TW201947039A - Melt component estimation device, melt component estimation method, and method for producing melt - Google Patents

Melt component estimation device, melt component estimation method, and method for producing melt Download PDF

Info

Publication number
TW201947039A
TW201947039A TW108113511A TW108113511A TW201947039A TW 201947039 A TW201947039 A TW 201947039A TW 108113511 A TW108113511 A TW 108113511A TW 108113511 A TW108113511 A TW 108113511A TW 201947039 A TW201947039 A TW 201947039A
Authority
TW
Taiwan
Prior art keywords
model
molten metal
concentration
carbon concentration
measurement
Prior art date
Application number
TW108113511A
Other languages
Chinese (zh)
Other versions
TWI700374B (en
Inventor
加瀬寛人
富山伸司
髙橋幸雄
天野勝太
玉俊文
Original Assignee
日商Jfe鋼鐵股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商Jfe鋼鐵股份有限公司 filed Critical 日商Jfe鋼鐵股份有限公司
Publication of TW201947039A publication Critical patent/TW201947039A/en
Application granted granted Critical
Publication of TWI700374B publication Critical patent/TWI700374B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4606Lances or injectors
    • C21C5/462Means for handling, e.g. adjusting, changing, coupling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4673Measuring and sampling devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/32Blowing from above
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/205Metals in liquid state, e.g. molten metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C2005/5288Measuring or sampling devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C2300/00Process aspects
    • C21C2300/06Modeling of the process, e.g. for control purposes; CII
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

A melt component estimation device 1 is provided with: an input device 11 into which measurement information for a refining facility 2, including the results of a measurement of an optical property of a furnace opening part during a blowing processing in the refining facility 2, is to be input; a model database in which a model formula and a model parameter both associated with a blowing processing reaction, including a model formula and a model parameter which represent the relationship between an oxygen efficiency for decarburization and a concentration of carbon in a melt in the refining facility 2, are to be stored; a model calculation section 13b for estimating the concentration of a component of the melt, including the concentration of carbon in the melt, using the measurement information, the model formula and the model parameter; and a model determination section 13a for estimating the concentration of carbon in the melt on the basis of the measurement result to determine a model formula and a model parameter, which are to be employed by the model calculation section 13b, on the basis of the result of the aforementioned estimation.

Description

熔融金屬成分推定裝置、熔融金屬成分推定方法、及熔融金屬之製造方法Molten metal component estimation device, molten metal component estimation method, and manufacturing method of molten metal

本發明係關於推定鋼鐵業的精煉設備中的熔融金屬及熔渣的成分濃度的熔融金屬成分推定裝置、熔融金屬成分推定方法、及熔融金屬之製造方法。The present invention relates to a molten metal component estimating device, a method for estimating a molten metal component, and a method for manufacturing a molten metal, for estimating the component concentrations of molten metal and slag in a refining facility in the iron and steel industry.

在煉鐵廠中,在預備處理設備、轉爐、及二次精煉設備等精煉設備中,調整由高爐所被出鐵的熔融銑鐵的成分濃度及溫度。其中,轉爐製程亦為藉由對轉爐內吹入氧來進行熔融金屬中的雜質去除及昇溫的製程,在鋼的品質管理及精煉成本合理化等方面,擔任非常重要的角色。在轉爐製程中,為了使氧停吹時的熔融金屬中碳濃度與目標熔融金屬中碳濃度相一致,在吹煉處理的最後階段,使用表示脫碳氧效率與熔融金屬中碳濃度的關係的模型式,一般進行送氧量控制、或熔融金屬中碳濃度推定。脫碳氧效率開始降低的熔融金屬中碳濃度為約0.4[%](臨界碳濃度),因此為了取得高計算精度,以熔融金屬中碳濃度到達臨界碳濃度的時序進行模型式計算、或切換模型式,乃極為重要。其中,以下只要沒有特別聲明,%及各種流量係表示mass%及流量原單位。In an iron smelter, the component concentration and temperature of the molten and milled iron cast from the blast furnace are adjusted in refining equipment such as pretreatment equipment, converters, and secondary refining equipment. Among them, the converter process is also a process of removing impurities and heating up the molten metal by blowing oxygen into the converter, and plays a very important role in the quality management of steel and rationalization of refining costs. In the converter process, in order to make the carbon concentration in the molten metal when the oxygen is stopped blowing consistent with the carbon concentration in the target molten metal, in the final stage of the blowing process, a relationship indicating the relationship between the decarburization oxygen efficiency and the carbon concentration in the molten metal is used. The model formula generally controls the amount of oxygen supplied or estimates the carbon concentration in the molten metal. The carbon concentration in the molten metal whose decarburization oxygen efficiency starts to decrease is about 0.4 [%] (critical carbon concentration). Therefore, in order to obtain high calculation accuracy, the model calculation is performed at the time when the carbon concentration in the molten metal reaches the critical carbon concentration, or the switching is performed. Models are extremely important. Among them, as long as there is no special statement below, "%" and various flows refer to mass% and the original unit of flow.

在專利文獻1中係記載在使用根據吹煉處理開始前的物質平衡計算的模型式等來決定副槍測定的時序的靜態控制;及根據經副槍測定的熔融金屬中碳濃度,使用表示熔融金屬中碳濃度與脫碳氧效率的關係的模型式,來決定至熔融金屬中碳濃度成為目標熔融金屬中碳濃度為止所需的吹入氧量的動態控制中,考慮動態控制所需時間及吹入氧流速,來決定副槍測定的時序的方法。
[先前技術文獻]
[專利文獻]
Patent Document 1 describes a static control that determines the timing of the measurement of the sub-gun using a model formula or the like calculated from the mass balance before the start of the blowing process; and uses the carbon concentration in the molten metal measured by the sub-gun to indicate melting The model expression of the relationship between the carbon concentration in the metal and the decarburization oxygen efficiency determines the dynamic control of the amount of oxygen to be blown until the carbon concentration in the molten metal becomes the target carbon concentration in the molten metal. The method of injecting the oxygen flow rate to determine the timing of the sub-gun measurement.
[Prior technical literature]
[Patent Literature]

