TW201942897A - 應用動態範圍壓縮之方法和設備以及一種非暫態電腦可讀取儲存媒體 - Google Patents

應用動態範圍壓縮之方法和設備以及一種非暫態電腦可讀取儲存媒體 Download PDF

Info

Publication number
TW201942897A
TW201942897A TW108105179A TW108105179A TW201942897A TW 201942897 A TW201942897 A TW 201942897A TW 108105179 A TW108105179 A TW 108105179A TW 108105179 A TW108105179 A TW 108105179A TW 201942897 A TW201942897 A TW 201942897A
Authority
TW
Taiwan
Prior art keywords
hoa
gain
drc
dsht
signal
Prior art date
Application number
TW108105179A
Other languages
English (en)
Other versions
TWI695371B (zh
Inventor
約哈拿斯 波漢
弗羅里安 凱勒
Original Assignee
瑞典商杜比國際公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP14305559.8A external-priority patent/EP2934025A1/en
Application filed by 瑞典商杜比國際公司 filed Critical 瑞典商杜比國際公司
Publication of TW201942897A publication Critical patent/TW201942897A/zh
Application granted granted Critical
Publication of TWI695371B publication Critical patent/TWI695371B/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic
    • H04S3/008Systems employing more than two channels, e.g. quadraphonic in which the audio signals are in digital form, i.e. employing more than two discrete digital channels
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/008Multichannel audio signal coding or decoding using interchannel correlation to reduce redundancy, e.g. joint-stereo, intensity-coding or matrixing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic
    • H04S3/02Systems employing more than two channels, e.g. quadraphonic of the matrix type, i.e. in which input signals are combined algebraically, e.g. after having been phase shifted with respect to each other
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • H04S2420/01Enhancing the perception of the sound image or of the spatial distribution using head related transfer functions [HRTF's] or equivalents thereof, e.g. interaural time difference [ITD] or interaural level difference [ILD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • H04S2420/11Application of ambisonics in stereophonic audio systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mathematical Physics (AREA)
  • Computational Linguistics (AREA)
  • Human Computer Interaction (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Algebra (AREA)
  • Theoretical Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Stereophonic System (AREA)
  • Tone Control, Compression And Expansion, Limiting Amplitude (AREA)
  • Nuclear Medicine (AREA)
  • Image Processing (AREA)
  • Reduction Or Emphasis Of Bandwidth Of Signals (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

本發明係為一種在一高階保真立體音響(HOA)信號上執行動態範圍控制(DRC)之方法,無法簡單地應用動態範圍控制(DRC)到高階保真立體音響(HOA)為基信號,該方法包括:將HOA信號變換至空間域,分析已變換HOA信號,及從該分析之結果得出可用於動態壓縮之增益因子,可將增益因子連同HOA信號一起傳送。當應用動態範圍控制(DRC)時,將HOA信號變換至空間域,萃取增益因子,及將該等增益因子與已變換HOA信號於空間域中相乘,其中得到一已增益補償變換HOA信號。將已增益補償變換HOA信號變換回到HOA域中,其中得到一已增益補償HOA信號。

