TW201941600A - Image processing device - Google Patents

Image processing device Download PDF

Info

Publication number
TW201941600A
TW201941600A TW108102299A TW108102299A TW201941600A TW 201941600 A TW201941600 A TW 201941600A TW 108102299 A TW108102299 A TW 108102299A TW 108102299 A TW108102299 A TW 108102299A TW 201941600 A TW201941600 A TW 201941600A
Authority
TW
Taiwan
Prior art keywords
data
image data
mode
image processing
compressed
Prior art date
Application number
TW108102299A
Other languages
Chinese (zh)
Other versions
TWI827579B (en
Inventor
全聖浩
朴昶洙
宋紋圭
李慶九
李佶桓
張爀在
鄭暻娥
Original Assignee
南韓商三星電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南韓商三星電子股份有限公司 filed Critical 南韓商三星電子股份有限公司
Publication of TW201941600A publication Critical patent/TW201941600A/en
Application granted granted Critical
Publication of TWI827579B publication Critical patent/TWI827579B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/234Processing of video elementary streams, e.g. splicing of video streams, manipulating MPEG-4 scene graphs
    • H04N21/2343Processing of video elementary streams, e.g. splicing of video streams, manipulating MPEG-4 scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/13Adaptive entropy coding, e.g. adaptive variable length coding [AVLC] or context adaptive binary arithmetic coding [CABAC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/236Assembling of a multiplex stream, e.g. transport stream, by combining a video stream with other content or additional data, e.g. inserting a URL [Uniform Resource Locator] into a video stream, multiplexing software data into a video stream; Remultiplexing of multiplex streams; Insertion of stuffing bits into the multiplex stream, e.g. to obtain a constant bit-rate; Assembling of a packetised elementary stream
    • H04N21/23605Creation or processing of packetized elementary streams [PES]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/238Interfacing the downstream path of the transmission network, e.g. adapting the transmission rate of a video stream to network bandwidth; Processing of multiplex streams
    • H04N21/2381Adapting the multiplex stream to a specific network, e.g. an Internet Protocol [IP] network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/63Control signaling related to video distribution between client, server and network components; Network processes for video distribution between server and clients or between remote clients, e.g. transmitting basic layer and enhancement layers over different transmission paths, setting up a peer-to-peer communication via Internet between remote STB's; Communication protocols; Addressing
    • H04N21/643Communication protocols
    • H04N21/64322IP

Abstract

Provided is an image processing device configured to compress first image data. The image processing device includes an encoding circuit configured to compress the first image data into second image data including prediction data and residual data, compress the second image data into third image data by performing entropy encoding on the second image data, generate a header representing a compression ratio of the third image data, and store the third image data along with the header in a memory device as compressed first image data.

Description

影像處理裝置Image processing device

本發明是關於一種影像處理裝置。The invention relates to an image processing device.

越來越多的應用需要高解析度的視訊影像及高訊框率(high-frame rate)的影像。因此,藉由影像處理裝置的各種多媒體智慧財產權(intellectual property;IP)區塊儲存這些影像的記憶體(亦即,帶寬(bandwidth))的資料存取量已大大增加。More and more applications require high-resolution video images and high-frame rate images. Therefore, the amount of data access to the memory (ie, bandwidth) for storing these images through various multimedia intellectual property (IP) blocks of the image processing device has greatly increased.

每一影像處理裝置具有有限的處理能力。當帶寬增加時,影像處理裝置的處理能力可能達到此極限。因此,影像處理裝置的使用者可能在記錄或播放視訊影像時遇到速度降低。Each image processing device has limited processing capabilities. When the bandwidth increases, the processing power of the image processing device may reach this limit. As a result, users of image processing devices may experience reduced speed when recording or playing video images.

本發明概念的至少一個實施例提供一種具有經改良處理速度的影像處理裝置。At least one embodiment of the inventive concept provides an image processing apparatus having an improved processing speed.

根據本發明概念的例示性實施例,提供一種影像處理裝置,經組態以壓縮第一影像資料。所述影像處理裝置包含編碼電路,所述編碼電路經組態以將第一影像資料壓縮成包括預測資料及殘餘資料的第二影像資料,藉由對第二影像資料執行熵編碼將第二影像資料壓縮成第三影像資料,生成表示第三影像資料的壓縮比的標頭,以及將第三影像資料連同標頭一起作為經壓縮第一影像資料儲存於記憶體裝置中。According to an exemplary embodiment of the inventive concept, there is provided an image processing apparatus configured to compress first image data. The image processing device includes an encoding circuit configured to compress the first image data into second image data including prediction data and residual data, and perform entropy encoding on the second image data to encode the second image data. The data is compressed into third image data, a header indicating the compression ratio of the third image data is generated, and the third image data is stored in the memory device together with the header as the compressed first image data.

根據本發明概念的例示性實施例,提供一種影像處理裝置,經組態以壓縮第一影像資料。所述影像處理裝置包含編碼電路,所述編碼電路具有:模式選擇電路,經組態以基於接收到的訊號來判定是將第一模式設定為無損壓縮模式還是有損壓縮模式;第一邏輯電路,經組態以將第一影像資料壓縮成包括預測資料及殘餘資料的第二影像資料;第二邏輯電路,經組態以使用至少一個量化參數(quantization parameter;QP)來量化所述第二影像資料;以及第三邏輯電路,經組態以對i)在將第一模式設定為無損壓縮模式時的第一邏輯電路的輸出及ii)在將第一模式設定為有損壓縮模式時的第二邏輯電路的輸出中的一者執行熵編碼。According to an exemplary embodiment of the inventive concept, there is provided an image processing apparatus configured to compress first image data. The image processing device includes an encoding circuit having a mode selection circuit configured to determine whether to set the first mode to a lossless compression mode or a lossy compression mode based on the received signal; a first logic circuit Configured to compress the first image data into second image data including prediction data and residual data; a second logic circuit configured to quantize the second image using at least one quantization parameter (QP) Image data; and a third logic circuit configured to i) the output of the first logic circuit when the first mode is set to the lossless compression mode and ii) the output of the first logic circuit when the first mode is set to the lossy compression mode One of the outputs of the second logic circuit performs entropy coding.

根據本發明概念的例示性實施例,提供一種影像處理裝置,經組態以對第一經壓縮影像資料進行解壓縮。所述影像處理裝置包含:模式選擇電路,經組態以在以無損方式壓縮第一經壓縮影像資料時將第一模式設定為無損解壓縮,且在以有損方式壓縮第一經壓縮影像資料時將第一模式設定為有損解壓縮;第一邏輯電路,對第一經壓縮影像資料執行熵解碼;第二邏輯電路,在將第一模式設定為有損解壓縮時對第一邏輯電路的輸出執行逆量化;以及第三邏輯電路,經組態以在將第一模式設定為無損解壓縮時藉由向第一邏輯電路的輸出中所接收的預測資料添加殘餘資料來進行解壓縮,且在將第一模式設定為有損解壓縮時藉由向第二邏輯電路的輸出中所接收的預測資料添加殘餘資料來進行解壓縮。According to an exemplary embodiment of the inventive concept, there is provided an image processing apparatus configured to decompress a first compressed image data. The image processing device includes a mode selection circuit configured to set the first mode to lossless decompression when compressing the first compressed image data in a lossless manner, and to compress the first compressed image data in a lossy manner. When the first mode is set to lossy decompression; the first logic circuit performs entropy decoding on the first compressed image data; the second logic circuit performs the first logic circuit when the first mode is set to lossy decompression The inverse quantization of the output; and a third logic circuit configured to decompress by adding residual data to the prediction data received in the output of the first logic circuit when the first mode is set to lossless decompression, And when the first mode is set to lossy decompression, decompression is performed by adding residual data to the prediction data received in the output of the second logic circuit.

現將參看圖1至圖14描述根據本發明概念的例示性實施例的影像處理裝置。An image processing apparatus according to an exemplary embodiment of the inventive concept will now be described with reference to FIGS. 1 to 14.

圖1為根據本發明概念的至少一個實施例的影像處理裝置的方塊圖。FIG. 1 is a block diagram of an image processing apparatus according to at least one embodiment of the inventive concept.

參看圖1,根據本發明概念的至少一個實施例的影像處理裝置包含多媒體智慧財產權(IP)100(例如,IP核心及IP區塊、電路等)、訊框緩衝壓縮器(frame buffer compressor ;FBC)200(例如,電路、數位訊號處理器等)、記憶體300以及系統匯流排400。Referring to FIG. 1, an image processing apparatus according to at least one embodiment of the inventive concept includes a multimedia intellectual property (IP) 100 (eg, an IP core and IP blocks, circuits, etc.), a frame buffer compressor (FBC) ) 200 (for example, a circuit, a digital signal processor, etc.), a memory 300, and a system bus 400.

在一例示性實施例中,多媒體IP 100為影像處理裝置的直接執行影像處理裝置的影像處理的部分。多媒體IP 100可包含用於執行影像記錄及重現(諸如對視訊影像進行攝錄影、回放等)的多個模組。In an exemplary embodiment, the multimedia IP 100 is a part of an image processing device that directly performs image processing of the image processing device. The multimedia IP 100 may include multiple modules for performing image recording and reproduction (such as video recording, playback, etc.).

多媒體IP 100自諸如攝影機的外部裝置接收第一資料(例如,影像資料)且將第一資料轉換成第二資料。舉例而言,第一資料可為移動原始影像資料或原始靜態影像資料。第二資料可為由多媒體IP 100生成的資料,且亦可包含由處理第一資料的多媒體IP 100產生的資料。多媒體IP 100可反覆地將第二資料儲存於記憶體300中且經由各種步驟來更新第二資料。第二資料可包含這些步驟中使用的所有資料。第二資料可以第三資料的形式儲存於記憶體300中。因此,第二資料可為在儲存於記憶體300中之前或自記憶體300讀取之後的資料。The multimedia IP 100 receives first data (eg, video data) from an external device such as a camera and converts the first data into second data. For example, the first data may be moving original image data or original still image data. The second data may be data generated by the multimedia IP 100, and may also include data generated by the multimedia IP 100 that processes the first data. The multimedia IP 100 can repeatedly store the second data in the memory 300 and update the second data through various steps. The second data may contain all the data used in these steps. The second data may be stored in the memory 300 in the form of the third data. Therefore, the second data may be data before being stored in the memory 300 or after being read from the memory 300.

在一例示性實施例中,多媒體IP 100包含影像訊號處理器(image signal processor;ISP)110、抖動校正模組(shake correction module;G2D)120、多格式編解碼器(multi-format codec;MFC)130、圖形處理單元(graphics processing unit;GPU)140以及顯示器150。然而,本發明概念不限於此情況。亦即,多媒體IP 100可包含上文所描述的ISP 110、G2D 120、MFC 130、GPU 140以及顯示器150中的至少一者。換言之,可藉由處理模組來實施多媒體IP 100,所述處理模組必須對記憶體300進行存取以便處理表示移動影像或靜態影像的資料。In an exemplary embodiment, the multimedia IP 100 includes an image signal processor (ISP) 110, a shake correction module (G2D) 120, and a multi-format codec (MFC). ) 130, a graphics processing unit (GPU) 140, and a display 150. However, the inventive concept is not limited to this case. That is, the multimedia IP 100 may include at least one of the ISP 110, G2D 120, MFC 130, GPU 140, and display 150 described above. In other words, the multimedia IP 100 can be implemented by a processing module that must access the memory 300 in order to process data representing a moving image or a still image.

ISP 110接收第一資料且藉由對第一資料進行預處理來將第一資料轉換成第二資料。此處,第一資料可為呈RGB格式的影像源資料。舉例而言,ISP 110可將呈RGB格式的第一資料轉換成呈YUV格式的第二資料。The ISP 110 receives the first data and converts the first data into the second data by preprocessing the first data. Here, the first data may be image source data in an RGB format. For example, the ISP 110 may convert the first data in the RGB format into the second data in the YUV format.

RGB格式是指基於光的三個原色來表示色彩的資料格式。亦即,使用三種類型的顏色(亦即,紅色、綠色以及藍色)來表示影像。另一方面,YUV格式是指獨立地表示亮度(亦即,明度訊號)及色度訊號的資料格式。亦即,Y指示明度訊號,且U(Cb)及V(Cr)分別指示色度訊號。U指示明度訊號與藍色訊號分量之間的差,且V指示明度訊號與紅色訊號分量之間的差。此處,可將項目Y、項目U(Cb)以及項目V(Cr)限定為平面。舉例而言,關於明度訊號的資料可稱為Y平面的資料,且關於色度訊號的資料可稱為U(Cb)平面的資料或V(Cr)平面的資料。The RGB format is a data format that represents color based on the three primary colors of light. That is, the image is represented using three types of colors, that is, red, green, and blue. On the other hand, the YUV format refers to a data format that independently represents a luminance (ie, a luma signal) and a chroma signal. That is, Y indicates a luma signal, and U (Cb) and V (Cr) indicate a chroma signal, respectively. U indicates the difference between the lightness signal and the blue signal component, and V indicates the difference between the lightness signal and the red signal component. Here, the project Y, the project U (Cb), and the project V (Cr) may be limited to a plane. For example, the data on the lightness signal can be referred to as the data of the Y plane, and the data on the chrominance signal can be referred to as the data of the U (Cb) plane or the data of the V (Cr) plane.

可藉由使用轉換公式轉換呈RGB格式的資料來獲得呈YUV格式的資料。舉例而言,可使用轉換公式(諸如Y=0.3R+0.59G+0.11B、U=(B-Y)×0.493,V=(R-Y)×0.877)來將RGB格式的資料轉換成YUV格式的資料。Data in the YUV format can be obtained by converting the data in the RGB format using a conversion formula. For example, a conversion formula (such as Y = 0.3R + 0.59G + 0.11B, U = (B-Y) × 0.493, V = (R-Y) × 0.877) can be used to convert the data in the RGB format to the data in the YUV format.

