TW201936258A - Method for fabricating micro-cell structures - Google Patents
Method for fabricating micro-cell structures Download PDFInfo
- Publication number
- TW201936258A TW201936258A TW107106021A TW107106021A TW201936258A TW 201936258 A TW201936258 A TW 201936258A TW 107106021 A TW107106021 A TW 107106021A TW 107106021 A TW107106021 A TW 107106021A TW 201936258 A TW201936258 A TW 201936258A
- Authority
- TW
- Taiwan
- Prior art keywords
- liquid crystal
- phase separation
- crystal mixture
- microcellular structure
- ratio
- Prior art date
Links
Landscapes
- Liquid Crystal (AREA)
- Adhesives Or Adhesive Processes (AREA)
Abstract
Description
本發明係關於一種微胞化結構的製造方法,特別是關於一種對液晶混合物進行處理的微胞化結構的製造方法。 The present invention relates to a method for producing a microcellular structure, and more particularly to a method for producing a microcellular structure for treating a liquid crystal mixture.
散射型液晶光閥在近十多年來有相當成熟的發展,最主要的應用產品為高分子分散液晶(Polymer-Dispersed Liquid Crystal;PDLC),此為聚合物(polymer)與液晶(liquid crystal)混合物經由相分離後而組成,其製程方式多數是利用照射紫外光或利用熱效應使該混合材料發生相分離過程,便可得一無外加電壓下為散射態的散射型液晶光閥,此外,可藉由外加一電壓得到散射態和穿透態之間的切換,而此類型的散射型液晶光閥需持續外加電壓方能將該光閥之穿透度固定住。 The scattering type liquid crystal light valve has been quite mature in the past ten years. The most important application product is Polymer-Dispersed Liquid Crystal (PDLC), which is polymer and liquid crystal. The mixture is composed of phase separation, and most of the processes are by using ultraviolet light or using a thermal effect to cause phase separation of the mixed material, thereby obtaining a scattering type liquid crystal light valve which is in a scattering state without an applied voltage. The switching between the scattering state and the penetrating state is obtained by applying a voltage, and this type of scattering type liquid crystal light valve needs to continuously apply a voltage to fix the transmittance of the light valve.
若利用摻雜鹽類離子材料之負型液晶材料(例如負型膽固醇液晶材料),即可不須經過解旋的結構,直接地藉由高、低頻電壓控制膽固醇液晶排列的一致與混亂程度,以使該膽固醇液晶切換至透光的平面螺旋(planar)結構或者是散射的焦錐(focal-conic)結構,並保有其雙穩態的特性。由於其驅動原理為結構間的直接地切換,其材料之切換速度較快(約為幾百微秒等級)、電壓較小、對比度也相較高分子分散液晶高,且其對於材料與表面處理之容忍性相當好。 If a negative-type liquid crystal material doped with a salt-based ionic material (for example, a negative-type cholesteric liquid crystal material) is used, the uniformity and chaos of the cholesteric liquid crystal arrangement can be directly controlled by high and low-frequency voltages without going through the unwinding structure. The cholesteric liquid crystal is switched to a light-transmitting planar planar structure or a scattered focal-conic structure, and retains its bistable characteristics. Since the driving principle is direct switching between structures, the material switching speed is fast (about several hundred microseconds), the voltage is small, the contrast is relatively high, the molecular dispersion liquid crystal is high, and the material and surface treatment are high. The tolerance is quite good.
因此,遂開始有研究人員試圖將上述技術運用於智慧型窗戶上。透過外加不同電壓於該膽固醇液晶上以形成透光的平面螺旋結構(planar textures)或者是散射的焦錐結構(focal-conic textures),以使該智慧型窗戶能產生透光(對應平面螺旋結構)或者 不透光(對應焦錐結構)的效果。然而,目前尚未有研究人員研發出適合的製作方法,以使智慧型窗戶商品化。 Therefore, 遂 began to have researchers trying to apply the above technology to smart windows. By applying different voltages to the cholesteric liquid crystal to form transparent planar planar textures or scattered focal-conic textures, the smart window can produce light transmission (corresponding to a planar spiral structure) )or The effect of opacity (corresponding to the focal cone structure). However, no researchers have yet developed suitable production methods to commercialize smart windows.
故,有必要提供一種微胞化結構的製造方法,以解決習用技術所存在的問題。 Therefore, it is necessary to provide a manufacturing method of the microcellular structure to solve the problems of the conventional technology.
本發明之一目的在於提供一種微胞化結構的製造方法,其係根據該液晶混合物的一亮區比例變化率決定熱引致相分離步驟的一熱相分離溫度與一熱相分離時間,以便於依據需求製作出不同透光度的微胞化結構,進而可運用於智慧型窗戶上。 An object of the present invention is to provide a method for fabricating a microcellular structure, which determines a thermal phase separation temperature and a thermal phase separation time of a thermally induced phase separation step according to a ratio of a bright region ratio change of the liquid crystal mixture, so as to facilitate It is required to produce a microcellular structure with different transmittances, which can be applied to smart windows.
本發明之另一目的在於提供一種微胞化結構的製造方法,其是透過光固化後的網狀光固化膠作為一第一透光基板與一第二透光基板之間的支撐材,進而使多個微胞化結構可設置於該第一透光基板與該第二透光基板。 Another object of the present invention is to provide a method for manufacturing a microcellular structure, which is a light-cured mesh-like photocurable adhesive as a support material between a first transparent substrate and a second transparent substrate, thereby A plurality of microcellular structures may be disposed on the first transparent substrate and the second transparent substrate.