Description

應用動態範圍壓縮之方法和設備以及一種非暫態電腦可讀取儲存媒體
本發明相關將動態範圍壓縮(DRC)執行到一保真立體音響信號的方法及裝置,尤其是執行到高階保真立體音響(HOA)信號。
動態範圍壓縮(DRC)的目的為要減低一音頻信號的動態範圍,將一時變增益因子應用到該音頻信號,通常此增益因子係依存於該信號用以控制增益的振幅包絡,該映射一般係非線性,大振幅係映射到較小振幅,而常將微弱聲音放大。情節係吵雜環境、深夜聆聽、小型揚聲器或行動耳機聆聽。
串流或廣播音頻的一般觀念係在傳輸前產生DRC增益及在接收及解碼後應用此等增益。在圖1a)中顯示使用DRC的原理,即通常如何將DRC應用到一音頻信 號,檢測信號位準(通常是信號包絡),及算出一相關時變增益 g DRC 。該增益係用以變更音頻信號的振幅。圖1b)顯示使用DRC用於編碼/解碼的原理,其中將增益因子連同已編碼音頻信號一起傳送。在解碼器端,將增益應用到已解碼音頻信號以減低其動態範圍。
用於立體音響,可將不同增益應用到表示不同空間位置的揚聲器聲道,接著在發送端需要知道此等位置,為能產生一匹配的增益組。通常這只可能用於理想化條件,然而真實情況中,揚聲器數量及其配置在許多方式各不相同,相較於規格,這較受到實際考量影響。高階保真立體音響(HOA)係一音頻格式,容許用於彈性呈現。一HOA信號係由係數聲道所組成,並不直接表示音級,因此無法將DRC簡單地應用到HOA為基信號。
本發明至少解決如何能將動態範圍壓縮(DRC)應用到高階保真立體音響(HOA)信號的問題。分析一HOA信號以得到一或多個增益係數,在一實施例中,得到至少二增益係數,及HOA信號的分析包括變換到空間域中(iDSHT(逆離散球階變換))。將一或多個增益係數連同原HOA信號一起傳送,可傳送一特殊指示用以指出所有增益係數是否相等,這是所謂的簡化模式中的情形,然而在一非簡化模式中卻使用至少二相異增益係數。在解碼器,可(但不需要)將該一或多個增益應用到HOA信 號,使用者可選擇是否要應用該一或多個增益。簡化模式的優點在於它所需要的計算明顯較少,是由於只使用一增益因子,及由於該增益因子可在HOA域中直接應用到HOA信號的係數聲道,以便能跳過變換到空間域中及後續變換回到HOA域中的步驟。在簡化模式中,藉由只分析HOA信號的第零階係數聲道即得到該增益因子。
根據本發明的一實施例,揭示一種在高階保真立體音響(HOA)信號上執行動態範圍壓縮(DRC)的方法,包括:(藉由一逆DSHT)將HOA信號變換到空間域,分析已變換HOA信號,及從該分析的結果得出可用於動態範圍壓縮的增益因子。在另外步驟中,將得到的增益因子與已變換HOA信號(在空間域中)相乘,其中得到一已增益壓縮變換HOA信號。最後,(藉由一DSHT)將已增益壓縮變換HOA信號變換回到HOA域(即係數域)中,其中得到一已增益壓縮HOA信號。
此外,根據本發明的一實施例,揭示一種在高階保真立體音響(HOA)信號上以一簡化模式執行動態範圍壓縮(DRC)的方法,包括:分析HOA信號,及從該分析的結果得出可用於動態範圍壓縮的一增益因子。在另外步驟中,根據該指示的評估,將得到的增益因子與HOA信號的係數聲道(在HOA域中)相乘,其中得到一已增益壓縮HOA信號。亦根據該指示的評估,可判定HOA信號的變換係可跳過。用以指出簡化模式(意即只使用一增益因子)的指示係可隱含地設定(如若由於硬體或其他限制只可 使用簡化模式),或外顯地設定(如根據使用者對簡化模式或非簡化模式的選擇)。
此外,根據本發明的一實施例,揭示一種應用動態範圍壓縮(DRC)增益因子到一高階保真立體音響(HOA)信號的方法,包括:接收一HOA信號、一指示及數個增益因子;判定該指示指出非簡化模式;(使用一逆DSHT)將HOA信號變換到空間域中,其中得到一已變換HOA信號;將該等增益因子與已變換HOA信號相乘,其中得到一已動態範圍壓縮變換HOA信號;及(使用一DSHT)將已動態範圍壓縮變換HOA信號變換回到HOA域中,其中得到一已動態範圍壓縮HOA信號。可將該等增益因子連同HOA信號一起接收或分開地接收。
另外,根據本發明的一實施例,揭示一種應用動態範圍壓縮(DRC)增益因子到一高階保真立體音響(HOA)信號的方法,包括:接收一HOA信號、一指示及一增益因子;判定該指示指出簡化模式;及根據該判定,將該增益因子與HOA信號相乘,其中得到一已動態範圍壓縮HOA信號。該增益因子係可連同HOA信號一起接收或分開地接收。
在申請專利範圍第11項中揭示一種應用動態範圍壓縮(DRC)增益因子到高階保真立體音響(HOA)信號的裝置。
在一實施例中,本發明提供一種電腦可讀取媒體,具有可執行指令,用以令一電腦執行將動態範圍壓 縮(DRC)增益因子應用到HOA信號的方法,包括如上述的步驟。
在一實施例中,本發明提供一種電腦可讀取媒體,具有可執行指令,用以令一電腦執行在高階保真立體音響(HOA)信號上執行動態範圍壓縮(DRC)的方法,包括如上述的步驟。
在後附申請專利範圍的附屬項、以下說明及附圖中揭示本發明的數個有利實施例。
40‧‧‧變換至空間域區塊
41、41s‧‧‧動態範圍壓縮(DRC)分析區塊
42、42s‧‧‧DRC增益編碼器
43‧‧‧編碼器
44‧‧‧另外信號
51‧‧‧DRC資訊解碼區塊
52‧‧‧增益應用區塊
53、55‧‧‧變換至高階保真立體音響(HOA)域區塊
54‧‧‧增益指定區塊
56‧‧‧HOA呈現區塊
57‧‧‧呈現器矩陣修改區塊
610‧‧‧音頻物件DRC區塊
615‧‧‧HOA DRC區塊
620、650‧‧‧物件呈現區塊
625、655‧‧‧HOA呈現區塊
670‧‧‧DRC2區塊
AO‧‧‧音頻物件
B ‧‧‧HOA信號
B DRC ‧‧‧作為結果已修改HOA表示法
C‧‧‧HOA樣本區塊
c ‧‧‧HOA係數的一時間樣本的向量
D ‧‧‧HOA呈現矩陣
D DSHT ‧‧‧判定空間濾波器的矩陣
Figure TW201942897A_D0001
‧‧‧ D DSHT 的反矩陣
D L ‧‧‧呈現矩陣
Figure TW201942897A_D0002
‧‧‧ D L 的反矩陣
Figure TW201942897A_D0003
‧‧‧呈現器矩陣
Figure TW201942897A_D0004
‧‧‧第一原型呈現矩陣
Figure TW201942897A_D0005
‧‧‧第二原型呈現矩陣
e ‧‧‧列向量
G ‧‧‧增益矩陣
g ‧‧‧DRC增益
g DRC ‧‧‧時變增益
g (n,m)‧‧‧向量
g DRC (n,m)‧‧‧增益
L‧‧‧輸出聲道數目
Mult‧‧‧乘法器
N‧‧‧HOA階數
Figure TW201942897A_D0006
‧‧‧求積分增益
QMF‧‧‧正交鏡相濾波器
W ‧‧‧空間信號
W L ‧‧‧已變換HOA信號
W DSHT ‧‧‧空間樣本區塊
Figure TW201942897A_D0007
‧‧‧第零階信號(HOA信號的第一列)
Ω 1‧‧‧預設方向
Ψ DSHT ‧‧‧模式矩陣
τ‧‧‧DRC區塊大小
以下將參考附圖以描述本發明的數個示範實施例,圖中:圖1顯示DRC應用到音頻的一般原理;圖2係根據本發明顯示將DRC應用到HOA為基信號的一般方法;圖3顯示球面揚聲器網格用於N=1至N=6;圖4顯示DRC增益的產生以用於HOA;圖5顯示DRC應用到HOA信號;圖6顯示在解碼器端的動態範圍壓縮處理;圖7顯示DRC在QMF域中用於HOA,與呈現步驟結合;及圖8顯示DRC在QMF域中用於HOA,與呈現步驟結合以用於單個DRC增益群的簡單情況。
本發明揭示DRC可如何應用到HOA,這在傳統上並不容易,原因是HOA係一音場描述。圖2描繪該方法的原理,如圖2a)所示,在編碼或傳送端分析HOA信號,從HOA信號的分析中計算出DRC增益 g ,並將DRC增益編碼及連同HOA內容的已編碼表示法一起傳送,此可係一多工位元流或二或多個分開的位元流。
如圖2b)所示,在解碼或接收端,從此一(或此類)位元流萃取出增益 g ,在該(或該等)位元流在一解碼器中解碼後,將該等增益 g 應用HOA信號,將說明如下。藉此,將該等增益應用到HOA信號,意即通常得到一已動態範圍縮減HOA信號,最後,在一HOA呈現器中呈現已動態範圍調整HOA信號。
以下將說明所使用的假設及定義。
假設係:HOA呈現係能量保留的,意即使用N3D正規化球諧函數,及呈現後仍維持已在HOA表示法內編碼的單向信號能量。例如在世界專利公開號WO2015/007889A(PD130040)中揭露如何達成此能量保留HOA呈現。
將所使用項目的定義說明如下。
B
Figure TW201942897A_D0008
表示含τ個HOA樣本的一區塊, B = [ b (1), b (2),.., b (t),.., b (τ)],具有向量
Figure TW201942897A_D0009
Figure TW201942897A_D0010
,其包含ACN階數中的保真立體音響係數(向量索引o=n 2+n+m+1,具有係數階數索引n 及係數度數索引m)。N表示HOA截斷階數,在 b 中的高階係數的數目係(N+1)2,用於一區塊資料的樣本索引係t,τ的範圍可總是在一個樣本到64個樣本或更多。
第零階信號
Figure TW201942897A_D0011
B 的第一列。
D
Figure TW201942897A_D0012
表示一能量保留呈現矩陣,其將一區塊 HOA樣本呈現到空間域中由L個揚聲器聲道組成的一區塊: W=DB ,具有 W
Figure TW201942897A_D0013
。這是圖2b)中HOA呈現器的假設程序(HOA呈現)。
D L
Figure TW201942897A_D0014
表示一呈現矩陣,相關L L =(N+1)2個 聲道,其依極規則方式定位在一球面上,依一方法使所有相鄰位置共享相同距離。 D L 係適當調整的,並存在其反矩陣
Figure TW201942897A_D0015
,因此兩者定義一對變換矩陣(DSHT-離散球諧變換): W L =D L B ,
Figure TW201942897A_D0016
g L L =(N+1)2個增益DRC值的一向量,假定增益值將應用到τ個樣本的一區塊,及假定增益值將平順地從區塊到區塊。用於傳輸,共享相同值的增益值係可合併到增益群。若只使用單個增益群,則這表示將單個DRC增益值(在此由g 1表示)應用到所有揚聲器聲道τ個樣本。
用於每一HOA截斷階數N,定義一理想L L =(N+1)2個虛擬揚聲器網格及相關的呈現矩陣 D L ,虛擬揚聲器位置提供環繞一虛擬聆聽者的空間區域樣本。圖3中顯示網格用於N=1到N=6,其中揚聲器相關的區域係陰影單元格。一採樣位置係總相關一中央揚聲器位置(方位角 =0,斜度=π/2;請注意方位角係從聆聽位置相關的正面方向所測得)。當產生DRC增益時,在編碼器端已知道採樣位置 D L
Figure TW201942897A_D0017
,為應用該等增益值,在解碼器端需要知道 D L
Figure TW201942897A_D0018
產生DRC增益用於HOA的工作進行如下。