由於人眼對明度訊號敏感但對色彩訊號不太敏感,因此壓縮呈YUV格式的資料可比壓縮呈RGB格式的資料更為容易。因此,ISP 110可將呈RGB格式的第一資料轉換成呈YUV格式的第二資料。Because the human eye is sensitive to light signals but not sensitive to color signals, it is easier to compress data in YUV format than RGB data. Therefore, the ISP 110 can convert the first data in the RGB format into the second data in the YUV format.

在ISP 110將第一資料轉換成第二資料之後,所述ISP將第二資料儲存於記憶體300中。After the ISP 110 converts the first data into the second data, the ISP stores the second data in the memory 300.

G2D 120可對影像資料或移動影像資料執行抖動校正。G2D 120可讀取儲存於記憶體300中的第一資料或第二資料以執行抖動校正。此處,抖動校正是指偵測攝影機在移動影像資料中的抖動並移除抖動。G2D 120 can perform shake correction on image data or moving image data. The G2D 120 may read the first data or the second data stored in the memory 300 to perform shake correction. Here, shake correction refers to detecting the shake of the camera in the moving image data and removing the shake.

G2D 120可藉由校正第一資料或第二資料中的抖動來生成新的第二資料或更新第二資料,且可將所生成或經更新的第二資料儲存於記憶體300中。The G2D 120 may generate new second data or update the second data by correcting jitter in the first data or the second data, and may store the generated or updated second data in the memory 300.

MFC 130可為用於壓縮移動影像資料的編解碼器。一般而言,移動影像資料的大小極大。因此,需要用於減小移動影像資料的大小的壓縮模組。可基於多個訊框之間的相聯關係來壓縮移動影像資料,且可由MFC 130執行此壓縮。MFC 130可讀取及壓縮第一資料或可讀取及壓縮儲存於記憶體300中的第二資料。MFC 130 may be a codec for compressing moving image data. Generally speaking, the size of moving image data is extremely large. Therefore, a compression module for reducing the size of moving image data is needed. The moving image data can be compressed based on the association relationship between multiple frames, and this compression can be performed by the MFC 130. The MFC 130 may read and compress the first data or may read and compress the second data stored in the memory 300.

MFC 130可藉由壓縮第一資料或第二資料來生成新的第二資料或更新第二資料,且將新的第二資料或經更新的第二資料儲存於記憶體300中。The MFC 130 may generate new second data or update the second data by compressing the first data or the second data, and store the new second data or the updated second data in the memory 300.

GPU 140可執行算術過程以計算及生成二維或三維圖形。GPU 140可計算第一資料或計算儲存於記憶體300中的第二資料。GPU 140可專門處理圖形資料且可並行處理圖形資料。The GPU 140 may perform an arithmetic process to calculate and generate two-dimensional or three-dimensional graphics. The GPU 140 may calculate the first data or the second data stored in the memory 300. The GPU 140 can exclusively process graphics data and can process graphics data in parallel.

GPU 140可藉由壓縮第一資料或第二資料來生成新的第二資料或更新第二資料,且將新的第二資料或經更新的第二資料儲存於記憶體300中。The GPU 140 may generate new second data or update the second data by compressing the first data or the second data, and store the new second data or the updated second data in the memory 300.

顯示器150可將儲存於記憶體300中的第二資料顯示於螢幕上。顯示器150可將影像資料(亦即,由多媒體IP 100的其他元件處理的第二資料)顯示於螢幕上,所述其他元件亦即ISP 110、G2D 120、MFC 130以及GPU 140。然而,本發明概念不限於此情況。The display 150 can display the second data stored in the memory 300 on the screen. The display 150 may display image data (ie, second data processed by other components of the multimedia IP 100) on the screen, which other components are ISP 110, G2D 120, MFC 130, and GPU 140. However, the inventive concept is not limited to this case.

可單獨地操作多媒體IP 100的ISP 110、G2D 120、MFC 130、GPU 140以及顯示器150中的每一者。亦即,ISP 110、G2D 120、MFC 130、GPU 140以及顯示器150中的每一者可單獨地對記憶體300進行存取以寫入或讀取資料。Each of the ISP 110, the G2D 120, the MFC 130, the GPU 140, and the display 150 of the multimedia IP 100 can be individually operated. That is, each of the ISP 110, G2D 120, MFC 130, GPU 140, and display 150 can individually access the memory 300 to write or read data.

在一實施例中,FBC 200藉由在多媒體IP 100的元件單獨地對記憶體300進行存取之前壓縮第二資料來將第二資料轉換成第三資料。FBC 200可將第三資料傳輸至多媒體IP 100,且多媒體IP 100可將第三資料傳輸至記憶體300。In one embodiment, the FBC 200 converts the second data into the third data by compressing the second data before the components of the multimedia IP 100 individually access the memory 300. The FBC 200 can transmit the third data to the multimedia IP 100, and the multimedia IP 100 can transmit the third data to the memory 300.

因此,可將由FBC 200生成的第三資料儲存於記憶體300中。反之,儲存於記憶體300中的第三資料可由多媒體IP 100加載且傳輸至FBC 200。FBC 200可藉由對第三資料進行解壓縮來將第三資料轉換成第二資料。FBC 200可將第二資料傳輸至多媒體IP 100。Therefore, the third data generated by the FBC 200 can be stored in the memory 300. Conversely, the third data stored in the memory 300 can be loaded by the multimedia IP 100 and transmitted to the FBC 200. The FBC 200 may convert the third data into the second data by decompressing the third data. The FBC 200 can transmit the second data to the multimedia IP 100.

亦即,每當多媒體IP 100的ISP 110、G2D 120、MFC 130、GPU 140以及顯示器150單獨地對記憶體300進行存取時,FBC 200均可將第二資料壓縮成第三資料且將第三資料傳輸至記憶體300。舉例而言,在多媒體IP 100的組件中的一者生成第二資料並將第二資料儲存於記憶體300之後,訊框緩衝壓縮器200可壓縮所儲存的資料,並將經壓縮資料儲存至記憶體300中。反之,每當自記憶體300向多媒體IP 100的ISP 110、G2D 120、MFC 130、GPU 140以及顯示器150作出資料請求,FBC 200均可將第三資料解壓縮成第二資料且將第二資料傳輸至多媒體IP 100的ISP 110、G2D 120、MFC 130、GPU 140以及顯示器150中的每一者。That is, whenever the ISP 110, G2D 120, MFC 130, GPU 140, and display 150 of the multimedia IP 100 access the memory 300 separately, the FBC 200 can compress the second data into the third data and the first data Three data are transferred to the memory 300. For example, after one of the components of the multimedia IP 100 generates the second data and stores the second data in the memory 300, the frame buffer compressor 200 can compress the stored data and store the compressed data to Memory 300. Conversely, whenever the memory 300 makes a data request to the ISP 110, G2D 120, MFC 130, GPU 140, and display 150 of the multimedia IP 100, the FBC 200 can decompress the third data into the second data and the second data Transmission to each of the ISP 110, the G2D 120, the MFC 130, the GPU 140, and the display 150 of the multimedia IP 100.

記憶體300可儲存由FBC 200生成的第三資料且將所儲存的第三資料提供至FBC 200以使FBC 200可對第三資料進行解壓縮。The memory 300 may store the third data generated by the FBC 200 and provide the stored third data to the FBC 200 so that the FBC 200 may decompress the third data.

在一實施例中,系統匯流排400連接至多媒體IP 100及記憶體300中的每一者。具體言之,多媒體IP 100的ISP 110、G2D 120、MFC 130、GPU 140以及顯示器150可單獨連接至系統匯流排400。系統匯流排400可充當路徑,多媒體IP 100的ISP 110、G2D 120、MFC 130、GPU 140以及顯示器150與記憶體300經由所述路徑彼此交換資料。In one embodiment, the system bus 400 is connected to each of the multimedia IP 100 and the memory 300. Specifically, the ISP 110, G2D 120, MFC 130, GPU 140, and display 150 of the multimedia IP 100 may be separately connected to the system bus 400. The system bus 400 may serve as a path through which the ISP 110, G2D 120, MFC 130, GPU 140, and display 150 and memory 300 of the multimedia IP 100 exchange data with each other.

在一實施例中,FBC 200並未連接至系統匯流排400,且在多媒體IP 100的ISP 110、G2D 120、MFC 130、GPU 140以及顯示器150中的每一者對記憶體300進行存取時將第二資料轉換成第三資料或將第三資料轉換成第二資料。In one embodiment, the FBC 200 is not connected to the system bus 400, and when each of the ISP 110, G2D 120, MFC 130, GPU 140, and display 150 of the multimedia IP 100 accesses the memory 300 Convert the second data into the third data or convert the third data into the second data.

圖2為圖1中所說明的FBC 200的詳細方塊圖。FIG. 2 is a detailed block diagram of the FBC 200 illustrated in FIG. 1.

參看圖2,FBC 200包含編碼器210(例如,編碼電路)及解碼器220(例如,解碼電路)。Referring to FIG. 2, the FBC 200 includes an encoder 210 (eg, an encoding circuit) and a decoder 220 (eg, a decoding circuit).

編碼器210可自多媒體IP 100接收第二資料且生成第三資料。此處,可自多媒體IP 100的ISP 110、G2D 120、MFC 130、GPU 140以及顯示器150中的每一者傳輸第二資料。可經由多媒體IP 100及系統匯流排400將第三資料傳輸至記憶體300。The encoder 210 may receive the second data from the multimedia IP 100 and generate the third data. Here, the second data may be transmitted from each of the ISP 110, the G2D 120, the MFC 130, the GPU 140, and the display 150 of the multimedia IP 100. The third data may be transmitted to the memory 300 via the multimedia IP 100 and the system bus 400.

反之,解碼器220可將儲存於記憶體300中的第三資料解壓縮成第二資料。可將第二資料傳輸至多媒體IP 100。此處,可將第二資料傳輸至多媒體IP 100的ISP 110、G2D 120、MFC 130、GPU 140以及顯示器150中的每一者。Conversely, the decoder 220 may decompress the third data stored in the memory 300 into the second data. The second data can be transmitted to the multimedia IP 100. Here, the second data may be transmitted to each of the ISP 110, the G2D 120, the MFC 130, the GPU 140, and the display 150 of the multimedia IP 100.

圖3為圖2中所說明的編碼器210的詳細方塊圖。FIG. 3 is a detailed block diagram of the encoder 210 illustrated in FIG. 2.

參看圖3,編碼器210包含第一模式選擇器219(例如,模式選擇電路)、預測模組211(例如,邏輯電路或處理器)、量化模組213(例如,邏輯電路或處理器)、熵編碼模組215(例如,邏輯電路或處理器)以及填補模組217(例如,邏輯電路或處理器)。3, the encoder 210 includes a first mode selector 219 (for example, a mode selection circuit), a prediction module 211 (for example, a logic circuit or processor), a quantization module 213 (for example, a logic circuit or processor), Entropy encoding module 215 (eg, a logic circuit or processor) and padding module 217 (eg, a logic circuit or processor).

在一實施例中,第一模式選擇器219判定編碼器210將在無損模式(例如,無損壓縮)下還是有損模式(例如,有損壓縮)下操作。當編碼器210基於第一模式選擇器219的判定結果而在無損模式下操作時,可沿圖3的無損路徑壓縮第二資料。當編碼器210在有損模式下操作時,可沿有損路徑壓縮第二資料。In an embodiment, the first mode selector 219 determines whether the encoder 210 will operate in a lossless mode (eg, lossless compression) or a lossy mode (eg, lossy compression). When the encoder 210 operates in the lossless mode based on the determination result of the first mode selector 219, the second data may be compressed along the lossless path of FIG. When the encoder 210 operates in a lossy mode, the second data may be compressed along a lossy path.

第一模式選擇器219可自多媒體IP 100接收用於判定將執行無損壓縮還是有損壓縮的訊號。此處,無損壓縮指示不損失資料的壓縮且具有根據資料而變化的壓縮比。另一方面,有損壓縮指示其中部分地損失資料的壓縮。有損壓縮具有比無損壓縮高的壓縮比,且具有預設的固定壓縮比。The first mode selector 219 may receive a signal from the multimedia IP 100 for determining whether to perform lossless compression or lossy compression. Here, lossless compression indicates that compression of data is not lost and has a compression ratio that varies depending on the data. Lossy compression, on the other hand, indicates compression in which data is partially lost. Lossy compression has a higher compression ratio than lossless compression, and has a preset fixed compression ratio.

在無損模式的情況下,第一模式選擇器219使得第二資料能夠沿無損路徑流動至預測模組211、熵編碼模組215以及填補模組217。反之,在有損模式的情況下,第一模式選擇器219使得第二資料能夠沿有損路徑流動至預測模組211、量化模組213以及熵編碼模組215。In the case of a lossless mode, the first mode selector 219 enables the second data to flow along the lossless path to the prediction module 211, the entropy encoding module 215, and the padding module 217. In contrast, in the case of a lossy mode, the first mode selector 219 enables the second data to flow along the lossy path to the prediction module 211, the quantization module 213, and the entropy encoding module 215.

