JP6066057B2 - Aligned phase separation structure of liquid crystal and polymer and production method thereof - Google Patents

Aligned phase separation structure of liquid crystal and polymer and production method thereof Download PDF

Info

Publication number
JP6066057B2
JP6066057B2 JP2012275049A JP2012275049A JP6066057B2 JP 6066057 B2 JP6066057 B2 JP 6066057B2 JP 2012275049 A JP2012275049 A JP 2012275049A JP 2012275049 A JP2012275049 A JP 2012275049A JP 6066057 B2 JP6066057 B2 JP 6066057B2
Authority
JP
Japan
Prior art keywords
liquid crystal
polymer
phase
separation structure
phase separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012275049A
Other languages
Japanese (ja)
Other versions
JP2013152445A (en
JP2013152445A5 (en
Inventor
洋 垣内田
洋 垣内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2012275049A priority Critical patent/JP6066057B2/en
Publication of JP2013152445A publication Critical patent/JP2013152445A/en
Publication of JP2013152445A5 publication Critical patent/JP2013152445A5/ja
Application granted granted Critical
Publication of JP6066057B2 publication Critical patent/JP6066057B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、光シャッター、調光窓ガラス、センサー、アメニティ、熱駆動型光スイッチ、光熱書き込み型メモリーなどの分野に利用される液晶とポリマーの配向相分離構造とその製造方法にかかわる技術分野に属する。   The present invention relates to a technical field related to an alignment phase separation structure of a liquid crystal and a polymer used in fields such as an optical shutter, a light control window glass, a sensor, an amenity, a thermally driven optical switch, and a photothermal writing memory, and a manufacturing method thereof. Belongs.

光は空間を超えてエネルギーや情報を伝達し、その伝播状態、とくに透過する強度や偏光を制御することは産業上重要であり、これまで様々な技術が開発され実用化に至っている。その制御法として、温度、電気、圧力、湿度、化学反応などの状態変化に応じて様々な方式がある。その中でも温度変化は我々の周囲で起こる最も身近な現象であることから、熱応答型の光透過制御材料あるいはそれを基にした素子や装置は様々な場面で使われる可能性が高く重要とされている。とくに、室温付近の温度変化に応答する材料は、例えば季節を通した寒暑に応じて自律的に日射制御可能な感温型調光窓ガラスなど次世代の省エネ環境建築部材への応用が期待されている。   It is industrially important for light to transmit energy and information across space, and to control its propagation state, particularly the intensity and polarization of transmission, and various technologies have been developed and put into practical use. As the control method, there are various methods according to the state change such as temperature, electricity, pressure, humidity, chemical reaction and the like. Among them, temperature change is the most familiar phenomenon that occurs around us, so it is important that heat-responsive light transmission control materials or elements and devices based on them are used in various situations. ing. In particular, materials that respond to temperature changes near room temperature are expected to be applied to next-generation energy-saving environmental building materials, such as temperature-sensitive dimmable window glass that can be controlled by solar radiation automatically in response to the heat of the season. ing.

この温度変化応答型材料には様々なタイプがあるが、その中でも、透明と光散乱の状態を温度により可逆的に変化させる調光技術が報告され、一部実用化に至っている。例えば、溶媒中にゲルが分散した系で、ゲルが熱的に膨潤−収縮転移し、この系の屈折率分布の均一/不均一変化によって可逆的に透明/光散乱状態になる、いわゆる感温性ハイドロゲルが提案されている(例えば、特許文献1−2、非特許文献1参照)。より具体的には、例えばアフィニティー社は両親媒性多糖類誘導体と両親媒性物質の水溶液を基本組成とし、上述の転移現象を利用し透明/散乱状態が温度で制御される窓ガラスを既に製品化している。膨潤−収縮転移を利用したその他の材料としては、ポリN-イソプロピルアクリルアミドゲル(Poly-NIPAM)を用いた感温型の調光材料が多数報告されている(例えば、特許文献3、非特許文献2参照)。   There are various types of temperature change responsive materials. Among them, a light control technique for reversibly changing the state of transparency and light scattering depending on the temperature has been reported, and some have been put into practical use. For example, in a system in which a gel is dispersed in a solvent, the gel thermally swells and contracts and reversibly becomes transparent / light-scattering due to a uniform / non-uniform change in the refractive index distribution of the system. Hydrogels have been proposed (see, for example, Patent Document 1-2 and Non-Patent Document 1). More specifically, Affinity, for example, has already manufactured a window glass whose basic composition is an aqueous solution of an amphiphilic polysaccharide derivative and an amphiphile, and whose transparency / scattering state is controlled by temperature using the above transition phenomenon. It has become. As other materials using the swelling-shrinkage transition, many temperature-sensitive light-control materials using poly N-isopropylacrylamide gel (Poly-NIPAM) have been reported (for example, Patent Document 3, Non-Patent Document). 2).

