TW201937853A - Duty cycle converter - Google Patents

Duty cycle converter Download PDF

Info

Publication number
TW201937853A
TW201937853A TW107105760A TW107105760A TW201937853A TW 201937853 A TW201937853 A TW 201937853A TW 107105760 A TW107105760 A TW 107105760A TW 107105760 A TW107105760 A TW 107105760A TW 201937853 A TW201937853 A TW 201937853A
Authority
TW
Taiwan
Prior art keywords
duty cycle
inverters
conversion circuit
input
circuit portion
Prior art date
Application number
TW107105760A
Other languages
Chinese (zh)
Inventor
巴爾德 哈希姆
歐拉 伯賽特
Original Assignee
挪威商諾迪克半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 挪威商諾迪克半導體股份有限公司 filed Critical 挪威商諾迪克半導體股份有限公司
Priority to TW107105760A priority Critical patent/TW201937853A/en
Publication of TW201937853A publication Critical patent/TW201937853A/en

Links

Abstract

A duty cycle conversion circuit portion (1) comprises N inverters (2, 4, 6, 8), wherein N is an integer greater than two. The duty cycle conversion circuit is arranged to receive N input signals (10a-d) each having a duty cycle between 1/N and 2/N. Each of the N input signals is applied to a respective input terminal (2a, 4a, 6a, 8a) of one of the N inverters such that each inverter receives a different input signal. Each of the N input signals is applied to a respective power terminal (2c, 4c, 6c, 8c) of one of the N inverters such that each inverter is powered by a different input signal. Each inverter receives different input signal at its respective input terminal to the input signal applied to its respective power terminal.

Description

工作週期轉換器 Work cycle converter

本發明有關於工作週期轉換器,尤其是產生具有取決於輸入信號之上升或下降邊緣的工作週期之輸出信號者。 The present invention relates to duty cycle converters, and more particularly to generating output signals having a duty cycle that depends on the rising or falling edges of the input signal.

許多現今的電子系統利用超過一個相位之控制信號且稱為「多相位」系統。多相位系統的一個例子可為使用正交調變及/或解調變之無線電系統。這種無線電系統通常會需要同相(I)及正交(Q)信號供I及Q混合來執行恰當的調變及/或解調變。若輸入至差動混合器,這些I及Q信號通常為「差動式」,亦即這些信號為「二線型」信號,其中兩條「I線」之相對的相位為0°及180°,而兩條Q線之相對的相位為90°及270°。故此無線電系統為四相位系統。當然可理解到這僅為一個可能的應用,且可有這種多相位系統的許多範例。 Many modern electronic systems utilize control signals that exceed one phase and are referred to as "multi-phase" systems. An example of a multi-phase system may be a radio system that uses quadrature modulation and/or demodulation. Such radio systems typically require in-phase (I) and quadrature (Q) signals for I and Q mixing to perform proper modulation and/or demodulation. If input to the differential mixer, these I and Q signals are usually "differential", that is, these signals are "two-wire" signals, and the relative phases of the two "I lines" are 0° and 180°. The opposite phases of the two Q lines are 90° and 270°. Therefore, the radio system is a four-phase system. It will of course be understood that this is only one possible application and that there are many examples of such multiphase systems.

這種多相位系統通常採用若干(通常相同的)週期性矩形脈波,這些脈波彼此間有相位偏移。每一個脈波具有一關聯的「工作週期」,亦即,該脈波在一給定週期中,相較於數位「0」或「邏輯低」,處於其之「邏輯高」(亦即,數位「1」)的時間比例。這些多相位信號可配置成使得若有N個信號,每一個具有1/N的工作週期且其個別的邏輯高時期並不重疊。故在上述的四相位無線電系統範例中,信號各有25%的工作週期。 Such multiphase systems typically employ a number of (usually the same) periodic rectangular pulses that are phase shifted from each other. Each pulse has an associated "duty cycle", that is, the pulse is at a "logic high" in a given period compared to the digit "0" or "logic low" (ie, The proportion of time in the digit "1"). These multi-phase signals can be configured such that if there are N signals, each has a 1/N duty cycle and its individual logic high periods do not overlap. Therefore, in the above four-phase radio system example, the signals each have a 25% duty cycle.