預測模組211將第二資料轉換成經預測的影像資料。經預測的影像資料為作為預測資料與殘餘資料的組合的第二資料的經壓縮表示。在一實施例中,預測資料為影像資料的一個像素的影像資料,且殘餘資料自影像資料的與一個像素相鄰的像素的預測資料與影像資料之間的差產生。舉例而言,若一個像素的影像資料具有0至255的值,則可能需要8個位元來表示所述值。當相鄰像素具有與所述一個像素的值類似的值時,相鄰像素中的每一者的殘餘資料比預測資料小得多。舉例而言,若相鄰像素具有類似的值,則只有與相鄰像素的值之間的差(亦即,殘餘)可在不損失資料的情況下進行表示,且表示所述差所需的資料的位元的數目可能比8個位元小得多。舉例而言,當相繼排列具有253、254以及255的值的像素時,若預測資料為253,則殘餘資料表示(253(預測),1(殘餘),2(殘餘))可為足夠的,且此殘餘資料表示所需的每像素的位元的數目可為比8個位元小得多的2個位元。舉例而言,24個位元的253、254以及255的資料可由於8個位元的預測資料253 (11111101)、2個位元的殘餘資料254-251 = 1 (01)以及2個位元的殘餘資料255-253=2 (10)而減小至12個位元。The prediction module 211 converts the second data into predicted image data. The predicted image data is a compressed representation of the second data as a combination of the predicted data and the residual data. In one embodiment, the prediction data is image data of one pixel of the image data, and the residual data is generated from the difference between the prediction data of the pixel adjacent to one pixel of the image data and the image data. For example, if the image data of a pixel has a value of 0 to 255, 8 bits may be required to represent the value. When the neighboring pixels have a value similar to that of the one pixel, the residual data of each of the neighboring pixels is much smaller than the predicted data. For example, if adjacent pixels have similar values, only the difference (ie, residual) from the values of adjacent pixels can be represented without loss of data, and the difference needed to represent the difference The number of bits of data may be much smaller than 8 bits. For example, when pixels with values of 253, 254, and 255 are sequentially arranged, if the prediction data is 253, the residual data representation (253 (forecast), 1 (residual), 2 (residual)) may be sufficient, And the residual data indicates that the number of bits required per pixel can be 2 bits much smaller than 8 bits. For example, 24 bits of 253, 254, and 255 data can be attributed to 8 bits of predicted data 253 (11111101), 2 bits of residual data 254-251 = 1 (01), and 2 bits The residual data of 255-253 = 2 (10) and reduced to 12 bits.

因此,預測模組211可藉由將第二資料劃分成預測資料及殘餘資料來壓縮第二資料的總體大小。可使用各種方法來判定預測資料。Therefore, the prediction module 211 can compress the overall size of the second data by dividing the second data into prediction data and residual data. Various methods can be used to determine prediction data.

預測模組211可在逐像素基礎上或逐區塊基礎上執行預測。此處,區塊可為由多個相鄰像素形成的區域。舉例而言,在像素基礎上的預測可意謂自像素中的一者產生所有殘餘資料,且在區塊基礎上的預測可意謂針對每一區塊自對應區塊的像素產生殘餘資料。The prediction module 211 may perform prediction on a pixel-by-pixel basis or a block-by-block basis. Here, the block may be an area formed by a plurality of adjacent pixels. For example, prediction on a pixel basis may mean generating all residual data from one of the pixels, and prediction on a block basis may mean generating residual data for each block from the pixels of the corresponding block.

量化模組213可進一步壓縮由預測模組211壓縮的第二資料。量化模組213可使用預設量化參數(QP)來移除第二資料的較低位元(例如,使用QP來量化第二資料)。舉例而言,若預測資料為253 (11111101),則可藉由移除較低的2個位元來使預測資料自8個位元減小為6個位元,其產生預測資料252 (111111)。具體言之,可藉由用資料乘以QP來選擇表示值,其中捨棄小數點之下的數字,從而產生損失。若像素資料具有0至28 -1(= 255)的值,則可將QP限定為1/(2n -1)(其中n 是8或小於8的整數)。然而,當前實施例並不限於此情況。The quantization module 213 can further compress the second data compressed by the prediction module 211. The quantization module 213 may use a preset quantization parameter (QP) to remove lower bits of the second data (eg, use QP to quantize the second data). For example, if the prediction data is 253 (11111101), the prediction data can be reduced from 8 bits to 6 bits by removing the lower 2 bits, which generates prediction data 252 (111111 ). Specifically, the representative value can be selected by multiplying the data by QP, in which the number below the decimal point is discarded, thereby causing a loss. If the pixel data has a value of 0 to 2 8 -1 (= 255), the QP can be limited to 1 / (2 n -1) (where n is an integer of 8 or less). However, the current embodiment is not limited to this case.

此處,由於並未在之後恢復經移除的較低位元,因此所述較低位元損失了。因此,僅在有損模式下利用量化模組213。與無損模式相比,有損模式可具有相對較高的壓縮比,且可具有預設的固定壓縮比。因此,之後並不需要關於壓縮比的資訊。Here, since the removed lower bits are not recovered later, the lower bits are lost. Therefore, the quantization module 213 is used only in the lossy mode. Compared with the lossless mode, the lossy mode may have a relatively high compression ratio, and may have a preset fixed compression ratio. Therefore, no information about the compression ratio is needed afterwards.

熵編碼模組215可經由熵譯碼來壓縮由量化模組213在有損模式下壓縮的第二資料或由預測模組211在無損模式下壓縮的第二資料。在熵譯碼中,可根據頻率來分配位元的數目。The entropy encoding module 215 can compress the second data compressed by the quantization module 213 in a lossy mode or the second data compressed by the prediction module 211 in a lossless mode via entropy decoding. In entropy coding, the number of bits can be allocated according to frequency.

在一實施例中,熵編碼模組215使用霍夫曼(Huffman)譯碼來壓縮第二資料。在一替代性實施例中,熵編碼模組215經由指數哥倫布(exponential Golomb)譯碼或哥倫布萊斯(Golomb rice)譯碼來壓縮經預測的影像資料。在一實施例中,熵編碼模組215使用k 值來生成表,所述熵編碼模組使用所生成的表來壓縮經預測的影像資料。k 值可為在熵編碼中使用的熵編碼值。In one embodiment, the entropy encoding module 215 uses Huffman decoding to compress the second data. In an alternative embodiment, the entropy encoding module 215 compresses the predicted image data via exponential Golomb coding or Golomb rice coding. In one embodiment, the entropy coding module 215 uses k values to generate a table, and the entropy coding module uses the generated table to compress the predicted image data. The k value may be an entropy coded value used in the entropy coding.

填補模組217可對由熵編碼模組215在無損模式下壓縮的第二資料執行填補。此處,填補可指添加無意義資料,以便配合具體大小。稍後將更詳細地描述此情況。The padding module 217 may perform padding on the second data compressed by the entropy encoding module 215 in a lossless mode. Here, padding can mean adding meaningless data to fit a specific size. This situation will be described in more detail later.

不僅可在無損模式下而且亦可在有損模式下激活填補模組217。在有損模式下,可藉由量化模組213以大於期望的壓縮比來壓縮第二資料。在此情況下,第二資料即使在有損模式下亦可經傳送通過填補模組217,轉換成第三資料且接著傳輸至記憶體300。在一例示性實施例中,省略填補模組217,使得不執行填補。The filling module 217 can be activated not only in a lossless mode but also in a lossy mode. In the lossy mode, the second data can be compressed by the quantization module 213 with a compression ratio greater than desired. In this case, even in the lossy mode, the second data can be transmitted through the padding module 217, converted into third data, and then transmitted to the memory 300. In an exemplary embodiment, the padding module 217 is omitted so that padding is not performed.

壓縮管理器218判定分別用於量化及熵譯碼的QP表與熵表的組合,且根據所判定的QP表與熵表的組合來控制對第二資料的壓縮。The compression manager 218 determines the combination of the QP table and the entropy table for quantization and entropy decoding, and controls the compression of the second data according to the determined combination of the QP table and the entropy table.

在此情況下,第一模式選擇器219判定編碼器210將在有損模式下操作。因此,沿圖3的有損路徑壓縮第二資料。亦即,基於假定FBC 200使用有損壓縮演算法來壓縮第二資料,壓縮管理器218判定所需QP表與熵表的組合且根據所判定的QP表與熵表的組合來壓縮第二資料。In this case, the first mode selector 219 determines that the encoder 210 will operate in a lossy mode. Therefore, the second data is compressed along the lossy path of FIG. 3. That is, based on the assumption that the FBC 200 uses a lossy compression algorithm to compress the second data, the compression manager 218 determines the required combination of the QP table and the entropy table and compresses the second data according to the determined combination of the QP table and the entropy table. .

具體言之,QP表可包含一或多個條目,且所述條目中的每一者可包含用於量化第二資料的QP。Specifically, the QP table may include one or more entries, and each of the entries may include a QP for quantifying the second data.

在一實施例中,熵表是指藉由k 值識別以執行熵譯碼演算法的多個碼表。可在一些實施例中使用的熵表可包含指數哥倫布碼及哥倫布萊斯碼中的至少一者。In an embodiment, the entropy table refers to a plurality of code tables identified by the k value to perform an entropy decoding algorithm. An entropy table that may be used in some embodiments may include at least one of an exponential Columbus code and a Columbus code.

壓縮管理器218判定包含預定數目的條目的QP表,且FBC 200使用所判定的QP表來量化預測的第二資料。此外,壓縮管理器218判定使用預定數目的k 值的熵表,且FBC 200使用所判定的熵表來對經量化的第二資料執行熵譯碼。亦即,FBC 200基於由壓縮管理器218判定的QP表與熵表的組合來生成第三資料。The compression manager 218 determines a QP table containing a predetermined number of entries, and the FBC 200 uses the determined QP table to quantify the predicted second data. Further, the compression manager 218 determines that a predetermined number of k- value entropy tables are used, and the FBC 200 uses the determined entropy table to perform entropy decoding on the quantized second data. That is, the FBC 200 generates the third data based on the combination of the QP table and the entropy table determined by the compression manager 218.

接著,FBC 200可將所生成的第三資料寫入記憶體300中。此外,FBC 200可自記憶體300讀取第三資料,對所讀取的第三資料進行解壓縮,且將經解壓縮的第三資料提供至多媒體IP 100。Then, the FBC 200 may write the generated third data into the memory 300. In addition, the FBC 200 may read the third data from the memory 300, decompress the read third data, and provide the decompressed third data to the multimedia IP 100.

圖4為圖2中所說明的解碼器220的詳細方塊圖。FIG. 4 is a detailed block diagram of the decoder 220 illustrated in FIG. 2.

參看圖3及圖4,解碼器220包含第二模式選擇器229(例如,模式選擇電路)、未填補模組227(例如,邏輯電路或處理器)、熵解碼模組225(例如,邏輯電路)、逆量化模組223(例如,邏輯電路或處理器)以及預測補償模組221(例如,邏輯電路或處理器)。3 and 4, the decoder 220 includes a second mode selector 229 (for example, a mode selection circuit), an unfilled module 227 (for example, a logic circuit or processor), and an entropy decoding module 225 (for example, a logic circuit ), An inverse quantization module 223 (for example, a logic circuit or processor), and a predictive compensation module 221 (for example, a logic circuit or processor).

第二模式選擇器229判定是否已經由第二資料的無損壓縮或有損壓縮來生成儲存於記憶體300中的第三資料。在一例示性實施例中,第二模式選擇器229基於存在或不存在標頭來判定是否已藉由在無損模式下或有損模式下壓縮第二資料來生成第三資料。在一實施例中,當第三資料包含至少一個量化參數時在有損模式下壓縮第三資料,且當第三資料不包含量化參數時在無損模式下壓縮第三資料。在另一實施例中,經壓縮資料儲存有指示是以有損方式還是以無損方式壓縮資料的標記。The second mode selector 229 determines whether the third data stored in the memory 300 has been generated by the lossless compression or the lossy compression of the second data. In an exemplary embodiment, the second mode selector 229 determines whether the third data has been generated by compressing the second data in a lossless mode or a lossy mode based on the presence or absence of a header. In an embodiment, the third data is compressed in a lossy mode when the third data includes at least one quantization parameter, and the third data is compressed in a lossless mode when the third data does not include a quantization parameter. In another embodiment, the compressed data stores a flag indicating whether the data is compressed in a lossy or lossless manner.

若已藉由在無損模式下壓縮第二資料來生成第三資料,則第二模式選擇器229使得第三資料能夠沿無損路徑流動至未填補模組227、熵解碼模組225以及預測補償模組221。反之,若已藉由在有損模式下壓縮第二資料來生成第三資料,則第二模式選擇器229使得第三資料能夠沿有損路徑流動至熵解碼模組225、逆量化模組223以及預測補償模組221。If the third data has been generated by compressing the second data in the lossless mode, the second mode selector 229 enables the third data to flow along the lossless path to the unfilled module 227, the entropy decoding module 225, and the prediction compensation mode. Group 221. Conversely, if the third data has been generated by compressing the second data in the lossy mode, the second mode selector 229 enables the third data to flow along the lossy path to the entropy decoding module 225 and the inverse quantization module 223 And prediction compensation module 221.

未填補模組227可移除已藉由編碼器210的填補模組217填補的資料的一部分。當省略填補模組217時,可省略未填補模組227。The unfilled module 227 may remove a portion of the data that has been filled by the fill module 217 of the encoder 210. When the filling module 217 is omitted, the unfilled module 227 may be omitted.

熵解碼模組225可對已由熵編碼模組215壓縮的資料進行解壓縮。熵解碼模組225可使用霍夫曼譯碼、指數哥倫布譯碼或哥倫布萊斯譯碼來執行解壓縮。由於第三資料包含k 值,因此熵解碼模組225可使用k 值來執行解碼。The entropy decoding module 225 can decompress the data that has been compressed by the entropy encoding module 215. The entropy decoding module 225 may perform decompression using Huffman decoding, exponential Columbus decoding, or Columbus decoding. Since the third data contains a k value, the entropy decoding module 225 may use the k value to perform decoding.

逆量化模組223可對已由量化模組213壓縮的資料進行解壓縮。逆量化模組223可使用預定量化參數(QP)來恢復由量化模組213壓縮的第二資料。舉例而言,逆量化模組223可對熵解碼模組225的輸出執行逆量化操作。然而,逆量化模組223無法完全復原壓縮過程中所損失的資料。因此,僅在有損模式下逆量化模組223。The inverse quantization module 223 can decompress the data that has been compressed by the quantization module 213. The inverse quantization module 223 may use a predetermined quantization parameter (QP) to recover the second data compressed by the quantization module 213. For example, the inverse quantization module 223 may perform an inverse quantization operation on the output of the entropy decoding module 225. However, the inverse quantization module 223 cannot fully recover the data lost during the compression process. Therefore, the inverse quantization module 223 is only in the lossy mode.