[專利文獻1]日本專利第4677955號公報
[專利文獻2]日本特開2017-115216號公報
[Patent Document 1] Japanese Patent No. 4679955
[Patent Document 2] Japanese Patent Laid-Open No. 2017-115216

(發明所欲解決之課題)(Problems to be solved by the invention)

但是,專利文獻1所記載的方法係根據靜態模型,來決定副槍測定的時序。因此,藉由專利文獻1所記載的方法,若因熔融金屬的成分濃度的測定誤差或吹煉處理中的未知外在干擾等而在靜態模型計算發生誤差,以目的的熔融金屬中碳濃度無法實施副槍測定,有無法確保在動態控制為充分的時間的可能性。此外,若為了動態控制的時間確保而由熔融金屬中碳濃度比臨界碳濃度為更高的狀態實施動態控制時,在熔融金屬中碳濃度比臨界碳濃度為更高的區域中,由於脫碳氧效率並不取決於熔融金屬中碳濃度,而受到因熔渣中鐵氧化物還原所致之脫碳的影響,因此有動態控制的精度降低的可能性。However, the method described in Patent Document 1 determines the timing of sub-gun measurement based on a static model. Therefore, with the method described in Patent Document 1, if an error occurs in the calculation of the static model due to a measurement error of the component concentration of the molten metal or an unknown external disturbance in the blowing process, the carbon concentration in the target molten metal cannot be determined. There is a possibility that the sub gun measurement cannot be performed for a sufficient time during dynamic control. In addition, if dynamic control is performed from a state where the carbon concentration in the molten metal is higher than the critical carbon concentration for the time control of the dynamic control, decarburization occurs in a region where the carbon concentration in the molten metal is higher than the critical carbon concentration. The oxygen efficiency does not depend on the carbon concentration in the molten metal, but is affected by the decarburization caused by the reduction of iron oxides in the slag, so there is a possibility that the accuracy of the dynamic control is reduced.

本發明係鑑於上述課題而完成者,其目的在提供尤其在吹煉處理的最後階段,可高精度推定熔融金屬中碳濃度的熔融金屬成分推定裝置及熔融金屬成分推定方法。此外,本發明之其他目的在提供可良率佳地製造具有所希望的成分濃度的熔融金屬的熔融金屬之製造方法。

(解決課題之手段)
The present invention has been made in view of the above-mentioned problems, and an object thereof is to provide a molten metal component estimation device and a molten metal component estimation method that can estimate the carbon concentration in the molten metal with high accuracy, particularly in the final stage of the blowing process. In addition, another object of the present invention is to provide a method for producing a molten metal capable of producing a molten metal having a desired component concentration with a good yield.

(Means for solving problems)

本發明之熔融金屬成分推定裝置之特徵為:具備:輸入裝置,其係被輸入關於精煉設備的計測資訊,該計測資訊包含:精煉設備中的吹煉處理中關於爐口部的光學特性的計測結果;模型資料庫,其係儲存關於吹煉處理反應的模型式及模型參數,該模型式及模型參數包含:表示前述精煉設備中的脫碳氧效率與熔融金屬中碳濃度的關係的模型式及模型參數;模型計算部,其係使用前述計測資訊與前述模型式及前述模型參數,推定包含熔融金屬中碳濃度的熔融金屬的成分濃度;及模型決定部,其係根據前述計測結果,推定熔融金屬中碳濃度,且根據推定結果,決定前述模型計算部所使用的前述模型式及前述模型參數。The molten metal composition estimation device of the present invention is characterized by comprising: an input device that is input with measurement information about a refining facility, and the measurement information includes: measurement of optical characteristics of a furnace mouth portion in a blowing process in the refining facility Results; a model database storing model formulas and model parameters regarding the reaction of the refining process, the model formulas and model parameters including: a model formula representing the relationship between the decarburization oxygen efficiency in the aforementioned refining equipment and the carbon concentration in the molten metal And model parameters; a model calculation section that estimates the component concentration of the molten metal including the carbon concentration in the molten metal using the measurement information and the model formula and the model parameters; and a model determination section that estimates based on the measurement results The carbon concentration in the molten metal determines the model formula and the model parameters used by the model calculation unit based on the estimated result.

本發明之熔融金屬成分推定裝置係在上述發明中,在前述計測結果係包含因熔渣中的鐵氧化物的還原反應而來的頻譜的強度變化率,為其特徵。The molten metal component estimation device of the present invention is the above-mentioned invention, and the measurement result is characterized by including the intensity change rate of the frequency spectrum due to the reduction reaction of the iron oxide in the slag.

本發明之熔融金屬成分推定方法之特徵為:包含:模型計算步驟,其係使用:包含精煉設備中的吹煉處理中關於爐口部的光學特性的計測結果之關於精煉設備的計測資訊;及包含表示前述精煉設備中的脫碳氧效率與熔融金屬中碳濃度的關係的模型式及模型參數之關於吹煉處理反應的模型式及模型參數,推定包含熔融金屬中碳濃度的熔融金屬的成分濃度;及模型決定步驟,其係根據前述計測結果推定熔融金屬中碳濃度,且根據推定結果,決定在前述模型計算步驟中所使用的前述模型式及前述模型參數。The method for estimating a molten metal composition according to the present invention includes: a model calculation step using: measurement information on a refining facility including measurement results of optical characteristics of a furnace mouth portion in a blowing process in a refining facility; and The model formula and model parameters for the reaction of the blowing process are included, including the model formula and model parameters showing the relationship between the decarburization oxygen efficiency and the carbon concentration in the molten metal in the refining equipment, and the composition of the molten metal including the carbon concentration in the molten metal is estimated. Concentration; and a model determination step, which estimates the carbon concentration in the molten metal based on the measurement result, and determines the model formula and the model parameter used in the model calculation step based on the estimation result.

本發明之熔融金屬成分推定方法係在上述發明中,在前述計測結果係包含因熔渣中的鐵氧化物的還原反應而來的頻譜的強度變化率,為其特徵。The method for estimating a molten metal component according to the present invention is the above-mentioned invention, and the measurement result is characterized by including a rate of change in intensity of a frequency spectrum due to a reduction reaction of iron oxide in the slag.