液晶の相転移現象を用いた熱応答型調光材料も幾つか報告されている。例えば、低分子液晶と光重合性の液晶モノマーとを相溶させた状態でUV照射により液晶モノマーを架橋化し、この網目構造中に低分子液晶が配向付けられて溶けた構造が報告されている。これは、温度によるスメクチックA (SA)−カイラルネマチック(N*)相間の転移を利用し、低温のN*相での特定の波長域で反射特性を利用し、熱的に光透過/反射状態でスイッチングさせることが報告されている(例えば、特許文献4参照)。さらに他には、高分子と微粒子とからなるコロイド結晶に液晶が添加された組成物が提案されており、これは配列した微粒子が一種のフォトニック結晶の役割を果たし、その隙間を埋めるホメオトロピック配向されたネマチック液晶の等方相への熱転移にともなう配向秩序の低下で屈折率分布が変わり、Bragg反射の発現/消失による特定の波長範囲での調光機能も提案されている(例えば、特許文献5参照)。 Several heat-responsive light-control materials using the phase transition phenomenon of liquid crystals have been reported. For example, a structure in which a low-molecular liquid crystal and a photopolymerizable liquid-crystalline monomer are mixed with each other and the liquid-crystalline monomer is cross-linked by UV irradiation and the low-molecular liquid crystal is aligned and melted in this network structure has been reported. . This uses the transition between the smectic A (S A ) -chiral nematic (N *) phase with temperature, uses the reflection characteristics in a specific wavelength region of the low temperature N * phase, and transmits and reflects light thermally. It is reported that switching is performed in a state (see, for example, Patent Document 4). In addition, a composition in which liquid crystal is added to a colloidal crystal composed of a polymer and fine particles has been proposed. This is because the arranged fine particles serve as a kind of photonic crystal and fill the gap between them. The refractive index distribution changes due to a decrease in the alignment order accompanying thermal transition to the isotropic phase of the aligned nematic liquid crystal, and a dimming function in a specific wavelength range due to the appearance / disappearance of Bragg reflection has also been proposed (for example, (See Patent Document 5).

一方、本発明者はこれまで、ホログラフィック高分子分散型液晶(H-PDLC)の研究に取り組み、熱的に回折強度を効率良くスイッチングできる技術を開発してきた。より具体的には、これは、回折格子を構成する(サブ)ミクロンピッチの一次元空間周期構造の一方の相にネマチック等方相転移による屈折率変化及び光学異方−等方性変化を有する低分子液晶を用い、もう一方の相に低分子液晶相の複屈折率と屈折率を合致させた異方性高分子相を用い、ホログラフィック露光あるいは二光束干渉露光による光重合・相分離過程で、周期構造の形成で分子配向を誘起させ、偏光選択的に回折強度を適切にスイッチングできる技術である(特許文献6,7)。   On the other hand, the present inventor has so far worked on research on holographic polymer dispersed liquid crystal (H-PDLC), and has developed a technique capable of efficiently switching the diffraction intensity thermally. More specifically, it has a refractive index change and an optical anisotropic-isotropic change due to a nematic isotropic phase transition in one phase of a (sub) micron pitch one-dimensional spatial periodic structure constituting the diffraction grating. Photopolymerization / phase separation process by holographic exposure or two-beam interference exposure using low molecular liquid crystal and anisotropic polymer phase that matches birefringence and refractive index of low molecular liquid crystal phase as the other phase In this technique, molecular orientation is induced by the formation of a periodic structure, and the diffraction intensity can be appropriately switched in a polarization-selective manner (Patent Documents 6 and 7).

H. Watanabe, Sol. Energy Mater. Sol. Cells, 54 (1998) 203.H. Watanabe, Sol. Energy Mater. Sol. Cells, 54 (1998) 203. A. Szilagyi, Macromol. Symp. 227 (2005) 227.A. Szilagyi, Macromol. Symp. 227 (2005) 227.

特開2000-155345号公報JP 2000-155345 A 特開平08-11256号公報JP 08-11256 特開2003-113249号公報JP 2003-113249 A 特開2002-265945号公報JP 2002-265945 A 特開2009-235259号公報JP 2009-235259 特開2008-134628号公報JP 2008-134628 A 特開2009-300629号公報JP 2009-300629 特開平08-286162号公報Japanese Unexamined Patent Publication No. 08-286162