預測補償模組221可執行預測補償以復原由預測模組211表示為預測資料及殘餘資料的資料。舉例而言,預測補償模組221可將殘餘資料表示(253(預測),1(殘餘),2(殘餘))轉換成(253,254,255)。舉例而言,預測補償模組221可藉由將殘餘資料添加至預測資料來恢復資料。The prediction compensation module 221 may perform prediction compensation to restore data represented by the prediction module 211 as prediction data and residual data. For example, the prediction compensation module 221 can convert the residual data representation (253 (forecast), 1 (residual), 2 (residual)) into (253, 254, 255). For example, the prediction compensation module 221 may recover data by adding residual data to the prediction data.

預測補償模組221可恢復由預測模組211在逐像素基礎上或逐區塊基礎上預測的資料。因此,可恢復第二資料,或可對第三資料進行解壓縮且接著將其傳輸至多媒體IP 100。The prediction compensation module 221 can recover data predicted by the prediction module 211 on a pixel-by-pixel basis or a block-by-block basis. Therefore, the second data may be recovered, or the third data may be decompressed and then transmitted to the multimedia IP 100.

解壓縮管理器228可在對第三資料的解壓縮中執行適當地反映QP表與熵表的組合的操作,如上文參看圖3所描述,所述組合已藉由壓縮管理器218判定以壓縮第二資料。The decompression manager 228 may perform an operation that appropriately reflects the combination of the QP table and the entropy table in the decompression of the third data, as described above with reference to FIG. Second information.

在一例示性實施例中,影像處理裝置的第二資料為呈YUV格式的資料。此處,呈YUV格式的資料可具有YUV 420格式或YUV 422格式。In an exemplary embodiment, the second data of the image processing device is data in a YUV format. Here, the data in the YUV format may have the YUV 420 format or the YUV 422 format.

圖5為用於解釋由根據本發明概念的例示性實施例的影像處理裝置處理的YUV 420資料格式的三種操作模式的概念圖。5 is a conceptual diagram for explaining three operation modes of a YUV 420 data format processed by an image processing apparatus according to an exemplary embodiment of the inventive concept.

參看圖1至圖5,FBC 200的編碼器210及解碼器220可具有三種操作模式。在圖5中,呈YUV 420格式的第二資料具有16×16明度訊號區塊Y、8×8第一色度訊號區塊Cb或U以及8×8第二色度訊號區塊Cr或V。此處,每一區塊的大小指示排列有多少列及多少行像素,且16×16大小指示由16列及16行像素構成的區塊的大小。1 to 5, the encoder 210 and the decoder 220 of the FBC 200 may have three operation modes. In FIG. 5, the second data in the YUV 420 format has a 16 × 16 brightness signal block Y, an 8 × 8 first chroma signal block Cb or U, and an 8 × 8 second chroma signal block Cr or V. . Here, the size of each block indicates how many columns and rows of pixels are arranged, and the 16 × 16 size indicates the size of a block composed of 16 columns and 16 rows of pixels.

FBC 200可包含三種操作模式:級聯模式①、部分級聯模式②以及分離模式③。所述三種模式是關於資料的壓縮格式,且可為根據有損模式及無損模式分別判定的操作模式。在一例示性實施例中,三種操作模式中的僅兩種可用。在另一例示性實施例中,三種操作模式中的僅一種可用。The FBC 200 can include three modes of operation: cascade mode①, partial cascade mode②, and separation mode③. The three modes are about the compression format of the data, and may be operation modes that are respectively determined according to the lossy mode and the lossless mode. In an exemplary embodiment, only two of the three modes of operation are available. In another exemplary embodiment, only one of the three operation modes is available.

級聯模式①是用於將明度訊號區塊Y、第一色度訊號區塊Cb以及第二色度訊號區塊Cr一起進行壓縮及解壓縮的操作模式。亦即,在級聯模式①下,壓縮單元區塊為如圖5中所說明那樣組合明度訊號區塊Y、第一色度訊號區塊Cb以及第二色度訊號區塊Cr的區塊。因此,壓縮單元區塊可具有16×24的大小。舉例而言,可使用單個壓縮操作來壓縮包含明度訊號區塊Y、第一色度訊號區塊Cb以及第二色度訊號區塊Cr的資料區塊。The cascade mode ① is an operation mode for compressing and decompressing the luma signal block Y, the first chroma signal block Cb, and the second chroma signal block Cr together. That is, in the cascade mode ①, the compression unit block is a block that combines the luma signal block Y, the first chroma signal block Cb, and the second chroma signal block Cr as described in FIG. 5. Therefore, the compression unit block may have a size of 16 × 24. For example, a single compression operation may be used to compress a data block including a luma signal block Y, a first chroma signal block Cb, and a second chroma signal block Cr.

在部分級聯模式②下,第一色度訊號區塊Cb與第二色度訊號區塊Cr彼此組合且一起進行壓縮及解壓縮,且明度訊號區塊Y獨立地進行壓縮及解壓縮。因此,明度訊號區塊Y可具有16×16的其原始大小,且組合第一色度訊號區塊Cb與第二色度訊號區塊Cr的區塊可具有16×8的大小。舉例而言,可使用第一壓縮操作來壓縮明度訊號區塊Y,且可使用第二壓縮操作來壓縮包含第一色度訊號區塊Cb及第二色度訊號區塊Cr的資料區塊。In the partial cascade mode ②, the first chroma signal block Cb and the second chroma signal block Cr are combined with each other and compressed and decompressed together, and the lightness signal block Y is independently compressed and decompressed. Therefore, the luma signal block Y may have its original size of 16 × 16, and a block combining the first chroma signal block Cb and the second chroma signal block Cr may have a size of 16 × 8. For example, a first compression operation may be used to compress the luma signal block Y, and a second compression operation may be used to compress a data block including the first chroma signal block Cb and the second chroma signal block Cr.

分離模式③是用於將明度訊號區塊Y、第一色度訊號區塊Cb以及第二色度訊號區塊Cr分別進行壓縮及解壓縮的操作模式。此處,為了使壓縮單元區塊與解壓縮單元區塊大小相同,明度訊號區塊Y維持在16×16的其原始大小,且第一色度訊號區塊Cb及第二色度訊號區塊Cr各自放大至16×16的大小。舉例而言,可使用第一壓縮操作來壓縮明度訊號區塊Y,可使用第二壓縮操作來壓縮第一色度訊號區塊Cb,且可使用第三壓縮操作來壓縮第二色度訊號區塊Cr。The separation mode ③ is an operation mode for compressing and decompressing the luma signal block Y, the first chroma signal block Cb, and the second chroma signal block Cr, respectively. Here, in order to make the compression unit block and the decompression unit block the same size, the luma signal block Y is maintained at its original size of 16 × 16, and the first chroma signal block Cb and the second chroma signal block Cr is each enlarged to a size of 16 × 16. For example, a first compression operation may be used to compress the luma signal block Y, a second compression operation may be used to compress the first chroma signal block Cb, and a third compression operation may be used to compress the second chroma signal region Block Cr.

因此,若明度訊號區塊Y的數目為N,則可將第一色度訊號區塊Cb的數目及第二色度訊號區塊Cr的數目各自減少至N/4。Therefore, if the number of luma signal blocks Y is N, the number of the first chroma signal blocks Cb and the number of the second chroma signal blocks Cr can be reduced to N / 4 each.

當根據本發明概念的例示性實施例的影像處理裝置的FBC 200在級聯模式①下操作時,可經由對記憶體300的單個存取請求來讀取所有所需資料。特定言之,當多媒體IP 100需要呈RGB格式(而非呈YUV格式)的資料時,FBC 200在級聯模式①下操作是有利的。此是因為在級聯模式①下可一次獲得所有明度訊號區塊Y、第一色度訊號區塊Cb以及第二色度訊號區塊Cr,且此是因為需要所有明度訊號區塊Y、第一色度訊號區塊Cb以及第二色度訊號區塊Cr以獲得RGB資料。When the FBC 200 of the image processing apparatus according to an exemplary embodiment of the inventive concept operates in the cascade mode ①, all required data can be read via a single access request to the memory 300. In particular, when multimedia IP 100 requires data in RGB format instead of YUV format, it is advantageous for FBC 200 to operate in cascade mode①. This is because in the cascade mode ① all the luma signal blocks Y, the first chroma signal block Cb, and the second chroma signal block Cr can be obtained at one time, and this is because all the luma signal blocks Y, the first A chroma signal block Cb and a second chroma signal block Cr to obtain RGB data.

當壓縮單元區塊在級聯模式①下較小時,分離模式③可能需要更少的硬體資源。因此,當多媒體IP 100需求呈YUV格式(而非呈RGB格式)的資料時,分離模式③可能更為有利。When the compression unit block is smaller in cascade mode ①, separation mode ③ may require less hardware resources. Therefore, when multimedia IP 100 requires materials in YUV format (rather than in RGB format), the separation mode ③ may be more advantageous.

最後,部分級聯模式②是級聯模式①與分離模式③之間的折衷。即使在需要RGB資料時,部分級聯模式②亦比級聯模式①需要更少的硬體資源且比分離模式③對記憶體300作出更少的存取請求(兩個存取請求)。Finally, part of the cascade mode ② is a compromise between the cascade mode ① and the separation mode ③. Even when RGB data is required, the partial cascade mode ② requires less hardware resources than the cascade mode ① and makes fewer access requests (two access requests) to the memory 300 than the split mode ③.

第一模式選擇器219判定在三種模式(亦即,級聯模式①、部分級聯模式②以及分離模式③)中的哪種模式下將會壓縮第二資料。第一模式選擇器219可自多媒體IP 100接收指示將會執行級聯模式①、部分級聯模式②以及分離模式③中的哪一者的訊號。舉例而言,可將訊號設定成用以指示級聯模式的第一電壓位準、用以指示部分級聯模式的第二電壓位準以及用以指示分離模式的第三電壓位準,其中第一電壓位準至第三電壓位準與彼此不同。The first mode selector 219 determines in which of the three modes (ie, cascade mode ①, partial cascade mode ②, and separation mode ③) the second data will be compressed. The first mode selector 219 may receive a signal from the multimedia IP 100 indicating which one of the cascade mode ①, the partial cascade mode ②, and the separation mode ③ will be executed. For example, the signal can be set to a first voltage level used to indicate a cascade mode, a second voltage level used to indicate a portion of the cascade mode, and a third voltage level used to indicate a separation mode. A voltage level to a third voltage level are different from each other.

第二模式選擇器229可根據在級聯模式①、部分級聯模式②以及分離模式③中的哪一者下已將第二資料壓縮成第三資料而對第三資料進行解壓縮。舉例而言,若使用級聯模式壓縮第二資料,則第二模式選擇器229可進行單次存取來擷取包含明度訊號區塊Y、第一色度訊號區塊Cb以及第二色度訊號區塊Cr的經壓縮資料。舉例而言,若使用部分級聯模式壓縮第二資料,則第二模式選擇器229可進行兩次存取來擷取包含明度訊號區塊Y的第一經壓縮資料及包含第一色度訊號區塊Cb及第二色度訊號區塊Cr的第二經壓縮資料。舉例而言,若使用分離模式壓縮第二資料,則第二模式選擇器229可進行三次存取來擷取包含明度訊號區塊Y的第一經壓縮資料、包含第一色度訊號區塊Cb的第二經壓縮資料以及包含第二色度訊號區塊Cr的第三經壓縮資料。The second mode selector 229 may decompress the third data according to which one of the cascade mode ①, the partial cascade mode ②, and the separation mode ③ has been compressed into the third data. For example, if cascading mode is used to compress the second data, the second mode selector 229 can perform a single access to retrieve the lightness signal block Y, the first chrominance signal block Cb, and the second chrominance. Compressed data of signal block Cr. For example, if the second data is compressed using a partial cascade mode, the second mode selector 229 can perform two accesses to retrieve the first compressed data including the luma signal block Y and the first chroma signal. The second compressed data of the block Cb and the second chrominance signal block Cr. For example, if the second data is compressed using the split mode, the second mode selector 229 can perform three accesses to retrieve the first compressed data including the luma signal block Y and the first chroma signal block Cb. The second compressed data and the third compressed data including the second chrominance signal block Cr.

圖6為用於解釋根據本發明概念的例示性實施例的影像處理裝置的YUV 422資料格式的三種操作模式的概念圖。6 is a conceptual diagram for explaining three operation modes of a YUV 422 data format of an image processing apparatus according to an exemplary embodiment of the inventive concept.

參看圖1至圖4以及圖6,FBC 200的編碼器210及解碼器220亦可具有YUV 422格式的三種操作模式。在圖6中,呈YUV 422格式的第二資料具有16×16明度訊號區塊Y及16×8第一色度訊號區塊Cb或U以及16×8第二色度訊號區塊Cr或V。Referring to FIGS. 1 to 4 and FIG. 6, the encoder 210 and the decoder 220 of the FBC 200 may also have three operation modes in YUV 422 format. In FIG. 6, the second data in the YUV 422 format has 16 × 16 lightness signal blocks Y and 16 × 8 first chroma signal blocks Cb or U and 16 × 8 second chroma signal blocks Cr or V. .

在級聯模式①下,壓縮單元區塊是組合明度訊號區塊Y、第一色度訊號區塊Cb以及第二色度訊號區塊Cr的區塊。因此,所述壓縮單元區塊可具有16×32的大小。In the cascade mode ①, the compression unit block is a block that combines the luma signal block Y, the first chroma signal block Cb, and the second chroma signal block Cr. Therefore, the compression unit block may have a size of 16 × 32.

在部分級聯模式②下,第一色度訊號區塊Cb與第二色度訊號區塊Cr彼此組合且一起進行壓縮及解壓縮,且明度訊號區塊Y獨立地進行壓縮及解壓縮。因此,明度訊號區塊Y可具有16×16的其原始大小,且組合第一色度訊號區塊Cb與第二色度訊號區塊Cr的區塊可具有16×16的大小。因此,明度訊號區塊Y的大小可等於組合第一色度訊號區塊Cb與第二色度訊號區塊Cr的區塊的大小。In the partial cascade mode ②, the first chroma signal block Cb and the second chroma signal block Cr are combined with each other and compressed and decompressed together, and the lightness signal block Y is independently compressed and decompressed. Therefore, the luma signal block Y may have its original size of 16 × 16, and a block combining the first chroma signal block Cb and the second chroma signal block Cr may have a size of 16 × 16. Therefore, the size of the luma signal block Y may be equal to the size of a block combining the first chroma signal block Cb and the second chroma signal block Cr.