在設計這種多相位系統時,產生具有準確工作週期的這種多 相位信號是工程師常面臨的一個常見的挑戰。本領域中已知的一個解決方法涉及利用一系列的布林NAND閘來產生輸出信號,其在輸入信號的一種邊緣(如上升邊緣)下會設置(set)而在另一種邊緣(如下降邊緣)下會重置(reset)。然而,這會對輸入信號有嚴峻的工作週期要求,只是為設計者產生一個新的問題。當用於射頻(RF)區段中時其亦會有相對高的電源要求,因其需要在高RF頻率操作之數個閘。 When designing this multi-phase system, it produces such a large number of accurate duty cycles. Phase signals are a common challenge that engineers often face. One solution known in the art involves utilizing a series of Boolean NAND gates to produce an output signal that is set at one edge of the input signal (eg, a rising edge) and at another edge (eg, a falling edge) ) will reset (reset). However, this has severe duty cycle requirements for the input signal, but creates a new problem for the designer. It also has a relatively high power requirement when used in a radio frequency (RF) section because it requires several gates that operate at high RF frequencies.

當從第一態樣來看,本發明提供一種工作週期轉換電路部,包含N個反向器,其中N為大於二的整數,該工作週期轉換電路配置成接收各具有介於1/N及2/N之間的工作週期之N個輸入信號,其中:將該N個輸入信號的各者施加至該N個反向器之一的個別的輸入端,使每一個反向器接收不同的輸入信號;以及將該N個輸入信號的各者施加至該N個反向器之一的個別的電源端,使每一個反向器由一不同的輸入信號供電;其中每一個反向器在其個別的輸入端接收的輸入信號與施加至其個別的電源端之該輸入信號不同。 When viewed from the first aspect, the present invention provides a duty cycle conversion circuit portion including N inverters, wherein N is an integer greater than two, and the duty cycle conversion circuit is configured to receive each having a ratio of 1/N and N input signals for a duty cycle between 2/N, wherein: each of the N input signals is applied to an individual input of one of the N inverters, such that each inverter receives a different one Inputting a signal; and applying each of the N input signals to an individual power supply of one of the N inverters such that each inverter is powered by a different input signal; wherein each inverter is The input signals received by their respective inputs are different from the input signals applied to their respective power terminals.

熟悉本領域者可認知到本發明提供一種工作週期轉換電路部,其僅需輸入上的一種邊緣(上升或下降),以產生具有1/N的受控工作週期之輸出信號。由於輸入信號各具有大於1/N的工作週期,其可用來供電給用來接收供變遷的下一個輸入信號之反向器之一。在此配置中,即使只有用來觸發輸出中之變遷的輸入信號之上升(或下降)邊緣很明確,每一個反向器的輸出端仍可產生具有1/N的準確工作週期之輸出信號。當然,根據所需的應用,可實現1-1/N的工作週期,例如藉由與於1/N的情況所需的相比重新配置至反向器的輸入或藉由保留適用於1/N情況之輸入配置但反向 個別輸出。前者較佳,因其免除與任何額外反向器相關之額外電流消耗。 It will be appreciated by those skilled in the art that the present invention provides a duty cycle conversion circuit portion that requires only one edge (rising or falling) on the input to produce an output signal having a controlled duty cycle of 1/N. Since the input signals each have a duty cycle greater than 1/N, they can be used to power one of the inverters for receiving the next input signal for transition. In this configuration, even if only the rising (or falling) edge of the input signal used to trigger the transition in the output is clear, the output of each inverter can still produce an output signal with an accurate duty cycle of 1/N. Of course, depending on the desired application, a duty cycle of 1-1/N can be achieved, for example by reconfiguring the input to the inverter compared to what is required in the case of 1/N or by retaining for 1/1 N case input configuration but reverse Individual output. The former is preferred because it eliminates the extra current consumption associated with any additional inverters.

因此,從第二態樣來看,本發明提供一種工作週期轉換電路部,包含N個反向器,其中N為大於二的整數,該工作週期轉換電路配置成接收各具有介於1-2/N及1-1/N之間的工作週期之N個輸入信號,其中:將該N個輸入信號的各者施加至該N個反向器之一的個別的輸入端,使每一個反向器接收一不同的輸入信號;以及將該N個輸入信號的各者施加至該N個反向器之一的個別的電源端,使每一個反向器由一不同的輸入信號供電;其中每一個反向器在其個別的輸入端接收的輸入信號與施加至其個別的電源端之該輸入信號不同。 Therefore, from the second aspect, the present invention provides a duty cycle conversion circuit portion including N inverters, wherein N is an integer greater than two, and the duty cycle conversion circuit is configured to receive each having between 1-2 N input signals of a duty cycle between /N and 1-1/N, wherein: each of the N input signals is applied to an individual input of one of the N inverters, such that each The receiver receives a different input signal; and applies each of the N input signals to an individual power supply of one of the N inverters such that each inverter is powered by a different input signal; Each inverter receives an input signal at its respective input that is different from the input signal applied to its respective power supply.

相較於傳統解決方法,根據本發明的實施例之工作週期轉換電路需要較少節點,減少電路複雜度,減少材料清單及電路成本,並減少電路的電流消耗,尤其當在RF操作時,其通常意味著會需要較高的電流消耗。 Compared to conventional solutions, the duty cycle conversion circuit according to an embodiment of the present invention requires fewer nodes, reduces circuit complexity, reduces bill of materials and circuit cost, and reduces current consumption of the circuit, especially when operating in RF. Usually means that a higher current consumption will be required.