為達上述之各個目的,本發明提供一種微胞化結構的製造方法,其包含步驟:提供一液晶混合物,包含:15wt%至91wt%的一負型液晶材料;0.0001wt%至5wt%的一鹽類離子材料;3wt%至40wt%的一手性分子材料;以及5wt%至40wt%的一光固化膠材料;進行一加熱步驟,對該液晶混合物加熱達介於攝氏40度至150度之間;進行一熱引致相分離步驟,對該液晶混合物以一熱相分離溫度持溫達一熱相分離時間,以使該液晶混合物形成多個液晶顆粒與一網狀光固化膠,其中該熱相分離溫度與該熱相分離時間是根據該液晶混合物的一亮區比例變化率決定;以及進行一光固化步驟,對該液晶混合物照射一紫外光,以使該些液晶顆粒與該網狀光固化膠進一步形成多個微胞化結構。 To achieve the above various objects, the present invention provides a method for producing a microcellular structure comprising the steps of: providing a liquid crystal mixture comprising: 15% by weight to 91% by weight of a negative liquid crystal material; 0.0001% by weight to 5% by weight of a salt An ionic material; 3 wt% to 40 wt% of a chiral molecular material; and 5 wt% to 40 wt% of a photocurable material; performing a heating step, heating the liquid crystal mixture to between 40 and 150 degrees Celsius; Performing a heat-induced phase separation step, holding the liquid crystal mixture at a thermal phase separation temperature for a thermal phase separation time, so that the liquid crystal mixture forms a plurality of liquid crystal particles and a reticulated photocurable gel, wherein the thermal phase is separated The temperature and the thermal phase separation time are determined according to a change ratio of a bright region ratio of the liquid crystal mixture; and a photocuring step is performed, and the liquid crystal mixture is irradiated with an ultraviolet light to make the liquid crystal particles and the reticulated light curing adhesive A plurality of microcellular structures are further formed.
在本發明之一實施例中,該液晶混合物的一亮區比例係與該些液晶顆粒分布在該液晶混合物中的一區域比例成正比。 In one embodiment of the invention, a bright region ratio of the liquid crystal mixture is proportional to a ratio of a portion of the liquid crystal particles distributed in the liquid crystal mixture.
在本發明之一實施例中,該亮區比例變化率係該液晶混合物的該亮區比例隨每單位時間經過所產生的一變化率。 In an embodiment of the invention, the brightness ratio change ratio is a rate of change of the bright area ratio of the liquid crystal mixture as a function of per unit time.
在本發明之一實施例中,該亮區比例變化率隨每秒鐘經過係變化-1%至+1%。 In one embodiment of the invention, the rate of change of the bright area ratio varies from -1% to +1% per second.
在本發明之一實施例中,該負型液晶材料包含負型液晶MLC2081、MLC2078、ZLI-2806及ZLI2293中的至少一種。 In an embodiment of the invention, the negative liquid crystal material comprises at least one of negative liquid crystals MLC 2081, MLC 2078, ZLI-2806, and ZLI 2293.
在本發明之一實施例中,該鹽類離子材料包含鹽類離子TBATFB、R6G、NaCl、KNO3及CaSO4中的至少一種。 In an embodiment of the invention, the salt ion material comprises at least one of the salt ions TBATFB, R6G, NaCl, KNO 3 and CaSO 4 .
在本發明之一實施例中,該手性分子材料包含手性分子S811、R811、S1011、R1011、S5011及R5011中的至少一種。 In an embodiment of the invention, the chiral molecular material comprises at least one of chiral molecules S811, R811, S1011, R1011, S5011, and R5011.
在本發明之一實施例中,該光固化膠材料包含光固化膠NOA63、NOA65、NOA73及NOA81中的至少一種。 In an embodiment of the invention, the photocurable adhesive material comprises at least one of photocurable adhesives NOA63, NOA65, NOA73, and NOA81.
在本發明之一實施例中,在該加熱步驟後更包含一設置步驟,以將加熱後的該液晶混合物設置在一第一透光基板與一第二透光基板之間。 In an embodiment of the invention, after the heating step, a setting step is further included to dispose the heated liquid crystal mixture between a first transparent substrate and a second transparent substrate.
在本發明之一實施例中,該光固化步驟係以強度為0.1至100mW/cm2的該紫外光照射0.1至20分鐘。 In an embodiment of the invention, the photocuring step is performed with the ultraviolet light having an intensity of 0.1 to 100 mW/cm 2 for 0.1 to 20 minutes.
10‧‧‧方法 10‧‧‧ method
11~14‧‧‧步驟 11~14‧‧‧Steps
20‧‧‧智慧型窗戶 20‧‧‧Smart windows
21‧‧‧微胞化結構 21‧‧‧Microcellular structure
22‧‧‧第一透光基板 22‧‧‧First transparent substrate
23‧‧‧第二透光基板 23‧‧‧Second transparent substrate
211‧‧‧液晶顆粒 211‧‧‧ liquid crystal particles
211A‧‧‧負型液晶材料 211A‧‧‧Negative liquid crystal material
211B‧‧‧鹽類離子材料 211B‧‧‧ Salt ionic materials
211C‧‧‧手性分子材料 211C‧‧‧Chiral Molecular Materials
212‧‧‧網狀光固化膠 212‧‧‧Net light curing adhesive
第1圖:本發明一實施例之微胞化結構的製造方法之流程方塊圖。 Fig. 1 is a flow block diagram showing a method of manufacturing a microcellular structure according to an embodiment of the present invention.