分離模式③是用於將明度訊號區塊Y、第一色度訊號區塊Cb以及第二色度訊號區塊Cr分別進行壓縮及解壓縮的操作模式。此處,為了使壓縮單元區塊與解壓縮單元區塊大小相同,明度訊號區塊Y維持在16×16的其原始大小,且第一色度訊號區塊Cb及第二色度訊號區塊Cr各自放大至16×16的大小。The separation mode ③ is an operation mode for compressing and decompressing the luma signal block Y, the first chroma signal block Cb, and the second chroma signal block Cr, respectively. Here, in order to make the compression unit block and the decompression unit block the same size, the luma signal block Y is maintained at its original size of 16 × 16, and the first chroma signal block Cb and the second chroma signal block Cr is each enlarged to a size of 16 × 16.

因此,若明度訊號區塊Y的數目為N,則將第一色度訊號區塊Cb的數目及第二色度訊號區塊Cr的數目各自減少至N/2。Therefore, if the number of luma signal blocks Y is N, the number of the first chroma signal blocks Cb and the number of the second chroma signal blocks Cr are each reduced to N / 2.

圖7說明藉由根據本發明概念的例示性實施例的影像處理裝置進行無損壓縮的資料的結構。圖8為用於解釋圖7的經無損壓縮資料的壓縮方法的表。FIG. 7 illustrates a structure of data losslessly compressed by an image processing apparatus according to an exemplary embodiment of the inventive concept. FIG. 8 is a table for explaining a compression method of the losslessly compressed data of FIG. 7.

參看圖1至圖8,第三資料(亦即,經壓縮資料)包含有效負載及標頭。Referring to FIGS. 1 to 8, the third data (ie, compressed data) includes a payload and a header.

標頭指示壓縮比,且有效負載包含實際經壓縮資料及解壓縮所需的值。The header indicates the compression ratio, and the payload contains the actual compressed data and the values needed for decompression.

在圖8中,藉助於實例說明用於解釋16×16區塊的無損壓縮的表。由於資料格式為YUV 420且操作模式為分離模式③,因此圖5的明度訊號區塊Y、第一色度訊號區塊Cb或第二色度訊號區塊Cr可對應於此表。像素深度指示一個像素中表示的值的位元值。舉例而言,需要8個位元的像素深度來表示0至255的值。因此,在圖8的實例中,每一像素中表示的值可為0至255。In FIG. 8, a table for explaining lossless compression of a 16 × 16 block is explained by way of example. Since the data format is YUV 420 and the operation mode is separate mode ③, the luma signal block Y, the first chroma signal block Cb, or the second chroma signal block Cr in FIG. 5 may correspond to this table. Pixel depth indicates the bit value of the value represented in a pixel. For example, a pixel depth of 8 bits is required to represent values from 0 to 255. Therefore, in the example of FIG. 8, the value represented in each pixel may be 0 to 255.

在記憶體300中,可以硬體方式一次存取的資料的大小為預定的。記憶體300的資料存取單元的大小可指示可在記憶體300中存取的資料的大小。在圖8中,為方便起見將假設記憶體300的資料存取單元的大小為32個位元組。In the memory 300, the size of the data that can be accessed at one time in hardware is predetermined. The size of the data access unit of the memory 300 may indicate the size of data that can be accessed in the memory 300. In FIG. 8, the size of the data access unit of the memory 300 is assumed to be 32 bytes for convenience.

一個像素可具有8個位元(亦即,1個位元組)的資料,且16×16區塊可具有總共256個位元組的資料。亦即,第二資料(亦即,未經壓縮資料)的大小可為256個位元組。One pixel may have 8 bits of data (ie, 1 byte) of data, and a 16 × 16 block may have a total of 256 bytes of data. That is, the size of the second data (ie, uncompressed data) may be 256 bytes.

就無損壓縮而言,經壓縮資料的大小可能每次均不同。為了自記憶體300讀取經壓縮資料,必須分別記錄經壓縮資料的大小。然而,若按原樣記錄經壓縮資料的大小,則壓縮效率可藉由所記錄的大小而降低。因此,可使壓縮比標準化以提高壓縮效率。For lossless compression, the size of the compressed data may be different every time. In order to read the compressed data from the memory 300, the size of the compressed data must be recorded separately. However, if the size of the compressed data is recorded as it is, the compression efficiency can be reduced by the recorded size. Therefore, the compression ratio can be standardized to improve the compression efficiency.

具體言之,在圖8中,基於32個位元組(其為記憶體300的資料存取單元的大小)來限定壓縮比的範圍。亦即,若經壓縮資料的大小為0個位元組至32個位元組,則壓縮比為100%至87.5%。在此情況下,可執行將壓縮比調節為87.5%的操作(亦即,將經壓縮資料的大小調節為32個位元組的操作),且可將0記錄於標頭中。同樣,若經壓縮資料的大小為161個位元組至192個位元組,則壓縮比為37.5%至25%。在此情況下,可執行將壓縮比調節為25%的操作(亦即,將經壓縮資料的大小調節為192個位元組的操作),且可將5記錄於標頭中。Specifically, in FIG. 8, the range of the compression ratio is defined based on 32 bytes, which is the size of the data access unit of the memory 300. That is, if the size of the compressed data is 0 bytes to 32 bytes, the compression ratio is 100% to 87.5%. In this case, an operation of adjusting the compression ratio to 87.5% (that is, an operation of adjusting the size of the compressed data to 32 bytes) may be performed, and 0 may be recorded in the header. Similarly, if the size of the compressed data is 161 bytes to 192 bytes, the compression ratio is 37.5% to 25%. In this case, an operation of adjusting the compression ratio to 25% (that is, an operation of adjusting the size of the compressed data to 192 bytes) may be performed, and 5 may be recorded in the header.

圖3的填補模組217可執行將經壓縮資料的大小調節為對應範圍的最大大小的操作。亦即,若經壓縮資料的大小為170個位元組,則由於170個位元組介於161個位元組與192個位元組之間,因此可執行添加22個位元組的「0」的填補操作以將經壓縮資料的大小調節為192個位元組。The padding module 217 of FIG. 3 can perform the operation of adjusting the size of the compressed data to the maximum size of the corresponding range. That is, if the size of the compressed data is 170 bytes, since the 170 bytes are between 161 bytes and 192 bytes, a 22-byte " 0 "padding operation to adjust the size of the compressed data to 192 bytes.

已藉由填補模組217將大小調節為對應範圍的最大大小的經壓縮資料可變為第三資料的有效負載。因此,有效負載的大小(n1個位元)可為記憶體300的資料存取單元的大小的整數倍。The compressed data whose size has been adjusted to the maximum size of the corresponding range by the padding module 217 can be changed into the payload of the third data. Therefore, the size of the payload (n1 bits) may be an integer multiple of the size of the data access unit of the memory 300.

標頭可包含圖8的標頭索引。標頭的大小可根據經壓縮資料的大小而變化,但就圖8而言可為3個位元,此是因為標頭僅表示0至7。The header may include a header index of FIG. 8. The size of the header can vary depending on the size of the compressed data, but it can be 3 bits in terms of FIG. 8 because the header only represents 0 to 7.

在一例示性實施例中,標頭及有效負載儲存於記憶體300的不同區域中。亦即,標頭可以與另一標頭相鄰的方式儲存,且有效負載可以與另一有效負載相鄰的方式儲存。In an exemplary embodiment, the header and the payload are stored in different regions of the memory 300. That is, a header may be stored adjacent to another header, and a payload may be stored adjacent to another payload.

在一實施例中,有效負載包含二進位碼及k 值碼。二進位碼可表示經壓縮的第二資料。k 值碼可表示由熵編碼模組215判定的k 值。In one embodiment, the payload includes a binary code and a k- value code. The binary code may represent the compressed second data. The k value code may represent a k value determined by the entropy coding module 215.

二進位碼可包含整個區塊的資料值。因此,二進位碼可相繼包含區塊中所包含的每一像素的資料。Binary codes can contain data values for the entire block. Therefore, the binary code can successively contain the data of each pixel contained in the block.

由於當前模式為分離模式③,因此k 值碼為明度訊號區塊Y、第一色度訊號區塊Cb以及第二色度訊號區塊Cr中的任一者的k 值。Since the current mode is the separation mode ③, the k value code is the k value of any one of the luma signal block Y, the first chroma signal block Cb, and the second chroma signal block Cr.

圖9說明藉由根據本發明概念的例示性實施例的影像處理裝置進行無損壓縮的資料的結構。圖10為用於解釋圖9的經無損壓縮資料的壓縮方法的表。FIG. 9 illustrates the structure of data losslessly compressed by an image processing apparatus according to an exemplary embodiment of the inventive concept. FIG. 10 is a table for explaining a compression method of the losslessly compressed data of FIG. 9.

在圖10中,藉助於實例說明用於解釋16×8區塊的無損壓縮的表。由於資料格式為YUV 420且操作模式為部分級聯模式②,因此將圖5的第一色度訊號區塊Cb與第二色度訊號區塊Cr組合的區塊可對應於此表。在圖10中,為方便起見將假設記憶體300的資料存取單元的大小為32個位元組。In FIG. 10, a table for explaining lossless compression of a 16 × 8 block is explained by way of example. Since the data format is YUV 420 and the operation mode is a partial cascade mode ②, a block combining the first chroma signal block Cb and the second chroma signal block Cr of FIG. 5 may correspond to this table. In FIG. 10, the size of the data access unit of the memory 300 is assumed to be 32 bytes for convenience.

16×8區塊可具有總共128個位元組的資料。亦即,第二資料的大小可為128個位元組。A 16 × 8 block may have a total of 128 bytes of data. That is, the size of the second data may be 128 bytes.

基於32個位元組(其為記憶體300的資料存取單元的大小)來限定壓縮比的範圍。亦即,若經壓縮資料的大小為0至32個位元組,則壓縮比為100%至75%。在此情況下,可執行將壓縮比調節為75%的操作(亦即,將經壓縮資料的大小調節為32個位元組的操作),且可將0記錄於標頭中。同樣,若經壓縮資料的大小為97個位元組至128個位元組,則壓縮比為25%至0%。在此情況下,可執行將壓縮比調節為0%的操作(亦即,將經壓縮資料的大小調節為128個位元組的操作),且可將3記錄於標頭中。此操作可由圖3的填補模組217執行。The range of the compression ratio is defined based on 32 bytes, which is the size of the data access unit of the memory 300. That is, if the size of the compressed data is 0 to 32 bytes, the compression ratio is 100% to 75%. In this case, an operation of adjusting the compression ratio to 75% (that is, an operation of adjusting the size of the compressed data to 32 bytes) may be performed, and 0 may be recorded in the header. Similarly, if the size of the compressed data is 97 bytes to 128 bytes, the compression ratio is 25% to 0%. In this case, an operation of adjusting the compression ratio to 0% (that is, an operation of adjusting the size of the compressed data to 128 bytes) may be performed, and 3 may be recorded in the header. This operation may be performed by the filling module 217 of FIG. 3.

參看圖9,已藉由填補模組217將大小調節為對應範圍的最大大小的經壓縮資料可變為第三資料的有效負載。因此,有效負載的大小(n2個位元)可為記憶體300的資料存取單元的大小的整數倍。Referring to FIG. 9, the compressed data whose size has been adjusted to the maximum size of the corresponding range by the padding module 217 can be changed into the payload of the third data. Therefore, the size of the payload (n2 bits) may be an integer multiple of the size of the data access unit of the memory 300.

在一實施例中,有效負載包含二進位碼及k 值碼。由於當前模式為部分級聯模式②且16×8區塊為組合第一色度訊號區塊Cb與第二色度訊號區塊Cr的區塊,因此k 值碼包含第一色度訊號區塊Cb的k 值碼及第二色度訊號區塊Cr的k 值碼。第一色度訊號區塊Cb的k 值碼及第二色度訊號區塊Cr的k 值碼的排列順序可變化。In one embodiment, the payload includes a binary code and a k- value code. Since the current mode is a partial cascade mode② and the 16 × 8 block is a block that combines the first chroma signal block Cb and the second chroma signal block Cr, the k value code includes the first chroma signal block Cb value of k code block and the second chrominance signal Cr k value code. The arrangement order of the k- value codes of the first chrominance signal block Cb and the k- value codes of the second chrominance signal block Cr can be changed.

根據例示性實施例的影像處理裝置的有效負載僅包含一個k 值碼,而不分別具有第一色度訊號區塊Cb的k 值碼及第二色度訊號區塊Cr的k 值碼。在此情況下,所述k 值碼在第一色度訊號區塊Cb及第二色度訊號區塊Cr中相同。The payload of the image processing apparatus of the exemplary embodiment includes only one value of k code, instead of a first chroma signal blocks each having a k value Cb chrominance signal block and the second code value of k code Cr. In this case, the k- value code is the same in the first chroma signal block Cb and the second chroma signal block Cr.

由於圖9說明其中在部分級聯模式②下組合第一色度訊號區塊Cb與第二色度訊號區塊Cr的區塊的資料結構,因此二進位碼可包含關於第一色度訊號區塊Cb的資料及關於第二色度訊號區塊Cr的資料兩者。Since FIG. 9 illustrates a data structure in which the blocks of the first chrominance signal block Cb and the second chrominance signal block Cr are combined in the partial cascade mode ②, the binary code may include information about the first chroma signal region Both the data of the block Cb and the data about the second chrominance signal block Cr.