雖然可從工作週期轉換電路內的反向器之一取得單一輸出,在本發明的上述態樣以外的一組實施例中,工作週期轉換電路包含複數個輸出,其中每一個輸出係由一不同的反向器之輸出端提供。 While a single output can be obtained from one of the inverters within the duty cycle conversion circuit, in a set of embodiments other than the above aspects of the invention, the duty cycle conversion circuit includes a plurality of outputs, each of which is different The output of the inverter is provided.

在本發明的上述態樣以外的一組實施例中,由一除法器電路部一例如N分電路部一提供該些輸入信號。可由壓控振盪器驅動這種除法器,以形成例如鎖相迴路之一部份。 In a set of embodiments other than the above aspects of the invention, the input signals are provided by a divider circuit portion, such as an N-minute circuit portion. This divider can be driven by a voltage controlled oscillator to form part of, for example, a phase locked loop.

在本發明的第一態樣的一組實施例中,該N個反向器的每一個之所述的電源端為正電源端,且該N個反向器的每一個之負電源端接地。這允許由輸入信號的上升邊緣(正變遷)觸發工作週期轉換電路部。 In a set of embodiments of the first aspect of the present invention, the power supply terminal of each of the N inverters is a positive power supply terminal, and the negative power supply terminal of each of the N inverters is grounded. . This allows the duty cycle conversion circuit portion to be triggered by the rising edge (positive transition) of the input signal.

然而,在本發明的第二態樣的一組實施例中,該N個反向器 的每一個之所述的電源端為負電源端,且該N個反向器的每一個之正電源端連接至正供電軌。這允許由輸入信號的下降邊緣(負變遷)觸發工作週期轉換電路部。 However, in one set of embodiments of the second aspect of the invention, the N inverters Each of the power terminals described is a negative power supply terminal, and a positive power supply terminal of each of the N inverters is connected to a positive power supply rail. This allows the duty cycle conversion circuit portion to be triggered by the falling edge (negative transition) of the input signal.

在本發明的上述態樣以外的一組實施例中,該些輸出信號用來驅動共享一共同低雜訊放大器(LNA)的個別複數個放大器電路部。這可防止LNA的短路。然而可設想得到許多其他的應用。 In a set of embodiments other than the above aspects of the invention, the output signals are used to drive a plurality of individual amplifier circuit sections that share a common low noise amplifier (LNA). This prevents a short circuit in the LNA. However, many other applications are conceivable.

1‧‧‧工作週期轉換電路 1‧‧‧Work cycle conversion circuit

2、4、6、8‧‧‧反向器 2, 4, 6, 8‧‧ ‧ reverser

2a、4a、6a、8a‧‧‧輸入端 2a, 4a, 6a, 8a‧‧‧ inputs

2b、4b、6b、8b‧‧‧輸出端 2b, 4b, 6b, 8b‧‧‧ outputs

2c、4c、6c、8c‧‧‧正電源端 2c, 4c, 6c, 8c‧‧‧ positive power supply

2d、4d、6d、8d‧‧‧負電源端 2d, 4d, 6d, 8d‧‧‧ negative power supply

10a、10b、10c、10d‧‧‧輸入信號 10a, 10b, 10c, 10d‧‧‧ input signals

12a、12b、12c、12d‧‧‧輸出信號 12a, 12b, 12c, 12d‧‧‧ output signals

14‧‧‧無線電接收器 14‧‧‧ Radio Receiver

16‧‧‧天線 16‧‧‧Antenna

18‧‧‧低雜訊放大器(LNA) 18‧‧‧Low Noise Amplifier (LNA)

20、22‧‧‧差動混合器 20, 22‧‧‧Differential mixer

24‧‧‧帶通濾波器 24‧‧‧Bandpass filter

28‧‧‧二分除法器 28‧‧‧Divider

30‧‧‧壓控振盪器(VCO) 30‧‧‧Voltage Controlled Oscillator (VCO)