藉由 W L = D L B ,將HOA信號轉換到空間域,藉由分析此等信號以產生DRC增益gl,直到L L =(N+1)2。若該內容係HOA與音頻物件(AO)的組合,則可將AO信號如對話軌跡用於側鏈,如圖4b)所示。當產生不同空間區相關的相異DRC增益值時,需小心不使此等增益影響解碼器端的空間影像穩定度。為避免發生此情況,在最簡單情形(所謂的簡化模式)中,可將單個增益指定給全部L個聲道,此可藉由分析所有空間信號 W ,或藉由分析第零階HOA係數樣本區塊(
Figure TW201942897A_D0019
)來完成,並不需要變換到空間域(圖4a)。後者係同等於分析 W 的降混信號,以下將提供進一步細節。
在圖4中,顯示DRC增益的產生以用於HOA。圖4a)繪示如何能從第零階HOA分量
Figure TW201942897A_D0020
(視需要具有從AO來的側鏈)導出單個增益g1(用於單個增益群)。在一DRC分析區塊41s中,分析第零階HOA分量
Figure TW201942897A_D0021
,及導出單個增益g1。在一DRC增益編碼器42s中,分開地將單個增益g1編碼。接著在編碼器43中,將已編碼增益連同HOA信號 B 一起編碼,該編碼器輸出一已編碼位元流。視需要,在該編碼中可將另外信號44包含在內。圖4b)繪 示如何藉由將HOA表示法變換40到一空間域中以產生二或多個DRC增益。接著在一DRC分析區塊41中分析已變換HOA信號 W L ,及在一DRC增益編碼器42中將增益值 g 萃取及編碼。在此同樣地,在一編碼器43中將已編碼增益連同HOA信號 B 一起編碼,及視需要可在該編碼中將另外信號包含在內。作為一範例,從背面來的聲音(如背景聲音)會比源自正面及側面方向的聲音取得較多衰減,此將造成 g 中的(N+1)2個增益值,其用於此範例可在二增益群內傳送。視需要,在此亦可能藉由音頻物件波形及其方向資訊來使用側鏈。側鏈意指用於一信號的DRC增益係從另一信號得到,此減低HOA信號的功率。分散HOA混音中的聲音,與AO前景聲音共享相同空間源區,可比空間上遠離的聲音取得較強衰減增益。
將該增益值傳送到一接收器或編碼器端。
傳送1至L L =(N+1)2個增益值的變數(相關含τ個樣本的一區塊),可將增益值指定到用於傳輸的聲道群。在一實施例中,將所有相等增益合併在一聲道群中,用以使傳輸資料減至最小。若傳送單個增益,則相關所有L L 個聲道,所傳送的是聲道群增益值gl g 及其數目,聲道群的用途係以信號表示,以便接收器或解碼器可正確地應用該等增益值。
將增益值應用如下。
接收器/解碼器可判定已傳送編碼增益值的數目,將相關資訊解碼51,並將該等增益指定52-55到L L =(N+1)2 個聲道。若只傳送一增益值(一聲道群),則該增益值可直接應用52到HOA信號( B DRC =g 1 B ),如圖5a)所示,因解碼係更為簡單及需要明顯較少的處理,因此這具有一優勢。原因在於不需任何矩陣運算;反而可直接應用52增益值(如與HOA係數相乘),進一步細節參閱以下說明。
若傳送二或多個增益,則將該等聲道群增益各指定到L個聲道增益 g =[g 1,...,g L ]。
用於虛擬規則揚聲器網格,由以下公式算出應用DRC增益的揚聲器信號:
Figure TW201942897A_D0022
接著由以下公式算出作為結果的已修改HOA表示法:
Figure TW201942897A_D0023
如圖5b)所示,可將此簡化,不將HOA信號變換到空間域、應用增益及將結果變換回到HOA域,反而藉由以下公式將增益向量變換53到HOA域:
Figure TW201942897A_D0024
具有
Figure TW201942897A_D0025
,在一增益指定區塊54中,將該增益矩陣直接應用到HOA係數: B DRC = GB
就用於(N+1)2<τ所需的計算運算而言,這係較有效率,意即,因解碼更為容易及需要的處理明顯較少,因此此解決方案具有一優勢超越傳統解決方案,原因在於不需要任何矩陣運算;反而在增益指定區塊54中可直接應用增益值(如與HOA係數相乘)。
在一實施例中,應用增益矩陣的更有效率方 式係在一呈現器矩陣修改區塊中藉由
Figure TW201942897A_D0026
以操控呈現器矩陣,在一步驟中應用DRC及呈現HOA信號:
Figure TW201942897A_D0027
,此係顯示在5c)中,若L<τ,則此係有利的。
總而言之,圖5顯示將DRC應用到HOA信號的各種實施例,在5a)中,將單個聲道群增益傳送及解碼51,並直接應用到HOA係數52,接著使用正規呈現矩陣以呈現56該等HOA係數。
在圖5b)中,將超過一個聲道群增益傳送及解碼51,該解碼造成含(N+1)2個增益值的一增益向量 g ,產生一增益矩陣 G 並應用54到一區塊的HOA樣本,接著藉由使用一正規呈現矩陣以呈現56此等HOA樣本。
在圖5c)中,不直接將已解碼增益矩陣/增益值應用到HOA信號,反而直接應用到呈現器的矩陣,此步驟係執行在呈現器矩陣修改區塊57中,若DRC區塊大小τ係大於輸出聲道數目L,則在計算上係有利的。在此情形中,藉由使用一已修改呈現矩陣以呈現57該等HOA樣本。
以下將說明理想DSHT(離散球諧變換)矩陣的計算以用於DRC,此類DSHT矩陣尤其最適用於DRC中,並與其他目的(如資料傳輸率壓縮)所使用的DSHT矩陣不同。
以下導出一理想球面布局相關的理想呈現及編碼矩陣 D L
Figure TW201942897A_D0028
的要求,最後,將此等要求說明如下: (1)呈現矩陣 D L 必須是可逆的,意即
Figure TW201942897A_D0029
需要存在;(2)空間域中的振幅總和應在空間變換到HOA域後反映為第零階HOA係數,及在後續變換到空間域後應加以保留(振幅要求);及(3)空間信號的能量在變換到HOA域及變換回到空間域時應加以保留(能量保留要求)。
即使用於理想呈現布局,要求2及3看起來係互相予盾,當使用一簡單措施以導出DSHT變換矩陣(如先前技藝習知者)時,只能精確無誤地滿足要求(2)與(3)中的一者或另一者。精確無誤地滿足要求(2)與(3)中的一者造成另一者誤差超過3dB(分貝),這通常導致聽得見的人工產物。以下將說明一方法以克服此問題。
首先,選擇一理想球面布局具有L=(N+1)2,由Ω 1提供(虛擬)揚聲器位置的L個方向,及相關模式矩陣係表示為Ψ L =[φ(Ω 1),...,φ(Ω 1),φ(Ω L)] T 。各φ(Ω 1)係一模式向量,含有方向Ω 1的球諧函數。將相關該等球面布局位置的L個求積分增益組合在向量
Figure TW201942897A_D0030
中,此等求積分增益估計此類位置周圍的球面積並全加總到值4π,相關半徑係一的一球體表面。
由以下公式導出一第一原型呈現矩陣
Figure TW201942897A_D0031
Figure TW201942897A_D0032
請注意,由於稍後的一正規化步驟,可省略除以L的除法(參閱以下說明)。
第二,執行一緊緻奇異值分解:
Figure TW201942897A_D0033
, 及由以下公式導出一第二原型矩陣:
Figure TW201942897A_D0034
第三,將該原型矩陣正規化:
Figure TW201942897A_D0035
其中k表示矩陣範數類型。二矩陣範數類型顯示同等良好性能。應使用k=1範數或Frobenius範數。此矩陣滿足要求3(能量保留)。
第四,在最後步驟中,替換用以滿足要求2的振幅誤差: 由
Figure TW201942897A_D0036
計算列向量 e ,其中[1,0,0,..,0]係一列向量,含有(N+1)2個全零元素(除了第一元素具有值一 之外),
Figure TW201942897A_D0037
表示
Figure TW201942897A_D0038
的列向量總和,茲藉由替換該振幅誤差以導出呈現矩陣 D L
Figure TW201942897A_D0039
其中將向量 e 加到
Figure TW201942897A_D0040
的每一列,此矩陣滿足要求2及要求3,
Figure TW201942897A_D0041
的第一列元素全成為一。
以下將說明用於DRC的詳細要求。
首先,L L 個同等增益具有應用在空間域中的一值g 1係等於將增益g 1應用到HOA係數:
Figure TW201942897A_D0042
此導致要求:
Figure TW201942897A_D0043
,其意指L=(N+1)2
Figure TW201942897A_D0044
需要存在(顯而易見的)。
第二,分析空間域中的總和信號係等於分析第零階HOA分量,DRC分析器使用信號能量以及其振 幅,因此該總和信號係相關振幅及能量。
HOA的信號模型: B=Ψ e X s X s
Figure TW201942897A_D0045
係一矩陣含有 S個方向信號;Ψ e =[φ(Ω 1),...,φ(Ω s),φ(Ω S)]係一N3D模式矩陣,相關方向Ω 1,...,Ω s。由球諧函數組合出模式向量
Figure TW201942897A_D0046
,在N3D計數法中,第零 階分量
Figure TW201942897A_D0047
係無關乎方向。
第零階分量HOA信號需要成為該等方向信號的總和
Figure TW201942897A_D0048
,用以反映加總信號的正確振幅。1 S 係由S個具有值1的元素所組合出的一向量,因
Figure TW201942897A_D0049
,在此混音中保留該等方向信號的能量,若該等信號 X s 並不相關,則將簡化成
Figure TW201942897A_D0050
Figure TW201942897A_D0051
提供空間域中的振幅總 和,具有HOA平移矩陣 M L =D L Ψ e
這變成
Figure TW201942897A_D0052
以用於
Figure TW201942897A_D0053
,後者要求可與有時用在平移像VBAP的振幅要求總和作比較,在經驗上可看出這可利用
Figure TW201942897A_D0054
以良好近似值達成以用於極對稱球面揚聲器配置,原因是發現:
Figure TW201942897A_D0055
Figure TW201942897A_D0056
,接著可在必要準確度內達到振幅要求。
這亦確保可符合用於總和信號的能量要求:空間域中的能量總和係由以下公式提供:
Figure TW201942897A_D0057
,其會以良好近似值成為
Figure TW201942897A_D0058
,存在所需理想對應揚聲器配置。
此導致要求:
Figure TW201942897A_D0059
,及另外由該信號模型 可推斷
Figure TW201942897A_D0060
的最上列需要係[1,1,1,1,..],即具有元素”一”長度L的一向量,為使重編碼階數零信號維持振幅及能量不變。
第三,能量保留係一先決條件:在轉換到HOA及空間呈現到揚聲器後,應保留信號 x s
Figure TW201942897A_D0061
的能量,無關乎該信號的方向 Ω s ,此導致
Figure TW201942897A_D0062