本發明之熔融金屬之製造方法之特徵為:包含:根據使用本發明之熔融金屬成分推定方法所推定出的熔融金屬的成分濃度,將熔融金屬的成分濃度調整為所希望的範圍內的步驟。

(發明之效果)
The manufacturing method of the molten metal of this invention is characterized by including the process of adjusting the component concentration of a molten metal to a desired range based on the component concentration of the molten metal estimated using the molten metal component estimation method of this invention.

(Effect of the invention)

藉由本發明之熔融金屬成分推定裝置及熔融金屬成分推定方法,尤其在吹煉處理的最後階段,可高精度地推定熔融金屬中碳濃度。此外,藉由本發明之熔融金屬之製造方法,可良率佳地製造具有所希望的成分濃度的熔融金屬。With the molten metal component estimation device and the molten metal component estimation method of the present invention, the carbon concentration in the molten metal can be estimated with high accuracy, especially in the final stage of the blowing process. In addition, by the method for producing a molten metal according to the present invention, a molten metal having a desired component concentration can be produced with good yield.

以下參照圖示,詳加說明本發明之一實施形態之熔融金屬成分推定裝置及其動作。Hereinafter, a molten metal component estimation device and an operation thereof according to an embodiment of the present invention will be described in detail with reference to the drawings.

[構成]
首先,參照圖1,說明本發明之一實施形態之熔融金屬成分推定裝置的構成。
[Composition]
First, the configuration of a molten metal component estimation device according to an embodiment of the present invention will be described with reference to FIG. 1.

圖1係顯示本發明之一實施形態之熔融金屬成分推定裝置的構成的模式圖。如圖1所示,本發明之一實施形態之熔融金屬成分推定裝置1係推定在鋼鐵業的精煉設備2中被處理的熔融金屬101及熔渣103的成分濃度的裝置。在此,精煉設備2係具備有:轉爐100、噴管102、及導管104。在轉爐100內的熔融金屬101上係配置有噴管102。由噴管102的前端朝向下方的熔融金屬101噴出高壓氧(頂吹氧)。藉由該高壓氧,熔融金屬101內的雜質被氧化而被取入至熔渣103內(吹煉處理)。在轉爐100的上部係設置有排放氣體導煙用的導管104。FIG. 1 is a schematic diagram showing a configuration of a molten metal composition estimation device according to an embodiment of the present invention. As shown in FIG. 1, a molten metal component estimation device 1 according to an embodiment of the present invention is a device for estimating the component concentrations of the molten metal 101 and the slag 103 to be processed in the refining facility 2 of the iron and steel industry. Here, the refining facility 2 includes a converter 100, a nozzle 102, and a duct 104. A nozzle 102 is arranged on the molten metal 101 in the converter 100. High-pressure oxygen (top-blown oxygen) is ejected from the front end of the nozzle 102 toward the molten metal 101 below. By the high-pressure oxygen, impurities in the molten metal 101 are oxidized and taken into the slag 103 (blowing process). An upper part of the converter 100 is provided with a duct 104 for exhaust gas guide.

在導管104的內部配置有排放氣體檢測部105。排放氣體檢測部105係檢測伴隨吹煉處理而被排出的排放氣體的流量及排放氣體中的成分(例如CO、CO2 、O2 、N2 、H2 O、Ar等)。排放氣體檢測部105係根據例如設在導管104內的文氏管(Venturi tube)的前後的差壓來計測導管104內的排放氣體的流量。此外,排放氣體檢測部105係計測排放氣體的各成分濃度[%]。排放氣體的流量及成分濃度係例如以數秒周期予以計測。表示排放氣體檢測部105的檢測結果的訊號係被送至控制終端機10。An exhaust gas detection unit 105 is disposed inside the duct 104. The exhaust gas detection unit 105 detects the flow rate of the exhaust gas and components (for example, CO, CO 2 , O 2 , N 2 , H 2 O, Ar, etc.) in the exhaust gas that are discharged during the blowing process. The exhaust gas detection unit 105 measures the flow rate of exhaust gas in the duct 104 based on, for example, a differential pressure before and after a Venturi tube provided in the duct 104. In addition, the exhaust gas detection unit 105 measures the concentration [%] of each component of the exhaust gas. The flow rate and component concentration of the exhaust gas are measured, for example, at a cycle of several seconds. A signal indicating the detection result of the exhaust gas detection unit 105 is sent to the control terminal 10.

在轉爐100內的熔融金屬101係透過形成在轉爐100的底部的通氣孔107而吹入攪拌氣體(底吹氣體)。攪拌氣體係Ar等惰性氣體。被吹入的攪拌氣體係攪拌熔融金屬101,促進高壓氧與熔融金屬101的反應。流量計108係計測被吹入至轉爐100的攪拌氣體的流量。在吹煉處理開始瞬前及吹煉處理後係進行熔融金屬101的溫度及成分濃度的分析。此外,熔融金屬101的溫度及成分濃度係在吹煉處理途中被計測一次或複數次,根據所被計測到的溫度及成分濃度,決定高壓氧的供給量(送氧量)及速度(送氧速度)或攪拌氣體的流量(攪拌氣體流量)等。The molten metal 101 in the converter 100 is blown into a stirring gas (bottom-blown gas) through a vent hole 107 formed in the bottom of the converter 100. Stir gas system Ar and other inert gases. The blown stirring gas system stirs the molten metal 101 and promotes the reaction between the high-pressure oxygen and the molten metal 101. The flow meter 108 measures the flow rate of the stirring gas blown into the converter 100. The analysis of the temperature and the component concentration of the molten metal 101 was performed immediately before and immediately after the start of the blowing process. In addition, the temperature and component concentration of the molten metal 101 are measured one or more times during the blowing process, and the supply amount (oxygen supply amount) and speed (oxygen supply) of high-pressure oxygen are determined based on the measured temperature and component concentration. Speed) or the flow rate of the stirring gas (stirring gas flow rate).