32‧‧‧正交輸出 32‧‧‧Orthogonal output

34‧‧‧無線電信號 34‧‧‧ Radio signals

36‧‧‧輸出信號 36‧‧‧Output signal

38‧‧‧振盪器信號 38‧‧‧Oscillator signal

40‧‧‧同相(I)信號 40‧‧‧In-phase (I) signal

42‧‧‧正交(Q)信號 42‧‧‧Orthogonal (Q) signal

44‧‧‧經過濾的I信號 44‧‧‧Filtered I signal

46‧‧‧經過濾的Q信號 46‧‧‧Filtered Q signal

茲舉例並參考附圖說明本發明的特定實施例,圖中:第1圖為根據本發明之一實施例的工作週期轉換電路的電路圖;第2圖為繪示第1圖中所示之工作週期轉換電路典型的信號變遷之時序圖;以及第3圖為配置成使用第1圖的工作週期轉換電路來執行正交解調變之無線電接收器的示意圖。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A specific embodiment of the present invention will be described by way of example with reference to the accompanying drawings in which: FIG. 1 is a circuit diagram of a duty cycle conversion circuit in accordance with an embodiment of the present invention; and FIG. 2 is a diagram showing the operation shown in FIG. A timing diagram of a typical signal transition of a period conversion circuit; and FIG. 3 is a schematic diagram of a radio receiver configured to perform quadrature demodulation using the duty cycle conversion circuit of FIG.

第1圖為根據本發明之一實施例的工作週期轉換電路1的電路圖。工作週期轉換電路1包含4個布林反向器2、4、6、8。每一個反向器2、4、6、8分別包含:輸入端2a、4a、6a、8a;輸出端2b、4b、6b、8b;正電源端2c、4c、6c、8c;以及負電源端2d、4d、6d、8d。 Fig. 1 is a circuit diagram of a duty cycle conversion circuit 1 in accordance with an embodiment of the present invention. The duty cycle conversion circuit 1 includes four Boolean inverters 2, 4, 6, and 8. Each of the inverters 2, 4, 6, 8 includes: an input terminal 2a, 4a, 6a, 8a; an output terminal 2b, 4b, 6b, 8b; a positive power terminal 2c, 4c, 6c, 8c; and a negative power terminal 2d, 4d, 6d, 8d.

每一個反向器2、4、6、8配置成在其個別的輸入端2a、4a、6a、8a接收一不同的輸入信號10a、10b、10c、10d並在其個別的輸出端2b、4b、6b、8b產生一輸出信號12a、12b、12c、12d,其中輸出信號12a-d為個別輸入信號10a-d的邏輯否定,只要相應之反向器2、4、6、8有電。 Each of the inverters 2, 4, 6, 8 is configured to receive a different input signal 10a, 10b, 10c, 10d at its respective input 2a, 4a, 6a, 8a and at its respective output 2b, 4b 6,b, 8b produces an output signal 12a, 12b, 12c, 12d, wherein the output signals 12a-d are logical negations of the individual input signals 10a-d as long as the respective inverters 2, 4, 6, 8 are energized.

在每一個反向器2、4、6、8的負電源端2d、4d、6d、8d接地的同時,每一個反向器2、4、6、8的正電源端2c、4c、6c、8c連接至施加到 不同的反向器2、4、6、8的輸入信號10a-d。在此特定配置中,第一反向器2的正電源端2c連接至施加到第四反向器8的輸入端8a之輸入信號10d;第二反向器4的正電源端4c連接至施加到第一反向器2的輸入端2a之輸入信號10a;第三反向器6的正電源端6c連接至施加到第二反向器4的輸入端4a之輸入信號10b;以及第四反向器8的正電源端8c連接至施加到第三反向器6的輸入端6a之輸入信號10c。因此可見到反向器2、4、6、8配置於一迴路中,其中施加至各反向器2、4、6、8的輸入信號10a-d用來供電給迴路中的下一個反向器2、4、6、8。 While the negative power terminals 2d, 4d, 6d, 8d of each of the inverters 2, 4, 6, 8 are grounded, the positive power terminals 2c, 4c, 6c of each of the inverters 2, 4, 6, 8 are 8c is connected to apply to Input signals 10a-d of different inverters 2, 4, 6, 8. In this particular configuration, the positive power terminal 2c of the first inverter 2 is connected to the input signal 10d applied to the input 8a of the fourth inverter 8; the positive power terminal 4c of the second inverter 4 is connected to the application An input signal 10a to the input terminal 2a of the first inverter 2; a positive power terminal 6c of the third inverter 6 is connected to the input signal 10b applied to the input terminal 4a of the second inverter 4; The positive power terminal 8c of the directional device 8 is connected to the input signal 10c applied to the input terminal 6a of the third inverter 6. It can thus be seen that the inverters 2, 4, 6, 8 are arranged in a loop in which the input signals 10a-d applied to the inverters 2, 4, 6, 8 are used to supply the next reverse in the loop. 2, 4, 6, 8.