従来技術には幾つか問題点がある。まず、特許文献4で記述される低分子液晶と高分子液晶の相溶構造では、温度変化とともに特定の波長範囲で光反射/透過状態へのスイッチングを可能にするが、この波長範囲の制限が、調光変動幅の拡大を阻むだけでなく、これらの波長範囲は角度により変化するという特徴を有し、取り扱いが煩雑となる。また、この材料では等方(I)−カイラルネマチック(N*)−スメクチックA(SA)相の相転移を有する材料に制約されるため、作製の簡便さという点でも改良の余地がある。一方、特許文献5に記述される液晶添加コロイド結晶の場合、反射/透過状態の熱的切換えという点で特許文献4に記述した内容と同様の欠点がある。前述の感温性ハイドロゲルについては、溶液中のゲルの膨潤−収縮転移にともなう屈折率変化により、高温/低温で散乱/透明状態となり、熱応答型調光窓ガラスとして既に製品化されている。しかしながら、基本的に液相である構造はその封入の必要性など、汎用的な扱いに課題が残る。 There are several problems with the prior art. First, the compatible structure of the low-molecular liquid crystal and the high-molecular liquid crystal described in Patent Document 4 enables switching to a light reflection / transmission state in a specific wavelength range with a change in temperature. In addition to preventing the expansion of the dimming fluctuation range, these wavelength ranges are characterized by changes depending on the angle, and handling is complicated. In addition, since this material is limited to a material having a phase transition of isotropic (I) -chiral nematic (N *)-smectic A (S A ) phase, there is room for improvement in terms of ease of production. On the other hand, the liquid crystal-added colloidal crystal described in Patent Document 5 has the same defects as the contents described in Patent Document 4 in terms of the thermal switching of the reflection / transmission state. The above-mentioned thermosensitive hydrogel has already been commercialized as a heat-responsive dimming window glass due to the scattering / transparent state at high / low temperature due to the change in refractive index accompanying the swelling-shrinkage transition of the gel in the solution. . However, the structure that is basically in the liquid phase still has problems in general-purpose handling, such as the necessity of its encapsulation.

本発明は、以上のとおりの背景から、ネマチック−等方相転移点温度を超える温度では光散乱状態、ネマチック−等方相転移点温度未満の温度では光透過状態に可逆的に変化する固相系の構造とその製造方法を提供することを課題とする。   From the background as described above, the present invention provides a solid phase that reversibly changes to a light scattering state at a temperature above the nematic-isotropic phase transition temperature and to a light transmission state at a temperature below the nematic-isotropic phase transition temperature. It is an object of the present invention to provide a system structure and a manufacturing method thereof.

上記課題を解決するため、液晶と高分子の配向相分離構造は、異方性高分子中に液晶材料が配向した状態で液晶滴として分散してなる、液晶と高分子の配向相分離構造であって、
前記液晶滴中の液晶材料は、その温度変化によって、ネマチック相と等方相間の相転移を生じ、その相転移により、前記液晶滴は、光学異方−等方性変化を起こし、
前記相転移点以下の所定温度では、ネマチック状態にある前記液晶滴の屈折率は、独立した偏光成分ごとに、前記異方性高分子の屈折率に合致し、
前記相転移点を超える温度では光散乱状態、前記相転移点未満の温度では光透過状態に可逆的に変化可能であることを特徴とする。
In order to solve the above problems, the alignment phase separation structure of liquid crystal and polymer is an alignment phase separation structure of liquid crystal and polymer, which is dispersed as liquid crystal droplets in a state where liquid crystal material is aligned in anisotropic polymer. There,
The liquid crystal material in the liquid crystal droplets by the temperature change causes a phase transition of a nematic phase and an isotropic phase, the phase transition, the liquid crystal droplets, optically anisotropic - cause isotropic change,
At a predetermined temperature below the phase transition point, the refractive index of the liquid crystal droplets in a nematic state matches the refractive index of the anisotropic polymer for each independent polarization component,
It is possible to reversibly change to a light scattering state at a temperature exceeding the phase transition point and to a light transmission state at a temperature lower than the phase transition point .

また、この液晶と高分子の配向相分離構造においては、異方性高分子中に液晶材料が相分離して液晶滴として分散してなり、それら液晶滴が高分子相の中で不規則な位置に分布し且つそれらの液晶滴内部の液晶分子が異方性高分子の配向と同方向に配向づけられていることが好ましい。   In this oriented phase separation structure of liquid crystal and polymer, the liquid crystal material is phase-separated in the anisotropic polymer and dispersed as liquid crystal droplets, and these liquid crystal droplets are irregular in the polymer phase. It is preferable that the liquid crystal molecules distributed in the positions and in the liquid crystal droplets are aligned in the same direction as the anisotropic polymer.

この液晶と高分子の配向相分離構造においては、前記構造で発生させた散乱光の光波が一つの特定方向に偏光を帯び、ネマチック−等方相転移点を超える温度域においてその特定方向と垂直方向な偏光成分で光透過状態を保持可能であることが好ましい。   In this aligned phase separation structure of liquid crystal and polymer, the light wave of the scattered light generated in the structure is polarized in one specific direction and is perpendicular to the specific direction in the temperature range exceeding the nematic-isotropic phase transition point. It is preferable that a light transmission state can be maintained with a directional polarization component.

