TW201941500A - 相控陣列天線系統 - Google Patents

相控陣列天線系統 Download PDF

Info

Publication number
TW201941500A
TW201941500A TW108104979A TW108104979A TW201941500A TW 201941500 A TW201941500 A TW 201941500A TW 108104979 A TW108104979 A TW 108104979A TW 108104979 A TW108104979 A TW 108104979A TW 201941500 A TW201941500 A TW 201941500A
Authority
TW
Taiwan
Prior art keywords
layer
antipodal
traces
phased array
elements
Prior art date
Application number
TW108104979A
Other languages
English (en)
Inventor
阿里雷札 馬漢法
賈維爾 羅德里茲迪路易斯
Original Assignee
美商太空探索科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商太空探索科技公司 filed Critical 美商太空探索科技公司
Publication of TW201941500A publication Critical patent/TW201941500A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/40Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with phasing matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/144Stacked arrangements of planar printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10098Components for radio transmission, e.g. radio frequency identification [RFID] tag, printed or non-printed antennas

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

在本揭露內容之一個實施例中,一種相控陣列天線系統包括:一第一部分,其攜載包括多個天線元件之一天線格組,其中該多個天線元件以一第一組配而配置;及一第二部分,其攜載包括多個波束成形器元件之一波束成形器格組,其中該多個波束成形器元件以不同於該第一組配之一第二組配而配置,其中該多個天線元件中之每一者電氣耦接至該多個波束成形器元件中之一者。