第2圖為繪示第1圖中所示之工作週期轉換電路1典型的信號變遷之時序圖。輸入信號10a-d依所需具有介於25%及50%之間的工作週期,且僅舉例來說可源於一壓控振盪器(未圖示)所驅動的四分除法器。為了節省電力,這些信號具有明確的上升邊緣但下降邊緣則較不明確。這意味著雖然各具有大約50%的工作週期,但並不準確。在需要具有25%工作週期之四相位時脈的情況中-亦即,在如下參照第3圖所述的需要I及Q信號來調變及/或解調變的無線電接收器中-無法直接使用這種信號。 Fig. 2 is a timing chart showing typical signal transitions of the duty cycle conversion circuit 1 shown in Fig. 1. The input signals 10a-d have a duty cycle of between 25% and 50% as desired, and may only be derived from a quad splitter driven by a voltage controlled oscillator (not shown). In order to save power, these signals have a clear rising edge but the falling edge is less clear. This means that although each has a duty cycle of approximately 50%, it is not accurate. In the case of a four-phase clock with a 25% duty cycle - that is, in a radio receiver that requires I and Q signals to be modulated and/or demodulated as described below with reference to Figure 3 - cannot be directly Use this signal.

在初始時間t0,施加至反向器2、4、6的輸入信號10a-c在邏輯低,同時施加至反向器8的另一輸入信號10d在邏輯高。由於第四輸入信號10d因連接至第一反向器2的輸入端2c的關係而用來供電給第一反向器2,第一反向器2有電並因此執行第一輸入信號10a之邏輯否定並在輸出端2a產生邏輯高,如輸出信號12a的跡線所示。其他三個反向器4、6、8此時都沒有電。 At an initial time t 0 , the input signals 10a-c applied to the inverters 2, 4, 6 are at a logic low while the other input signal 10d applied to the inverter 8 is at a logic high. Since the fourth input signal 10d is used to supply power to the first inverter 2 due to the connection to the input terminal 2c of the first inverter 2, the first inverter 2 is powered and thus performs the first input signal 10a. The logic negates and produces a logic high at output 2a as indicated by the trace of output signal 12a. The other three inverters 4, 6, and 8 have no power at this time.

在時間t1,第一輸入信號10a經歷正變遷至邏輯高。由於第一反向器2仍有電,這會將第一輸出信號12a改變成邏輯低。然而,由於第一輸入信號10a因連接至第二反向器4的正電源端4c的關係而用來供電給第 二反向器4,這會使第二反向器4有電,其執行第二輸入信號10b(其仍為低)之邏輯否定,故驅使第二輸出信號12b至邏輯高。在t1不久之後(但非明確的時間),第四輸入信號10d經歷負變遷至邏輯低,導致第一反向器2沒有電。然而,這不影響第一輸出信號12a,因其已經在邏輯低。 At time t 1 , the first input signal 10a undergoes a positive transition to a logic high. Since the first inverter 2 still has power, this will change the first output signal 12a to a logic low. However, since the first input signal 10a is used to supply power to the second inverter 4 due to the relationship of the positive power supply terminal 4c connected to the second inverter 4, this causes the second inverter 4 to be powered, which performs the The logical negation of the two input signals 10b (which is still low) drives the second output signal 12b to a logic high. In t 1 shortly after (but not specific time), a negative fourth input signal 10d undergoes transition to logic low, causing the first inverter 2 without electricity. However, this does not affect the first output signal 12a as it is already at logic low.

在時間t2,第二輸入信號10b經歷正變遷至邏輯高,導致第二反向器4所產生的第二輸出信號12b經歷負變遷至邏輯低。第二輸入信號10b與第三反向器6的正電源端6c間的連結導致的關係第三反向器6此時變成有電。第三反向器6有電會使此反向器6所產生的第三輸出信號12c經歷正變遷至邏輯高,因第三輸入信號10c此時仍在邏輯低。過了一段時間後(同樣並不明確),第一輸入信號10a經歷負變遷至邏輯低,禁能第二反向器4,其之輸出已變低。 At time t 2 , the second input signal 10b undergoes a positive transition to a logic high, causing the second output signal 12b generated by the second inverter 4 to undergo a negative transition to a logic low. The relationship between the second input signal 10b and the positive power supply terminal 6c of the third inverter 6 causes the third inverter 6 to become energized at this time. The third inverter 6 is energized to cause the third output signal 12c generated by the inverter 6 to undergo a positive transition to a logic high because the third input signal 10c is still at logic low. After a period of time (also not clear), the first input signal 10a undergoes a negative transition to a logic low, disabling the second inverter 4, the output of which has become low.