在二進位碼中,首先可針對所有像素放置關於第一色度訊號區塊Cb的資料,且接著可針對所有像素放置關於第二色度訊號區塊Cr的資料。亦即,可分別排列第一色度訊號區塊Cb的資料及第二色度訊號區塊Cr的資料。第一色度訊號區塊Cb的資料及第二色度訊號區塊Cr的資料的排列順序可變化。In the binary code, first, information about the first chroma signal block Cb can be placed for all pixels, and then data about the second chroma signal block Cr can be placed for all pixels. That is, the data of the first chroma signal block Cb and the data of the second chroma signal block Cr may be arranged separately. The arrangement order of the data of the first chroma signal block Cb and the data of the second chroma signal block Cr can be changed.

可替代地,根據例示性實施例的影像處理裝置的二進位碼具有交錯結構,其中針對一個像素相繼排列第一色度訊號區塊Cb的資料及第二色度訊號區塊Cr的資料,且針對另一像素相繼排列第一色度訊號區塊Cb的資料及第二色度訊號區塊Cr的資料。Alternatively, the binary code of the image processing apparatus according to the exemplary embodiment has an interleaved structure, in which the data of the first chroma signal block Cb and the data of the second chroma signal block Cr are sequentially arranged for one pixel, and The data of the first chrominance signal block Cb and the data of the second chrominance signal block Cr are sequentially arranged for another pixel.

無需在分離模式③下考慮此結構,此是因為在分離模式③下僅包含一個平面。然而,由於在級聯模式①下及部分級聯模式②下包含多個平面,因此可使用交錯結構。It is not necessary to consider this structure in the separation mode ③, because only one plane is included in the separation mode ③. However, since multiple planes are included in the cascade mode ① and part of the cascade mode ②, a staggered structure can be used.

因此,在級聯模式①下,亦可在二進位碼中分別排列針對所有像素的明度訊號區塊Y的資料、針對所有像素的第一色度訊號區塊Cb的資料以及第二色度訊號區塊Cr的資料。明度訊號區塊Y的資料、第一色度訊號區塊Cb的資料以及第二色度訊號區塊Cr的資料的排列順序可變化。Therefore, in the cascade mode ①, the data of the luma signal block Y for all pixels, the data of the first chroma signal block Cb, and the second chroma signal can be arranged in the binary code. Block Cr data. The arrangement order of the data of the luma signal block Y, the data of the first chroma signal block Cb, and the data of the second chroma signal block Cr can be changed.

可替代地,在級聯模式①的二進位碼中,可針對一個像素排列明度訊號區塊Y的資料、第一色度訊號區塊Cb的資料以及第二色度訊號區塊Cr的資料。接著,可針對另一像素排列明度訊號區塊Y的資料、第一色度訊號區塊Cb的資料以及第二色度訊號區塊Cr的資料。Alternatively, in the binary code of the cascade mode ①, the data of the luma signal block Y, the data of the first chroma signal block Cb, and the data of the second chroma signal block Cr may be arranged for one pixel. Then, the data of the luma signal block Y, the data of the first chroma signal block Cb, and the data of the second chroma signal block Cr can be arranged for another pixel.

亦即,在二進位碼中,可針對每一平面排列資料或可針對每一像素排列資料(交錯結構)。That is, in the binary code, data can be arranged for each plane or data can be arranged for each pixel (interleaved structure).

圖11說明藉由根據本發明概念的例示性實施例的影像處理裝置進行無損壓縮的資料的結構。FIG. 11 illustrates a structure of data losslessly compressed by an image processing apparatus according to an exemplary embodiment of the inventive concept.

參看圖11,若當前模式為級聯模式①,則壓縮組合明度訊號區塊Y、第一色度訊號區塊Cb以及第二色度訊號區塊Cr的區塊。因此,k 值碼可包含明度訊號區塊Y的k 值碼、第一色度訊號區塊Cb的k 值碼以及第二色度訊號區塊Cr的k 值碼。此處,明度訊號區塊Y的k 值碼、第一色度訊號區塊Cb的k 值碼以及第二色度訊號區塊Cr的k 值碼的排列順序可變化。Referring to FIG. 11, if the current mode is the cascade mode ①, a block combining the luma signal block Y, the first chroma signal block Cb, and the second chroma signal block Cr is compressed. Accordingly, the k value k value of the code may comprise code lightness Y of the signal block, the first block of Cb chrominance signal values of k code block and the second chrominance signal Cr k value code. Here, the arrangement order of the k- value code of the luma signal block Y, the k- value code of the first chroma signal block Cb, and the k- value code of the second chroma signal block Cr may be changed.

根據實施例的影像處理裝置的有效負載僅包含一個k 值碼,而不分別具有明度訊號區塊Y的k 值碼、第一色度訊號區塊Cb的k 值碼以及第二色度訊號區塊Cr的k 值碼。在此情況下,k 值碼在明度訊號區塊Y、第一色度訊號區塊Cb以及第二色度訊號區塊Cr中相同。The image processing apparatus payload embodiment includes only a code value k, the k value does not have code block luminance signal Y, the first chrominance signal Cb block and the second code value of k chrominance signal region The k value code of the block Cr. In this case, the k- value code is the same in the luma signal block Y, the first chroma signal block Cb, and the second chroma signal block Cr.

可替代地,若三個平面中僅有兩個共用相同的k 值碼,則在有效負載中可包含總共兩個k 值碼。Alternatively, if only two of the three planes share the same k- value code, a total of two k- value codes may be included in the payload.

在一實施例中,包含二進位碼及k 值碼的有效負載的大小(n3個位元)是記憶體300的資料存取單元的大小的整數倍。In one embodiment, the size (n3 bits) of the payload including the binary code and the k- value code is an integer multiple of the size of the data access unit of the memory 300.

圖12說明藉由根據本發明概念的例示性實施例的影像處理裝置進行有損壓縮的資料的結構。FIG. 12 illustrates a structure of data that is lossy-compressed by an image processing apparatus according to an exemplary embodiment of the inventive concept.

參看圖12,藉由以有損模式壓縮第二資料而生成的第三資料僅包含不具有標頭的有效負載。Referring to FIG. 12, the third data generated by compressing the second data in a lossy mode includes only a payload without a header.

在一實施例中,有效負載包含二進位碼、k 值碼以及QP碼。在一實施例中,QP碼包含由圖3中的量化模組213使用的QP。在一實施例中,解碼器220的逆量化模組223對使用QP碼藉由量化模組213壓縮的資料進行解壓縮。In one embodiment, the payload includes a binary code, a k- value code, and a QP code. In one embodiment, the QP code includes a QP used by the quantization module 213 in FIG. 3. In one embodiment, the inverse quantization module 223 of the decoder 220 decompresses the data compressed by the quantization module 213 using a QP code.

圖12的第三資料可為對應於分離模式③的第三資料的結構。因此,k 值碼及QP碼可能僅針對明度訊號區塊Y、第一色度訊號區塊Cb以及第二色度訊號區塊Cr中的一者而存在。The third data of FIG. 12 may be a structure of the third data corresponding to the separation mode ③. Therefore, the k- value code and the QP code may exist only for one of the luma signal block Y, the first chroma signal block Cb, and the second chroma signal block Cr.

由於在有損模式下壓縮比為固定的,因此第三資料的大小(亦即,有效負載的大小(m1個位元))可為固定的。Since the compression ratio is fixed in the lossy mode, the size of the third data (that is, the size of the payload (m1 bits)) may be fixed.

圖13說明藉由根據本發明概念的例示性實施例的影像處理裝置進行有損壓縮的資料的結構。FIG. 13 illustrates the structure of data that is lossy compressed by an image processing apparatus according to an exemplary embodiment of the inventive concept.

參看圖13,有效負載包含二進位碼、k 值碼以及QP碼。圖13的第三資料可為其中在部分級聯模式②下組合第一色度訊號區塊Cb與第二色度訊號區塊Cr的區塊的第三資料的結構。因此,存在兩個k 值碼及兩個QP碼。具體言之,有效負載包含第一色度訊號區塊Cb的k 值碼、第二色度訊號區塊Cr的k 值碼、第一色度訊號區塊Cb的QP碼以及第二色度訊號區塊Cr的QP碼。Referring to FIG. 13, the payload includes a binary code, a k- value code, and a QP code. The third data of FIG. 13 may be a structure of the third data in which the first chroma signal block Cb and the second chroma signal block Cr are combined in the partial cascade mode ②. Therefore, there are two k- value codes and two QP codes. Specifically words, the payload signal block comprising a first chrominance Cb value of k symbols, the second block of Cr chrominance signal values of k symbols, the first block of Cb chrominance signal and a second chrominance signal QP codes QP code for block Cr.

第一色度訊號區塊Cb的k 值碼、第二色度訊號區塊Cr的k 值碼、第一色度訊號區塊Cb的QP碼、第二色度訊號區塊Cr的QP碼以及二進位碼(亦即,經壓縮資料)的順序可變化。A first chrominance signal Cb value of k code block, the second block of Cr chrominance signal values of the code k, a first chrominance signal Cb, QP code block, the second block of Cr chrominance signal and QP code The order of the binary codes (ie, the compressed data) can vary.

在一實施例中,共用兩個k 值碼。因此,當共用相同的k 值碼時,僅存在一個k 值碼。In one embodiment, two k- value codes are shared. Therefore, when the same k- value code is shared, only one k- value code exists.

同樣,可共用兩個QP碼。因此,當共用相同的QP碼時,僅存在一個QP碼。圖14說明藉由根據本發明概念的例示性實施例的影像處理裝置進行有損壓縮的資料的結構。Similarly, two QP codes can be shared. Therefore, when the same QP code is shared, only one QP code exists. FIG. 14 illustrates the structure of data that is lossy compressed by an image processing apparatus according to an exemplary embodiment of the inventive concept.

參看圖14,有效負載包含二進位碼、k 值碼以及QP碼。圖14的第三資料可為其中在級聯模式①下組合明度訊號區塊Y、第一色度訊號區塊Cb以及第二色度訊號區塊Cr的區塊的第三資料的結構。因此,存在三個k 值碼及三個QP碼。具體言之,有效負載包含明度訊號區塊Y的k 值碼、第一色度訊號區塊Cb的k 值碼、第二色度訊號區塊Cr的k 值碼、明度訊號區塊Y的QP碼、第一色度訊號區塊Cb的QP碼以及第二色度訊號區塊Cr的QP碼。Referring to FIG. 14, the payload includes a binary code, a k- value code, and a QP code. The third data of FIG. 14 may be a structure of the third data in which the luma signal block Y, the first chroma signal block Cb, and the second chroma signal block Cr are combined in the cascade mode ①. Therefore, there are three k- value codes and three QP codes. Specific, payload code comprising k values of Y luminance signal block, the first block of Cb chrominance signal values of k symbols, the second block of Cr chrominance signal values of k code, Y is the brightness signal block QP Code, the QP code of the first chroma signal block Cb, and the QP code of the second chroma signal block Cr.

明度訊號區塊Y的k 值碼、第一色度訊號區塊Cb的k 值碼、第二色度訊號區塊Cr的k 值碼、明度訊號區塊Y的QP碼、第一色度訊號區塊Cb的QP碼、第二色度訊號區塊Cr的QP碼以及二進位碼的順序可變化。Y luminance signal block values of k symbols, the first chrominance signal Cb value of k code block, the second block of Cr chrominance signal values of the code k, the brightness signal Y QP code block, a first chrominance signal The order of the QP code of the block Cb, the QP code of the second chrominance signal block Cr, and the binary code may be changed.

在一實施例中,共用三個k 值碼。因此,當共用相同的k 值時,僅存在一個k 值碼。當三個平面中的僅兩個共用k 值碼時,僅存在兩個k 值碼。In one embodiment, three k- value codes are shared. Therefore, when the same k value is shared, there is only one k value code. When only two of the three planes share k- value codes, there are only two k- value codes.

同樣,可共用三個QP碼。因此,當共用相同的QP碼時,僅存在一個QP碼。當三個平面中的僅兩個共用QP碼時,僅存在兩個QP碼。Similarly, three QP codes can be shared. Therefore, when the same QP code is shared, only one QP code exists. When only two of the three planes share a QP code, there are only two QP codes.

現將參看圖1至圖6以及圖15描述根據本發明概念的例示性實施例的影像處理裝置。An image processing apparatus according to an exemplary embodiment of the inventive concept will now be described with reference to FIGS. 1 to 6 and 15.

圖15說明藉由根據本發明概念的例示性實施例的影像處理裝置進行有損壓縮的資料的結構。FIG. 15 illustrates a structure of data that is lossy-compressed by an image processing apparatus according to an exemplary embodiment of the inventive concept.

參看圖1至圖6以及圖15,在有損模式下,有效負載可僅包含二進位碼及最大QP碼而不具有k 值碼。此處,儲存於最大QP碼中的QP可為可能的QP當中的最大值。若像素資料具有0至28 -1(= 255)的值,則可將QP限定為1/(2n -1)(其中n 是8或小於8的整數)。然而,當前實施例並不限於此情況。Referring to FIG. 1 to FIG. 6 and FIG. 15, in the lossy mode, the payload may include only a binary code and a maximum QP code without a k- value code. Here, the QP stored in the maximum QP code may be the maximum value among possible QPs. If the pixel data has a value of 0 to 2 8 -1 (= 255), the QP can be limited to 1 / (2 n -1) (where n is an integer of 8 or less). However, the current embodiment is not limited to this case.

在一實施例中,熵編碼模組215藉由根據類似資料的頻率分配位元來執行熵譯碼。若QP為最大值,則類似資料的頻率不高。因此,執行熵編碼可增加資料大小。In one embodiment, the entropy encoding module 215 performs entropy decoding by allocating bits based on frequency of similar data. If QP is the maximum, the frequency of similar data is not high. Therefore, performing entropy coding can increase the data size.

因此,根據本發明概念的實施例的影像處理裝置的第二資料藉由編碼器210的量化模組213直接轉換成第三資料且不傳送通過熵編碼模組215。Therefore, the second data of the image processing apparatus according to the embodiment of the inventive concept is directly converted into the third data by the quantization module 213 of the encoder 210 and is not transmitted through the entropy encoding module 215.