Description

相控陣列天線系統
相關申請案之交叉參考
本申請案主張2018年2月15日申請之美國臨時申請案第62/631195號之權益,該臨時申請案之揭露內容之全文特此以引用之方式併入本文中。
發明領域
本發明之領域係關於相控陣列天線系統。
發明背景
天線(諸如偶極天線)通常以具有較佳方向之場型產生輻射。舉例而言,所產生之輻射場型在一些方向上較強且在其他方向上較弱。同樣地,當接收電磁信號時,天線具有相同較佳方向。信號品質(例如,信號雜訊比或SNR),無論在傳輸抑或接收情境中,均可藉由將天線之較佳方向與信號之目標或源之方向對準來改良。然而,常常不切實際的是在實體上使天線相對於信號之目標或源重新定向。另外,可能不知道源/目標之確切位置。為了克服天線之以上缺點中之一些,可由一組天線元件形成相控陣列天線以模擬大的方向天線。相控陣列天線之優勢係其能夠在較佳方向上傳輸及/或接收信號(例如,天線之波束成形能力)而無需實體重新定位或重新定向。
將有利的是組配具有增加的頻寬之相控陣列天線,同時維持主瓣功率對旁瓣功率之高比率。同樣地,將有利的是組配具有縮減的重量、縮減的大小、較低的製造成本及/或較低的功率要求之相控陣列天線。因此,本揭露內容之實施例係有關相控陣列天線或其部分之此等及其他改良。
發明概要
提供此發明內容來以簡化形式介紹下文在實施方式中進一步描述之一系列概念。此發明內容並不意欲識別所主張之主題之關鍵特徵,亦不意欲用作輔助來判定所主張之主題之範疇。
根據本揭露內容之一個實施例,提供一種相控陣列天線系統。該系統包括:一第一部分,其攜載包括多個天線元件之一天線格組,其中該多個天線元件以一第一組配而配置;及一第二部分,其攜載包括多個波束成形器元件之一波束成形器格組,其中該多個波束成形器元件以不同於該第一組配之一第二組配而配置,其中該多個天線元件中之每一者電氣耦接至該多個波束成形器元件中之一者。
在本文中所描述之實施例中之任一者中,該多個天線元件中之至少一者可與該多個波束成形器元件中之一對應波束成形器元件橫向地隔開。
在本文中所描述之實施例中之任一者中,該第一組配可為一空間漸縮組配。
在本文中所描述之實施例中之任一者中,該第二組配可為一經組織或均勻隔開組配。
在本文中所描述之實施例中之任一者中,該第一部分及該第二部分可界定一載體之至少一部分。
在本文中所描述之實施例中之任一者中,該載體可具有面向一第一方向之一第一側及面向遠離該第一方向之一第二方向之一第二側。
在本文中所描述之實施例中之任一者中,該天線格組可在該載體之該第一側上。
在本文中所描述之實施例中之任一者中,該波束成形器格組可在該載體之該第二側上。
在本文中所描述之實施例中之任一者中,該等天線元件及該等波束成形器元件可呈一1:1比率。
在本文中所描述之實施例中之任一者中,該等天線元件及該等波束成形器元件可呈一大於1:1比率。
在本文中所描述之實施例中之任一者中,該第一部分及該第二部分可為第一層及第二層。
在本文中所描述之實施例中之任一者中,該系統可進一步包括安置於該第一部分與該第二部分之間的一第三層,該第三層攜載包括第三部分上之一第一表面上之第一多個對映跡線的一對映之至少一部分,其中該第一多個對映跡線中之至少一些在該多個天線元件與該多個波束成形器元件之間提供電氣連接之至少一部分。
在本文中所描述之實施例中之任一者中,該第一層、該第二層及該第三層可為一PCB堆疊中之離散PCB層。
在本文中所描述之實施例中之任一者中,該第一層、該第二層及該第三層中之至少一者可包括形成該層之多個子層。
在本文中所描述之實施例中之任一者中,該系統可進一步包括通過該第一層、該第二層及/或該第三層之第一多個通路,該第一多個通路中之每一通路將該多個天線元件中之一者或該多個波束成形器元件中之一者連接至第一多個對映跡線中之一者。
在本文中所描述之實施例中之任一者中,該第一多個對映跡線可在長度上等距以用於RF信號傳播。
在本文中所描述之實施例中之任一者中,該第一多個對映跡線可能不會在該第一表面上彼此交叉。
在本文中所描述之實施例中之任一者中,其中該第三層可包括安置於該第一層與該第二層之間的多個子層,其中至少二個子層攜載包括一第一子層中之該第一表面上之該第一多個對映跡線及第二子層中之一第二表面上之第二多個對映跡線的該對映之至少一部分,其中該第一多個對映跡線及該第二多個對映跡線中之至少一些在該多個天線元件與該多個波束成形器元件之間提供電氣連接之至少一部分。
在本文中所描述之實施例中之任一者中,該系統可進一步包括通過該第一層、該第二層及該第三層中之至少一者之第二多個通路,該第二多個通路中之每一通路將該第一多個對映跡線中之一者連接至該第二多個對映跡線中之一者。
在本文中所描述之實施例中之任一者中,該系統可進一步包括通過該第一層、該第二層及該第三層之第二多個通路,該第二多個通路中之每一通路將該多個天線元件中之一者或該多個波束成形器元件中之一者連接至該第二多個對映跡線中之一者。
在本文中所描述之實施例中之任一者中,同一平面中之該第一多個對映跡線及該第二多個對映跡線可能不會彼此交叉。
在本文中所描述之實施例中之任一者中,該第一層中之該第一多個對映跡線及該第二層中之該第二多個對映跡線可與垂直於該第一層及該第二層而延伸之一線交叉。
在本文中所描述之實施例中之任一者中,該第二多個對映跡線可在長度上等距以用於RF信號傳播。
在本文中所描述之實施例中之任一者中,該天線格組可包括經組配用於在一參數之一第一值下操作之第一多個天線元件及經組配用於在一參數之一第二值下操作之第二多個天線元件。
在本文中所描述之實施例中之任一者中,一第三層可包括安置於該第一層與該第二層之間的至少第一子層及第二子層,其中至少一第一子層中之第一多個對映跡線電氣耦接至該第一多個天線元件,且其中至少一第二子層中之第二多個對映跡線電氣耦接至該第二多個天線元件。
在本文中所描述之實施例中之任一者中,該系統可進一步包括通過該第一層、該第二層及/或該第三層之第一多個通路,該第一多個通路中之每一通路將該多個天線元件中之一者或該多個波束成形器元件中之一者連接至該第一多個對映跡線中之一者。
在本文中所描述之實施例中之任一者中,至少第一子層及第三子層中之該第一多個對映跡線可電氣耦接至該第一多個天線元件,且其中至少第二子層及第四子層中之該第二多個對映跡線電氣耦接至該第二多個天線元件。
在本文中所描述之實施例中之任一者中,該系統可進一步包括通過該第三層之第二多個通路,該第二多個通路中之每一通路將該第一多個對映跡線中之至少一些與第三多個對映跡線中之至少一些電氣耦接或將該第二多個對映跡線中之至少一些與第四多個對映跡線中之至少一些電氣耦接。
較佳實施例之詳細說明
本揭露內容之實施例係有關與相控陣列天線系統相關之設備及方法。在一個實施例中,一種相控陣列天線系統包括:第一部分,其攜載包括多個天線元件之天線格組,其中多個天線元件以第一組配而配置;及第二部分,其攜載包括多個波束成形器元件之波束成形器格組,其中多個波束成形器元件以不同於第一組配之第二組配而配置,其中多個天線元件中之每一者電氣耦接至多個波束成形器元件中之一者。下文將更充分地描述本揭露內容之此等及其他態樣。
雖然本揭露內容之概念容許各種修改及替代形式,但該等概念之特定實施例已在圖式中作為實例予以展示且將在本文中予以詳細地描述。然而,應理解,並不意圖將本揭露內容之概念限於所揭露之特定形式,而是相反地,意圖涵蓋與本揭露內容及所附申請專利範圍一致之所有修改、等效方案及替代方案。
本說明書對「一個實施例」、「一實施例」、「一說明性實施例」等等之參考指示所描述之實施例可包括特定特徵、結構或特性,但每個實施例可或可能未必包括彼特定特徵、結構或特性。此外,此類片語未必係指同一實施例。此外,當結合一實施例來描述一特定特徵、結構或特性時,應認為,無論是否予以明確地描述,結合其他實施例來實現此類特徵、結構或特性係在熟習此項技術者之認識範圍內。另外,應瞭解,以「至少一個A、B及C」之形式包括於清單中的項目可意謂(A);(B);(C);(A及B);(B及C);(A及C);或(A、B及C)。類似地,以「A、B或C中之至少一者」之形式列出的項目可意謂(A);(B);(C);(A及B);(B及C);(A及C);或(A、B及C)。