隨後,在時間t3,第三輸入信號10c經歷正變遷至邏輯高。由於第二輸入信號10b仍在邏輯高而因此使第三反向器6有電,這導致第三反向器6所產生的第二輸出信號12c此時經歷負變遷至邏輯低。此外,由於第三輸入信號10c用來供電給第四反向器8且第四輸入信號10d此時在邏輯低,第四反向器8執行第四輸入信號10d之邏輯否定並因此產生邏輯高的輸出信號12d。 Then, at time t 3, the third input signal 10c subjected to positive transition to logic high. Since the second input signal 10b is still at logic high, the third inverter 6 is energized, which causes the second output signal 12c generated by the third inverter 6 to undergo a negative transition to a logic low at this time. Furthermore, since the third input signal 10c is used to supply power to the fourth inverter 8 and the fourth input signal 10d is now at logic low, the fourth inverter 8 performs a logical negation of the fourth input signal 10d and thus produces a logic high Output signal 12d.

在時間t4,第四輸入信號10d經歷其下一個正變遷至邏輯高,這導致(仍有電的第四反向器8之)第四輸出信號12d經歷負變遷至邏輯低,且第一輸出信號12a經歷正變遷至邏輯高,因為第一反向器2再次有電。重複此循環,其中時間t5等同於t1、t6等同於t2,諸如此類。 At time t 4 , the fourth input signal 10d undergoes its next positive transition to a logic high, which causes the fourth output signal 12d (of the fourth inverter 8 that is still powered) to undergo a negative transition to a logic low, and first The output signal 12a undergoes a positive transition to a logic high because the first inverter 2 is again powered. This loop is repeated, where time t 5 is equivalent to t 1 , t 6 is equivalent to t 2 , and the like.

可見到只要輸入信號10a-d的上升邊緣在正確的時間間隔很明確,且每一個輸入信號10a-d具有介於25%及50%之間的工作週期(亦即,介於1/N及2/N之間,其中N=4),則每一個輸出信號12a-d會有由輸入信號的 上升邊緣所觸發的剛好25%之工作週期。 It can be seen that as long as the rising edges of the input signals 10a-d are clear at the correct time interval, and each of the input signals 10a-d has a duty cycle between 25% and 50% (ie, between 1/N and Between 2/N, where N=4), then each output signal 12a-d will be input signal Just 25% of the duty cycle triggered by the rising edge.

第3圖為配置成使用第1圖的工作週期轉換電路1來執行正交解調變之無線電接收器14的示意圖。除了前述的工作週期轉換電路1之外,無線電接收器14包含:天線16、低雜訊放大器(LNA)18、兩個差動混合器20及22、帶通濾波器24、二分除法器28、及壓控振盪器(VCO)30。可理解到雖然此無線電接收器14為前述工作週期轉換電路1之一示範應用,第1圖的工作週期轉換電路1在用於其他應用中可帶來益處。 FIG. 3 is a schematic diagram of a radio receiver 14 configured to perform quadrature demodulation using the duty cycle conversion circuit 1 of FIG. In addition to the aforementioned duty cycle conversion circuit 1, the radio receiver 14 includes an antenna 16, a low noise amplifier (LNA) 18, two differential mixers 20 and 22, a band pass filter 24, a binary divider 28, And voltage controlled oscillator (VCO) 30. It will be appreciated that while this radio receiver 14 is an exemplary application for one of the aforementioned duty cycle conversion circuits 1, the duty cycle conversion circuit 1 of Figure 1 may provide benefits in other applications.

在接收器14的天線16接收到的無線電信號34是在「空中(over-the-air)」頻率fRF接收並輸入到LNA 18,其放大接收到的信號並產生「平衡」放大的輸出信號36,其輸入至混合器20及22的各者。 Antenna receiver 14 is 16 receives radio signals 34 is the frequency f RF receiver in the "(over-the-air) air" and input to the LNA 18, which amplifies the received signal and generates an output signal "Balance" amplified 36, which is input to each of the mixers 20 and 22.

VCO 30產生在振盪器頻率fVCO的振盪器信號38,其可以在本領域中已知的方式控制。將振盪器信號38輸入至二分除法器28,其產生在本地振盪器頻率fLO之如前述的四相信號10a-d,其中fLO為fVCO的一半(因為振盪器信號38已經為差動,故使用二分頻分器來取代先前參考第1圖所述之四分除法器)。然而,由二分除法器28所產生之四相信號10a-d的各者且先前參考第2圖所述具有在1/N至2/N範圍內的任意工作週期。 The VCO 30 produces an oscillator signal 38 at the oscillator frequency f VCO , which can be controlled in a manner known in the art. The oscillator signal 38 is input to a divide divider 28 which produces a four phase signal 10a-d at the local oscillator frequency f LO as previously described, where f LO is half of f VCO (because the oscillator signal 38 is already differential Therefore, a divide-by-two divider is used instead of the quarter-divider described previously with reference to FIG. 1). However, each of the four-phase signals 10a-d produced by the binary divider 28 and previously described with reference to Figure 2 have any duty cycle in the range of 1/N to 2/N.