適用熔融金屬成分推定裝置1的吹煉處理控制系統係具備:控制終端機10、熔融金屬成分推定裝置1、及顯示裝置20作為主要構成要素。控制終端機10係藉由個人電腦或工作站等資訊處理裝置所構成,以熔融金屬101的成分濃度成為所希望的範圍內的方式,控制送氧量、送氧速度、及攪拌氣體流量,並且收集送氧量、送氧速度、及攪拌氣體流量的實績值的資料。The blowing processing control system to which the molten metal composition estimation device 1 is applied includes a control terminal 10, a molten metal composition estimation device 1, and a display device 20 as main constituent elements. The control terminal 10 is constituted by an information processing device such as a personal computer or a workstation, and controls the amount of oxygen supplied, the rate of oxygen supplied, and the flow rate of the agitated gas so that the concentration of the molten metal 101 is within a desired range. The data of the oxygen supply amount, oxygen supply rate, and actual performance value of the stirring gas flow rate.

熔融金屬成分推定裝置1係藉由個人電腦或工作站等資訊處理裝置所構成。熔融金屬成分推定裝置1係具備有:輸入裝置11、模型資料庫(模型DB)12、運算處理部13、及輸出裝置14。The molten metal composition estimation device 1 is configured by an information processing device such as a personal computer or a workstation. The molten metal composition estimation device 1 includes an input device 11, a model database (model DB) 12, an arithmetic processing unit 13, and an output device 14.

輸入裝置11係被輸入關於精煉設備2的各種計測結果及實績資訊的輸入用介面。在輸入裝置11係有鍵盤、滑鼠指示器、指向裝置、資料接收裝置、及圖形使用者介面(GUI)等。輸入裝置11係由外部接收實績資料或參數設定值等,進行對模型DB12寫入該資訊或送訊至運算處理部13。在輸入裝置11係被輸入精煉設備2中的吹煉處理開始前及吹煉處理中的至少任一方之關於熔融金屬101的溫度與成分濃度的計測結果。關於溫度與成分濃度的計測結果係藉由例如由操作人員所為之手工輸入或由記錄媒體讀入輸入等而被輸入至輸入裝置11。此外,在輸入裝置11係由控制終端機10被輸入實績資訊。實績資訊係包含:藉由排放氣體檢測部105所被計測到之關於排放氣體的流量及成分濃度的資訊、藉由分光器106所被計測到之關於轉爐100的爐口部的光學特性的資訊(爐口分光實績、爐口部光學特性資訊)、送氧量及送氧速度的資訊、攪拌氣體流量的資訊、原料(主原料、副原料)投入量的資訊、熔融金屬101的溫度資訊等。The input device 11 is an input interface for inputting various measurement results and actual performance information on the refining equipment 2. The input device 11 includes a keyboard, a mouse pointer, a pointing device, a data receiving device, and a graphical user interface (GUI). The input device 11 receives actual performance data, parameter setting values, and the like from the outside, and writes the information to the model DB 12 or sends the information to the calculation processing unit 13. The input device 11 is a measurement result of the temperature and the component concentration of the molten metal 101 before the initiation of the blowing process in the refining facility 2 and in at least one of the blowing processes. The measurement results of the temperature and the component concentration are input to the input device 11 by, for example, manual input by an operator or reading input from a recording medium. Further, actual performance information is input to the input device 11 from the control terminal 10. The actual performance information includes information on the flow rate and component concentration of the exhaust gas measured by the exhaust gas detection unit 105, and information on the optical characteristics of the furnace mouth portion of the converter 100 measured by the spectroscope 106. (Fractal performance of the furnace mouth, information on the optical characteristics of the furnace mouth), information on the amount and speed of oxygen supply, information on the flow of stirring gas, information on the amount of raw materials (main raw materials and auxiliary materials), temperature information on the molten metal 101, etc. .

模型DB12係保存有精煉設備2中關於吹煉處理反應的模型式及其參數(模型參數)的資訊的記憶裝置。在模型式係至少包含表示吹煉處理途中的熔融金屬101中的碳濃度與脫碳氧效率的關係的脫碳模型式。其中,脫碳氧效率意指相對於被吹入至轉爐100內的單位氧量之由熔融金屬101被去除的碳量。此外,在模型DB12係記憶有被輸入至輸入裝置11的各種資訊、及藉由運算處理部13所算出的吹煉處理實績中的計算/解析結果。The model DB 12 is a memory device that stores information on a model expression and a parameter (model parameter) of a blowing process reaction in the refining facility 2. The model formula includes at least a decarburization model formula showing the relationship between the carbon concentration in the molten metal 101 in the middle of the blowing process and the decarburization oxygen efficiency. Here, the decarburization oxygen efficiency means the amount of carbon removed from the molten metal 101 with respect to the unit oxygen amount blown into the converter 100. In addition, the model DB 12 stores various information input to the input device 11 and calculation / analysis results in the processing results obtained by the calculation processing unit 13.

運算處理部13係CPU等運算處理裝置,控制熔融金屬成分推定裝置1全體的動作。運算處理部13係具有作為模型決定部13a及模型計算部13b的功能。模型決定部13a及模型計算部13b係例如藉由運算處理部13執行電腦程式來實現。運算處理部13係藉由執行模型決定部13a用的電腦程式而作為模型決定部13a來發揮功能,且藉由執行模型計算部13b用的電腦程式而作為模型計算部13b來發揮功能。其中,運算處理部13亦可具有作為模型決定部13a及模型計算部13b來發揮功能的專用的運算裝置或運算電路。The arithmetic processing unit 13 is an arithmetic processing device such as a CPU, and controls the operation of the entire molten metal composition estimation device 1. The calculation processing unit 13 has functions as a model determination unit 13a and a model calculation unit 13b. The model determination unit 13 a and the model calculation unit 13 b are implemented by, for example, executing a computer program by the arithmetic processing unit 13. The calculation processing unit 13 functions as a model determination unit 13a by executing a computer program for the model determination unit 13a, and functions as a model calculation unit 13b by executing a computer program for the model calculation unit 13b. The calculation processing unit 13 may include a dedicated calculation device or a calculation circuit that functions as the model determination unit 13 a and the model calculation unit 13 b.