この液晶と高分子の配向相分離構造においては、前記液晶滴の大きさが、10nm以上10μm以下の範囲内であることが好ましい。   In this liquid crystal-polymer oriented phase separation structure, the size of the liquid crystal droplets is preferably in the range of 10 nm to 10 μm.

この液晶と高分子の配向相分離構造においては、前記液晶材料は、20℃以上120℃以下の範囲内にネマチック−等方相転移点を有することが好ましい。   In this oriented phase separation structure of liquid crystal and polymer, the liquid crystal material preferably has a nematic-isotropic phase transition point in the range of 20 ° C. or higher and 120 ° C. or lower.

この液晶と高分子の配向相分離構造においては、前記構造が、可視又は近赤外線透過性を有する一対の基板の間に挟まれていることが好ましい。   In this oriented phase separation structure of liquid crystal and polymer, the structure is preferably sandwiched between a pair of substrates having visible or near infrared transmittance.

この液晶と高分子の配向相分離構造においては、前記一対の基板が、軟質材で形成されていることが好ましい。   In the liquid crystal / polymer alignment phase separation structure, the pair of substrates is preferably formed of a soft material.

この液晶と高分子の配向相分離構造においては、前記一対の基板間の距離が、5μm以上500μm以下の範囲内であることが好ましい。   In this liquid crystal / polymer oriented phase separation structure, the distance between the pair of substrates is preferably in the range of 5 μm to 500 μm.

この液晶と高分子の配向相分離構造においては、前記基板の内側面に、特定方向に分子配向させる配向膜を有することが好ましい。   In this alignment phase separation structure of liquid crystal and polymer, it is preferable to have an alignment film for molecular alignment in a specific direction on the inner surface of the substrate.

本発明の調光窓ガラスは、上記のいずれかの液晶と高分子の配向相分離構造を有することを特徴とする。   The light control window glass of the present invention is characterized by having an alignment phase separation structure of any one of the above liquid crystals and polymers.

本発明の液晶と高分子の配向相分離構造の製造方法は、一対の基板の間に、光重合性液晶モノマーと液晶材料との混合液を注入し、次いで、光照射によって前記光重合性液晶モノマーを重合させて前記液晶材料を相分離して液晶滴として分散させることを特徴とする。   In the method for producing a liquid crystal and polymer oriented phase separation structure according to the present invention, a liquid mixture of a photopolymerizable liquid crystal monomer and a liquid crystal material is injected between a pair of substrates, and then the photopolymerizable liquid crystal is irradiated by light irradiation. A monomer is polymerized to phase-separate the liquid crystal material and disperse it as liquid crystal droplets.

この液晶と高分子の配向相分離構造の製造方法においては、前記光照射は、照射強度分布を不均一にした状態で露光することが好ましい。   In this method for producing an alignment phase separation structure of liquid crystal and polymer, the light irradiation is preferably performed with the irradiation intensity distribution being nonuniform.

この液晶と高分子の配向相分離構造の製造方法においては、光拡散板を介して光照射することが好ましい。   In this method for producing an alignment phase separation structure of liquid crystal and polymer, light irradiation is preferably performed through a light diffusion plate.

この液晶と高分子の配向相分離構造の製造方法においては、前記基板として、予め分子配向処理を施した基板を用いることが好ましい。   In this method for producing an alignment phase separation structure of liquid crystal and polymer, it is preferable to use a substrate that has been previously subjected to molecular alignment treatment as the substrate.

この液晶と高分子の配向相分離構造の製造方法においては、前記分子配合処理は、基板表面に対し平行かつ特定方向に配向づけられる処理、又は基板表面に垂直に配向づけられる処理であることが好ましい。   In this method for producing an aligned phase separation structure of liquid crystal and polymer, the molecular blending process may be a process of aligning in a specific direction parallel to the substrate surface, or a process of aligning perpendicularly to the substrate surface. preferable.

本発明によれば、ネマチック−等方相転移点温度を超える温度では光散乱状態、ネマチック−等方相転移点温度未満の温度では光透過状態に可逆的に変化する固相系の構造を得ることができる。また、広範囲の波長にわたって高効率で光の透過状態を制御できる。制御方式が温度であるため、基本的に電力などのユーティリティを必要とせず自律的に動作できる単純な構成とすることができる。さらに固相系の構造であるので、プラスチックフィルムなどの透明フレキシブル基材上にも作製でき、より汎用性の高い製品にすることができる。また、この構造において、光透過状態が偏光選択的に制御される機能をさらに付加することで、より高度な光伝播制御が可能になる。   According to the present invention, a solid phase structure is obtained that reversibly changes to a light scattering state at a temperature above the nematic-isotropic phase transition temperature and to a light transmission state at a temperature below the nematic-isotropic phase transition temperature. be able to. Further, the light transmission state can be controlled with high efficiency over a wide range of wavelengths. Since the control method is temperature, a simple configuration that can operate autonomously without basically requiring a utility such as electric power can be achieved. Furthermore, since it has a solid-phase structure, it can be produced on a transparent flexible substrate such as a plastic film, and can be made into a more versatile product. Further, in this structure, by further adding a function of selectively controlling the light transmission state by polarization, more advanced light propagation control can be performed.