。這可藉由從旋轉矩陣及一對角線矩陣的模型化 D L 來達成: D L =UV T diag( a )(為求清晰,移除在方向(Ω s)的依存性):
Figure TW201942897A_D0063
用於球諧函數
Figure TW201942897A_D0064
,因此相關
Figure TW201942897A_D0065
Figure TW201942897A_D0066
的所有增益
Figure TW201942897A_D0067
會滿足該公式,若選擇所有增益相等,則這造成
Figure TW201942897A_D0068
可達成要求 VV T =1以用於L
Figure TW201942897A_D0069
(N+1)2及只求近似以用於L<(N+1)2
此導致要求:
Figure TW201942897A_D0070
,具有
Figure TW201942897A_D0071
作為一範例,以下(表一至表三)說明具有理想球面位置的情形(用於HOA階數N=1至N=3),另外在以下(表四至表六)說明用於另外HOA階數(N=4至N=6)的理想球面位置。以下提及的所有位置皆從[1]中揭露的修改位置所導出。用以導出此等位置的方法及相關的求積分/求體積增益係揭露在[2]中。在此等表中,方位角係從聆聽位置相關的正面方向反時鐘方向測得,及斜度係從z軸 測得,具有一斜度0係在聆聽位置上方。
數值積分法(numerical quadrature)一詞常縮寫為求積分(quadrature),實為數值積分(numerical integration)的同義詞,尤其如應用到一維積分,關於超過一維的數值積分在本文中稱為求體積法(cubature)。
圖5中顯示上述應用DRC增益到HOA信號的典型應用情節。用於混合式內容應用,如HOA加上音頻物件,以至少二方式可實現DRC增益應用以用於彈性呈現。
圖6以範例顯示在解碼器端的動態範圍壓縮(DRC)處理,在圖6a)中,在呈現及混音前應用DRC,在 圖6b)中,將DRC應用到揚聲器信號,意即在呈現及混音後。
在圖6a)中,將DRC增益分開地應用到音頻物件及HOA:在一音頻物件DRC區塊610中將DRC增益應用到音頻物件,及在一HOA DRC區塊615中將DRC增益應用到HOA。在此HOA DRC區塊615的區塊實現匹配圖5中該等者中的一者。在圖6b)中,將單個增益應用到已呈現HOA及已呈現音頻物件信號的混合信號的所有聲道。在此不可能有任何空間強調及衰減。因在廣播或內容產生地點的產生時機不知道消費者地點的揚聲器布局,因此無法藉由分析已呈現混音的總和信號以產生相關的DRC增益。分析 y m
Figure TW201942897A_D0077
可導出DRC增益,其中 y m 係第零階HOA信號 b wS個音頻物件 x s 的單調降混的一混音:
Figure TW201942897A_D0078
以下將說明所揭示解決方法的進一步細節。
用於HOA內容的DRC
DRC係在呈現前應用到HOA信號,或可與呈現結合。
用於HOA的DRC係可應用在時域中或QMF-濾波器組領域中。
用於時域中的DRC,根據HOA信號的HOA係數聲道數目 c ,DRC解碼器提供(N+1)2個增益值 g drc =
Figure TW201942897A_D0079
N係HOA階數。
DRC增益應用到HOA信號係根據:
Figure TW201942897A_D0080
其中 c 係HOA係數( c
Figure TW201942897A_D0081
)的一時間樣本的向 量,及 D L
Figure TW201942897A_D0082
及其反矩陣
Figure TW201942897A_D0083
係相關離散球諧變換(DSHT)的矩陣,最適用於DRC目的。
在一實施例中,為減低每一樣本(N+1)4個運算的計算負荷,有利的是包含呈現步驟及直接藉由以下式子計算揚聲器信號:
Figure TW201942897A_D0084
,其中 D 係呈現矩陣及可預先算出(
Figure TW201942897A_D0085
)。
若所有增益g 1 ,..,
Figure TW201942897A_D0086
具有相同值g drc ,如在簡化模式中,則已使用單個增益群以傳送編碼器DRC增益。此情形可由DRC解碼器以旗標表示,原因是在此情形中,不需要空間濾波器中的計算,使計算簡化成:c drc=gdrc c
以上說明如何得到及應用DRC增益值,以下將說明DSHT矩陣用於DRC的計算。
以下將 D L重新命名成 D DSHT,用以判定空間濾波器的矩陣D DSHT 及其反矩陣
Figure TW201942897A_D0087
係計算如下: 選擇一組球面位置
Figure TW201942897A_D0088
,具有
Figure TW201942897A_D0089
及選擇相關的求積分(求體積)增益
Figure TW201942897A_D0090
,由表一至表四中的HOA階數N編上索引。如上述計算此等位置相關的一模式矩陣Ψ DSHT ,意即根據
Figure TW201942897A_D0091
,模式矩陣Ψ DSHT 包括數個模式向量,各φ(Ω 1)係一模式向量,其包含一預設方向Ω 1的球諧函數,
Figure TW201942897A_D0092
,根據表一至表六(示範性地用於 1
Figure TW201942897A_D0093
N
Figure TW201942897A_D0094
6),該預設方向取決於HOA階數N。由
Figure TW201942897A_D0095
Figure TW201942897A_D0096
計算一第一原型矩陣(由於一後續正規化,可跳過藉由(N+1)2的除法),執行一緊緻奇異值分解
Figure TW201942897A_D0097
USV T ,及由以下式子計算一新原型矩陣:
Figure TW201942897A_D0098
。藉由 以下式子將此矩陣正規化:
Figure TW201942897A_D0099
。由
Figure TW201942897A_D0100
計算一列向量 e ,其中[1,0,0,..,0]係一列向量,含(N+1)2個全零元素(除了具有值一的第一元素以外)。
Figure TW201942897A_D0101
表示
Figure TW201942897A_D0102
的列總和,茲由以下式子導出最適DSHT矩陣: D DSHT D DSHT =
Figure TW201942897A_D0103
。已發現若使用 -e 代替 e ,則本發明提供稍為較差但仍可用的結果。
用於QMF-濾波器組領域的DRC,應用以下步驟。
DRC解碼器提供一增益值g ch (n,m)用於每時頻磚格n,m以用於(N+1)2個空間聲道。用於時槽n及頻帶m的增益係配置在 g (n,m)
Figure TW201942897A_D0104
中。
將多頻帶DRC應用在QMF濾波器組領域中,圖7中顯示處理步驟,藉由以下式子(逆DSHT)將已重建HOA信號變換到空間域中: W DSHT =D DSHT C ,其中 C
Figure TW201942897A_D0105
係含τ個HOA樣本的一區塊,及 W DSHT
Figure TW201942897A_D0106
係一空間樣本區塊,匹配該QMF濾波器組的輸入時間粒度。接著應用QMF分析濾波器組,令
Figure TW201942897A_D0107
表示每時頻磚格(n,m)的一空間聲道向量,接著應用DRC增益:
Figure TW201942897A_D0108
為使運算複雜度減至最小,將DSHT及呈現 到揚聲器聲道合併:
Figure TW201942897A_D0109
,其中 D 表示HOA呈現矩陣。接著可將QMF信號饋到混音器以用於進一步處理。
圖7顯示DRC於QMF域中用於HOA,與一呈現步驟結合。若只已使用單個增益群用於DRC,則這應由DRC解碼器以旗標表示,原因再次是可能簡化運算。在此情形中,在向量 g (n,m)中的增益全共享相同值g DRC (n,m),QMF濾波器組係可直接應用到HOA信號,及增益g DRC (n,m)係可在濾波器組領域中倍增。
圖8顯示DRC於QMF域(正交鏡相濾波器的濾波器域)中用於HOA,與一呈現步驟結合,具有運算簡化以用於單個DRC增益群的簡單情況。
有鑑於以上說明已明白,在一實施例中,本發明涉及一種將動態範圍壓縮增益因子應用到一高階保真立體音響(HOA)信號的方法,該方法包括以下步驟:接收一HOA信號及一或多個增益因子;將HOA信號變換40到空間域中,其中將一iDSHT(逆離散球諧變換)與從虛擬揚聲器的球面位置得到的一變換矩陣及求積分增益q搭配使用,及其中得到一已變換HOA信號;將增益因子與已變換HOA信號相乘,其中得到一已動態範圍壓縮變換HOA信號;及將已動態範圍壓縮變換HOA信號變換回到係數域的HOA域中及使用一離散球諧變換(DSHT),其中得到一已動態範圍壓縮HOA信號。
另外,根據
Figure TW201942897A_D0110
算出變 換矩陣,其中
Figure TW201942897A_D0111
Figure TW201942897A_D0112
的一正規化版本,U、V 係從
Figure TW201942897A_D0113
得到,Ψ DSHT 係球諧函數的轉置模式矩陣,相關所使用虛擬揚聲器的球面位置,及 e T
Figure TW201942897A_D0114
的一轉置版本。
另外,在一實施例中,本發明涉及一種將動態範圍壓縮(DRC)增益因子應用到一高階保真立體音響(HOA)信號的裝置,該裝置包括一處理器或一或多個處理元件,係配置用以:接收一HOA信號及一或多個增益因子;將HOA信號變換40到空間域中,其中將一iDSHT(逆離散球諧變換)與從虛擬揚聲器的球面位置得到的一變換矩陣及求積分增益q搭配使用,及其中得到一已變換HOA信號;將增益因子與已變換HOA信號相乘,其中得到一已動態範圍壓縮變換HOA信號;及將已動態範圍壓縮變換HOA信號變換回到係一係數域的HOA域中及使用一離散球諧變換(DSHT),其中得到一已動態範圍壓縮HOA信號。另外,根據
Figure TW201942897A_D0115
算出變換 矩陣,其中
Figure TW201942897A_D0116
Figure TW201942897A_D0117
的一正規化版本,U、V 係從
Figure TW201942897A_D0118
得到,Ψ DSHT 係球諧函數的轉置模式矩陣,相關所使用虛擬揚聲器的球面位置,及 e T
Figure TW201942897A_D0119
的一轉置版本。
另外,在一實施例中,本發明涉及一種電腦可讀取儲存媒體,具有電腦可執行指令,其執行在一電腦上時,令該電腦執行將動態範圍壓縮增益因子應用到一高 階保真立體音響(HOA)信號的方法,該方法包括:接收一HOA信號及一或多個增益因子;將HOA信號變換40到空間域中,其中將一iDSHT(逆離散球諧變換)與從虛擬揚聲器的球面位置得到的一變換矩陣及求積分增益q搭配使用,及其中得到一已變換HOA信號;將增益因子與已變換HOA信號相乘,其中得到一已動態範圍壓縮變換HOA信號;及將已動態範圍壓縮變換HOA信號變換回到係一係數域的HOA域中及使用一離散球諧變換(DSHT),其中得到一已動態範圍壓縮HOA信號。另外,根據 D DSHT =