本揭露內容中的諸如「頂部表面」、「底部表面」、「豎直」、「水平」及「橫向」之語言意謂參考圖式為讀者提供定向,且並不意欲為組件之所需定向或將定向限制賦予至申請專利範圍中。
在圖式中,可以特定配置及/或排序來展示一些結構或方法特徵。然而,應瞭解,可能不需要此類特定配置及/或排序。確切而言,在一些實施例中,可以不同於說明性圖中所展示之方式及/或次序的方式及/或次序來配置此類特徵。另外,在特定圖中包括結構或方法特徵並不意謂暗示在所有實施例中需要此類特徵,且在一些實施例中,可能不包括此類特徵或可將此類特徵與其他特徵組合。
本文中所描述之技術之許多實施例可呈電腦或控制器可執行指令之形式,該等電腦或控制器可執行指令包括由可程式化電腦或控制器執行之常式。熟習相關技術者將瞭解,可在除了上文所展示及描述之電腦/控制器系統之外的電腦/控制器系統上實踐該技術。該技術可體現於特殊用途電腦、控制器或資料處理器中,該特殊用途電腦、控制器或資料處理器經特定地程式化、組配或建構以執行上文所描述之電腦可執行指令中之一者或多者。因此,如本文中通常所使用之術語「電腦」及「控制器」係指任何資料處理器,且可包括網際網路器具及手持式裝置(包括掌上型電腦、可穿戴式電腦、蜂巢式或行動電話、多處理器系統、基於處理器或可程式化之消費型電子裝置、網路電腦、迷你電腦等等)。由此等電腦處置之資訊可呈現於任何合適顯示媒體處,包括CRT顯示器或LCD。
圖1A為根據本揭露內容之實施例之相控陣列天線系統100的示意性繪示。相控陣列天線系統100經設計及組配以在較佳方向D上自天線孔口110接收由信號S (亦被稱作電磁信號、波前等等)構成之組合波束B或將組合波束B傳輸至天線孔口110。(亦參見圖1B中之組合波束B及天線孔口110)。波束B之方向D可垂直於天線孔口110或與法線成角度θ。
參看圖1A,所繪示之相控陣列天線系統100包括天線格組120、對映系統130、波束成形器格組140、多工饋送網路150 (或階層式網路或H網路)、組合器或分配器160 (用於接收信號之組合器或用於傳輸信號之分配器),及調變器或解調變器170。天線格組120經組配以自天線孔口110接收具有輻射場型之射頻信號S之組合波束B或將組合波束B傳輸至天線孔口110。
根據本揭露內容之實施例,相控陣列天線系統100可為多波束相控陣列天線系統,其中多個波束中之每一波束可經組配為處於不同角度、不同頻率及/或不同偏振。
在所繪示之實施例中,天線格組120包括多個天線元件122i。對應多個放大器124i耦接至多個天線元件122i。放大器124i可為在接收方向RX上之低雜訊放大器(LNA)或在傳輸方向TX上之功率放大器(PA)。多個放大器124i可與多個天線元件122i在例如天線模組或天線封裝中組合。在一些實施例中,多個放大器124i可位於與天線格組120分離之另一格組中。
天線格組120中之多個天線元件122i經組配用於傳輸信號(參見圖1A中用於傳輸信號之箭頭方向TX)或用於接收信號(參見圖1A中用於接收信號之箭頭方向RX)。參看圖1B,相控陣列天線系統100之天線孔口110為功率被輻射或接收所通過的區域。根據本揭露內容之一個實施例,圖1B中提供u/v平面中來自相控陣列天線系統100之例示性相控陣列天線輻射場型。根據自諸如聯邦通訊委員會(FCC)或國際電信聯盟(ITU)之組織發佈之法規,天線孔口具有所要指向角度D及最佳化波束B,例如縮減的旁瓣Ls,以最佳化可用於主瓣Lm之功率預算或以符合干擾法規準則。(參見圖1F的關於旁瓣Ls及主瓣Lm之描述。)
參看圖1C,在一些實施例中(參見實施例120A、120B、120C、120D),界定天線孔口110之天線格組120可包括以特定組配而配置於印刷電路板(PCB)、陶瓷、塑膠、玻璃或其他合適基體、基底、載體、面板等等(在本文中被描述為載體112)上之多個天線元件122i。舉例而言,多個天線元件122i可以同心圓、以圓形配置、以呈直線配置之行及列、以徑向配置、以彼此之間的相等或均一間隔、以彼此之間的非均一間隔或以任何其他配置而配置。圖1C中之各別載體112A、112B、112C及112D上無限制地展示界定天線孔口(110A、110B、110C及110D)的天線格組120中之多個天線元件122i之各種實例配置。
波束成形器格組140包括多個波束成形器142i,多個波束成形器142i包括多個移相器145i。在接收方向RX上,波束成形器功能係延遲自每一天線元件到達之信號,因此信號均同時到達組合網路。在傳輸方向TX上,波束成形器功能係延遲發送至每一天線元件之信號,使得所有信號均同時到達目標位置。可藉由使用「真時延遲(true time delay)」或在特定頻率下之相移來實現此延遲。
遵循圖1A之示意性繪示中之箭頭傳輸方向TX,在傳輸相控陣列天線系統100中,傳出的射頻(RF)信號經由分配器160自調變器170路由至波束成形器格組140中之多個個別移相器145i。RF信號由移相器145i相位偏移不同相位,該等不同相位在一個移相器與另一移相器之間變化預定量。每一頻率需要被相控特定量以便維持波束效能。若應用於不同頻率之相移遵循線性行為,則相移被稱作「真時延遲」。然而,共同移相器針對所有頻率應用恆定相位偏移。
舉例而言,共同RF信號之相位可在圖1A中之底部移相器145i處移位0º、在行中之下一移相器145i處移位Δα、在下一移相器處移位2Δα,等等。因此,到達放大器124i (當傳輸時,該等放大器為功率放大器「PA」)之RF信號分別自彼此相位偏移。PA 124i放大此等相位偏移RF信號,且天線元件122i發射RF信號S作為電磁波。
由於相位偏移,來自個別天線元件122i之RF信號組合成傳出的波前,該等波前自由天線元件122i之格組形成之天線孔口110傾斜角度ϕ。角度ϕ被稱作到達角度(AoA)或波束成形角度。因此,相位偏移Δα之選擇判定了界定波前之組合信號S之輻射場型。在圖1B中,提供根據本揭露內容之一個實施例的來自天線孔口110之信號S之例示性相控陣列天線輻射場型。
遵循圖1A之示意性繪示中之箭頭接收方向RX,在接收相控陣列天線系統100中,界定波前之信號S由個別天線元件122i偵測到,且由放大器124i (當接收信號時,該等放大器為低雜訊放大器「LNA」)放大。對於任何非零AoA,包含相同波前之信號S在不同時間到達不同天線元件122i。因此,經接收信號通常將包括自接收(RX)天線元件之一個天線元件至另一天線元件之相位偏移。類似於發射相控陣列天線狀況,此等相位偏移可由波束成形器格組140中之移相器145i調整。舉例而言,每一移相器145i (例如,移相器晶片)可經程式化以將信號之相位調整至相同參考,使得抵消個別天線元件122i當中之相位偏移,以便組合對應於相同波前之RF信號。由於信號之此相長組合,可對經接收信號實現較高信號雜訊比(SNR),此會引起通道容量增加。
仍參看圖1A,對映系統130可安置於天線格組120與波束成形器格組140之間以針對天線格組120之每一天線元件122i與波束成形器格組140中之移相器145i之間的等距電氣連接提供長度匹配,如下文將更詳細地所描述。多工饋送或階層式網路150可安置於波束成形器格組140與分配器/組合器160之間以將共同RF信號分配至波束成形器格組140之移相器145i以用於各別適當相移並提供至天線元件122i以供傳輸,且在由波束成形器142i進行適當相位調整之後組合由天線元件122i接收之RF信號。
根據本揭露內容之一些實施例,要由載體112攜載之天線模組中可含有相控陣列天線系統100之天線元件122i及其他組件。(參見例如圖2B中之天線模組226a及226b)。在圖2B所繪示之實施例中,每天線模組226a存在一個天線元件122i。然而,在本揭露內容之其他實施例中,天線模組226a可併有多於一個天線元件122i。
參看圖1D及圖1E,提供根據本揭露內容之一個實施例的用於天線孔口120之例示性組配。在圖1D及圖1E所繪示之實施例中,天線格組120中之多個天線元件122i以空間漸縮組配而分佈於載體112上。根據空間漸縮組配,天線元件122i之數目在其分佈上自載體112之中心點至載體112之周邊點改變。舉例而言,比較鄰近天線元件122i之間的間隔D1與D2,且比較鄰近天線元件122i之間的間隔d1、d2及d3。儘管被展示為以空間漸縮組配而分佈,但用於天線格組之其他組配亦在本揭露內容之範疇內。