第2A圖:本發明一實施例之微胞化結構(該些液晶顆粒處在平面螺旋結構穩態)設置於兩透光基板之間的剖面示意圖。 2A is a schematic cross-sectional view showing a microcellular structure (the liquid crystal particles are in a steady state of a planar spiral structure) disposed between two light-transmissive substrates according to an embodiment of the present invention.
第2B圖:本發明一實施例之微胞化結構21(該些液晶顆粒處在焦錐結構穩態)設置於兩透光基板之間的剖面示意圖。 FIG. 2B is a schematic cross-sectional view showing the microcellular structure 21 (the liquid crystal particles are in a steady state of the focal conic structure) disposed between the two transparent substrates according to an embodiment of the present invention.
第3圖:使用10℃的熱相分離溫度的情況下,亮區比例與液晶顆粒尺寸相對於熱相分離時間的關係圖。 Fig. 3 is a graph showing the relationship between the ratio of the bright regions and the liquid crystal particle size with respect to the thermal phase separation time in the case of using the thermal phase separation temperature of 10 °C.
第4A至4F圖:使用10℃的熱相分離溫度的情況下,分別在不同熱相分離時間(依序是0秒、37秒、55秒、120秒、170秒與195秒)的電子顯微鏡照片。 Figures 4A to 4F: Electron microscopy with different thermal phase separation times (0 seconds, 37 seconds, 55 seconds, 120 seconds, 170 seconds, and 195 seconds) using a thermal phase separation temperature of 10 °C photo.
第5A至5F圖:以使用15℃的熱相分離溫度及55秒的熱相 分離時間的情況下,分別為不同光固化膠材料的比例(依序是15wt%、20wt%、25wt%、30wt%、35wt%與40wt%)的電子顯微鏡照片。 Figures 5A to 5F: using a hot phase separation temperature of 15 ° C and a thermal phase of 55 seconds In the case of the separation time, there are electron micrographs of the ratios of the different photocurable gel materials (15 wt%, 20 wt%, 25 wt%, 30 wt%, 35 wt%, and 40 wt%, respectively).
第6圖:實施例之微胞化結構切換於雙穩態之間的透光度的實驗數據圖。。 Fig. 6 is a graph showing experimental data of the transmittance of the microcellular structure of the embodiment switched between bistable states. .
為了讓本發明之上述及其他目的、特徵、優點能更明顯易懂,下文將特舉本發明較佳實施例,並配合所附圖式,作詳細說明如下。再者,本發明所提到的方向用語,例如上、下、頂、底、前、後、左、右、內、外、側面、周圍、中央、水平、橫向、垂直、縱向、軸向、徑向、最上層或最下層等,僅是參考附加圖式的方向。因此,使用的方向用語是用以說明及理解本發明,而非用以限制本發明。 The above and other objects, features and advantages of the present invention will become more <RTIgt; Furthermore, the directional terms mentioned in the present invention, such as upper, lower, top, bottom, front, rear, left, right, inner, outer, side, surrounding, central, horizontal, horizontal, vertical, longitudinal, axial, Radial, uppermost or lowermost, etc., only refer to the direction of the additional schema. Therefore, the directional terminology used is for the purpose of illustration and understanding of the invention.
請參照第1圖所示,本發明一實施例之微胞化結構的製造方法10主要包含下列步驟11至14:提供一液晶混合物,包含:15wt%至91wt%的一負型液晶材料;0.0001wt%至5wt%的一鹽類離子材料;3wt%至40wt%的一手性分子材料;以及5wt%至40wt%的一光固化膠材料(步驟11);進行一加熱步驟,對該液晶混合物加熱達介於攝氏40度至150度之間(步驟12);進行一熱引致相分離步驟,對該液晶混合物以一熱相分離溫度持溫達一熱相分離時間,以使該液晶混合物形成多個液晶顆粒與一網狀光固化膠,其中該熱相分離溫度與該熱相分離時間是根據該液晶混合物的一亮區比例變化率決定(步驟13);以及進行一光固化步驟,對該液晶混合物照射一紫外光,以使該些液晶顆粒與該網狀光固化膠進一步形成多個微胞化結構(步驟14)。本發明將於下文逐一詳細說明一實施例之上述各步驟的實施細節及其原理。 Referring to FIG. 1, a manufacturing method 10 for a microcellular structure according to an embodiment of the present invention mainly comprises the following steps 11 to 14: providing a liquid crystal mixture comprising: 15 wt% to 91 wt% of a negative liquid crystal material; 0.0001 wt. % to 5 wt% of a salt-based ionic material; 3 wt% to 40 wt% of a chiral molecular material; and 5 wt% to 40 wt% of a photocurable adhesive material (Step 11); performing a heating step to heat the liquid crystal mixture Between 40 degrees Celsius and 150 degrees Celsius (step 12); performing a heat-induced phase separation step, holding the liquid crystal mixture at a thermal phase separation temperature for a thermal phase separation time to form the liquid crystal mixture into a plurality of Liquid crystal particles and a reticulated light-curing adhesive, wherein the thermal phase separation temperature and the thermal phase separation time are determined according to a ratio of change of a bright region ratio of the liquid crystal mixture (step 13); and a photocuring step is performed to the liquid crystal The mixture is irradiated with an ultraviolet light to further form a plurality of microcellular structures with the liquid crystal particles and the reticulated gel (step 14). The details of the implementation of the above-described steps of an embodiment and the principles thereof will be described in detail below.