(a)、(b)は従来のPDLCの断面模式図であり、(c)は低分子液晶の屈折率ne、no、niの温度依存性と高分子の屈折率npの温度依存性の模式図である。(a), (b) is a schematic cross-sectional view of a conventional PDLC, (c) is the temperature dependence of the refractive index n e , n o , n i of the low-molecular liquid crystal and the temperature of the refractive index n p of the polymer It is a schematic diagram of dependency. (a)、(b)は本実施形態に係るPDLCの断面模式図であり、(c)は低分子液晶の屈折率ne、no、niの温度依存性と異方性高分子の屈折率npe、npoの温度依存性の模式図である。(a), (b) is a cross-sectional schematic view of a PDLC according to the present embodiment, (c) the refractive index n e of the low-molecular liquid crystal, n o, the temperature dependence and anisotropy polymer n i It is a schematic diagram of the temperature dependence of refractive indexes n pe and n po . (a)、(b)はそれぞれ、実施例で作製した試料の光学偏光顕微鏡写真およびセル断面のSEM写真である。(a), (b) is the optical polarization microscope photograph of the sample produced in the Example, and the SEM photograph of a cell cross section, respectively. 水平配向処理ポリイミド膜付き透明ガラス基板で作製した試料の温度に対する挙動であり、(a)は直交した偏光成分(P、S)での透過スペクトルの温度に対する振る舞いを示し、(b)は温度変化により調光する様子を示す。It is the behavior with respect to the temperature of the sample prepared with the transparent glass substrate with the horizontal alignment treatment polyimide film, (a) shows the behavior with respect to the temperature of the transmission spectrum with orthogonal polarization components (P, S), and (b) shows the temperature change. Shows how light is dimmed. ガラス面鉛直配向処理を施した透明ガラス基板で作製した試料における直交した偏光成分(P、S)での透過スペクトルの温度に対する振る舞いを示す。The behavior of the transmission spectrum with respect to the temperature with orthogonal polarization components (P, S) in a sample made of a transparent glass substrate subjected to the glass surface vertical alignment treatment is shown. 直交した偏光成分(P、S)での透過スペクトルの温度に対する振る舞いを示す。The behavior of the transmission spectrum with orthogonal polarization components (P, S) with respect to temperature is shown. 直交した偏光成分(P、S)での透過スペクトルの温度に対する振る舞いを示す。The behavior of the transmission spectrum with orthogonal polarization components (P, S) with respect to temperature is shown. 直交した偏光成分(P、S)での透過スペクトルの温度に対する振る舞いを示す。The behavior of the transmission spectrum with orthogonal polarization components (P, S) with respect to temperature is shown. 光拡散板のメッシュ番号、設置位置、露光温度、露光波長、原料の選択により透過率変化幅が変わる様子を示す。A mode that the transmittance | permeability change width changes with selection of the mesh number, installation position, exposure temperature, exposure wavelength, and raw material of a light diffusing plate is shown. (a)は本実施例のPDLCの透過・散乱変化を直交した偏光(P、S)別に観察した写真であり、(b)は濁り度(Haze)と温度との関係を直交した偏光成分(P、S)別に示した図である。(a) is a photograph obtained by observing transmission and scattering changes of the PDLC of this example according to orthogonal polarized light (P, S), and (b) is a polarization component orthogonal to the relationship between turbidity (Haze) and temperature ( P, S) is a diagram shown separately.

以下、本発明の液晶と高分子の配向相分離構造の一実施形態である高分子分散型液晶(以下、単に「PDLC」と記載する。)について説明する。   Hereinafter, a polymer-dispersed liquid crystal (hereinafter simply referred to as “PDLC”), which is an embodiment of the alignment phase separation structure of the liquid crystal and the polymer of the present invention, will be described.