系統100包括攜載天線格組120之第一部分及攜載波束成形器格組140之第二部分,波束成形器格組140包括多個波束成形器元件。如在圖1E之橫截面視圖中所見,載體112之多個層攜載相控陣列天線系統100之元件之間的電氣及電磁連接。在所繪示之實施例中,天線元件122i位於頂部層之頂部表面上,且波束成形器元件142i位於底部層之底部表面上。雖然天線元件122i可以諸如空間漸縮配置之第一配置而組配,但波束成形器元件142i可以不同於天線元件配置之第二配置而配置。舉例而言,天線元件122i之數目可大於波束成形器元件142i之數目,使得多個天線元件122i對應於一個波束成形器元件142i。作為另一實例,波束成形器元件142i可自載體112上之天線元件122i橫向地位移,如由圖1E中之距離M所指示。在本揭露內容之一個實施例中,波束成形器元件142i可以均勻隔開或經組織配置而配置,該均勻隔開或經組織配置例如對應於H網路或叢集網路或不均勻隔開網路,諸如不同於天線格組120之空間漸縮網路。在一些實施例中,一個或多個額外層可安置於載體112之頂部層與底部層之間。該等層中之每一者可包含一個或多個PCB層。
參看圖1F,提供根據本揭露內容之實施例的天線信號之主瓣Lm及旁瓣Ls的圖形。水平(亦為徑向)軸線展示以dB為單位之輻射功率。角度軸線展示以度為單位之RF場角度。主瓣Lm表示在較佳方向上由相控陣列天線系統100產生之最強RF場。在所繪示之狀況下,主瓣Lm之所要指向角度D對應於約20º。通常,主瓣Lm伴隨著多個旁瓣Ls。然而,旁瓣Ls通常係不良的,此係因為其自同一功率預算獲得其功率,藉此縮減了用於主瓣Lm之可用功率。此外,在一些情況下,旁瓣Ls可縮減天線孔口110之SNR。又,旁瓣縮減對於法規遵從性係重要的。
用於縮減旁瓣Ls之一種方法係將天線格組120中之元件122i配置成使天線元件122i相位偏移,使得相控陣列天線系統100在較佳方向D上發射具有縮減的旁瓣之波形。用於縮減旁瓣Ls之另一方法為功率漸縮。然而,功率漸縮通常係不良的,此係因為藉由縮減旁瓣Ls之功率,該系統增加了需要「可調諧及/或較低輸出」功率放大器之設計複雜性。
另外,相較於不可調諧放大器,用於輸出功率之可調諧放大器124i縮減了效率。替代地,設計具有不同增益之不同放大器會增加該系統之總體設計複雜性及成本。
根據本揭露內容之實施例的用於縮減旁瓣Ls之又一方法為用於天線格組120之天線元件122i之空間漸縮組配。(參見圖1C及圖1D中之天線元件122i組配。)空間漸縮可用以縮減對在天線元件122i當中分配功率之需要以縮減不良旁瓣Ls。然而,在本揭露內容之一些實施例中,空間漸縮分佈天線元件122i可進一步包括功率或相位分配以用於改良效能。
除了不良旁瓣縮減之外,根據本揭露內容之實施例亦可使用空間漸縮以縮減相控陣列天線系統100中之天線元件122i之數目,同時取決於系統100之應用而仍達成來自相控陣列天線系統100之可接受波束B。(舉例而言,在圖1C中比較載體112D上之空間漸縮天線元件122i之數目與由載體112B攜載之非空間漸縮天線元件122i之數目。)
圖1G描繪根據本揭露內容之實施例的被實施為鋪疊(lay-up) 180中之多個PCB層的相控陣列天線系統100之例示性組配。鋪疊180中之多個PCB層可包含PCB層堆疊,該PCB層堆疊包括天線層180a、對映層180b、多工饋送網路層180c及波束成形器層180d。在所繪示之實施例中,對映層180b安置於天線層180a與多工饋送網路層180c之間,且多工饋送網路層180c安置於對映層180b與波束成形器層180d之間。
儘管未展示,但一個或多個額外層可安置於層180a與層180b之間、安置於層180b與層180c之間、安置於層180c與層180d之間、安置於層180a上方,及/或安置於層180d下方。層180a、180b、180c及180d中之每一者可包含一個或多個PCB子層。在其他實施例中,層180a、180b、180c及180d相對於彼此之次序可能不同於圖1G中所展示之配置。舉例而言,在其他實施例中,波束成形器層180d可安置於對映層180b與多工饋送網路層180c之間。
層180a、180b、180c及180d可包括導電跡線(諸如由電氣隔離聚合物或陶瓷相互分離之金屬跡線)、電氣組件、機械組件、光學組件、無線組件、電氣耦接結構、電氣接地結構,及/或經組配以促進與相位陣列天線系統100相關聯之功能性的其他結構。位於諸如層180a之特定層上的結構可與豎直通路(例如,沿著笛卡爾座標系統之z方向延伸之通路)電氣互連,以與位於諸如層180d之另一層上的特定結構建立電氣連接。
天線層180a可包括但不限於多個天線元件122i,其以特定配置(例如,空間漸縮配置)而配置為載體112上之天線格組120。天線層180a亦可包括一個或多個其他組件,諸如對應放大器124i。替代地,對應放大器124i可組配於單獨層上。對映層180b可包括但不限於對映系統130以及關聯載體及電氣耦接結構。多工饋送網路層180c可包括但不限於多工饋送網路150以及關聯載體及電氣耦接結構。波束成形器層180d可包括但不限於多個移相器145i、波束成形器格組140之其他組件,以及關聯載體及電氣耦接結構。在一些實施例中,波束成形器層180d亦可包括調變器/解調變器170及/或耦接器結構。在圖1G所繪示之實施例中,波束成形器142i以假想線予以展示,此係因為其自波束成形器層180d之底面延伸。
儘管未展示,但層180a、180b、180c或180d中之一者或多者自身可包含多於一個層。舉例而言,對映層180b可包含二個或多於二個層,其以組合方式可經組配以提供上文所論述之路由功能性。作為另一實例,取決於包括於多工饋送網路150中之多工饋送網路之總數目,多工饋送網路層180c可包含二個或多於二個層。
根據本揭露內容之實施例,相控陣列天線系統100可為多波束相控陣列天線系統。在多波束相控陣列天線組配中,每一波束成形器142i可電氣耦接至多於一個天線元件122i。波束成形器142i之總數目可小於天線元件122i之總數目。舉例而言,每一波束成形器142i可電氣耦接至四個天線元件122i或電氣耦接至八個天線元件122i。圖2A繪示根據本揭露內容之一個實施例的例示性多波束相控陣列天線系統,其中八個天線元件222i電氣耦接至一個波束成形器242i。在其他實施例中,每一波束成形器142i可電氣耦接至多於八個天線元件122i。
圖2B描繪根據本揭露內容之實施例的被實施為多個PCB層280的圖2A之相控陣列天線系統200之例示性組配的部分、近距、橫截面視圖。如在圖1G中運用類似數字所使用而在圖2B中使用相似部件編號,但用200系列。
在圖2B所繪示之實施例中,相控陣列天線系統200呈接收組配(如由箭頭RX所指示)。儘管被繪示為呈接收組配,但圖2B之實施例之結構可被修改為亦適合用於傳輸組配。
信號由個別天線元件222a及222b偵測到,天線元件222a及222b在所繪示之實施例中被展示為由天線格組層280a之頂部表面上之天線模組226a及226b攜載。在由天線元件222a及222b接收到之後,信號由對應低雜訊放大器(LNA) 224a及224b放大,LNA 224a及224b亦在所繪示之實施例中被展示為由天線格組層280a之頂部表面上之天線模組226a及226b攜載。
在圖2B所繪示之實施例中,天線格組220中之多個天線元件222a及222b耦接至波束成形器格組240中之單個波束成形器242a (如參考圖2A所描述)。然而,被實施為具有天線元件對波束成形器元件之一比一比率或具有大於一比一比率之多個PCB層的相控陣列天線系統亦在本揭露內容之範疇內。在圖2B所繪示之實施例中,波束成形器242i耦接至波束成形器層280d之底部表面。
在所繪示之實施例中,天線元件222i及波束成形器元件242i經組配為在PCB層鋪疊280之相對表面上。在其他實施例中,波束成形器元件可與天線元件共置於鋪疊之同一表面上。在其他實施例中,波束成形器可位於天線模組或天線封裝內。