因此,當量化模組213的QP具有最大值時,根據實施例的影像處理裝置的編碼器210不將k 值碼包含於有效負載中,且僅將二進位碼及最大QP碼包含於有效負載中。Therefore, when the QP of the quantization module 213 has a maximum value, the encoder 210 of the image processing apparatus according to the embodiment does not include the k- value code in the payload, and only includes the binary code and the maximum QP code in the payload. in.

現將參看圖16描述根據例示性實施例的影像處理裝置。An image processing apparatus according to an exemplary embodiment will now be described with reference to FIG. 16.

圖16為根據本發明概念的例示性實施例的影像處理裝置的方塊圖。FIG. 16 is a block diagram of an image processing apparatus according to an exemplary embodiment of the inventive concept.

參看圖16,根據本發明概念的例示性實施例的影像處理裝置的FBC 200直接連接至系統匯流排400。Referring to FIG. 16, an FBC 200 of an image processing apparatus according to an exemplary embodiment of the inventive concept is directly connected to a system bus 400.

FBC 200並未直接連接至多媒體IP 100,而是經由系統匯流排400連接至多媒體IP 100。具體言之,多媒體IP 100的ISP 110、G2D 120、MFC 130、GPU 140以及顯示器150中的每一者可經由系統匯流排400與FBC 200交換資料且經由系統匯流排400將資料傳輸至記憶體300。The FBC 200 is not directly connected to the multimedia IP 100, but is connected to the multimedia IP 100 via the system bus 400. Specifically, each of the ISP 110, G2D 120, MFC 130, GPU 140, and display 150 of the multimedia IP 100 may exchange data with the FBC 200 via the system bus 400 and transmit the data to the memory via the system bus 400 300.

亦即,在壓縮操作中,多媒體IP 100的ISP 110、G2D 120、MFC 130、GPU 140以及顯示器150中的每一者可經由系統匯流排400將第二資料(亦即,未經壓縮資料)傳輸至FBC 200。接著,FBC 200可將第二資料壓縮成第三資料且經由系統匯流排400將第三資料(亦即,經壓縮資料)傳輸至記憶體300。That is, in the compression operation, each of the ISP 110, G2D 120, MFC 130, GPU 140, and display 150 of the multimedia IP 100 may transfer the second data (ie, uncompressed data) via the system bus 400. Transfer to FBC 200. Then, the FBC 200 may compress the second data into the third data and transmit the third data (ie, the compressed data) to the memory 300 via the system bus 400.

類似地,在解壓縮操作中,FBC 200可經由系統匯流排400接收儲存於記憶體300中的第三資料且將第三資料解壓縮成第二資料。接著,FBC 200可經由系統匯流排400將第二資料傳輸至多媒體IP 100的ISP 110、G2D 120、MFC 130、GPU 140以及顯示器150中的每一者。Similarly, in the decompression operation, the FBC 200 may receive the third data stored in the memory 300 via the system bus 400 and decompress the third data into the second data. Then, the FBC 200 may transmit the second data to each of the ISP 110, the G2D 120, the MFC 130, the GPU 140, and the display 150 of the multimedia IP 100 via the system bus 400.

在圖16的實施例中,儘管FBC 200並未直接連接至多媒體IP 100的ISP 110、G2D 120、MFC 130、GPU 140以及顯示器150,但所述FBC可經由系統匯流排400間接連接至多媒體IP 100的ISP 110、G2D 120、MFC 130、GPU 140以及顯示器150。因此,可簡化硬體組態,且可提高操作速度。In the embodiment of FIG. 16, although the FBC 200 is not directly connected to the ISP 110, G2D 120, MFC 130, GPU 140, and display 150 of the multimedia IP 100, the FBC may be indirectly connected to the multimedia IP via the system bus 400 100 ISP 110, G2D 120, MFC 130, GPU 140, and display 150. Therefore, the hardware configuration can be simplified and the operation speed can be increased.

現將參看圖17描述根據本發明概念的例示性實施例的影像處理裝置。An image processing apparatus according to an exemplary embodiment of the inventive concept will now be described with reference to FIG. 17.

圖17為根據本發明概念的例示性實施例的影像處理裝置的方塊圖。FIG. 17 is a block diagram of an image processing apparatus according to an exemplary embodiment of the inventive concept.

參看圖17,根據實施例的影像處理裝置經組態以使得記憶體300與系統匯流排400經由FBC 200彼此連接。Referring to FIG. 17, the image processing apparatus according to the embodiment is configured such that the memory 300 and the system bus 400 are connected to each other via the FBC 200.

亦即,記憶體300並未直接連接至系統匯流排400,而是僅經由FBC 200連接至系統匯流排400。此外,多媒體IP 100的ISP 110、G2D 120、MFC 130、GPU 140以及顯示器150可直接連接至系統匯流排400。因此,多媒體IP 100的ISP 110、G2D 120、MFC 130、GPU 140以及顯示器150可僅經由FBC 200對記憶體300進行存取。That is, the memory 300 is not directly connected to the system bus 400, but is only connected to the system bus 400 via the FBC 200. In addition, the ISP 110, G2D 120, MFC 130, GPU 140, and display 150 of the multimedia IP 100 can be directly connected to the system bus 400. Therefore, the ISP 110, G2D 120, MFC 130, GPU 140, and display 150 of the multimedia IP 100 can access the memory 300 only through the FBC 200.

由於在當前實施例中FBC 200涉及對記憶體300的所有存取,因此FBC 200可直接連接至系統匯流排400,且記憶體300可經由FBC 200連接至系統匯流排400。此可減小資料傳輸中的誤差且提高操作速度。Since the FBC 200 involves all accesses to the memory 300 in the current embodiment, the FBC 200 may be directly connected to the system bus 400 and the memory 300 may be connected to the system bus 400 via the FBC 200. This can reduce errors in data transmission and increase operation speed.

100‧‧‧多媒體智慧財產權100‧‧‧Multimedia intellectual property rights

110‧‧‧影像訊號處理器 110‧‧‧Image Signal Processor

120‧‧‧抖動校正模組 120‧‧‧Shake correction module

130‧‧‧多格式編解碼器 130‧‧‧Multi-format codec

140‧‧‧圖形處理單元 140‧‧‧Graphics Processing Unit

150‧‧‧顯示器 150‧‧‧ Display

200‧‧‧訊框緩衝壓縮器 200‧‧‧Frame buffer compressor

210‧‧‧編碼器 210‧‧‧ Encoder

211‧‧‧預測模組 211‧‧‧ Forecast Module

213‧‧‧量化模組 213‧‧‧Quantitative module

215‧‧‧熵編碼模組 215‧‧‧Entropy coding module

217‧‧‧填補模組 217‧‧‧ Fill module

218‧‧‧壓縮管理器 218‧‧‧Compression Manager

219‧‧‧模式選擇器 219‧‧‧Mode selector

220‧‧‧解碼器 220‧‧‧ decoder

221‧‧‧預測補償模組 221‧‧‧ Forecast Compensation Module

223‧‧‧逆量化模組 223‧‧‧Inverse quantization module

225‧‧‧熵解碼模組 225‧‧‧ Entropy Decoding Module

227‧‧‧未填補模組 227‧‧‧Unfilled Module

228‧‧‧解壓縮管理器 228‧‧‧Unzip Manager

229‧‧‧模式選擇器 229‧‧‧Mode selector

300‧‧‧記憶體 300‧‧‧Memory

400‧‧‧系統匯流排 400‧‧‧System Bus

Cb‧‧‧第一色度訊號區塊 Cb‧‧‧The first chroma signal block

Cr‧‧‧第二色度訊號區塊 Cr‧‧‧Second Chroma Signal Block

Y‧‧‧明度訊號區塊 Y‧‧‧Brightness signal block

①‧‧‧級聯模式 ①‧‧‧Cascade Mode

②‧‧‧部分級聯模式 ②‧‧‧Partial Cascade Mode

③‧‧‧分離模式 ③‧‧‧Separation mode

本發明將藉由參考隨附圖式詳細地描述其例示性實施例而變得顯而易見,其中:The invention will become apparent by describing its exemplary embodiments in detail with reference to the accompanying drawings, in which:

圖1為根據本發明概念的例示性實施例的影像處理裝置的方塊圖。 FIG. 1 is a block diagram of an image processing apparatus according to an exemplary embodiment of the inventive concept.

圖2為圖1中所說明的訊框緩衝壓縮器(frame buffer compressor;FBC)的詳細方塊圖。 FIG. 2 is a detailed block diagram of the frame buffer compressor (FBC) illustrated in FIG. 1.

圖3為圖2中所說明的編碼器的詳細方塊圖。 FIG. 3 is a detailed block diagram of the encoder illustrated in FIG. 2.

圖4為圖2中所說明的解碼器的詳細方塊圖。 FIG. 4 is a detailed block diagram of the decoder illustrated in FIG. 2.

圖5為用於解釋根據本發明概念的例示性實施例的影像處理裝置的YUV 420格式資料的三種操作模式的概念圖。 5 is a conceptual diagram for explaining three operation modes of a YUV 420 format material of an image processing apparatus according to an exemplary embodiment of the inventive concept.

圖6為用於解釋根據本發明概念的例示性實施例的影像處理裝置的YUV 422格式資料的三種操作模式的概念圖。 6 is a conceptual diagram for explaining three operation modes of a YUV 422 format material of an image processing apparatus according to an exemplary embodiment of the inventive concept.

圖7說明藉由根據本發明概念的例示性實施例的影像處理裝置進行無損壓縮的資料的結構。 FIG. 7 illustrates a structure of data losslessly compressed by an image processing apparatus according to an exemplary embodiment of the inventive concept.

圖8為用於解釋圖7的經無損壓縮資料的壓縮方法的表。 FIG. 8 is a table for explaining a compression method of the losslessly compressed data of FIG. 7.

圖9說明藉由根據本發明概念的例示性實施例的影像處理裝置進行無損壓縮的資料的結構。 FIG. 9 illustrates the structure of data losslessly compressed by an image processing apparatus according to an exemplary embodiment of the inventive concept.

圖10為用於解釋圖9的經無損壓縮資料的壓縮方法的表。 FIG. 10 is a table for explaining a compression method of the losslessly compressed data of FIG. 9.

圖11說明藉由根據本發明概念的例示性實施例的影像處理裝置進行無損壓縮的資料的結構。 FIG. 11 illustrates a structure of data losslessly compressed by an image processing apparatus according to an exemplary embodiment of the inventive concept.

圖12說明藉由根據本發明概念的例示性實施例的影像處理裝置進行有損壓縮的資料的結構。 FIG. 12 illustrates a structure of data that is lossy-compressed by an image processing apparatus according to an exemplary embodiment of the inventive concept.

圖13說明藉由根據本發明概念的例示性實施例的影像處理裝置進行有損壓縮的資料的結構。 FIG. 13 illustrates the structure of data that is lossy compressed by an image processing apparatus according to an exemplary embodiment of the inventive concept.

圖14說明藉由根據本發明概念的例示性實施例的影像處理裝置進行有損壓縮的資料的結構。 FIG. 14 illustrates the structure of data that is lossy compressed by an image processing apparatus according to an exemplary embodiment of the inventive concept.

圖15說明藉由根據本發明概念的例示性實施例的影像處理裝置進行有損壓縮的資料的結構。 FIG. 15 illustrates a structure of data that is lossy-compressed by an image processing apparatus according to an exemplary embodiment of the inventive concept.

圖16為根據本發明概念的例示性實施例的影像處理裝置的方塊圖。 FIG. 16 is a block diagram of an image processing apparatus according to an exemplary embodiment of the inventive concept.

圖17為根據本發明概念的例示性實施例的影像處理裝置的方塊圖。 FIG. 17 is a block diagram of an image processing apparatus according to an exemplary embodiment of the inventive concept.

Claims (20)