本実施形態に係るPDLCの前提となる従来のPDLCは、高分子相に微細な液晶滴が分散した構造を有する固相系の材料として公知である。高分子相とともにPDLCを構成する低分子液晶が有する光学異方性と分子双極子モーメントを利用し、これに電場を印加することで、滴内の液晶分子配向方向を切り換え屈折率分布を発現させたり消失させたりして、電場に対し可逆的に光透過状態又は光散乱状態とする技術である。そして近年では、電子ペーパーやプライバシー調光ガラス、光シャッターなどへの応用が行われ、幾つか実用化に至っている。とくに自動調光建材への製品化として瞬間調光ガラスが商品化され、電子カーテン的な使途で室内あるいは部屋間のプライバシー保護に利用されている(特許文献8)。   The conventional PDLC, which is a premise of the PDLC according to the present embodiment, is known as a solid phase material having a structure in which fine liquid crystal droplets are dispersed in a polymer phase. By utilizing the optical anisotropy and molecular dipole moment of the low-molecular liquid crystal that composes PDLC together with the polymer phase, and applying an electric field to this, the orientation direction of the liquid crystal molecules in the droplets is switched to develop a refractive index distribution. This is a technique that reversibly changes to an electric field to be in a light transmission state or a light scattering state. In recent years, application to electronic paper, privacy light control glass, optical shutters, etc. has been carried out, and some have been put to practical use. In particular, instantaneous light control glass has been commercialized as a product for automatic light control building materials, and is used for privacy protection indoors or between rooms by using it as an electronic curtain (Patent Document 8).

本発明者は、電場応答型調光材料として開発されてきた上述の従来のPDLCの構造と光学的挙動に対する着目点を変え、これを熱応答型の調光材料として本実施形態に係るPDLCを設計、開発し、課題の解決を図った。より具体的には、熱可逆的に、ネマチック−等方相転移点(TNI)を超える温度(以下、単に「高温」と記載する。)で光散乱状態、ネマチック−等方相転移点(TNI)未満の温度(以下、単に「低温」と記載する。)で透明状態(光透過状態)となるPDLCを開発した。このPDLCは、そのPDLCで発生させた散乱光の光波が一つの特定方向に偏光を帯び、高温でその特定方向と垂直方向な偏光成分で透明状態を保持することもできる。 The present inventor changed the focus on the structure and optical behavior of the above-described conventional PDLC that has been developed as an electric field responsive dimming material, and uses the PDLC according to the present embodiment as a thermal responsive dimming material. Designed, developed, and solved problems. More specifically, the light scattering state, nematic-isotropic phase transition point (at a temperature exceeding the nematic-isotropic phase transition point (T NI ) (hereinafter simply referred to as “high temperature”)) We have developed PDLC that becomes transparent (light transmission state) at temperatures below T NI ) (hereinafter simply referred to as “low temperature”). In this PDLC, light waves of scattered light generated by the PDLC are polarized in one specific direction, and can maintain a transparent state with a polarization component perpendicular to the specific direction at a high temperature.

まず比較のため、従来のPDLCの断面模式図を図1(a)、(b)に示す。図1(a)、(b)はそれぞれ低温(T<TNI)の状態、高温(T>TNI)の状態を示す。また図1(c)に、低分子液晶の屈折率ne、no、niの温度依存性と高分子の屈折率npの温度依存性を示す。 First, for comparison, schematic cross-sectional views of a conventional PDLC are shown in FIGS. FIGS. 1A and 1B show a low temperature (T <T NI ) state and a high temperature (T> T NI ) state, respectively. FIG. 1 (c) shows the temperature dependence of the refractive indexes n e , n o and n i of the low molecular liquid crystal and the temperature dependence of the refractive index n p of the polymer.

一般にPDLCは、低分子液晶(以下、液晶材料ともいう)と光重合性モノマーを主とする混合原料を一対の透明基板間に挟んで露光することで作製され、光重合とともに誘起された相分離により微細な液晶滴が高分子中に分散した二相構造を有する。低分子液晶相は、ネマチック−等方相転移による光学異方−等方性変化を有する。このPDLC作製の際、さらに基材表面上への配向膜処理、原料の組み合わせや組成あるいは露光時の温度などにより、電場が印加されていない状態で低分子液晶相が低温のネマチック状態で特定方向に強く自然配向させることができる。一方、高分子相は光学的に等方性であり、図1(c)に屈折率の温度依存性で示すように、この等方性高分子(屈折率np)と、低温時ネマチック相で異方性を示す液晶滴(屈折率:ne、no)との二相間で屈折率を合致させることは原理的にできない。 PDLC is generally produced by exposing a mixed raw material mainly composed of low-molecular liquid crystal (hereinafter also referred to as liquid crystal material) and a photopolymerizable monomer between a pair of transparent substrates, and phase separation induced with photopolymerization. Thus, a fine liquid crystal droplet has a two-phase structure dispersed in a polymer. The low molecular liquid crystal phase has an optical anisotropic-isotropic change due to a nematic-isotropic phase transition. During the production of PDLC, the low-molecular liquid crystal phase is in a specific direction in a nematic state at a low temperature in the absence of an electric field, depending on the alignment film treatment on the substrate surface, the combination and composition of raw materials, or the temperature during exposure. Can be naturally oriented. On the other hand, the polymer phase is optically isotropic, and as shown by the temperature dependence of the refractive index in Fig. 1 (c), this isotropic polymer (refractive index n p ) and the nematic phase at low temperature in the liquid crystal droplets exhibited anisotropy (refractive index: n e, n o) and the to match the refractive index between the two phases can not be in principle.