如先前所描述,將天線層280a上之天線格組220之天線元件222a及222b耦接至波束成形器層280d上之波束成形器格組240之波束成形器元件242a的電氣連接使用導電跡線佈線於一個或多個對映層280b1及280b2之表面上。圖1G之層130中提供用於對映層之例示性對映跡線組配。
在所繪示之實施例中,對映展示於二個對映層280b1及280b2之頂部表面上。然而,根據本揭露內容之實施例可使用任何數目之對映層,包括單個對映層。單個對映層上之對映跡線不能與其他對映跡線交叉。因此,使用多於一個對映層可有利於藉由允許水平平面中之對映跡線與垂直於對映層延伸通過鋪疊280之虛線交叉來縮減導電對映跡線之長度,且有利於選擇中間通路在對映跡線之間的置放。
除了層280b1及280b2之表面上之對映跡線之外,自天線格組220至波束成形器格組240之對映進一步包括豎直地延伸通過多個PCB層280中之一者或多者的一個或多個導電通路。
在圖2B所繪示之實施例中,第一天線元件222a與波束成形器元件242a之間的第一對映跡線232a形成於PCB層鋪疊280之第一對映層280b1上。第一天線元件222a與波束成形器元件242a之間的第二對映跡線234a形成於PCB層鋪疊280之第二對映層280b2上。導電通路238a將第一對映跡線232a連接至第二對映跡線234a。同樣地,導電通路228a將天線元件222a (被展示為連接包括天線元件222a及放大器224a之天線模組226a)連接至第一對映跡線232a。此外,導電通路248a將第二對映跡線234a連接至RF濾波器244a且接著連接至波束成形器元件242a,波束成形器元件242a接著連接至組合器260及RF解調變器270。
值得注意的是,通路248a對應於通路148a,且濾波器244a對應於濾波器144a,二者均在圖1G之先前實施例中展示於波束成形器層180d之表面上。在本揭露內容之一些實施例中,取決於該系統之設計,可省略濾波器。
類似對映將第二天線元件222b連接至RF濾波器244b且接著連接至波束成形器元件242a。第二天線元件222b可在與第一天線元件222a相同或不同之參數值下(例如在不同頻率下)操作。若第一天線元件222a及第二天線元件222b在相同參數值下操作,則RF濾波器244a及244b可相同。若第一天線元件222a及第二天線元件222b在不同值下操作,則RF濾波器244a及244b可能不同。
可根據任何合適方法形成對映跡線及通路。在本揭露內容之一個實施例中,在已形成多個個別層280a、280b、280c及280d之後形成PCB層鋪疊280。舉例而言,在層280a之製造期間,可通過層280a形成導電通路228a。同樣地,在層280d之製造期間,可通過層280d形成導電通路248a。當將多個個別層280a、280b、280c及280d組裝及層合在一起時,通過層280a之導電通路228a與層280b1之表面上之跡線232a電氣耦接,且通過層280d之導電通路248a與層280b2之表面上之跡線234a電氣耦接。
可在將多個個別層280a、280b、280c及280d組裝及層合在一起之後形成其他導電通路,諸如耦接層280b1之表面上之跡線232a及層280b2之表面上之跡線234a的通路238a。在此建構方法中,可通過整個鋪疊280鑽孔以形成通路,將金屬沈積於整個孔中,從而在跡線232a與跡線234a之間形成電氣連接。在本揭露內容之一些實施例中,在跡線232a與跡線234a之間形成電氣連接時所不需要的通路中之過量金屬可藉由在通路之頂部及/或底部部分處對該金屬進行反向鑽孔來移除。在一些實施例中,不完全地執行金屬之反向鑽孔,從而留下通路「殘端(stub)」。可針對具有剩餘通路「殘端」之鋪疊設計執行調諧。在其他實施例中,不同製造程序可產生不會跨越超過所需豎直方向之通路。
相較於使用一個對映層,如在圖2B所繪示之實施例中所見的使用由中間通路238a及238b分離之二個對映層280b1及280b2會允許選擇性地置放中間通路238a及238b。若此等通路係通過鋪疊280之所有層被鑽孔,則其可經選擇性地定位成與鋪疊280之頂部或底部表面上之其他組件隔開。
圖3A及圖3B係有關本揭露內容之另一實施例。圖3A繪示根據本揭露內容之一個實施例的例示性多波束相控陣列天線系統,其中八個天線元件322i電氣耦接至一個波束成形器342i,其中八個天線元件322i分成二個不同群組之穿插天線元件322a及322b。
圖3B描繪根據本揭露內容之實施例的被實施為多個PCB層380之層疊之相控陣列天線系統300之例示性組配的部分、近距、橫截面視圖。圖3B之實施例類似於圖2B之實施例,惟關於穿插天線元件、對映層之數目及信號之方向的差異除外,如下文將更詳細地所描述。如在圖3A中運用類似數字所使用而在圖3B中使用相似部件編號,但用300系列。
在圖3B所繪示之實施例中,相控陣列天線系統300呈傳輸組配(如由箭頭TX所指示)。儘管被繪示為呈傳輸組配,但圖3B之實施例之結構可被修改為亦適合用於接收組配。
在本揭露內容之一些實施例中,個別天線元件322a及322b可經組配以在一個或多個參數(例如,頻率、偏振、波束定向、資料串流、接收(RX)/傳輸(TX)功能、時間多工區段等等)之不同值下接收及/或傳輸資料。此等不同值可與不同群組之天線元件相關聯。舉例而言,由載體攜載之第一多個天線元件經組配以在第一參數值下傳輸及/或接收信號。由載體攜載之第二多個天線元件經組配以在不同於第一參數值之第二參數值下傳輸及/或接收信號,且第一多個天線元件中之個別天線元件被穿插有第二多個天線元件中之個別天線元件。
作為一非限制性實例,第一群組之天線元件可在頻率f1下接收資料,而第二群組之天線元件可在頻率f2下接收資料。
在一個參數值(例如,第一頻率或波長)下操作之天線元件連同在另一參數值(例如,第二頻率或波長)下操作之天線元件在同一載體上的置放在本文中被稱作「穿插」。在一些實施例中,在不同參數值下操作的該等群組之天線元件可置放於相控陣列天線中之載體的單獨區域上方。在一些實施例中,在至少一個參數之不同值下操作的該等群組之天線元件中之天線元件中之至少一些彼此鄰近或相鄰。在其他實施例中,在至少一個參數之不同值下操作的該等群組之天線元件中之天線元件中之大部分或全部彼此鄰近或相鄰。
在圖3A所繪示之實施例中,天線元件322a及322b為穿插天線元件,其中第一天線元件322a在第一參數值下通訊且第二天線元件322a在第二參數值下通訊。
儘管在圖3A中被展示為二個群組之穿插天線元件322a及322b與單個波束成形器342a通訊,但相控陣列天線系統300亦可經組配使得一個群組之穿插天線元件與一個波束成形器通訊且另一群組之穿插天線元件與另一波束成形器通訊。
在圖3B所繪示之實施例中,相較於在圖2B中使用二個對映層280b1及280b2,鋪疊380包括四個對映層380b1、380b2、380b3及380b4。對映層380b1及380b2由中間通路338a連接。對映層380b3及380b4由中間通路338b連接。如同圖2B之實施例,圖3B之實施例之鋪疊380可允許選擇性地置放中間通路338a及338b,例如以與鋪疊380之頂部或底部表面上之其他組件隔開。
相比於圖2B及圖3B中所展示之組配,對映層及通路可以許多其他其他組配而配置且配置於鋪疊180之其他子層上。使用二個或多於二個對映層可有利於藉由允許水平平面中之對映跡線與垂直於對映層延伸通過鋪疊之虛線交叉來縮減導電對映跡線之長度,且有利於選擇中間通路在對映跡線之間的置放。同樣地,對映層可經組配以與呈穿插組配的一群組之天線元件相關。藉由針對每一分組使用相同對映層來針對每一分組使通路長度維持恆定,跡線長度為針對每一分組用於每一天線至波束成形器對映之長度匹配中的唯一變數。
下文提供本文中所揭露之各種實施例之系統的說明性實例。該系統之實施例可包括下文所描述之實例中之任何一者或多者及其任何組合。
實例1為一種相控陣列天線系統,其包括:
一第一部分,其攜載包括多個天線元件之一天線格組,其中該多個天線元件以一第一組配而配置;及
一第二部分,其攜載包括多個波束成形器元件之一波束成形器格組,其中該多個波束成形器元件以不同於該第一組配之一第二組配而配置,其中該多個天線元件中之每一者電氣耦接至該多個波束成形器元件中之一者。