請參照第1圖所示,本發明第一實施例之微胞化結構的製造方法10首先係步驟11:提供一液晶混合物,包含:15wt%至91wt%的一負型液晶材料;0.0001wt%至5wt%的一鹽類離子材 料;3wt%至40wt%的一手性分子材料;以及5wt%至40wt%的一光固化膠材料。在本步驟11中,提供上述的負型液晶材料、鹽類離子材料、手性分子材料及光固化膠材料並混合,以製備該液晶混合物。在一實施例中,該負型液晶材料係一負型膽固醇液晶材料,其具有至少二穩態(至少包含透光的平面螺旋(planar)結構與是散射的焦錐(focal-conic)結構)。 Referring to FIG. 1, a method 10 for fabricating a microcellular structure according to a first embodiment of the present invention is first performed in a step 11 of providing a liquid crystal mixture comprising: 15 wt% to 91 wt% of a negative liquid crystal material; 0.0001 wt% to 5wt% of a salt ion 3 wt% to 40 wt% of a chiral molecular material; and 5 wt% to 40 wt% of a photocurable adhesive material. In this step 11, the above negative liquid crystal material, salt ion material, chiral molecular material and photocurable rubber material are provided and mixed to prepare the liquid crystal mixture. In one embodiment, the negative liquid crystal material is a negative cholesteric liquid crystal material having at least two steady states (at least a light-transmitting planar planar structure and a focal-conic structure that is scattered) .
在一實施例中,該負型液晶材料例如包含負型液晶MLC2081(可由默克(Merck)公司購得)、MLC2078(可由默克(Merck)公司購得)、ZLI-2806(可由默克(Merck)公司購得)及ZLI2293(可由默克(Merck)公司購得)中的至少一種。 In one embodiment, the negative liquid crystal material comprises, for example, a negative liquid crystal MLC2081 (available from Merck), MLC 2078 (available from Merck), and ZLI-2806 (by Merck ( At least one of Merck) and ZLI2293 (available from Merck).
在一實施例中,該鹽類離子材料包含鹽類離子TBATFB(四丁基四氟硼銨)、R6G、NaCl、KNO3及CaSO4中的至少一種,其中R6G的分子式請參考下式。 In one embodiment, the salt ion material comprises at least one of a salt ion TBATFB (tetrabutyltetrafluoroborate), R6G, NaCl, KNO 3 and CaSO 4 , wherein the molecular formula of R6G is as follows.
R6G: R6G:
在一實施例中,該手性分子材料包含手性分子S811、R811、S1011、R1011、S5011及R5011中的至少一種,分子式如下所示: In one embodiment, the chiral molecular material comprises at least one of chiral molecules S811, R811, S1011, R1011, S5011, and R5011, the molecular formula is as follows:
S811: S811:
R811: R811:
S1011: S1011:
R1011: R1011:
R5011/S5011(R5011與S5011互為對稱結構,故僅以一結構式表示): R5011/S5011 (R5011 and S5011 are symmetric with each other, so they are only represented by one structure):
在一實施例中,該光固化膠材料包含光固化膠NOA63(可由諾蘭德產品(Norland Products)公司購得)、NOA65(可由諾蘭德產品(Norland Products)公司購得)、NOA73(可由諾蘭德產品(Norland Products)公司購得)及NOA81(可由諾蘭德產品(Norland Products)公司購得)中的至少一種。 In one embodiment, the photocurable adhesive material comprises photocurable adhesive NOA63 (available from Norland Products, Inc.), NOA65 (available from Norland Products), NOA73 (available from NO. At least one of Norland Products (available from Norland Products) and NOA 81 (available from Norland Products).
續言之,本發明一實施例之微胞化結構的製造方法10接著係步驟12:進行一加熱步驟,對該液晶混合物加熱達介於攝氏40度至150度之間。在本步驟12中,該液晶混合物可加熱至攝氏90度左右,以便於進行後續的熱引致相分離步驟。 Continuingly, the method 10 for fabricating a microcellular structure according to an embodiment of the present invention is followed by step 12: performing a heating step of heating the liquid crystal mixture between 40 and 150 degrees Celsius. In this step 12, the liquid crystal mixture can be heated to about 90 degrees Celsius to facilitate subsequent heat-induced phase separation steps.