具有如上所示之構成的熔融金屬成分推定裝置1係藉由執行以下所示之熔融金屬成分推定處理,尤其在吹煉處理的最後階段,高精度推定熔融金屬101及熔渣103的成分濃度。以下參照圖2所示之流程圖,說明執行熔融金屬成分推定處理時的熔融金屬成分推定裝置1的動作。The molten metal component estimation device 1 having the above-mentioned structure performs the molten metal component estimation process shown below, and estimates the component concentrations of the molten metal 101 and the slag 103 with high accuracy, especially in the final stage of the blowing process. The operation of the molten metal component estimation device 1 when executing the molten metal component estimation process will be described below with reference to the flowchart shown in FIG. 2.

[熔融金屬成分推定處理]
圖2係顯示本發明之一實施形態之熔融金屬成分推定處理的流程的流程圖。圖2所示之流程圖係在已開始吹煉處理的時序成為開始,熔融金屬成分推定處理係進至步驟S1的處理。
[Molten metal component estimation process]
FIG. 2 is a flowchart showing a flow of a molten metal component estimation process according to an embodiment of the present invention. The flowchart shown in FIG. 2 starts at the timing when the blowing process has been started, and the molten metal component estimation process proceeds to the process of step S1.

在步驟S1的處理中,運算處理部13取得熔融金屬101的計測/分析值。具體而言,運算處理部13係取得藉由對熔融金屬101的試樣的溫度計測及成分分析而得的計測/分析結果。藉此,步驟S1的處理完成,熔融金屬成分推定處理係進至步驟S2的處理。In the process of step S1, the arithmetic processing unit 13 obtains a measurement / analysis value of the molten metal 101. Specifically, the arithmetic processing unit 13 obtains measurement / analysis results obtained by measuring the temperature of the sample of the molten metal 101 and analyzing the components. Thereby, the processing of step S1 is completed, and the molten metal component estimation processing proceeds to the processing of step S2.

在步驟S2的處理中,運算處理部13由控制終端機10取得排放氣體計測/分析資訊(排放氣體資訊)、爐口部光學特性資訊、及操作量資訊。在平常的轉爐吹煉作業中,排放氣體資訊、爐口部光學特性資訊、及操作量資訊係以一定周期被收集。若在操作量資訊的取得時間與排放氣體資訊的取得時間之間有較大的時間延遲,考慮該時間延遲(以延遲時間份加快排放氣體資訊)而作成資料。此外,若計測值及分析值含有較多雜訊,亦可以進行移動平均計算等平滑化處理後的值來置換計測值及分析值。此外,排放氣體流量的計測值及CO、CO2 的分析值所包含的誤差係以被補正為宜。藉此,步驟S2的處理完成,熔融金屬成分推定處理係進至步驟S3的處理。In the process of step S2, the calculation processing unit 13 obtains the exhaust gas measurement / analysis information (emission gas information), the furnace mouth part optical characteristic information, and the operation amount information from the control terminal 10. In the ordinary converter blowing operation, the exhaust gas information, the optical characteristic information of the furnace mouth section, and the operation amount information are collected at a certain period. If there is a large time delay between the acquisition time of the operation amount information and the acquisition time of the exhaust gas information, consider the time delay (accelerate the exhaust gas information by the delay time) to create data. In addition, if the measured value and the analysis value contain a lot of noise, a smoothed value such as a moving average calculation may be used to replace the measured value and the analysis value. In addition, the errors included in the measured values of the exhaust gas flow rate and the analysis values of CO and CO 2 are preferably corrected. Thereby, the processing of step S2 is completed, and the molten metal component estimation processing proceeds to the processing of step S3.

在步驟S3的處理中,模型決定部13a根據在步驟S2的處理中所取得的爐口部光學特性資訊,由被記憶在模型DB12的模型式及模型參數之中,決定模型計算部13b使用在計算的模型式及模型參數。具體而言,以轉爐100的爐口部的光學特性而言,在以下反應式(1)所示之伴隨因熔渣中鐵氧化物的還原反應所致之脫碳反應而發出的光的波長頻帶(頻譜(Spectrum))之中,檢測例如波長550nm~650nm的波長頻帶的發光強度的最大值。若熔融金屬中碳濃度達到臨界碳濃度附近,已知因以下反應式(1)所記載的脫碳反應的效率降低,發光強度亦會降低。In the process of step S3, the model determination unit 13a determines the model calculation unit 13b to use in the model formula and model parameters of the model DB 12 based on the optical characteristic information of the furnace mouth portion obtained in the process of step S2. Calculated model formula and model parameters. Specifically, in terms of the optical characteristics of the furnace mouth of the converter 100, the wavelength of light emitted by the decarburization reaction caused by the reduction reaction of iron oxide in the slag as shown in the following reaction formula (1) In the frequency band (Spectrum), for example, the maximum value of the luminous intensity in a wavelength band with a wavelength of 550 nm to 650 nm is detected. When the carbon concentration in the molten metal reaches near the critical carbon concentration, it is known that the luminous intensity also decreases because the efficiency of the decarburization reaction described in the following reaction formula (1) decreases.

FeO+C→Fe+CO …(1)FeO + C → Fe + CO ... (1)

因此,模型決定部13a係如圖3(a)所示,算出發光強度的最大值的變化率(發光強度變化率),將發光強度變化率由正值轉為負值的時序,作為熔融金屬中碳濃度達至臨界碳濃度的時序來進行檢測。接著,模型決定部13a係在熔融金屬中碳濃度比臨界碳濃度為更高的區域,由模型DB12中選擇根據排放氣體資訊及操作量資訊的質量平衡計算式或根據操作量資訊的物理反應模型計算式等模型式及模型參數。另一方面,熔融金屬中碳濃度達至臨界碳濃度的時序之後,如圖3(b)所示,脫碳氧效率進入至取決於熔融金屬中碳濃度的區域,因此模型決定部13a係由模型DB12中選擇脫碳模型式及其模型參數。其中,在本發明中,由模型DB12所選擇的模型式的形式不拘。此外,關於模型式的切換方法,亦可為依模型參數的變更,使脫碳模型式對模型計算的貢獻度變更的方法等。藉此,步驟S3的處理完成,熔融金屬成分推定處理係進至步驟S4的處理。Therefore, as shown in FIG. 3 (a), the model determination unit 13a calculates the change rate of the maximum value of the luminous intensity (the change rate of the luminous intensity), and changes the luminous intensity change rate from a positive value to a negative value as the molten metal. The timing of the middle carbon concentration reaching the critical carbon concentration is detected. Next, the model determination unit 13a is a region where the carbon concentration in the molten metal is higher than the critical carbon concentration, and the model DB12 selects a mass balance calculation formula based on the exhaust gas information and the operation amount information or a physical reaction model based on the operation amount information. Calculation formula and model parameters and model parameters. On the other hand, after the time when the carbon concentration in the molten metal reaches the critical carbon concentration, as shown in FIG. 3 (b), the decarburization oxygen efficiency enters a region that depends on the carbon concentration in the molten metal. Therefore, the model determining unit 13a The decarburization model formula and its model parameters are selected in the model DB12. However, in the present invention, the form of the model formula selected by the model DB 12 is not limited. In addition, as for the method of switching the model, a method of changing the contribution of the decarburization model to the calculation of the model in accordance with the change of the model parameter may be used. Thereby, the processing of step S3 is completed, and the molten metal component estimation processing proceeds to the processing of step S4.