實例2包括實例1之主題,且其中該多個天線元件中之至少一者與該多個波束成形器元件中之一對應波束成形器元件橫向地隔開。
實例3包括實例1至2中之任一者之主題,且其中該第一組配為一空間漸縮組配。
實例4包括實例1至3中之任一者之主題,且其中該第二組配可為一經組織或均勻隔開組配。
實例5包括實例1至4中之任一者之主題,且其中該第一部分及該第二部分界定一載體之至少一部分。
實例6包括實例1至5中之任一者之主題,且其中該載體具有面向一第一方向之一第一側及面向遠離該第一方向之一第二方向之一第二側。
實例7包括實例6之主題,且其中該天線格組在該載體之該第一側上。
實例8包括實例6及7中之任一者之主題,且其中該波束成形器格組在該載體之該第二側上。
實例9包括實例1至8中之任一者之主題,且其中該等天線元件及該等波束成形器元件呈一1:1比率。
實例10包括實例1至8中之任一者之主題,且其中該等天線元件及該等波束成形器元件呈一大於1:1比率。
實例11包括實例1至10中之任一者之主題,且其中該第一部分及該第二部分為第一層及第二層。
實例12包括實例11之主題,且其進一步包含安置於該第一部分與該第二部分之間的一第三層,該第三層攜載包括第三部分上之一第一表面上之第一多個對映跡線的一對映之至少一部分,其中該第一多個對映跡線中之至少一些在該多個天線元件與該多個波束成形器元件之間提供電氣連接之至少一部分。
實例13包括實例12之主題,且其中該第一層、該第二層及該第三層為一PCB堆疊中之離散PCB層。
實例14包括實例12及13中之任一者之主題,且其中該第一層、該第二層及該第三層中之至少一者包括形成該層之多個子層。
實例15包括實例12至14中之任一者之主題,且其進一步包含通過該第一層、該第二層及/或該第三層之第一多個通路,該第一多個通路中之每一通路將該多個天線元件中之一者或該多個波束成形器元件中之一者連接至第一多個對映跡線中之一者。
實例16包括實例15之主題,且其中該第一多個對映跡線在長度上等距以用於RF信號傳播。
實例17包括實例15及16中之任一者之主題,且其中該第一多個對映跡線不會在該第一表面上彼此交叉。
實例18包括實例12至17中之任一者之主題,且其中該第三層包括安置於該第一層與該第二層之間的多個子層,其中至少二個子層攜載包括一第一子層中之該第一表面上之該第一多個對映跡線及第二子層中之一第二表面上之第二多個對映跡線的對映之至少一部分,其中該第一多個對映跡線及該第二多個對映跡線中之至少一些在該多個天線元件與該多個波束成形器元件之間提供電氣連接之至少一部分。
實例19包括實例18之主題,且其進一步包含通過該第一層、該第二層及該第三層中之至少一者之第二多個通路,該第二多個通路中之每一通路將該第一多個對映跡線中之一者連接至該第二多個對映跡線中之一者。
實例20包括實例18及19中之任一者之主題,且其進一步包含通過該第一層、該第二層及該第三層之第二多個通路,該第二多個通路中之每一通路將該多個天線元件中之一者或該多個波束成形器元件中之一者連接至該第二多個對映跡線中之一者。
實例21包括實例18至20中之任一者之主題,且其中同一平面中之該第一多個對映跡線及該第二多個對映跡線不會彼此交叉。
實例22包括實例18至21中之任一者之主題,且其中該第一層中之該第一多個對映跡線及該第二層中之該第二多個對映跡線與垂直於該第一層及該第二層而延伸之一線交叉。
實例23包括實例18至22中之任一者之主題,且其中該第二多個對映跡線在長度上等距以用於RF信號傳播。
實例24包括實例1至23中之任一者之主題,且其中該天線格組包括經組配用於在一參數之一第一值下操作之第一多個天線元件及經組配用於在一參數之一第二值下操作之第二多個天線元件。
實例25包括實例24之主題,且其中一第三層包括安置於該第一層與該第二層之間的至少第一子層及第二子層,其中至少一第一子層中之第一多個對映跡線電氣耦接至該第一多個天線元件,且其中至少一第二子層中之第二多個對映跡線電氣耦接至該第二多個天線元件。
實例26包括實例25中之任一者之主題,且其進一步包含通過該第一層、該第二層及/或該第三層之第一多個通路,該第一多個通路中之每一通路將該多個天線元件中之一者或該多個波束成形器元件中之一者連接至該第一多個對映跡線中之一者。
實例27包括實例25及26中之任一者之主題,且其中至少第一子層及第三子層中之該第一多個對映跡線電氣耦接至該第一多個天線元件,且其中至少第二子層及第四子層中之該第二多個對映跡線電氣耦接至該第二多個天線元件。
實例28包括實例27中之任一者之主題,且其進一步包含通過該第三層之第二多個通路,該第二多個通路中之每一通路將該第一多個對映跡線中之至少一些與第三多個對映跡線中之至少一些電氣耦接或將該第二多個對映跡線中之至少一些與第四多個對映跡線中之至少一些電氣耦接。
雖然已繪示及描述了說明性實施例,但應瞭解,可在不偏離本揭露內容之精神及範疇的情況下對該等實施例做出各種改變。
100、200、300‧‧‧相控陣列天線系統
110‧‧‧天線孔口
110A、110B、110C、110D、120、220‧‧‧天線格組
112、112A、112B、112C、112D‧‧‧載體
120A、120B、120C、120D‧‧‧實施例
122i、222a、222b、222i、322a、322b‧‧‧天線元件
124、124i‧‧‧放大器
130‧‧‧對映系統
140、240‧‧‧波束成形器格組
142i‧‧‧波束成形器元件/波束成形器
144a‧‧‧濾波器
145i‧‧‧移相器
148a‧‧‧通路
150‧‧‧多工饋送網路
160‧‧‧分配器/組合器
170‧‧‧調變器/解調變器
180、280、380‧‧‧鋪疊
180a‧‧‧天線層
180b、380b1、380b2、380b3、380b4‧‧‧對映層
180c‧‧‧多工饋送網路層
180d、280d‧‧‧波束成形器層
224a、224b‧‧‧低雜訊放大器(LNA)
226a、226b‧‧‧天線模組
228a、248a‧‧‧導電通路
232a‧‧‧第一對映跡線
234a‧‧‧第二對映跡線
238a、238b、338a、338b‧‧‧中間通路
242a、242i‧‧‧波束成形器元件
244a、244b‧‧‧RF濾波器
260‧‧‧組合器
270‧‧‧RF解調變器
280a‧‧‧天線格組層
280b1‧‧‧第一對映層
280b2‧‧‧第二對映層
280c‧‧‧層
342a、342i‧‧‧波束成形器
B‧‧‧波束
D‧‧‧較佳方向/所要指向角度
D1、D2、d1、d2、d3‧‧‧間隔
LM‧‧‧主瓣
LS‧‧‧旁瓣
M‧‧‧距離
RX‧‧‧接收方向
S‧‧‧射頻(RF)信號
TX‧‧‧傳輸方向
θ、ϕ‧‧‧角度
本揭露內容之前述態樣及許多伴隨優勢將變得更易於瞭解,此係因為當結合隨附圖式參考以下實施方式時,該等態樣及優勢會變得更好理解,圖式中:
圖1A繪示根據本揭露內容之一個實施例的用於相控陣列天線系統之電氣組配的示意圖,該相控陣列天線系統包括界定天線孔口之天線格組、對映、波束成形器格組、多工饋送網路、分配器或組合器,及調變器或解調變器。
圖1B繪示根據本揭露內容之一個實施例的由相控陣列天線孔口達成之信號輻射場型。
圖1C繪示根據本揭露內容之實施例的用以界定各種天線孔口的相控陣列天線之個別天線元件之示意性佈局(例如,矩形、圓形、空間漸縮)。
圖1D繪示根據本揭露內容之實施例的用以界定天線孔口的呈空間漸縮組配之個別天線元件。
圖1E為界定圖1D中之天線孔口之面板的橫截面視圖。
圖1F為天線信號之主瓣及不良旁瓣的圖形。
圖1G繪示根據本揭露內容之一個實施例的構成相控陣列天線系統之多個層疊層的等角視圖。
圖2A繪示根據本揭露內容之一個實施例的用於天線格組中之多個天線元件耦接至波束成形器格組中之單個波束成形器的電氣組配的示意圖。
圖2B繪示根據圖2A之電氣組配的構成例示性接收系統中之相控陣列天線系統之多個層疊層的示意性橫截面。
圖3A繪示根據本揭露內容之一個實施例的用於天線格組中之多個穿插天線元件耦接至波束成形器格組中之單個波束成形器的電氣組配的示意圖。
圖3B繪示根據圖3A之電氣組配的構成例示性傳輸及穿插系統中之相控陣列天線系統之多個層疊層的示意性橫截面。