Figure TW201942897A_D0120
算出變換矩陣,其中
Figure TW201942897A_D0121
Figure TW201942897A_D0122
的一正規化版本,U、V係從
Figure TW201942897A_D0123
得到,Ψ DSHT 係球諧函數的轉置模式矩陣,相關所使用虛擬揚 聲器的球面位置,及 e T
Figure TW201942897A_D0124
的一轉置版本。
另外,在一實施例中,本發明涉及一種在高階保真立體音響(HOA)信號上執行動態範圍壓縮(DRC)的方法,該方法包括以下步驟:設定或判定一模式,該模式係一簡化模式或一非簡化模式,在非簡化模式中將HOA信號變換到空間域,其中使用一逆DSHT(離散球諧變換);在非簡化模式中分析已變換HOA信號,及在簡化模式中分析HOA信號;從該分析的結果,得到一或多個增益因子,其可用於動態範圍壓縮,其中在簡化模式中只得到一增益因子,及其中在非簡化模式中得到二或多個相異增益因子;在簡化模式中將得到的增益因子與HOA信號 相乘,其中得到一已增益壓縮HOA信號,在非簡化模式中將得到的增益因子與已變換HOA信號相乘,其中得到一已增益壓縮變換HOA信號;及將已增益壓縮變換HOA信號變換回到HOA域中,其中得到一已增益壓縮HOA信號。
在一實施例中,該方法尚包括以下步驟:接收一指示,指出一簡化模式或一非簡化模式;若該指示指出非簡化模式,則選擇一非簡化模式,及若該指示指出簡化模式,則選擇一簡化模式,其中只在非簡化模式中執行將HOA信號變換到空間域中及將已動態範圍壓縮變換HOA信號變換回到HOA域中的步驟,及其中在簡化模式中只將一增益因子與HOA信號相乘。
在一實施例中,該方法尚包括以下步驟:在簡化模式中分析HOA信號,及在非簡化模式中分析已變換HOA信號,接著從該分析的結果得出一或多個增益因子,其可使用於動態範圍壓縮,其中在非簡化模式中得到二或多個相異增益因子,及在簡化模式中只得到一增益因子,其中在簡化模式中,藉由得到的增益因子與HOA信號的該相乘得到一已增益壓縮HOA信號,及其中在非簡化模式中,藉由得到的二或多個增益因子與已變換HOA信號相乘,得到該已增益壓縮變換HOA信號,及其中在非簡化模式中,HOA信號到空間域的該變換使用一逆DSHT。
在一實施例中,將HOA信號分割成頻率次 頻帶,及得到該(等)增益因子及分開地應用到各頻率次頻帶,每次頻帶具有個別增益。在一實施例中,分析HOA信號(或已變換HOA信號)、得到一或多個增益因子、將得到的該(等)增益因子與HOA信號(或已變換HOA信號)相乘,及將已增益壓縮變換HOA信號變換回到HOA域中等步驟係分開地應用到各頻率次頻帶,每次頻帶具有個別增益。請注意到,HOA信號分割成頻率次頻帶及HOA信號變換到空間域的順序次序可調換,及/或合成該等次頻帶及已增益壓縮變換HOA信號變換回到HOA域中的順序次序可調換,與彼此無關。
在一實施例中,該方法在乘增益因子前,尚包括一傳送步驟,將已變換HOA信號連同得到的增益因子及此等增益因子的數目一起傳送。
在一實施例中,從一模式矩陣Ψ DSHT 及對應的求積分增益算出變換矩陣,其中根據Ψ DSHT =
Figure TW201942897A_D0125
,模式矩陣Ψ DSHT 包括數個模式向量,各φ(Ω 1)係一模式向量,含有一預設方向Ω 1的球諧函數,具有
Figure TW201942897A_D0126
,該預設方向取決於一HOA階數N。
在一實施例中,將HOA信號 B 變換到空間域中,用以得到一已變換HOA信號 W DSHT ,及根據 W DSHT =diag( g ) D L B 逐樣本將已變換HOA信號 W DSHT 與增益因子diag( g )相乘,及該方法包括另一變換步驟,根據 W 2=
Figure TW201942897A_D0127
將已變換HOA信號變換到一相異第二空間域,其 中根據
Figure TW201942897A_D0128
在一初始階段中預先計算
Figure TW201942897A_D0129
,及其中 D 係一 呈現矩陣,其將一HOA信號變換到該相異第二空間域中。
在一實施例中,至少若(N+1)2<τN係HOA階數及τ係一DRC區塊大小,則該方法尚包括以下步驟:根據
Figure TW201942897A_D0130
將增益向量變換53到HOA域, G 係一增益矩陣及 D L 係定義該DSHT的一DSHT矩陣;及根據 B DRC =GB 將增益矩陣 G 應用到HOA信號 B 的HOA係數,其中得到已DRC壓縮HOA信號 B DRC
在一實施例中,至少若L<τL係輸出聲道數目及τ係一DRC區塊大小,則該方法尚包括以下步驟: 根據
Figure TW201942897A_D0131
將增益矩陣 G 應用到呈現器矩陣 D ,其中得到一已動態範圍壓縮呈現器矩陣
Figure TW201942897A_D0132
,及利用已動態範圍壓縮呈現器矩陣以呈現HOA信號。
在一實施例中,本發明涉及一種將動態範圍壓縮(DRC)增益因子應用到一高階保真立體音響(HOA)信號的方法,該方法包括以下步驟:接收一HOA信號連同一指示及一或多個增益因子,該指示指出一簡化模式或一非簡化模式,其中若該指示指出該簡化模式,則只接收到一增益因子;根據該指示選擇一簡化模式或一非簡化模式,在簡化模式中將增益因子與HOA信號相乘,其中得到一已動態範圍壓縮HOA信號,及在非簡化模式中將HOA信號變換到空間域中,其中得到一已變換HOA信號,將增益因子與已變換HOA信號相乘,其中得到已動態範圍壓縮變換HOA信號,及將已動態範圍壓縮變換 HOA信號變換回到HOA域中,其中得到一已動態範圍壓縮HOA信號。
另外,在一實施例中,本發明涉及一種在高階保真立體音響(HOA)信號上執行動態範圍壓縮(DRC)的裝置,該裝置包括一處理器或一或多個處理元件,係調適用以:設定或判定一模式,該模式係一簡化模式或一非簡化模式,在非簡化模式中將HOA信號變換到空間域,其中使用一逆DSHT(離散球諧變換);在非簡化模式中分析已變換HOA信號,而在簡化模式中分析HOA信號;從該分析的結果得到一或多個增益因子,其可用於動態範圍壓縮,其中在簡化模式中只得到一增益因子,及其中在非簡化模式中得到二或多個相異增益因子;在簡化模式中將得到的增益因子與HOA信號相乘,其中得到一已增益壓縮HOA信號,及在非簡化模式中將得到的增益因子與已變換HOA信號相乘,其中得到一已增益壓縮變換HOA信號;及將已增益壓縮變換HOA信號變換回到HOA域中,其中得到一已增益壓縮HOA信號。
在只用於非簡化模式的一實施例中,一種用以在一高階保真立體音響(HOA)信號上執行動態範圍壓縮(DRC)的裝置,包括一處理器或一或多個處理元件,係調適用以:將HOA信號變換到空間域;分析已變換HOA信號;從該分析的結果得出增益因子,其可用於動態範圍壓縮;將得到的因子與已變換HOA信號相乘,其中得到已增益壓縮變換HOA信號;及將已增益壓縮變換HOA信號 變換回到HOA域中,其中得到已增益壓縮HOA信號。在一實施例中,該裝置尚包括一傳輸單元,在乘得到的該增益因子或該等增益因子前,用以將HOA信號連同得到的該增益因子或該等增益因子一起傳送。
在此亦請注意,HOA信號分割成頻率次頻帶與HOA信號變換到空間域的順序次序可調換,及合成次頻帶與已增益壓縮變換HOA信號變換回到HOA域中的順序次序可調換,與彼此無關。
另外,在一實施例中,本發明涉及一種將動態範圍壓縮(DRC)增益因子應用到一高階保真立體音響(HOA)信號的裝置,該裝置包括一處理器或一或多個處理元件,係調適用以接收一HOA信號連同一指示及一或多個增益因子,該指示指出一簡化模式或一非簡化模式,其中若該指示指出簡化模式,則只接收到一增益因子,根據該指示將該裝置設成簡化模式或非簡化模式,在簡化模式中將增益因子與HOA信號相乘,其中得到一已增益壓縮HOA信號;及在非簡化模式中將HOA信號變換到空間域中,其中得到一已變換HOA信號,將增益因子與已變換HOA信號相乘,其中得到一已動態範圍壓縮變換HOA信號,及將已動態範圍壓縮變換HOA信號變換回到HOA域中,其中得到一已動態範圍壓縮HOA信號。
在一實施例中,該裝置尚包括一傳輸單元,在乘得到的因子前,用以將HOA信號連同得到的增益因子一起傳送。在一實施例中,以下步驟係分開地應用到各 頻率次頻帶,每次頻帶具有個別增益:將HOA信號分割成頻率次頻帶,及分析已變換HOA信號,得到增益因子,將得到的因子與已變換HOA信號相乘,及將已增益壓縮變換HOA信號變換回到HOA域中。
在應用DRC增益因子到一HOA信號的裝置的一實施例中,以下步驟係分開地應用到各頻率次頻帶,每次頻帶具有個別增益:將HOA信號分割成複數個頻率次頻帶,及得到一或多個增益因子,將得到的增益因子與HOA信號或已變換HOA信號相乘,及在非簡化模式中將已增益壓縮變換HOA信號變換回到HOA域中。
另外,在只使用非簡化模式的一實施例中,本發明涉及一種將動態範圍壓縮(DRC)增益因子應用到一高階保真立體音響(HOA)信號的裝置,該裝置包括一處理器或一或多個處理元件,係調適用以:接收一HOA信號連同增益因子;(使用iDSHT(逆離散球諧變換))將HOA信號變換到空間域中,其中得到一已變換HOA信號;將增益因子與已變換HOA信號相乘,其中得到一已動態範圍壓縮變換HOA信號,及(使用DSHT(離散球諧變換))將已動態範圍壓縮變換HOA信號變換回到HOA域(即係數域)中,其中得到一已動態範圍壓縮HOA信號。
以下的表四至表六中列出虛擬揚聲器的球面位置用於HOA階數N,N=4、5或6。
雖然已顯示、說明及指出本發明如應用在其較佳實施例的基本新穎特點,但應瞭解,不背離本發明的 精神,熟諳此藝者在所揭示的裝置及方法中,在所揭示裝置的形式及細節中,及在其操作中,可作出各種不同的省略、替換及變更。明顯希望以大體上相同方式執行大體上相同功能用以達成相同結果的該等元件的所有組合皆包含在本發明的範圍內,而且亦完全希望及涵蓋從一所述實施例到另一實施例的元件替換。
請瞭解已單純藉由範例說明本發明,不背離本發明的範圍可作出細節修改,本說明書及後附申請專利範圍(只要適當)及附圖中揭示的各特點可獨立地提供或在任何適當組合中提供,只要適當,可在硬體、軟體或二者的組合中實施。
參考文獻:
[1] “球體之積分節點(Integration nodes for the sphere)”,由Jörg Fliege於2010年發表,2010年10月5日登載於網站,網址http://www.mathematik.uni-dortmund.de/lsx/research/projects/fliege/nodes/nodes.html。
[2] “計算球體體積公式之二階段法(A two-stage approach for computing cubature formulae for the sphere)”,由Jörg Fliege及Ulrike Maier於1999年在德國多特蒙德大學數學系發表的技術報告。