したがって従来のPDLCは、低温では二相間に屈折率差があるため、分散した液晶滴により光散乱が生じるのに対し、高温では低分子液晶、及び高分子の両相ともに等方性となるため、図1(c)に示す例のように、これらの屈折率を一致(ni=np)するよう設計、作製することで、液晶滴は透明状態となる。よって従来PDLCでも光散乱状態をスイッチングすること自体はできる。しかしこの構造では、低温で光散乱、高温で透明状態のスイッチングは可能であるが、逆の低温で透明、高温で光散乱状態とする動作は原理的に不可能である。 Therefore, since conventional PDLC has a refractive index difference between two phases at low temperatures, light scattering occurs due to dispersed liquid crystal droplets, whereas both low-molecular liquid crystal and polymer phases are isotropic at high temperatures. As shown in the example shown in FIG. 1 (c), the liquid crystal droplets become transparent by designing and producing these refractive indexes to coincide (n i = n p ). Therefore, even the conventional PDLC can switch the light scattering state itself. However, with this structure, light scattering at low temperatures and switching to a transparent state at high temperatures are possible, but in reverse, operation in a transparent state at low temperatures and a light scattering state at high temperatures is impossible in principle.

本実施形態に係るPDLCは、従来のPDLCにおいて等方性の高分子相の代わり異方性の高分子材料を導入して異方性の高分子相を形成している。   The PDLC according to this embodiment forms an anisotropic polymer phase by introducing an anisotropic polymer material instead of the isotropic polymer phase in the conventional PDLC.

本実施形態に係るPDLCの断面模式図を図2(a)、(b)に示す。図2(a)、(b)はそれぞれ低温(T<TNI)の状態、高温(T>TNI)の状態を示す。また図2(c)に、低分子液晶の屈折率ne、no、niの温度依存性と異方性高分子の屈折率npe、npoの温度依存性を示す。 2A and 2B are schematic cross-sectional views of the PDLC according to the present embodiment. 2 (a) and 2 (b) show a low temperature (T <T NI ) state and a high temperature (T> T NI ) state, respectively. FIG. 2 (c) shows the temperature dependence of the refractive indexes n e , n o and n i of the low molecular liquid crystal and the temperature dependence of the refractive indices n pe and n po of the anisotropic polymer.

図2(a)に示すように、本実施形態に係るPDLCは、異方性高分子(図2では「異方性ポリマー」と表記)中に低分子液晶(図2では液晶と表記)が相分離して液晶滴として分散している。液晶滴は、異方性高分子の相の中で不規則な位置に分布しており、且つ液晶滴内部の液晶分子が異方性高分子の配向と同方向に配向づけられている。このように、本実施形態に係るPDLCの構造は、低温では低分子液晶及び異方性高分子の両相ともに分子配向した状態となっている。その結果、図2(c)に示すように、異方性高分子が常に複屈折率(npe、npo)を有する状態を維持する。このため、異方性高分子の相とネマチック状態にある低分子液晶の相との屈折率差が独立した偏光成分ごとに合致するように、例えば、異方性高分子の複屈折率(npe、npo)とネマチック状態の低分子液晶の複屈折率(ne、no)とが合致するよう設計、作製することで、低温ではこれら二相に屈折率差は生じず、その一方で高温になり低分子液晶が等方相に転移すると、屈折率差(ni≠npeかつni≠npo)を生じさせることができる。ここで、異方性高分子の複屈折率(npe、npo)とネマチック状態の低分子液晶の複屈折率(ne、no)とが合致するとは、低温状態の少なくとも一温度において、異方性高分子の複屈折率(npe、npo)と低分子液晶の複屈折率(ne、no)とが合致もしくは略合致していることを意味する。本発明者は、この構造を作製することに成功し、低温で透明状態、高温で光散乱状態となる動作を初めて実現した。 As shown in FIG. 2 (a), the PDLC according to this embodiment has a low molecular liquid crystal (indicated as “liquid crystal” in FIG. 2) in an anisotropic polymer (indicated as “anisotropic polymer” in FIG. 2). The phases are separated and dispersed as liquid crystal droplets. The liquid crystal droplets are distributed at irregular positions in the phase of the anisotropic polymer, and the liquid crystal molecules inside the liquid crystal droplet are oriented in the same direction as the orientation of the anisotropic polymer. Thus, the structure of the PDLC according to the present embodiment is in a state in which both phases of the low-molecular liquid crystal and the anisotropic polymer are molecularly oriented at a low temperature. As a result, as shown in FIG. 2 (c), the anisotropic polymer always maintains a state having a birefringence (n pe , n po ). For this reason, for example, the birefringence index (n of the anisotropic polymer) is set so that the refractive index difference between the phase of the anisotropic polymer and the phase of the low molecular liquid crystal in the nematic state matches each independent polarization component. pe, n po) and the low molecular birefringence of the liquid crystal of the nematic state (n e, n o) and is designed to meet, by manufacturing produced no refractive index difference in these two phases at a low temperature, while When the temperature becomes high and the low molecular liquid crystal transitions to the isotropic phase, a refractive index difference (n i ≠ n pe and n i ≠ n po ) can be generated. Here, the birefringence (n pe , n po ) of an anisotropic polymer and the birefringence (n e , n o ) of a low molecular liquid crystal in a nematic state match at least at one temperature in a low temperature state. This means that the birefringence (n pe , n po ) of the anisotropic polymer and the birefringence (n e , n o ) of the low-molecular liquid crystal match or substantially match. The present inventor succeeded in producing this structure and realized for the first time an operation of being in a transparent state at a low temperature and in a light scattering state at a high temperature.