Claims (28)

  1. 一種相控陣列天線系統,其包含: 一第一部分,其攜載包括多個天線元件之一天線格組,其中該多個天線元件以一第一組配而配置;及 一第二部分,其攜載包括多個波束成形器元件之一波束成形器格組,其中該多個波束成形器元件以不同於該第一組配之一第二組配而配置,其中該多個天線元件中之每一者電氣耦接至該多個波束成形器元件中之一者。
  2. 如請求項1之相控陣列天線系統,其中該多個天線元件中之至少一者與該多個波束成形器元件中之一對應波束成形器元件橫向地隔開。
  3. 如請求項1之相控陣列天線系統,其中該第一組配為一空間漸縮組配。
  4. 如請求項1之相控陣列天線系統,其中該第二組配可為一經組織或均勻隔開組配。
  5. 如請求項1之相控陣列天線系統,其中該第一部分及該第二部分界定一載體之至少一部分。
  6. 如請求項1之相控陣列天線系統,其中該載體具有面向一第一方向之一第一側及面向遠離該第一方向之一第二方向之一第二側。
  7. 如請求項6之相控陣列天線系統,其中該天線格組在該載體之該第一側上。
  8. 如請求項6之相控陣列天線系統,其中該波束成形器格組在該載體之該第二側上。
  9. 如請求項1之相控陣列天線系統,其中該等天線元件及該等波束成形器元件呈一1:1比率。
  10. 如請求項1之相控陣列天線系統,其中該等天線元件及該等波束成形器元件呈一大於1:1比率。
  11. 如請求項1之相控陣列天線系統,其中該第一部分及該第二部分為第一層及第二層。
  12. 如請求項1之相控陣列天線系統,其進一步包含安置於該第一部分與該第二部分之間的一第三層,該第三層攜載包括第三部分上之一第一表面上之第一多個對映跡線的一對映之至少一部分,其中該第一多個對映跡線中之至少一些在該多個天線元件與該多個波束成形器元件之間提供電氣連接之至少一部分。
  13. 如請求項12之相控陣列天線系統,其中該第一層、該第二層及該第三層為一PCB堆疊中之離散PCB層。
  14. 如請求項13之相控陣列天線系統,其中該第一層、該第二層及該第三層中之至少一者包括形成該層之多個子層。
  15. 如請求項12之相控陣列天線系統,其進一步包含通過該第一層、該第二層及/或該第三層之第一多個通路,該第一多個通路中之每一通路將該多個天線元件中之一者或該多個波束成形器元件中之一者連接至第一多個對映跡線中之一者。
  16. 如請求項12之相控陣列天線系統,其中該第一多個對映跡線在長度上等距以用於RF信號傳播。
  17. 如請求項12之相控陣列天線系統,其中該第一多個對映跡線不會在該第一表面上彼此交叉。
  18. 如請求項12之相控陣列天線系統,其中該第三層包括安置於該第一層與該第二層之間的多個子層,其中至少二個子層攜載包括一第一子層中之該第一表面上之該第一多個對映跡線及第二子層中之一第二表面上之第二多個對映跡線的該對映之至少一部分,其中該第一多個對映跡線及該第二多個對映跡線中之至少一些在該多個天線元件與該多個波束成形器元件之間提供電氣連接之至少一部分。
  19. 如請求項18之相控陣列天線系統,其進一步包含通過該第一層、該第二層及該第三層中之至少一者之第二多個通路,該第二多個通路中之每一通路將該第一多個對映跡線中之一者連接至該第二多個對映跡線中之一者。
  20. 如請求項18之相控陣列天線系統,其進一步包含通過該第一層、該第二層及該第三層之第二多個通路,該第二多個通路中之每一通路將該多個天線元件中之一者或該多個波束成形器元件中之一者連接至該第二多個對映跡線中之一者。
  21. 如請求項18之相控陣列天線系統,其中同一平面中之該第一多個對映跡線及該第二多個對映跡線不會彼此交叉。
  22. 如請求項18之相控陣列天線系統,其中該第一層中之該第一多個對映跡線及該第二層中之該第二多個對映跡線與垂直於該第一層及該第二層而延伸之一線交叉。
  23. 如請求項18之相控陣列天線系統,其中該第二多個對映跡線在長度上等距以用於RF信號傳播。
  24. 如請求項18之相控陣列天線系統,其中該天線格組包括經組配用於在一參數之一第一值下操作之第一多個天線元件及經組配用於在一參數之一第二值下操作之第二多個天線元件。
  25. 如請求項24之相控陣列天線系統,其中一第三層包括安置於該第一層與該第二層之間的至少第一子層及第二子層,其中至少一第一子層中之第一多個對映跡線電氣耦接至該第一多個天線元件,且其中至少一第二子層中之第二多個對映跡線電氣耦接至該第二多個天線元件。
  26. 如請求項25之相控陣列天線系統,其進一步包含通過該第一層、該第二層及/或該第三層之第一多個通路,該第一多個通路中之每一通路將該多個天線元件中之一者或該多個波束成形器元件中之一者連接至該第一多個對映跡線中之一者。
  27. 如請求項25及26中任一項之相控陣列天線系統,其中至少第一子層及第三子層中之該第一多個對映跡線電氣耦接至該第一多個天線元件,且其中至少第二子層及第四子層中之該第二多個對映跡線電氣耦接至該第二多個天線元件。
  28. 如請求項27之相控陣列天線系統,其進一步包含通過該第三層之第二多個通路,該第二多個通路中之每一通路將該第一多個對映跡線中之至少一些與第三多個對映跡線中之至少一些電氣耦接或將該第二多個對映跡線中之至少一些與第四多個對映跡線中之至少一些電氣耦接。
TW108104979A 2018-02-15 2019-02-14 相控陣列天線系統 TW201941500A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862631195P 2018-02-15 2018-02-15
US62/631,195 2018-02-15