Claims (6)

  1. 一種動態範圍壓縮(DRC)方法,該方法包含:接收已重建高階保真立體音響(HOA)音頻信號表示;基於以下式子將該已重建HOA信號表示變換到空間域中: W DSHT =D DSHT C ,其中 D DSHT 為逆離散球階變換(DSHT),其中 C 係含τ個HOA樣本的一區塊,以及其中 W 係一空間樣本區塊,匹配該QMF濾波器(QMF)組的輸入時間粒度;基於以下式子應用對應於時頻磚格( n,m)的DRC增益值 g ( n,m):
    Figure TW201942897A_C0001
    ,其中
    Figure TW201942897A_C0002
    為該時頻磚格( n,m)的空間聲道向量;以及基於
    Figure TW201942897A_C0003
    呈現到揚聲器聲道,其中
    Figure TW201942897A_C0004
    係逆 D DSHT 矩陣並且 D 為HOA呈現矩陣。
  2. 如申請專利範圍第1項之方法,其中該HOA音頻信號表示被分割成頻率次頻帶並且該DRC增益值 g ( n,m)分開地應用到各個次頻帶。
  3. 一種動態範圍壓縮(DRC)設備,該設備包含:接收器,其組態以接收已重建高階保真立體音響(HOA)音頻信號表示;音頻解碼器,其組態以:基於以下式子將該已重建HOA信號表示變換到空間域中: W DSHT =D DSHT C ,其中 D DSHT 為逆離散球階變換(DSHT), 其中 C 係含τ個HOA樣本的一區塊,以及其中 W 係一空間樣本區塊,匹配該QMF濾波器(QMF)組的輸入時間粒度;基於以下式子應用對應於時頻磚格( n,m)的DRC增益值 g ( n,m):
    Figure TW201942897A_C0005
    ,其中
    Figure TW201942897A_C0006
    為該時頻磚格( n,m)的空間聲道向量;以及基於
    Figure TW201942897A_C0007
    呈現到揚聲器聲道,其中
    Figure TW201942897A_C0008
    係逆 D DSHT 矩陣並且 D 為HOA呈現矩陣。
  4. 如申請專利範圍第3項之設備,其中該HOA音頻信號表示被分割成頻率次頻帶並且該DRC增益值 g ( n,m)分開地應用到各個次頻帶。
  5. 一種非暫態電腦可讀取儲存媒體,其具有電腦可執行的指令,當該些指令由電腦執行時導致該電腦執行應用動態範圍壓縮(DRC)方法,該方法包含:接收已重建高階保真立體音響(HOA)音頻信號表示;基於以下式子將該已重建HOA信號表示變換到空間域中: W DSHT =D DSHT C ,其中 D DSHT 為逆離散球階變換(DSHT),其中 C 係含τ個HOA樣本的一區塊,以及其中 W 係一空間樣本區塊,匹配該QMF濾波器(QMF)組的輸入時間粒度;基於以下式子應用對應於時頻磚格( n,m)的DRC增益值 g ( n,m):
    Figure TW201942897A_C0009
    ,其中
    Figure TW201942897A_C0010
    為該時頻磚格( n,m)的空間聲道向量;以及 基於
    Figure TW201942897A_C0011
    呈現到揚聲器聲道,其 中
    Figure TW201942897A_C0012
    係逆 D DSHT 矩陣並且 D 為HOA呈現矩陣。
  6. 如申請專利範圍第5項之方法,其中該HOA音頻信號表示被分割成頻率次頻帶並且該DRC增益值 g ( n,m)分開地應用到各個次頻帶。
TW108105179A 2014-03-24 2015-03-24 應用動態範圍壓縮之方法和設備以及一種非暫態電腦可讀取儲存媒體 TWI695371B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP14305423 2014-03-24
EP14305423.7 2014-03-24
EP14305559.8 2014-04-15
EP14305559.8A EP2934025A1 (en) 2014-04-15 2014-04-15 Method and device for applying dynamic range compression to a higher order ambisonics signal