在步驟S4的處理中,模型計算部13b使用在步驟S3的處理中所決定(選擇)出的模型式及模型參數,算出包含熔融金屬中碳濃度的熔融金屬101的成分濃度,且將關於所被算出的熔融金屬101的成分濃度的資訊輸出至輸出裝置14。其中,熔融金屬101的成分濃度的算出方法的詳細內容記載於例如專利文獻2。藉此,步驟S4的處理完成,熔融金屬成分推定處理係進至步驟S5的處理。In the process of step S4, the model calculation unit 13b uses the model formula and model parameters determined (selected) in the process of step S3 to calculate the component concentration of the molten metal 101 including the carbon concentration in the molten metal, and will calculate Information on the calculated component concentration of the molten metal 101 is output to the output device 14. The details of the method for calculating the component concentration of the molten metal 101 are described in, for example, Patent Document 2. Thereby, the processing of step S4 is completed, and the molten metal component estimation processing proceeds to the processing of step S5.

在步驟S5的處理中,運算處理部13判別是否吹煉處理已結束。判別的結果,若吹煉處理已結束(步驟S5:Yes),運算處理部13係結束一連串熔融金屬成分推定處理。另一方面,若吹煉處理未結束(步驟S5:No),運算處理部13係將熔融金屬成分推定處理返回至步驟S2的處理。In the process of step S5, the arithmetic processing unit 13 determines whether the blowing process has ended. As a result of the determination, if the blowing process has ended (step S5: Yes), the arithmetic processing unit 13 ends a series of molten metal component estimation processes. On the other hand, if the blowing process is not completed (step S5: No), the arithmetic processing unit 13 returns the molten metal component estimation process to the process of step S2.

由以上說明清楚可知,在本發明之一實施形態之熔融金屬成分推定處理中,模型決定部13a根據爐口部光學特性資訊,推定熔融金屬101的碳濃度,且根據推定結果,決定模型計算部13b所使用的模型式及模型參數。更詳言之,模型決定部13a係根據爐口部光學特性資訊,檢測熔融金屬101的碳濃度已達至臨界碳濃度的時序,且以熔融金屬101的碳濃度已達至臨界碳濃度的時序,將模型計算部13b所使用的模型式及模型參數,切換成根據熔融金屬中碳濃度與脫碳氧效率的關係的模型式及模型參數。藉此,尤其在吹煉處理的最後階段,可高精度推定熔融金屬101的碳濃度。As is clear from the above description, in the molten metal component estimation process according to an embodiment of the present invention, the model determination unit 13a estimates the carbon concentration of the molten metal 101 based on the optical characteristic information of the furnace mouth portion, and determines the model calculation unit based on the estimation result. The model formula and model parameters used in 13b. More specifically, the model determination unit 13a detects the timing when the carbon concentration of the molten metal 101 has reached the critical carbon concentration based on the optical characteristic information of the furnace mouth portion, and the timing when the carbon concentration of the molten metal 101 has reached the critical carbon concentration. The model formula and model parameters used by the model calculation unit 13b are switched to the model formula and model parameters based on the relationship between the carbon concentration in the molten metal and the decarburization oxygen efficiency. This makes it possible to estimate the carbon concentration of the molten metal 101 with high accuracy, especially in the final stage of the blowing process.

以上說明適用本發明人等所進行的發明的實施形態,惟並無藉由形成藉由本實施形態所為之本發明之揭示的一部分的記述及圖面來限定本發明的情形。例如,在本實施形態中,係敘述熔融金屬中碳濃度的推定計算中的模型切換,惟可如專利文獻1所記載的方法所示,進行使用靜態模型與動態模型的控制時,根據爐口部光學特性計測資訊,由模型DB12取得動態模型,藉此在適當時序進行動態模型控制。如上所示,根據本實施形態,藉由該領域熟習該項技術者等所進行的其他實施形態、實施例、及運用技術等係全部包含在本發明之範疇內。

[產業上可利用性]
Although the embodiment to which the invention made by the present inventors is applied has been described above, the present invention is not limited by the description and drawings forming part of the disclosure of the present invention made by this embodiment. For example, in the present embodiment, the model switching in the estimation calculation of the carbon concentration in the molten metal is described. However, as shown in the method described in Patent Document 1, control using a static model and a dynamic model can be performed according to the furnace mouth. The optical characteristics measurement information of each part is obtained by the model DB12, and the dynamic model control is performed at an appropriate timing. As described above, according to this embodiment, other embodiments, examples, and operating techniques performed by those skilled in the art in the field are all included in the scope of the present invention.

[Industrial availability]

藉由本發明,可提供尤其在吹煉處理的最後階段,可高精度推定熔融金屬中碳濃度的熔融金屬成分推定裝置及熔融金屬成分推定方法。According to the present invention, it is possible to provide a molten metal component estimation device and a molten metal component estimation method that can estimate the carbon concentration in the molten metal with high accuracy, particularly in the final stage of the blowing process.