本發明一實施例之微胞化結構的製造方法10接著係步驟13:進行一熱引致相分離步驟,對該液晶混合物以一熱相分離溫度持溫達一熱相分離時間,以使該液晶混合物形成多個液晶顆粒與一網狀光固化膠,其中該熱相分離溫度與該熱相分離時間是根據該液晶混合物的一亮區比例變化率決定。在本步驟13中,該液晶混合物的熱相分離溫度與熱相分離時間將會依據液晶混合物中所選用的材料而有所不同。另一方面,即便使用相同材質,若是使用不同的熱相分離溫度,也會對需要的熱相分離時間產生影響,詳細的實驗數據將在後面段落描述。 A method for fabricating a microcellular structure according to an embodiment of the present invention is followed by a step 13 of performing a thermal phase separation step, holding the liquid crystal mixture at a thermal phase separation temperature for a thermal phase separation time to cause the liquid crystal mixture Forming a plurality of liquid crystal particles and a reticulated light-curing gel, wherein the thermal phase separation temperature and the thermal phase separation time are determined according to a ratio of a bright region ratio change of the liquid crystal mixture. In this step 13, the thermal phase separation temperature and the thermal phase separation time of the liquid crystal mixture will vary depending on the material selected for the liquid crystal mixture. On the other hand, even if the same material is used, if different thermal phase separation temperatures are used, the required thermal phase separation time will be affected. Detailed experimental data will be described in the following paragraphs.
本發明一實施例之微胞化結構的製造方法10最後係步驟14:進行一光固化步驟,對該液晶混合物照射一紫外光,以使該些液晶顆粒與該網狀光固化膠進一步形成多個微胞化結構。在本步驟14中,例如該光固化步驟係以強度為0.1至100mW/cm2的該紫外光照射0.1至20分鐘,主要目的是使該網狀光固化膠產生固化效果,進而可作為該些微胞化結構的支撐結構。前述的支撐結構可用於支撐該智慧型窗戶的二個透光基板(即該第一透光基板與該第二透光基板)。另一方面,由於該些微胞化結構中的該些液晶顆粒受到該網狀光固化膠的牽制,所以可預先製作大尺寸的智慧型窗戶,之後再根據使用者需求裁剪為小尺寸的智慧型窗戶,而不會使該些微胞化結構從裁剪處洩漏而出。 The method 10 for manufacturing a microcellular structure according to an embodiment of the present invention is finally a step 14 of performing a photocuring step, and irradiating the liquid crystal mixture with ultraviolet light to further form the plurality of liquid crystal particles and the network photocurable adhesive. Microcellular structure. In this step 14, for example, the photocuring step is performed by irradiating the ultraviolet light with an intensity of 0.1 to 100 mW/cm 2 for 0.1 to 20 minutes, and the main purpose is to cause the reticulated photocurable adhesive to have a curing effect, thereby serving as the micro-curing effect. The support structure of the cystic structure. The foregoing support structure can be used to support two transparent substrates (ie, the first transparent substrate and the second transparent substrate) of the smart window. On the other hand, since the liquid crystal particles in the microcellular structure are pinned by the mesh-shaped light-curing adhesive, a large-sized smart window can be pre-made, and then cut into small-sized smart windows according to user requirements. Without causing the microcellular structures to leak out of the cut.
請一併參照第1、2A與2B圖,第2A圖是本發明一實施例之微胞化結構21(該些液晶顆粒處在平面螺旋結構穩態)設置於兩透光基板之間的剖面示意圖;及第2B圖是本發明一實施例之微胞化結構21(該些液晶顆粒處在焦錐結構穩態)設置於兩透光基板之間的的面示意圖。在一實施例中,該加熱步驟後更包含一設置步驟,以將加熱後的該液晶混合物包含設置在一第一透光基板22與一第二透光基板23之間。換言之,當本發明之微胞化結構的製造方法10應用於製作一智慧型窗戶20時,可在加熱步驟後將該液晶混合物設置在兩個透光基板之間,並再透過後續步驟完成微胞化結構21(包含該些液晶顆粒211與該網狀光固化膠212,其中每個液晶顆粒211包含負型液晶材料211A、鹽類離子材料211B及手性分子材料211C),即可透過施加不同電壓來切換該微胞化結構中穩態,進而改變該智慧型窗戶的透光程度。 Referring to Figures 1, 2A and 2B together, FIG. 2A is a schematic cross-sectional view showing the microcellular structure 21 (the liquid crystal particles are in a steady state of the planar spiral structure) disposed between the two transparent substrates according to an embodiment of the present invention. And FIG. 2B is a schematic view showing a microcellular structure 21 (the liquid crystal particles are in a steady state of the focal conic structure) disposed between the two transparent substrates according to an embodiment of the present invention. In an embodiment, the heating step further comprises a setting step of disposing the heated liquid crystal mixture between a first transparent substrate 22 and a second transparent substrate 23. In other words, when the manufacturing method 10 of the microcellular structure of the present invention is applied to the production of a smart window 20, the liquid crystal mixture can be disposed between the two light-transmissive substrates after the heating step, and then the micro-cellization can be completed through the subsequent steps. The structure 21 includes the liquid crystal particles 211 and the network curing adhesive 212, wherein each liquid crystal particle 211 comprises a negative liquid crystal material 211A, a salt ion material 211B and a chiral molecular material 211C, which can be applied with different voltages. To switch the steady state in the microcellular structure, thereby changing the degree of light transmission of the smart window.