Publications (2)

Publication Number Publication Date
TW201942897A true TW201942897A (zh) 2019-11-01
TWI695371B TWI695371B (zh) 2020-06-01

Family

ID=52727138

Family Applications (7)

Application Number Title Priority Date Filing Date
TW112102828A TWI833562B (zh) 2014-03-24 2015-03-24 應用動態範圍壓縮至高階保真立體音響信號之方法和裝置
TW109126543A TWI718979B (zh) 2014-03-24 2015-03-24 應用動態範圍壓縮至高階保真立體音響信號之方法和裝置
TW110102935A TWI760084B (zh) 2014-03-24 2015-03-24 應用動態範圍壓縮至高階保真立體音響信號之方法和裝置
TW109101396A TWI711034B (zh) 2014-03-24 2015-03-24 應用動態範圍壓縮之方法和設備以及一種非暫態電腦可讀取儲存媒體
TW108105179A TWI695371B (zh) 2014-03-24 2015-03-24 應用動態範圍壓縮之方法和設備以及一種非暫態電腦可讀取儲存媒體
TW104109277A TWI662543B (zh) 2014-03-24 2015-03-24 應用動態範圍壓縮之方法和設備以及一種非暫態電腦可讀取儲存媒體
TW111107641A TWI794032B (zh) 2014-03-24 2015-03-24 應用動態範圍壓縮至高階保真立體音響信號之方法和裝置

Family Applications Before (4)

Application Number Title Priority Date Filing Date
TW112102828A TWI833562B (zh) 2014-03-24 2015-03-24 應用動態範圍壓縮至高階保真立體音響信號之方法和裝置
TW109126543A TWI718979B (zh) 2014-03-24 2015-03-24 應用動態範圍壓縮至高階保真立體音響信號之方法和裝置
TW110102935A TWI760084B (zh) 2014-03-24 2015-03-24 應用動態範圍壓縮至高階保真立體音響信號之方法和裝置
TW109101396A TWI711034B (zh) 2014-03-24 2015-03-24 應用動態範圍壓縮之方法和設備以及一種非暫態電腦可讀取儲存媒體

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW104109277A TWI662543B (zh) 2014-03-24 2015-03-24 應用動態範圍壓縮之方法和設備以及一種非暫態電腦可讀取儲存媒體
TW111107641A TWI794032B (zh) 2014-03-24 2015-03-24 應用動態範圍壓縮至高階保真立體音響信號之方法和裝置

Country Status (13)

Country Link
US (7) US9936321B2 (zh)
EP (3) EP3123746B1 (zh)
JP (6) JP6246948B2 (zh)
KR (5) KR102005298B1 (zh)
CN (8) CN109036441B (zh)
AU (4) AU2015238448B2 (zh)
BR (5) BR122018005665B1 (zh)
CA (3) CA3155815A1 (zh)
HK (2) HK1258770A1 (zh)
RU (2) RU2658888C2 (zh)
TW (7) TWI833562B (zh)
UA (1) UA119765C2 (zh)
WO (1) WO2015144674A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9607624B2 (en) * 2013-03-29 2017-03-28 Apple Inc. Metadata driven dynamic range control
US9934788B2 (en) 2016-08-01 2018-04-03 Bose Corporation Reducing codec noise in acoustic devices
TWI594231B (zh) * 2016-12-23 2017-08-01 瑞軒科技股份有限公司 分頻壓縮電路,音訊處理方法以及音訊處理系統
BR112019020887A2 (pt) * 2017-04-13 2020-04-28 Sony Corp aparelho e método de processamento de sinal, e, programa.
US10999693B2 (en) * 2018-06-25 2021-05-04 Qualcomm Incorporated Rendering different portions of audio data using different renderers