一種影像處理裝置,經組態以壓縮第一影像資料,所述影像處理裝置包括: 編碼電路,經組態以將所述第一影像資料壓縮成包括預測資料及殘餘資料的第二影像資料,藉由對所述第二影像資料執行熵編碼來將所述第二影像資料壓縮成第三影像資料,生成表示所述第三影像資料的壓縮比的標頭,以及將所述第三影像資料連同所述標頭一起作為經壓縮第一影像資料儲存於記憶體裝置中。An image processing device configured to compress first image data, the image processing device includes: An encoding circuit configured to compress the first image data into second image data including prediction data and residual data, and performing entropy encoding on the second image data to compress the second image data into The third image data generates a header indicating a compression ratio of the third image data, and stores the third image data together with the header as a compressed first image data in a memory device. 如申請專利範圍第1項所述的影像處理裝置,更包括: 智慧財產權(IP)核心,直接連接至所述編碼電路;以及 資料匯流排,直接連接至所述IP核心及所述記憶體裝置, 其中所述編碼電路直接自所述IP核心接收所述第一影像資料,所述編碼電路將所述經壓縮第一影像資料直接傳輸至所述IP核心,且所述IP核心通過所述資料匯流排傳輸所述經壓縮第一影像資料以便儲存於所述記憶體裝置中。The image processing device described in item 1 of the patent application scope further includes: Intellectual Property Rights (IP) core directly connected to the encoding circuit; and A data bus directly connected to the IP core and the memory device, The encoding circuit directly receives the first image data from the IP core, the encoding circuit directly transmits the compressed first image data to the IP core, and the IP core converges through the data And transmitting the compressed first image data for storage in the memory device. 如申請專利範圍第1項所述的影像處理裝置,更包括: 智慧財產權(IP)核心;以及 資料匯流排,直接連接至所述IP核心、所述編碼電路以及所述記憶體裝置, 其中所述編碼電路經由所述資料匯流排間接自所述IP核心接收所述第一影像資料,且所述編碼電路經由所述資料匯流排將所述經壓縮第一影像資料間接傳輸至所述記憶體裝置。The image processing device described in item 1 of the patent application scope further includes: Intellectual Property Rights (IP) core; and The data bus is directly connected to the IP core, the encoding circuit, and the memory device, The encoding circuit receives the first image data indirectly from the IP core via the data bus, and the encoding circuit indirectly transmits the compressed first image data to the data bus through the data bus. Memory device. 如申請專利範圍第1項所述的影像處理裝置,更包括: 智慧財產權(IP)核心;以及 資料匯流排,直接連接至所述IP核心及所述編碼電路, 其中所述編碼電路經由所述資料匯流排間接自所述IP核心接收所述第一影像資料,且所述編碼電路將所述經壓縮第一影像資料直接傳輸至所述記憶體裝置。The image processing device described in item 1 of the patent application scope further includes: Intellectual Property Rights (IP) core; and The data bus is directly connected to the IP core and the encoding circuit, The encoding circuit receives the first image data from the IP core indirectly via the data bus, and the encoding circuit directly transmits the compressed first image data to the memory device. 如申請專利範圍第1項所述的影像處理裝置,其中所述標頭包含對應於多個可用壓縮比範圍當中的一個壓縮比範圍的索引,且所述第三影像資料的所述壓縮比滿足所述一個壓縮範圍。The image processing device according to item 1 of the patent application range, wherein the header includes an index corresponding to a compression ratio range among a plurality of available compression ratio ranges, and the compression ratio of the third image data satisfies The one compression range. 如申請專利範圍第1項所述的影像處理裝置,其中所述編碼電路將所述第一經壓縮資料的大小調節為所述記憶體裝置的資料存取單元的大小。The image processing device according to item 1 of the scope of patent application, wherein the encoding circuit adjusts a size of the first compressed data to a size of a data access unit of the memory device. 如申請專利範圍第1項所述的影像處理裝置,其中所述經壓縮第一影像資料更包含用於所述熵編碼的至少一個熵編碼值。The image processing device according to item 1 of the scope of patent application, wherein the compressed first image data further includes at least one entropy coding value used for the entropy coding. 如申請專利範圍第7項所述的影像處理裝置,其中所述熵編碼包括使用至少一個量化參數(QP)來量化所述第二影像資料,以及對所述量化的結果執行熵編碼。The image processing apparatus according to item 7 of the scope of patent application, wherein the entropy coding includes quantizing the second image data using at least one quantization parameter (QP), and performing entropy coding on a result of the quantization. 如申請專利範圍第8項所述的影像處理裝置,其中所述經壓縮第一影像資料更包含所述至少一個QP。The image processing device according to item 8 of the scope of patent application, wherein the compressed first image data further includes the at least one QP. 如申請專利範圍第1項所述的影像處理裝置,其中所述編碼電路包括模式選擇電路,所述模式選擇電路經組態以接收資訊,所述資訊指示壓縮模式為i)級聯模式、ii)部分級聯模式以及iii)分離模式中的一者, 其中在所述級聯模式期間,所述編碼電路藉由將明度資料、第一色度資料以及第二色度資料組合成第一組合資料且壓縮所述第一組合資料來壓縮所述第一影像資料, 其中在所述部分級聯模式期間,所述編碼電路藉由壓縮所述明度資料、將所述第一色度資料與所述第二色度資料組合成第二組合資料且壓縮所述第二組合資料來壓縮所述第一影像資料,以及 其中在所述分離模式期間,所述編碼電路藉由分別壓縮所述明度資料、所述第一色度資料以及所述第二色度資料來壓縮所述第一影像資料。The image processing device according to item 1 of the scope of patent application, wherein the encoding circuit includes a mode selection circuit configured to receive information, and the information indicates that the compression mode is i) a cascade mode, ii ) One of a partial cascade mode and iii) a separation mode, During the cascade mode, the encoding circuit compresses the first combination of lightness data, first chrominance data, and second chrominance data into a first combination data and compresses the first combination data. video material, During the partial cascade mode, the encoding circuit compresses the lightness data, combines the first chrominance data and the second chrominance data into a second combination data, and compresses the second Combining data to compress the first image data, and During the separation mode, the encoding circuit compresses the first image data by compressing the luma data, the first chroma data, and the second chroma data, respectively. 一種影像處理裝置,經組態以壓縮第一影像資料,所述影像處理裝置包括: 編碼電路,包括: 模式選擇電路,經組態以基於接收到的訊號來判定是將第一模式設定為無損壓縮模式還是有損壓縮模式; 第一邏輯電路,經組態以將所述第一影像資料壓縮成包括預測資料及殘餘資料的第二影像資料; 第二邏輯電路,經組態以使用至少一個量化參數(QP)來量化所述第二影像資料; 第三邏輯電路,經組態以對i)在將所述第一模式設定為所述無損壓縮模式時的所述第一邏輯電路的輸出及ii)在將所述第一模式設定為所述有損壓縮模式時的所述第二邏輯電路的輸出中的一者執行熵編碼。An image processing device configured to compress first image data, the image processing device includes: Encoding circuit, including: A mode selection circuit configured to determine whether to set the first mode to a lossless compression mode or a lossy compression mode based on the received signal; A first logic circuit configured to compress the first image data into second image data including prediction data and residual data; A second logic circuit configured to quantize the second image data using at least one quantization parameter (QP); A third logic circuit configured to i) output the first logic circuit when the first mode is set to the lossless compression mode and ii) set the first mode to the One of the outputs of the second logic circuit in the lossy compression mode performs entropy coding. 如申請專利範圍第11項所述的影像處理裝置,更包括: 智慧財產權(IP)核心,直接連接至所述編碼電路;以及 資料匯流排,直接連接至所述IP核心及所述記憶體裝置, 其中所述編碼電路直接自所述IP核心接收所述第一影像資料,所述編碼電路將基於所述第三邏輯電路的輸出而生成的經壓縮第一影像資料直接傳輸至所述IP核心,且所述IP核心通過所述資料匯流排傳輸所述經壓縮第一影像資料以便儲存於所述記憶體裝置中。The image processing device according to item 11 of the patent application scope further includes: Intellectual Property Rights (IP) core directly connected to the encoding circuit; and A data bus directly connected to the IP core and the memory device, The encoding circuit directly receives the first image data from the IP core, and the encoding circuit directly transmits the compressed first image data generated based on the output of the third logic circuit to the IP core, And the IP core transmits the compressed first image data through the data bus so as to be stored in the memory device. 如申請專利範圍第11項所述的影像處理裝置,更包括: 智慧財產權(IP)核心;以及 資料匯流排,直接連接至所述IP核心、所述編碼電路以及所述記憶體裝置, 其中所述編碼電路經由所述資料匯流排間接自所述IP核心接收所述第一影像資料,且所述編碼電路經由所述資料匯流排將基於所述第三邏輯電路的輸出而生成的經壓縮第一影像資料間接傳輸至所述記憶體裝置。The image processing device according to item 11 of the patent application scope further includes: Intellectual Property Rights (IP) core; and The data bus is directly connected to the IP core, the encoding circuit, and the memory device, Wherein the encoding circuit receives the first image data indirectly from the IP core via the data bus, and the encoding circuit will generate a process based on the output of the third logic circuit via the data bus. The compressed first image data is indirectly transmitted to the memory device. 如申請專利範圍第11項所述的影像處理裝置,更包括: 智慧財產權(IP)核心;以及 資料匯流排,直接連接至所述IP核心及所述編碼電路, 其中所述編碼電路經由所述資料匯流排間接自所述IP核心接收所述第一影像資料,且所述編碼電路將基於所述第三邏輯電路的輸出而生成的經壓縮第一影像資料直接傳輸至所述記憶體裝置。The image processing device according to item 11 of the patent application scope further includes: Intellectual Property Rights (IP) core; and The data bus is directly connected to the IP core and the encoding circuit, The encoding circuit receives the first image data from the IP core indirectly through the data bus, and the encoding circuit directly generates the compressed first image data based on the output of the third logic circuit. To the memory device. 如申請專利範圍第11項所述的影像處理裝置,其中所述編碼電路判定由所述第三邏輯電路輸出的資料的壓縮比,生成表示所述壓縮比的標頭,且將所述第三邏輯電路的所述輸出連同所述標頭一起作為經壓縮第一影像資料儲存於記憶體裝置中。The image processing device according to item 11 of the scope of patent application, wherein the encoding circuit determines a compression ratio of the data output by the third logic circuit, generates a header indicating the compression ratio, and converts the third The output of the logic circuit is stored in the memory device together with the header as compressed first image data. 如申請專利範圍第15項所述的影像處理裝置,其中所述標頭包含對應於多個可用壓縮比範圍當中的一個壓縮比範圍的索引,且所述壓縮比符合所述一個壓縮範圍。The image processing device according to item 15 of the patent application range, wherein the header includes an index corresponding to a compression ratio range among a plurality of available compression ratio ranges, and the compression ratio conforms to the one compression range. 如申請專利範圍第11項所述的影像處理裝置,其中編碼電路將所述第一經壓縮資料的大小調節為所述記憶體裝置的資料存取單元的大小。The image processing device according to item 11 of the patent application scope, wherein the encoding circuit adjusts a size of the first compressed data to a size of a data access unit of the memory device. 如申請專利範圍第15項所述的影像處理裝置,其中所述經壓縮第一影像資料更包含使用所述熵編碼的至少一個熵編碼值。The image processing device according to item 15 of the scope of patent application, wherein the compressed first image data further includes at least one entropy encoding value using the entropy encoding. 如申請專利範圍第15項所述的影像處理裝置,其中當將所述第一模式設定為所述有損壓縮模式時,所述經壓縮第一影像資料更包含所述至少一個QP。The image processing device according to item 15 of the scope of patent application, wherein when the first mode is set to the lossy compression mode, the compressed first image data further includes the at least one QP. 如申請專利範圍第11項所述的影像處理裝置,其中所述模式選擇電路經組態以判定是否將第二模式設定為i)級聯模式、ii)部分級聯模式以及iii)分離模式中的一者, 其中在所述級聯模式期間,所述第一邏輯電路藉由將明度資料、第一色度資料以及第二色度資料組合成第一組合資料且壓縮所述第一組合資料來壓縮所述第一影像資料, 其中在所述部分級聯模式期間,所述第一邏輯電路藉由壓縮所述明度資料、將所述第一色度資料與所述第二色度資料組合成第二組合資料且壓縮所述第二組合資料來壓縮所述第一影像資料,以及 其中在所述分離模式期間,所述第一邏輯電路藉由分別壓縮所述明度資料、所述第一色度資料以及所述第二色度資料來壓縮所述第一影像資料。The image processing device according to item 11 of the scope of patent application, wherein the mode selection circuit is configured to determine whether to set the second mode to i) cascade mode, ii) partial cascade mode, and iii) separate mode One of During the cascade mode, the first logic circuit compresses the lightness data, the first chrominance data, and the second chrominance data into a first combination data and compresses the first combination data. First image data, During the partial cascade mode, the first logic circuit compresses the lightness data, combines the first chroma data and the second chroma data into a second combination data, and compresses the light data. A second combination of data to compress the first image data, and During the separation mode, the first logic circuit compresses the first image data by compressing the luma data, the first chroma data, and the second chroma data, respectively.
TW108102299A 2018-01-26 2019-01-21 Image processing device TWI827579B (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20180010183 2018-01-26
KR10-2018-0010183 2018-01-26
KR10-2018-0015932 2018-02-08
KR20180015932 2018-02-08
KR1020180041790A KR102465206B1 (en) 2018-01-26 2018-04-10 Image processing device
KR10-2018-0041790 2018-04-10

Publications (2)

Publication Number Publication Date
TW201941600A true TW201941600A (en) 2019-10-16
TWI827579B TWI827579B (en) 2024-01-01

Family

ID=67615962

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108102299A TWI827579B (en) 2018-01-26 2019-01-21 Image processing device

Country Status (3)

Country Link
KR (1) KR102465206B1 (en)
SG (1) SG10201900626SA (en)
TW (1) TWI827579B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110071231A (en) * 2009-12-21 2011-06-29 엠텍비젼 주식회사 Encoding method, decoding method and apparatus thereof
CA2982695C (en) * 2011-06-24 2019-05-21 Lg Electronics Inc. Image information encoding and decoding method
CN104885470B (en) * 2013-01-30 2018-08-07 英特尔公司 It is divided for the prediction of next-generation video and the content-adaptive of coding
CN112383780B (en) * 2013-08-16 2023-05-02 上海天荷电子信息有限公司 Encoding and decoding method and device for point matching reference set and index back and forth scanning string matching
US10275186B2 (en) * 2015-10-30 2019-04-30 Sandisk Technologies Llc System and method of data compression and data shaping

Also Published As

Publication number Publication date
KR20190091181A (en) 2019-08-05
KR102465206B1 (en) 2022-11-09
TWI827579B (en) 2024-01-01
SG10201900626SA (en) 2019-08-27

Similar Documents

Publication Publication Date Title
US11445160B2 (en) Image processing device and method for operating image processing device
US10887616B2 (en) Image processing devices having enhanced frame buffer compressors therein
US11677932B2 (en) Image processing device
US11190810B2 (en) Device and method for compressing image data using quantization parameter and entropy tables
US20210344900A1 (en) Image processing device
WO2024022039A1 (en) Video image decoding method and coding method, apparatus, and storage medium
US11153586B2 (en) Image processing device and frame buffer compressor
US11735222B2 (en) Frame buffer compressing circuitry and image processing apparatus
TWI820063B (en) Image processing device and method for operating image processing device
TWI827579B (en) Image processing device
TWI795480B (en) Image processing device for performing data decompression and image processing device for performing data compression
KR20210091657A (en) Method of encoding and decoding image contents and system of transferring image contents
KR102543449B1 (en) Image processing device and method for operating image processing device
US20220201340A1 (en) Image processing device and method for operating image processing device
US20220201060A1 (en) Image processing device and method for operating image processing device
WO2023138391A1 (en) Coefficient decoding method and apparatus, and image decoder and electronic device
US9013595B1 (en) Digital video camera with internal data sample compression
JP2020141377A (en) Image encoding device, image decoding device, imaging device, image encoding method, image decoding method, and program