以下將說明本發明之微胞化結構的製造方法是如何根據該液晶混合物的亮區比例變化率決定該熱引致相分離步驟的熱相分離溫度與熱相分離時間。首先要說明的是,該些微胞化結構主要由兩個部分構成,包含該些液晶顆粒與經固化的該網狀光固化膠。一般而言,可透過提供不同的電壓與該些液晶顆粒,以使該些液晶顆粒在透光的平面螺旋(planar)結構或者是散射的焦錐(focal-conic)結構之間切換,進而使光線透過該些液晶顆粒或者使光線被該些液晶顆粒所阻擋。而經固化的該網狀光固化膠則是用於支撐整體的結構,其大致上是不透光的。由上可知,若是該些微胞化結構中的該些液晶顆粒的區域或比例越大,則該些液晶顆粒形成透光的平面螺旋結構的穩態時,具有越大的亮區比例(因為可透光區域越大,則整體呈現越亮或越清楚,即大致上成正比的關係);反之,若是該些微胞化結構中的該網狀光固化膠的區域或比例越大,雖然可具有較大的支撐效果,但該些液晶顆粒形成透光的平面螺旋結構的穩態時,具有越小的亮區比例(因為可透光區域越小,則整體呈現越暗或越模糊)。 Hereinafter, how the method for producing the microcellular structure of the present invention determines the thermal phase separation temperature and the thermal phase separation time of the heat-induced phase separation step according to the rate of change of the bright region ratio of the liquid crystal mixture. First, it should be noted that the microcellular structures are mainly composed of two parts, and the liquid crystal particles and the cured network curing adhesive are contained. In general, by providing different voltages and the liquid crystal particles, the liquid crystal particles are switched between a light-transmitting planar planar structure or a scattered focal-conic structure, thereby Light passes through the liquid crystal particles or blocks the light from being blocked by the liquid crystal particles. The cured web-like light-curing gel is a structure for supporting the whole, which is substantially opaque. It can be seen from the above that if the regions or proportions of the liquid crystal particles in the microcellular structure are larger, the liquid crystal particles form a steady state of the light-transmitting planar spiral structure, and have a larger ratio of bright regions (because they are transparent) The larger the light area is, the brighter or clearer the overall appearance is, that is, the relationship is roughly proportional); on the contrary, if the area or proportion of the network light-curing adhesive in the microcellular structure is larger, although it may have a larger The supporting effect, but when the liquid crystal particles form a steady state of the light-transmitting planar spiral structure, the smaller the bright area ratio (since the smaller the light-permeable area, the darker or more blurred the overall appearance).
在本發明實施例之微胞化結構的製造方法中,為了使該些微胞化結構具有足以可支撐基板的支撐結構,便透過該液晶混合物的亮區比例變化率來決定該熱引致相分離步驟所使用的參數。請參照第3圖與第4A至4F圖,第3圖係使用10℃的熱相分離溫度的情況下,亮區比例與液晶顆粒尺寸相對於熱相分離時間的關係圖;第4A至4F圖是使用10℃的熱相分離溫度的情況下,分別在不同熱相分離時間(依序是0秒、37秒、55秒、120秒、170秒與195秒)的電子顯微鏡照片。從第3圖與第4A至4F圖可知,在約55秒之前,亮區比例具有較大的成長比例,這主要是因為該液晶混合物在這段時間具有明顯的相分離效果。而在55秒之後,亮區比例未有明顯改變,但是從第4D至4F圖可知,該些液晶顆粒開始聚集成較大的液晶顆粒,此反而對於網狀光固化膠的支撐效果產生不利的影響。因此在相分離即將完成或恰完成時(例如本實施例為約55秒),該些液晶顆粒與固化膠相容的比例不多,故不會使擋牆因光固化產生小。從此可知,進行該熱引致相分離步驟時,可根據該亮區比例變化率來決定該熱相分離溫度與該熱相分離時間,以獲得具有高支撐效果以及高亮區比例的微胞化結構。例如在本實施例中,例如該亮區比例變化率可設計為該液晶混合物的該亮區比例隨每單位時間經過所產生的一變化率,諸如當該亮區比例變化率達到隨每秒鐘經過係變化-1%至+1%時,則設定此狀態所對應的該熱相分離溫度與該熱相分離時間為該熱引致相分離步驟所使用的參數。 In the method for fabricating a microcellular structure according to an embodiment of the present invention, in order to make the microcellular structures have a support structure sufficient to support the substrate, the rate of change of the bright region ratio of the liquid crystal mixture is used to determine the heat-induced phase separation step. Parameters. Please refer to Fig. 3 and Figs. 4A to 4F. Fig. 3 is a graph showing the relationship between the ratio of bright areas and the liquid crystal particle size with respect to the thermal phase separation time when the temperature is separated by 10 °C; 4A to 4F In the case of using a hot phase separation temperature of 10 ° C, electron micrographs at different thermal phase separation times (in the order of 0 seconds, 37 seconds, 55 seconds, 120 seconds, 170 seconds, and 195 seconds). As can be seen from Fig. 3 and Figs. 4A to 4F, the bright area ratio has a large growth ratio before about 55 seconds, mainly because the liquid crystal mixture has a remarkable phase separation effect during this period. However, after 55 seconds, the ratio of the bright areas did not change significantly, but it can be seen from the 4D to 4F graph that the liquid crystal particles began to aggregate into larger liquid crystal particles, which adversely affected the support effect of the network light curing adhesive. influences. Therefore, when the phase separation is about to be completed or just completed (for example, about 55 seconds in this embodiment), the ratio of the liquid crystal particles to the curing adhesive is not large, so that the retaining wall is not made small by photocuring. From this, it can be seen that, when the heat-induced phase separation step is performed, the thermal phase separation temperature and the thermal phase separation time can be determined according to the rate of change of the brightness ratio of the bright region to obtain a microcellular structure having a high support effect and a ratio of highlight regions. For example, in this embodiment, for example, the brightness ratio change rate of the bright area may be designed as a ratio of change of the bright area ratio of the liquid crystal mixture with each unit time, such as when the brightness ratio change rate reaches every second. When the system changes by -1% to +1%, the thermal phase separation temperature corresponding to the state and the thermal phase separation time are set as parameters used in the heat-induced phase separation step.