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2012A (en) * 1841-03-18 Machine foe
DE3640752A1 (de) * 1986-11-28 1988-06-09 Akzo Gmbh Anionische polyurethane
US5956674A (en) * 1995-12-01 1999-09-21 Digital Theater Systems, Inc. Multi-channel predictive subband audio coder using psychoacoustic adaptive bit allocation in frequency, time and over the multiple channels
US6311155B1 (en) * 2000-02-04 2001-10-30 Hearing Enhancement Company Llc Use of voice-to-remaining audio (VRA) in consumer applications
US6670115B1 (en) * 1999-11-24 2003-12-30 Biotronic Technologies, Inc. Devices and methods for detecting analytes using electrosensor having capture reagent
US6959275B2 (en) * 2000-05-30 2005-10-25 D.S.P.C. Technologies Ltd. System and method for enhancing the intelligibility of received speech in a noise environment
US20040010329A1 (en) * 2002-07-09 2004-01-15 Silicon Integrated Systems Corp. Method for reducing buffer requirements in a digital audio decoder
US6975773B1 (en) * 2002-07-30 2005-12-13 Qualcomm, Incorporated Parameter selection in data compression and decompression
HUP0301368A3 (en) * 2003-05-20 2005-09-28 Amt Advanced Multimedia Techno Method and equipment for compressing motion picture data
WO2005027094A1 (fr) * 2003-09-17 2005-03-24 Beijing E-World Technology Co.,Ltd. Procede et dispositif de quantification de vecteur multi-resolution multiple pour codage et decodage audio
CN1677493A (zh) * 2004-04-01 2005-10-05 北京宫羽数字技术有限责任公司 一种增强音频编解码装置及方法
EP1873753A1 (en) * 2004-04-01 2008-01-02 Beijing Media Works Co., Ltd Enhanced audio encoding/decoding device and method
CN1677490A (zh) * 2004-04-01 2005-10-05 北京宫羽数字技术有限责任公司 一种增强音频编解码装置及方法
CN1677491A (zh) * 2004-04-01 2005-10-05 北京宫羽数字技术有限责任公司 一种增强音频编解码装置及方法
US7565018B2 (en) * 2005-08-12 2009-07-21 Microsoft Corporation Adaptive coding and decoding of wide-range coefficients
KR20070020771A (ko) * 2005-08-16 2007-02-22 삼성전자주식회사 다중주파수 이동통신시스템에서 단말의 순방향 전송률 변화정보를 이용한 송수신 방법 및 장치
US20070177654A1 (en) * 2006-01-31 2007-08-02 Vladimir Levitine Detecting signal carriers of multiple types of signals in radio frequency input for amplification
CN101421781A (zh) * 2006-04-04 2009-04-29 杜比实验室特许公司 音频信号的感知响度和/或感知频谱平衡的计算和调整
US8027479B2 (en) * 2006-06-02 2011-09-27 Coding Technologies Ab Binaural multi-channel decoder in the context of non-energy conserving upmix rules
ES2359752T3 (es) * 2006-09-25 2011-05-26 Dolby Laboratories Licensing Corporation Resolución espacial mejorada del campo sonoro para sistemas de reproducción de audio multicanal mediante derivación de señales con términos angulares de orden superior.
US8798776B2 (en) * 2008-09-30 2014-08-05 Dolby International Ab Transcoding of audio metadata
MX2011011399A (es) * 2008-10-17 2012-06-27 Univ Friedrich Alexander Er Aparato para suministrar uno o más parámetros ajustados para un suministro de una representación de señal de mezcla ascendente sobre la base de una representación de señal de mezcla descendete, decodificador de señal de audio, transcodificador de señal de audio, codificador de señal de audio, flujo de bits de audio, método y programa de computación que utiliza información paramétrica relacionada con el objeto.
EP2353161B1 (en) 2008-10-29 2017-05-24 Dolby International AB Signal clipping protection using pre-existing audio gain metadata
ES2435792T3 (es) * 2008-12-15 2013-12-23 Orange Codificación perfeccionada de señales digitales de audio multicanal
CN102265513B (zh) * 2008-12-24 2014-12-31 杜比实验室特许公司 频域中的音频信号响度确定和修改
JP5190968B2 (ja) * 2009-09-01 2013-04-24 独立行政法人産業技術総合研究所 動画像の圧縮方法及び圧縮装置
GB2473266A (en) * 2009-09-07 2011-03-09 Nokia Corp An improved filter bank
TWI529703B (zh) 2010-02-11 2016-04-11 杜比實驗室特許公司 用以非破壞地正常化可攜式裝置中音訊訊號響度之系統及方法
RU2559899C2 (ru) * 2010-04-09 2015-08-20 Долби Интернешнл Аб Стереофоническое кодирование на основе mdct с комплексным предсказанием
EP2450880A1 (en) * 2010-11-05 2012-05-09 Thomson Licensing Data structure for Higher Order Ambisonics audio data
EP2469741A1 (en) * 2010-12-21 2012-06-27 Thomson Licensing Method and apparatus for encoding and decoding successive frames of an ambisonics representation of a 2- or 3-dimensional sound field
US20120307889A1 (en) * 2011-06-01 2012-12-06 Sharp Laboratories Of America, Inc. Video decoder with dynamic range adjustments
EP2541547A1 (en) * 2011-06-30 2013-01-02 Thomson Licensing Method and apparatus for changing the relative positions of sound objects contained within a higher-order ambisonics representation
TWI543642B (zh) * 2011-07-01 2016-07-21 杜比實驗室特許公司 用於適應性音頻信號的產生、譯碼與呈現之系統與方法
US8996296B2 (en) * 2011-12-15 2015-03-31 Qualcomm Incorporated Navigational soundscaping
EP2665208A1 (en) 2012-05-14 2013-11-20 Thomson Licensing Method and apparatus for compressing and decompressing a Higher Order Ambisonics signal representation
US9161149B2 (en) * 2012-05-24 2015-10-13 Qualcomm Incorporated Three-dimensional sound compression and over-the-air transmission during a call
US9332373B2 (en) 2012-05-31 2016-05-03 Dts, Inc. Audio depth dynamic range enhancement
EP3629605B1 (en) * 2012-07-16 2022-03-02 Dolby International AB Method and device for rendering an audio soundfield representation
EP2688066A1 (en) * 2012-07-16 2014-01-22 Thomson Licensing Method and apparatus for encoding multi-channel HOA audio signals for noise reduction, and method and apparatus for decoding multi-channel HOA audio signals for noise reduction
KR20230137492A (ko) * 2012-07-19 2023-10-04 돌비 인터네셔널 에이비 다채널 오디오 신호들의 렌더링을 향상시키기 위한 방법 및 디바이스
EP2690621A1 (en) * 2012-07-26 2014-01-29 Thomson Licensing Method and Apparatus for downmixing MPEG SAOC-like encoded audio signals at receiver side in a manner different from the manner of downmixing at encoder side
TWI631553B (zh) 2013-07-19 2018-08-01 瑞典商杜比國際公司 將以<i>L</i><sub>1</sub>個頻道為基礎之輸入聲音訊號產生至<i>L</i><sub>2</sub>個揚聲器頻道之方法及裝置,以及得到一能量保留混音矩陣之方法及裝置,用以將以輸入頻道為基礎之聲音訊號混音以用於<i>L</i><sub>1</sub>個聲音頻道至<i>L</i><sub>2</sub>個揚聲器頻道
US9984693B2 (en) * 2014-10-10 2018-05-29 Qualcomm Incorporated Signaling channels for scalable coding of higher order ambisonic audio data
US11019449B2 (en) * 2018-10-06 2021-05-25 Qualcomm Incorporated Six degrees of freedom and three degrees of freedom backward compatibility
TWD220276S (zh) 2021-06-18 2022-08-01 大陸商台達電子企業管理(上海)有限公司 雙輸入電源供應器

Also Published As

Publication number Publication date
EP3451706A1 (en) 2019-03-06
TW202044234A (zh) 2020-12-01
CA3153913C (en) 2024-04-02
JP7101219B2 (ja) 2022-07-14
US20190320280A1 (en) 2019-10-17
KR102596944B1 (ko) 2023-11-02
TWI760084B (zh) 2022-04-01
BR122020014764B1 (pt) 2022-10-11
KR102005298B1 (ko) 2019-07-30
AU2021204754B2 (en) 2023-01-05
CN109087654A (zh) 2018-12-25
CN117133298A (zh) 2023-11-28
CA2946916C (en) 2022-09-06
US10893372B2 (en) 2021-01-12
US20240098436A1 (en) 2024-03-21
TW202301318A (zh) 2023-01-01
TW201539431A (zh) 2015-10-16
EP4273857A2 (en) 2023-11-08
EP3451706B1 (en) 2023-11-01
US20210314719A1 (en) 2021-10-07
JP2019176508A (ja) 2019-10-10
AU2021204754A1 (en) 2021-08-05
KR20160138054A (ko) 2016-12-02
JP2022126881A (ja) 2022-08-30
CA3153913A1 (en) 2015-10-01
BR112016022008A2 (zh) 2017-08-15
CA2946916A1 (en) 2015-10-01
KR102479741B1 (ko) 2022-12-22
CN109285553A (zh) 2019-01-29
AU2015238448A1 (en) 2016-11-03
EP3123746B1 (en) 2018-05-23
KR20190090076A (ko) 2019-07-31
AU2019205998A1 (en) 2019-08-01
TW202322103A (zh) 2023-06-01
KR20230156153A (ko) 2023-11-13
TWI794032B (zh) 2023-02-21
US20200068330A1 (en) 2020-02-27
AU2019205998B2 (en) 2021-04-08
CN109087653B (zh) 2023-09-15
WO2015144674A1 (en) 2015-10-01
TWI695371B (zh) 2020-06-01
US20170171682A1 (en) 2017-06-15
TWI711034B (zh) 2020-11-21
RU2018118336A3 (zh) 2021-09-13
JP7333855B2 (ja) 2023-08-25
KR20230003642A (ko) 2023-01-06
CN108962266A (zh) 2018-12-07
KR102201027B1 (ko) 2021-01-11
EP4273857A3 (en) 2024-01-17
US10567899B2 (en) 2020-02-18
KR20210005320A (ko) 2021-01-13
CN108962266B (zh) 2023-08-11
TW202022852A (zh) 2020-06-16
UA119765C2 (uk) 2019-08-12
BR122018005665B1 (pt) 2022-09-06
BR122020020730B1 (pt) 2022-10-11
HK1259306A1 (zh) 2019-11-29
JP6762405B2 (ja) 2020-09-30
RU2658888C2 (ru) 2018-06-25
US10638244B2 (en) 2020-04-28
CN109036441A (zh) 2018-12-18
US20190052990A1 (en) 2019-02-14
TWI718979B (zh) 2021-02-11
US20200359150A1 (en) 2020-11-12
JP2018078570A (ja) 2018-05-17
JP2023144032A (ja) 2023-10-06
JP2021002841A (ja) 2021-01-07
US11838738B2 (en) 2023-12-05
RU2018118336A (ru) 2018-11-01
TWI833562B (zh) 2024-02-21
CN106165451B (zh) 2018-11-30
AU2015238448B2 (en) 2019-04-18
CN117153172A (zh) 2023-12-01
RU2016141386A (ru) 2018-04-26
CN109087653A (zh) 2018-12-25
TW202145196A (zh) 2021-12-01
BR112016022008B1 (pt) 2022-08-02
US10362424B2 (en) 2019-07-23
AU2023201911A1 (en) 2023-05-04
CN109036441B (zh) 2023-06-06
CN109087654B (zh) 2023-04-21
CA3155815A1 (en) 2015-10-01
HK1258770A1 (zh) 2019-11-22
US9936321B2 (en) 2018-04-03
TWI662543B (zh) 2019-06-11
BR122020020719B1 (pt) 2023-02-07
JP2017513367A (ja) 2017-05-25
EP3123746A1 (en) 2017-02-01
RU2016141386A3 (zh) 2018-04-26
RU2760232C2 (ru) 2021-11-23
JP6246948B2 (ja) 2017-12-13
JP6545235B2 (ja) 2019-07-17
CN106165451A (zh) 2016-11-23
CN109285553B (zh) 2023-09-08

Similar Documents

Publication Publication Date Title
JP7333855B2 (ja) 高次アンビソニックス信号にダイナミックレンジ圧縮を適用するための方法および装置