工作週期轉換電路1將具有任意工作週期(在1/N至2/N範圍內)之四相信號10a-d傳變成輸出信號12a-d,各具有剛好25%(亦即,剛好1/N)的工作週期,如前面參考第1及2圖所述。將這些信號12a-d輸入至混合器20及22,其產生分別在中間頻率fIF之同相(I)信號40及正交(Q)信號42。將這些I及Q信號40及42輸入到帶通濾波器24,其產生在中間頻率fIF之正交(I及Q)輸出32,此輸出32包含由帶通濾波器24所產生之經過濾的I信號44及經過濾的Q信號46。 The duty cycle conversion circuit 1 converts the four-phase signals 10a-d having an arbitrary duty cycle (in the range of 1/N to 2/N) into the output signals 12a-d, each having exactly 25% (i.e., exactly 1/N). The duty cycle is as described above with reference to Figures 1 and 2. These signals 12a-d are input to mixers 20 and 22 which produce an in-phase (I) signal 40 and a quadrature (Q) signal 42 at intermediate frequencies f IF , respectively. These I and Q signals 40 and 42 are input to a bandpass filter 24 which produces an orthogonal (I and Q) output 32 at an intermediate frequency f IF which includes filtered by the bandpass filter 24. I signal 44 and filtered Q signal 46.

因此,可知本發明之所述實施例提供一種得以準確控制多相 位系統之工作週期轉換電路,其藉由利用數個反向器的電源端作為控制信號而得以使用單一輸入信號邊緣種類來界定輸出工作週期。與使用諸如NAND或AND閘相比,在達成相等功效下,本發明能最小化雜訊並減少耗電量而不對RF時脈的產生有嚴峻的工作週期要求。 Thus, it can be seen that the described embodiments of the present invention provide an accurate control of multiple phases A duty cycle conversion circuit of a bit system that uses a single input signal edge type to define an output duty cycle by using a power supply terminal of a plurality of inverters as a control signal. Compared to using NAND or AND gates, the present invention minimizes noise and reduces power consumption without achieving severe duty cycle requirements for RF clock generation.

熟悉本領域者應可認知到上述實施例僅為示範性且不限制本發明的範圍。 It will be appreciated by those skilled in the art that the above-described embodiments are merely exemplary and not limiting the scope of the invention.

Claims (12)