值得一提的是,根據使用者的需求,例如當使用者欲得到亮區比例較低的該微胞化結構,亦可根據該液晶混合物的一亮區比例變化率來決定該熱引致相分離步驟所使用的參數。請繼續參照第3圖,例如使用10℃的熱相分離溫度與約37秒的熱相分離時間,可得到具有較低亮區比例的該些微胞化結構。此外,亮區比例較低的該微胞化結構還可具有支撐強度較高的優點。 It is worth mentioning that, according to the user's needs, for example, when the user wants to obtain the microcellular structure with a low proportion of bright areas, the heat-induced phase separation step may also be determined according to a change ratio of a bright area ratio of the liquid crystal mixture. The parameters used. Referring to Figure 3, for example, using a thermal phase separation temperature of 10 ° C and a thermal phase separation time of about 37 seconds, the microcellular structures having a lower ratio of bright regions can be obtained. In addition, the microcellular structure having a low proportion of bright regions can also have the advantage of higher support strength.
另外,本發明實施例之微胞化結構的製造方法10亦 可透過調整光固化膠材料的比例來控制該網狀光固化膠的厚度。請參照第5A至5F圖,第5A至5F圖是以使用15℃的熱相分離溫度及55秒的熱相分離時間的情況下,分別為不同光固化膠材料的比例(依序是15wt%、20wt%、25wt%、30wt%、35wt%與40wt%)的電子顯微鏡照片。從第5A至5F圖可知,當光固化膠材料的比例越大時,則該網狀光固化膠(第5A至5F圖中的黑色區域)的厚度越大。而當該網狀光固化膠的厚度越大,則該液晶混合物的一亮區比例也會下降。由此可見,除了透過該液晶混合物的一亮區比例變化率決定該熱相分離溫度與該熱相分離時間之外,亦可透過該光固化膠材料的比例來調整該些微胞化結構的亮區比例。 In addition, the manufacturing method 10 of the microcellular structure of the embodiment of the present invention is also The thickness of the reticulated gel can be controlled by adjusting the proportion of the photocurable material. Please refer to Figures 5A to 5F. Figures 5A to 5F are the ratios of different photocurable adhesive materials in the case of using a thermal phase separation temperature of 15 ° C and a thermal phase separation time of 55 seconds (in order of 15 wt%). , electron micrographs of 20 wt%, 25 wt%, 30 wt%, 35 wt% and 40 wt%). As can be seen from the 5A to 5F drawings, when the proportion of the photocurable adhesive material is larger, the thickness of the reticulated light-curable adhesive (the black region in the 5A to 5F drawings) is larger. When the thickness of the reticulated gel is larger, the proportion of a bright region of the liquid crystal mixture also decreases. It can be seen that, in addition to determining the thermal phase separation temperature and the thermal phase separation time through a ratio of the bright region ratio change of the liquid crystal mixture, the bright regions of the microcellular structures can also be adjusted by the ratio of the photocurable adhesive material. proportion.
在一實施例中,上述的熱相分離溫度例如是介於10至25℃之間,例如是11℃、12℃、13℃、15℃、17℃、19℃、21℃、23℃或24℃。在另一實施例中,上述的熱相分離時間例如是介於40至75秒之間,例如是42秒、45秒、48秒、52秒、56秒、60秒、64秒、67秒、70秒或72秒。 In one embodiment, the thermal phase separation temperature is, for example, between 10 and 25 ° C, such as 11 ° C, 12 ° C, 13 ° C, 15 ° C, 17 ° C, 19 ° C, 21 ° C, 23 ° C or 24 °C. In another embodiment, the thermal phase separation time is, for example, between 40 and 75 seconds, such as 42 seconds, 45 seconds, 48 seconds, 52 seconds, 56 seconds, 60 seconds, 64 seconds, 67 seconds, 70 seconds or 72 seconds.
以下舉出一實施例,以證明本發明之微胞化結構的製造方法所製得之微胞化結構確實具有上述的效果。 An example is given below to demonstrate that the microcellular structure produced by the method for producing a microcellular structure of the present invention does have the above-described effects.
首先提供一液晶混合物,包含62.3wt%的負型液晶MLC2081、1wt%的鹽類離子TBATFB、16.7wt%的手性分子R811及20wt%的光固化膠NOA65。接著將該液晶混合物加熱至110℃,此時該液晶混合物處於各向同性(isotropy)態。接著,將110℃之該液晶混合物注入樣品盒中,再將溫度降至15度放置50秒後。最後照射5(mW/cm2)的紫外光(波段約365奈米)達15分鐘,即可製作顆粒大小約介於50至100微米之間,且該網狀光固化膠厚度僅介於0.1至10微米之間的實施例之微胞化結構。 First, a liquid crystal mixture comprising 62.3 wt% of negative liquid crystal MLC 2081, 1 wt% of a salt ion TBATFB, 16.7 wt% of a chiral molecule R811, and 20 wt% of a photocurable adhesive NOA65 was provided. The liquid crystal mixture is then heated to 110 ° C, at which time the liquid crystal mixture is in an isotropy state. Next, the liquid crystal mixture at 110 ° C was injected into the sample cell, and the temperature was lowered to 15 degrees for 50 seconds. Finally, irradiating 5 (mW/cm 2 ) of ultraviolet light (band about 365 nm) for 15 minutes, the particle size can be made between 50 and 100 microns, and the thickness of the reticulated gel is only 0.1. Microcytochemical structures of the examples between 10 microns.