1‧‧‧熔融金屬成分推定裝置1‧‧‧ Molten metal composition estimation device

2‧‧‧精煉設備 2‧‧‧ Refining equipment

10‧‧‧控制終端機 10‧‧‧Control terminal

11‧‧‧輸入裝置 11‧‧‧ input device

12‧‧‧模型資料庫(模型DB) 12‧‧‧ model database (model DB)

13‧‧‧運算處理部 13‧‧‧Operation Processing Department

13a‧‧‧模型決定部 13a‧‧‧Model decision department

13b‧‧‧模型計算部 13b‧‧‧Model Calculation Department

14‧‧‧輸出裝置 14‧‧‧Output device

20‧‧‧顯示裝置 20‧‧‧ display device

100‧‧‧轉爐 100‧‧‧ converter

101‧‧‧熔融金屬 101‧‧‧ Molten Metal

102‧‧‧噴管 102‧‧‧ Nozzle

103‧‧‧熔渣 103‧‧‧ Slag

104‧‧‧導管 104‧‧‧ Catheter

105‧‧‧排放氣體檢測部 105‧‧‧Exhaust gas detection department

106‧‧‧分光器 106‧‧‧ Beamsplitter

107‧‧‧通氣孔 107‧‧‧ Vent

108‧‧‧流量計 108‧‧‧Flowmeter

圖1係顯示本發明之一實施形態之熔融金屬成分推定裝置的構成的模式圖。FIG. 1 is a schematic diagram showing a configuration of a molten metal composition estimation device according to an embodiment of the present invention.

圖2係顯示本發明之一實施形態之熔融金屬成分推定處理的流程的流程圖。 FIG. 2 is a flowchart showing a flow of a molten metal component estimation process according to an embodiment of the present invention.

圖3係顯示熔融金屬中碳濃度與發光強度變化率的關係及熔融金屬中碳濃度與脫碳氧效率的關係之一例的圖。 FIG. 3 is a graph showing an example of the relationship between the carbon concentration in the molten metal and the change rate of the luminous intensity, and the relationship between the carbon concentration in the molten metal and the decarburization oxygen efficiency.

Claims (5)

一種熔融金屬成分推定裝置,其特徵為: 具備: 輸入裝置,其係被輸入關於精煉設備的計測資訊,該計測資訊包含:精煉設備中的吹煉處理中關於爐口部的光學特性的計測結果; 模型資料庫,其係儲存關於吹煉處理反應的模型式及模型參數,該模型式及模型參數包含:表示前述精煉設備中的脫碳氧效率與熔融金屬中碳濃度的關係的模型式及模型參數; 模型計算部,其係使用前述計測資訊與前述模型式及前述模型參數,推定包含熔融金屬中碳濃度的熔融金屬的成分濃度;及 模型決定部,其係根據前述計測結果,推定熔融金屬中碳濃度,且根據推定結果,決定前述模型計算部所使用的前述模型式及前述模型參數。A molten metal composition estimating device is characterized in that: have: The input device is used to input measurement information about the refining equipment, and the measurement information includes: measurement results about the optical characteristics of the furnace mouth during the blowing process in the refining equipment; The model database stores model formulas and model parameters regarding the reaction of the refining process, and the model formulas and model parameters include the model formulas and models representing the relationship between the decarburization oxygen efficiency in the aforementioned refining equipment and the carbon concentration in the molten metal parameter; The model calculation unit estimates the component concentration of the molten metal including the carbon concentration in the molten metal using the measurement information, the model formula, and the model parameters; and The model determination unit estimates the carbon concentration in the molten metal based on the measurement result, and determines the model formula and the model parameter used by the model calculation unit based on the estimation result. 如申請專利範圍第1項之熔融金屬成分推定裝置,其中,在前述計測結果係包含因熔渣中的鐵氧化物的還原反應而來的頻譜的強度變化率。 For example, the molten metal component estimation device according to the first patent application range, wherein the measurement result includes a rate of change in intensity of a frequency spectrum caused by a reduction reaction of iron oxide in the slag. 一種熔融金屬成分推定方法,其特徵為: 包含: 模型計算步驟,其係使用:包含精煉設備中的吹煉處理中關於爐口部的光學特性的計測結果之關於精煉設備的計測資訊;及包含表示前述精煉設備中的脫碳氧效率與熔融金屬中碳濃度的關係的模型式及模型參數之關於吹煉處理反應的模型式及模型參數,推定包含熔融金屬中碳濃度的熔融金屬的成分濃度;及 模型決定步驟,其係根據前述計測結果推定熔融金屬中碳濃度,且根據推定結果,決定在前述模型計算步驟中所使用的前述模型式及前述模型參數。A method for estimating molten metal composition, which is characterized by: contain: The model calculation step uses: measurement information on the refining equipment including measurement results of the optical characteristics of the furnace mouth portion in the blowing process in the refining equipment; and information indicating the decarburization oxygen efficiency and molten metal in the refining equipment Model expressions and model parameters for the relationship between carbon concentrations. Model expressions and model parameters for the reaction of the blowing process, to estimate the component concentration of the molten metal including the carbon concentration in the molten metal; and The model determination step is to estimate the carbon concentration in the molten metal based on the measurement result, and to determine the model formula and the model parameter used in the model calculation step based on the estimation result. 如申請專利範圍第3項之熔融金屬成分推定方法,其中,在前述計測結果係包含因熔渣中的鐵氧化物的還原反應而來的頻譜的強度變化率。For example, the method for estimating a molten metal component according to item 3 of the application, wherein the measurement result includes a rate of change in intensity of a frequency spectrum caused by a reduction reaction of iron oxide in the slag. 一種熔融金屬之製造方法,其特徵為: 包含: 根據使用如申請專利範圍第3項或第4項之熔融金屬成分推定方法所推定出的熔融金屬的成分濃度,將熔融金屬的成分濃度調整為所希望的範圍內的步驟。 A method for manufacturing molten metal, which is characterized by: contain: A step of adjusting the component concentration of the molten metal to a desired range based on the component concentration of the molten metal estimated using the method for estimating the molten metal component according to item 3 or 4 of the patent application scope.
TW108113511A 2018-05-14 2019-04-18 Molten metal composition estimating device, molten metal composition estimating method, and molten metal manufacturing method TWI700374B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-092754 2018-05-14
JP2018092754 2018-05-14

Publications (2)

Publication Number Publication Date
TW201947039A true TW201947039A (en) 2019-12-16
TWI700374B TWI700374B (en) 2020-08-01