一種工作週期轉換電路部,包含N個反向器,其中N為大於二的整數,該工作週期轉換電路配置成接收各具有介於1/N及2/N之間的工作週期之N個輸入信號,其中:將該N個輸入信號的各者施加至該N個反向器之一的個別的輸入端,使每一個反向器接收一不同的輸入信號;以及將該N個輸入信號的各者施加至該N個反向器之一的個別的電源端,使每一個反向器由一不同的輸入信號供電;其中每一個反向器在其個別的輸入端接收的輸入信號與施加至其個別的電源端之該輸入信號不同。 A duty cycle conversion circuit portion comprising N inverters, wherein N is an integer greater than two, the duty cycle conversion circuit configured to receive N inputs each having a duty cycle between 1/N and 2/N a signal, wherein: each of the N input signals is applied to an individual input of one of the N inverters, such that each inverter receives a different input signal; and the N input signals are Each is applied to an individual power supply of one of the N inverters such that each inverter is powered by a different input signal; wherein each inverter receives an input signal and application at its respective input The input signal is different to its individual power supply terminals. 如申請專利範圍第1項之工作週期轉換電路部,包含複數個輸出,其中每一個輸出係由一不同的反向器之輸出端提供。 The duty cycle conversion circuit portion of claim 1 includes a plurality of outputs, each of which is provided by an output of a different inverter. 如申請專利範圍第1或2項之工作週期轉換電路部,其中由一除法器電路部提供該些輸入信號。 The duty cycle conversion circuit portion of claim 1 or 2, wherein the input signals are provided by a divider circuit portion. 如申請專利範圍第3項之工作週期轉換電路部,其中該除法器電路部包含N分電路部。 The duty cycle conversion circuit unit of claim 3, wherein the divider circuit portion includes an N-minute circuit portion. 如前述申請專利範圍的任一項之工作週期轉換電路部,其中該N個反向器的每一個之該電源端為正電源端,且該N個反向器的每一個之負電源端接地。 The duty cycle conversion circuit portion of any one of the preceding claims, wherein the power supply terminal of each of the N inverters is a positive power supply terminal, and the negative power supply terminal of each of the N inverters is grounded . 如前述申請專利範圍的任一項之工作週期轉換電路部,其中該些輸出信號用來驅動共享一共同低雜訊放大器的個別複數個放大器電路部。 The duty cycle conversion circuit portion of any one of the preceding claims, wherein the output signals are used to drive a plurality of individual amplifier circuit portions sharing a common low noise amplifier. 一種工作週期轉換電路部,包含N個反向器,其中N為大於二的整數,該工作週期轉換電路配置成接收各具有介於1-1/N及1-2/N之間的工作週 期之N個輸入信號,其中:將該N個輸入信號的各者施加至該N個反向器之一的個別的輸入端,使每一個反向器接收一不同的輸入信號;以及將該N個輸入信號的各者施加至該N個反向器之一的個別的電源端,使每一個反向器由一不同的輸入信號供電;其中每一個反向器在其個別的輸入端接收的輸入信號與施加至其個別的電源端之該輸入信號不同。 A duty cycle conversion circuit portion includes N inverters, wherein N is an integer greater than two, and the duty cycle conversion circuit is configured to receive a work week between 1-1/N and 1-2/N N input signals, wherein: each of the N input signals is applied to an individual input of one of the N inverters, such that each inverter receives a different input signal; Each of the N input signals is applied to an individual power supply of one of the N inverters such that each inverter is powered by a different input signal; each of the inverters receiving at its respective input The input signal is different from the input signal applied to its individual power supply terminals. 如申請專利範圍第7項之工作週期轉換電路部,包含複數個輸出,其中每一個輸出係由一不同的反向器之輸出端提供。 The duty cycle conversion circuit portion of claim 7 of the patent application includes a plurality of outputs, each of which is provided by an output of a different inverter. 如申請專利範圍第7或8項之工作週期轉換電路部,其中由一除法器電路部提供該些輸入信號。 The duty cycle conversion circuit portion of claim 7 or 8, wherein the input signals are provided by a divider circuit portion. 如申請專利範圍第9項之工作週期轉換電路部,其中該除法器電路部包含N分電路部。 The duty cycle conversion circuit unit of claim 9, wherein the divider circuit portion includes an N-minute circuit portion. 如申請專利範圍第7至10項的任一項之工作週期轉換電路部,其中該N個反向器的每一個之該電源端為負電源端,且該N個反向器的每一個之正電源端接地。 The duty cycle conversion circuit unit of any one of clauses 7 to 10, wherein the power supply terminal of each of the N inverters is a negative power supply terminal, and each of the N inverters The positive power terminal is grounded. 如申請專利範圍第7至11項的任一項之工作週期轉換電路部,其中該些輸出信號用來驅動共享一共同低雜訊放大器的個別複數個放大器電路部。 The duty cycle conversion circuit unit of any one of clauses 7 to 11, wherein the output signals are used to drive a plurality of individual amplifier circuit sections sharing a common low noise amplifier.
TW107105760A 2018-02-21 2018-02-21 Duty cycle converter TW201937853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107105760A TW201937853A (en) 2018-02-21 2018-02-21 Duty cycle converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107105760A TW201937853A (en) 2018-02-21 2018-02-21 Duty cycle converter

Publications (1)

Publication Number Publication Date
TW201937853A true TW201937853A (en) 2019-09-16

Family

ID=68618358

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107105760A TW201937853A (en) 2018-02-21 2018-02-21 Duty cycle converter

Country Status (1)

Country Link
TW (1) TW201937853A (en)

Similar Documents

Publication Publication Date Title
US8237485B2 (en) System and method for multiple-phase clock generation
TWI442704B (en) An apparatus for counting input pulses during a specific time interval
US6388492B2 (en) Clock generation circuit
US20100134154A1 (en) Odd number frequency dividing circuit
TWI652902B (en) Quadrature clock generating apparatus and communication system transmitter
WO2008135954A2 (en) Calibration-free local oscillator signal generation for a harmonic-rejection mixer
EP1900098B1 (en) Multi-phase frequency divider
EP3228008B1 (en) An electronic latch circuit and a generic multi-phase signal generator
JP2008515272A (en) Orthogonal three-divider and low-voltage muller C element
JP2002344308A (en) Odd number frequency divider and 90 degree phaser shifter using the same
US7535277B2 (en) Frequency dividing phase shift circuit
US8131242B2 (en) System and method for implementing a swap function for an IQ generator
US6570417B2 (en) Frequency dividing circuit
CN102447471B (en) Frequency divider and mixer circuit having same
TWI392992B (en) Clock generating circuit and clock generating method thereof
US6979990B2 (en) Reference voltage generator for frequency divider and method thereof
TW201937853A (en) Duty cycle converter
US7378885B1 (en) Multiphase divider for P-PLL based serial link receivers
US10680595B2 (en) Duty cycle converter
JP5005821B2 (en) Frequency divider and frequency dividing method
US7253673B2 (en) Multi-phase clock generator and generating method for network controller
JP2004525548A (en) Precision phase generator
KR101634674B1 (en) Method for Creating Frequency-Divided Signal, Frequency Divider Therefor
JP2002057570A (en) 90° phase shifter
JPH10285230A (en) Orthogonal modulator