Publications (1)

Publication Number Publication Date
TW201941500A true TW201941500A (zh) 2019-10-16

Family

ID=67540927

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108104979A TW201941500A (zh) 2018-02-15 2019-02-14 相控陣列天線系統

Country Status (3)

Country Link
US (1) US11699852B2 (zh)
TW (1) TW201941500A (zh)
WO (1) WO2019161096A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210351507A1 (en) * 2020-05-07 2021-11-11 Mobix Labs, Inc. 5g mm-wave phased array antenna module architectures with embedded test-calibration circuits

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5122806A (en) 1990-05-31 1992-06-16 Hughes Aircraft Company Method for finding defective active array modules using an FFT over phase states
US6125261A (en) 1997-06-02 2000-09-26 Hughes Electronics Corporation Method and system for communicating high rate data in a satellite-based communications network
CN100355148C (zh) 1999-09-20 2007-12-12 弗拉克托斯股份有限公司 多级天线
ATE302473T1 (de) 2000-01-19 2005-09-15 Fractus Sa Raumfüllende miniaturantenne
US6538603B1 (en) * 2000-07-21 2003-03-25 Paratek Microwave, Inc. Phased array antennas incorporating voltage-tunable phase shifters
US6842157B2 (en) 2001-07-23 2005-01-11 Harris Corporation Antenna arrays formed of spiral sub-array lattices
US7511666B2 (en) 2005-04-29 2009-03-31 Lockheed Martin Corporation Shared phased array cluster beamformer
US7348929B2 (en) 2005-09-08 2008-03-25 Harris Corporation Phased array antenna with subarray lattices forming substantially rectangular aperture
US7466287B1 (en) 2006-02-22 2008-12-16 Lockheed Martin Corporation Sparse trifilar array antenna
US7848719B2 (en) * 2006-05-12 2010-12-07 University Of Southern California Ultra-wideband variable-phase ring-oscillator arrays, architectures, and related methods
US9172145B2 (en) 2006-09-21 2015-10-27 Raytheon Company Transmit/receive daughter card with integral circulator
US7489283B2 (en) 2006-12-22 2009-02-10 The Boeing Company Phased array antenna apparatus and methods of manufacture
US7642978B2 (en) 2007-03-30 2010-01-05 Itt Manufacturing Enterprises, Inc. Method and apparatus for steering and stabilizing radio frequency beams utilizing photonic crystal structures
US7626556B1 (en) 2007-09-18 2009-12-01 Lockheed Martin Corporation Planar beamformer structure
KR101070009B1 (ko) 2009-09-10 2011-10-04 경희대학교 산학협력단 격리도를 향상시킨 1:2 초광대역 전력 분배기/결합기
GB2475304A (en) 2009-11-16 2011-05-18 Niall Andrew Macmanus A modular phased-array antenna
US9379437B1 (en) 2011-01-31 2016-06-28 Ball Aerospace & Technologies Corp. Continuous horn circular array antenna system
EP2575211B1 (en) 2011-09-27 2014-11-05 Technische Universität Darmstadt Electronically steerable planar phased array antenna
US9397397B2 (en) * 2011-10-03 2016-07-19 Universiteit Twente Electronically-steered Ku-band phased array antenna comprising an integrated photonic beamformer
KR101454878B1 (ko) 2013-09-12 2014-11-04 한국과학기술원 수평 방사와 수직 방사의 선택적 이용이 가능한 매립형 혼 안테나
US9825679B2 (en) 2014-07-17 2017-11-21 Lg Electronics Inc. Hybrid-beamforming method and device for supporting multi-ranks in wireless access system
US10297923B2 (en) 2014-12-12 2019-05-21 The Boeing Company Switchable transmit and receive phased array antenna
US20160204508A1 (en) 2015-01-12 2016-07-14 Altamira Technologies Corporation Systems and methods for controlling the transmission and reception of information signals at intended directions through an antenna array
EP3430684B1 (en) 2016-03-15 2022-06-15 Commscope Technologies LLC Flat panel array antenna with integrated polarization rotator
US10141993B2 (en) 2016-06-16 2018-11-27 Intel Corporation Modular antenna array beam forming
US10333633B2 (en) 2017-05-10 2019-06-25 Telefonaktiebolaget Lm Ericsson (Publ) Angle of arrival estimation in a radio communications network
US10553940B1 (en) 2018-08-30 2020-02-04 Viasat, Inc. Antenna array with independently rotated radiating elements

Also Published As

Publication number Publication date
US11699852B2 (en) 2023-07-11
WO2019161096A1 (en) 2019-08-22
US20190252775A1 (en) 2019-08-15

Similar Documents

Publication Publication Date Title
US11177572B2 (en) Broadband stacked patch radiating elements and related phased array antennas
US20190252800A1 (en) Self-multiplexing antennas
TW201941551A (zh) 相控陣列天線用之波束成形器格組
US11469517B2 (en) Antenna modules for phased array antennas
US11695222B2 (en) Antenna aperture in phased array antenna systems
US10230174B2 (en) Frequency diverse phased-array antenna
WO2018152439A1 (en) Distributed phase shifter array system and method
KR20060041826A (ko) 원형 분극 배열 안테나
WO2020241271A1 (ja) サブアレイアンテナ、アレイアンテナ、アンテナモジュール、および通信装置
US11862837B2 (en) Hierarchical network signal routing apparatus and method
TW201941500A (zh) 相控陣列天線系統
TW201937807A (zh) 相控陣列天線系統中之天線對波束成形器分派及對映技術