接著,對上述的微胞化結構進行電壓測試。請參照第6圖,第6圖是實施例之微胞化結構切換於雙穩態之間的透光度的實驗數據圖。當施加頻率60Hz之交流電壓60伏特,即可將實施例之微胞化結構切換至散射狀態,並可於釋放電壓後處於焦 錐(focal-conic)結構的穩態。當施加頻率6kHz之交流電壓120伏特,即可將實施例之微胞化結構切換透光狀態,並可於釋放電壓後處於平面螺旋(planar)結構的穩態。 Next, a voltage test was performed on the above-described microcellular structure. Please refer to Fig. 6. Fig. 6 is a graph showing experimental data of the transmittance of the microcytization structure switched between the bistable states of the embodiment. When the AC voltage of 60 Hz is applied at 60 volts, the microcellular structure of the embodiment can be switched to the scattering state, and can be in focus after releasing the voltage. Steady state of a cone-conic structure. When the AC voltage of 6 kHz is applied at 120 volts, the microcellular structure of the embodiment can be switched to a light transmitting state and can be in a steady state of a planar planar structure after the voltage is released.
雖然本發明已以較佳實施例揭露,然其並非用以限制本發明,任何熟習此項技藝之人士,在不脫離本發明之精神和範圍內,當可作各種更動與修飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 The present invention has been disclosed in its preferred embodiments, and is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107106021A TWI643670B (en) | 2018-02-22 | 2018-02-22 | Method for fabricating micro-cell structures |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107106021A TWI643670B (en) | 2018-02-22 | 2018-02-22 | Method for fabricating micro-cell structures |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI643670B TWI643670B (en) | 2018-12-11 |
TW201936258A true TW201936258A (en) | 2019-09-16 |
Family
ID=65432004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107106021A TWI643670B (en) | 2018-02-22 | 2018-02-22 | Method for fabricating micro-cell structures |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI643670B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112684614B (en) * | 2019-10-17 | 2024-01-23 | 中强光电股份有限公司 | Light adjusting element and manufacturing method thereof, light source module and manufacturing method thereof, and display device and manufacturing method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080084522A1 (en) * | 2006-10-06 | 2008-04-10 | Chung Yuan Christian University | Liquid Crystal Device with Stratified Phase-separated Composite and Method for Forming the Same |
TWI410478B (en) * | 2007-01-15 | 2013-10-01 | 私立中原大學 | Liquid crystal composite and device with faster electro-optical response characteristics |
-
2018
- 2018-02-22 TW TW107106021A patent/TWI643670B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI643670B (en) | 2018-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8153192B2 (en) | Method of forming a composite | |
US5583673A (en) | Polymer dispersed liquid crystal display device, and a method for producing the same | |
CN104280934B (en) | Liquid crystal panel and preparation method thereof | |
JP6632626B2 (en) | Liquid crystal display device and driving method thereof | |
TW201219932A (en) | Liquid crystal display and method for preparation thereof | |
JPH0580303A (en) | Liquid crystal electrooptical device and formation thereof | |
Ahmad et al. | The effect of UV intensities and curing time on polymer dispersed liquid crystal (PDLC) display: A detailed analysis study | |
JP2009036967A (en) | Light control window material | |
CN110651222A (en) | Haze-free inverse liquid crystal light control film with non-uniform alignment layer | |
KR20100130762A (en) | Display device having polarizing layer and manufacturing method of the same | |
TWI643670B (en) | Method for fabricating micro-cell structures | |
CN104090323A (en) | Construction and application of electrically controlled scattering Polaroid | |
US10705366B2 (en) | Method for fabricating micro-cell structures | |
JP3271693B2 (en) | Manufacturing method of liquid crystal display element | |
Pane et al. | Haze and opacity control in polymer dispersed liquid crystal (PDLC) films with phase separation method | |
US20160299373A1 (en) | High-contrast and bistable scattering mode liquid crystal light shutters | |
US7041346B2 (en) | Liquid crystal composition, liquid crystal display element, method for manufacturing same, and method for controlling same | |
JP2018112702A (en) | Method for manufacturing polymer dispersion type light control device in reverse mode | |
JP6066057B2 (en) | Aligned phase separation structure of liquid crystal and polymer and production method thereof | |
JP2013152445A5 (en) | ||
JP2000029002A (en) | Liquid crystal optical shutter for light control and its manufacture | |
KR102375119B1 (en) | Manufacturing method of initial transparent polymer network liquid crystal device | |
JP5180579B2 (en) | Liquid crystal optical device | |
JPH0695090A (en) | Liquid crystal display element | |
CN102929044B (en) | Vertical orientation type liquid crystal panel |