of glory LED adds a white light LEDs synthesis white light method
KR102306627B1 (en) Method for classifying light-emitting semiconductor components and image sensor applycation having an image sensor and a semiconductor element
CN108474523A (en) The method of the spatial distribution of LED light and influence LED light
Miller et al. NIST spectrally tunable lighting facility for color rendering and lighting experiments
EP2650918A1 (en) Light emitting module
JP2006227228A5 (en)