Family

ID=68540191

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108113511A TWI700374B (en) 2018-05-14 2019-04-18 Molten metal composition estimating device, molten metal composition estimating method, and molten metal manufacturing method

Country Status (8)

Country Link
US (1) US11966669B2 (en)
EP (1) EP3795702B1 (en)
JP (1) JP6825711B2 (en)
KR (1) KR102437794B1 (en)
CN (1) CN112154218B (en)
RU (1) RU2766093C1 (en)
TW (1) TWI700374B (en)
WO (1) WO2019220800A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111763803B (en) * 2020-08-18 2021-12-14 长春工业大学 Molten iron temperature control method in argon oxygen refined iron alloy production process
JP7088439B1 (en) 2020-12-11 2022-06-21 Jfeスチール株式会社 Operation method of converter and blowing control system of converter

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267430A (en) * 1985-09-20 1987-03-27 Nippon Steel Corp Spectral analysis of components in molten iron
JPS6318012A (en) * 1986-07-09 1988-01-25 Nippon Kokan Kk <Nkk> Method for controlling flow rate of oxygen for refining for metallurgical refining furnace
JPH04308019A (en) * 1991-04-03 1992-10-30 Sumitomo Metal Ind Ltd Method for controlling end point of blowing in converter
US5984998A (en) * 1997-11-14 1999-11-16 American Iron And Steel Institute Method and apparatus for off-gas composition sensing
JP3861480B2 (en) 1998-11-12 2006-12-20 Jfeスチール株式会社 Slag analysis method and apparatus
RU2180951C1 (en) * 2001-04-28 2002-03-27 Пономаренко Дмитрий Александрович Method for controlling metallurgical melting process
JP4677955B2 (en) 2006-06-08 2011-04-27 住友金属工業株式会社 Converter blowing control method, converter blowing control device, and computer program
US20110045422A1 (en) * 2009-08-21 2011-02-24 Alstom Technology Ltd Optical flue gas monitor and control
DE102009060258A1 (en) * 2009-12-23 2011-06-30 SMS Siemag Aktiengesellschaft, 40237 Control of the converter process by exhaust signals
CN101825567A (en) 2010-04-02 2010-09-08 南开大学 Screening method for near infrared spectrum wavelength and Raman spectrum wavelength
CN102206727A (en) 2011-05-31 2011-10-05 湖南镭目科技有限公司 Converter steelmaking endpoint determination method and system, control method and control system
CN104531936B (en) * 2014-12-01 2016-08-31 南华大学 Converter molten steel carbon content On-line Measuring Method based on Flame Image Characteristics
CN106153550A (en) 2015-04-10 2016-11-23 南京理工大学 Converter steel-smelting molten steel carbon content based on SVM online Real-time and Dynamic Detection method
JP2017008349A (en) 2015-06-18 2017-01-12 Jfeスチール株式会社 Device for and method of estimating molten metal condition
CN205024254U (en) * 2015-10-16 2016-02-10 唐山钢铁集团有限责任公司 Converter mouth flame image collection system
JP6376200B2 (en) 2015-11-02 2018-08-22 Jfeスチール株式会社 Molten state estimation device, molten state estimation method, and molten metal manufacturing method
JP6414045B2 (en) 2015-12-25 2018-10-31 Jfeスチール株式会社 Molten component estimation device and molten component estimation method

Also Published As

Publication number Publication date
US20210216680A1 (en) 2021-07-15
JPWO2019220800A1 (en) 2020-05-28
RU2766093C1 (en) 2022-02-07
BR112020022857A2 (en) 2021-02-23
EP3795702A4 (en) 2021-12-29
KR102437794B1 (en) 2022-08-29
CN112154218A (en) 2020-12-29
CN112154218B (en) 2022-09-27
US11966669B2 (en) 2024-04-23
JP6825711B2 (en) 2021-02-03
TWI700374B (en) 2020-08-01
EP3795702A1 (en) 2021-03-24
KR20210003917A (en) 2021-01-12
EP3795702B1 (en) 2024-03-20
WO2019220800A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
TWI643957B (en) Estimation method of phosphorus concentration in molten steel and converter blowing control device
TWI681059B (en) Molten metal composition estimation device, molten metal composition estimation method, and molten metal manufacturing method
TWI700374B (en) Molten metal composition estimating device, molten metal composition estimating method, and molten metal manufacturing method
JP6579136B2 (en) Refining process state estimation device, refining process state estimation method, and molten metal manufacturing method
JP2019073799A (en) Molten metal temperature correction device, molten metal temperature correction method, and production method of molten metal
JP2017089001A (en) Molten metal condition estimation device, molten metal condition estimation method, and manufacturing method of molten metal
TW201920691A (en) Method for estimating phosphorus concentration in molten steel, converter blowing control device, program, and recording medium
JP6516906B1 (en) Wind blow calculation method, blow blow calculation program
JP6658804B2 (en) Initial component concentration correction device, initial component concentration correction method, refining process state estimation method, and converter operation method
JP2006104521A (en) Molten steel decarburizing method in rh vacuum degassing device
JP7405312B1 (en) Vacuum degassing treatment state estimation method, operation method, molten steel manufacturing method, and vacuum degassing treatment state estimation device
TW201734214A (en) Molten pig iron pre-treatment method and molten pig iron pre-treatment control device
JP6331601B2 (en) Blowing control method in steelmaking converter.
KR20000045516A (en) Method and device for predicting concentration of carbon in molten metal in electric furnace work
TWI796772B (en) Refining treatment control device and refining treatment control method
JP6795133B1 (en) Blow control method and smelt control device for converter type dephosphorization smelting furnace
JP6943300B2 (en) Control device and control method for vacuum degassing equipment
JP2011202252A (en) Method for assuming phosphor concentration in molten steel with sufficient accuracy
BR112020022857B1 (en) CAST METAL COMPONENT ESTIMATION DEVICE, CAST METAL COMPONENT ESTIMATION METHOD AND CAST METAL FABRICATION METHOD
JP6235197B2 (en) Converter operation method
TW202321468A (en) Intra-furnace state inference device, intra-furnace state inference method, and molten steel manufacturing method
JPH0219413A (en) Converter blow-refining method