本実施形態において、液晶滴は球状とすることができる。液晶滴の大きさとしては、例えば、粒径が10nm以上10μm以下の範囲内であることが好ましい。液晶滴の大きさをかかる範囲内とすることによって、高温時に効果的に光散乱させることができる。液晶滴の大きさは、PDLC作成の際、光重合性液晶モノマーと液晶材料との混合液の重合時の温度等の重合条件を変えることによって所望の大きさに設定することができる。   In the present embodiment, the liquid crystal droplets can be spherical. As the size of the liquid crystal droplets, for example, the particle size is preferably in the range of 10 nm to 10 μm. By setting the size of the liquid crystal droplets within such a range, light can be effectively scattered at high temperatures. The size of the liquid crystal droplets can be set to a desired size by changing the polymerization conditions such as the temperature at the time of polymerization of the liquid mixture of the photopolymerizable liquid crystal monomer and the liquid crystal material when preparing PDLC.

本実施形態では、液晶滴を形成する液晶材料は、20℃以上120℃以下の範囲内にネマチック−等方相転移点を有することが好ましい。本発明の液晶と高分子の配向相分離構造は、光シャッター、調光窓ガラス、センサー、アメニティ、熱駆動型光スイッチ、光熱書き込み型メモリー等への用途に幅広く利用することができるが、かかる範囲内にネマチック−等方相転移点を有することによって、より効果的にこれらの用途に利用することができる。さらに高温の光散乱状態が偏光性を有する本発明の特徴を利用し、例えば夏季の日射などのように、光が窓ガラス内に高角で斜入射する際の偏光選択性を考慮した調光窓材への応用が見込まれる。あるいは、本発明素子と偏光子とを組合せることで、散乱と透過状態でのコントラスト変化を拡大したり縮小したりすることができるため、感度可変型の熱検知シートなどへの応用が見込まれる。   In the present embodiment, the liquid crystal material forming the liquid crystal droplets preferably has a nematic-isotropic phase transition point within a range of 20 ° C. or higher and 120 ° C. or lower. The liquid crystal and polymer alignment phase separation structure of the present invention can be widely used for applications such as optical shutters, light control window glass, sensors, amenity, heat-driven optical switches, photothermal writing memories, etc. By having a nematic-isotropic phase transition point in the range, it can be used more effectively for these applications. Furthermore, a light control window that takes advantage of the polarization selectivity when light is incident obliquely at a high angle into the window glass, such as in summer solar radiation, etc. Application to materials is expected. Alternatively, by combining the element of the present invention and a polarizer, the contrast change in the scattered and transmissive state can be enlarged or reduced, so that it can be applied to a heat detection sheet with variable sensitivity. .

本実施形態に係るPDLCは、上記のとおり一対の透明基板を有している。この基板としては、可視又は近赤外線透過性を有するものであればよく、例えば、ガラス基材あるいはプラスチックフィルム等で形成することができる。また、この基板は、柔軟な形状を有するなど、軟質材で形成することもできる。   The PDLC according to the present embodiment has a pair of transparent substrates as described above. The substrate is not particularly limited as long as it has visible or near-infrared transmittance, and can be formed of, for example, a glass substrate or a plastic film. The substrate can also be formed of a soft material such as having a flexible shape.

基板間の距離は、5μm以上500μm以下の範囲内とすることができる。かかる範囲内とすることで、所望の光散乱特性を満足させることができる。   The distance between the substrates can be in the range of 5 μm to 500 μm. By setting it within such a range, desired light scattering characteristics can be satisfied.

基板の内側面には、液晶材料及び異方性高分子を特定の方向に配向させるための配向(ラビング)処理が施されていてもよい。また、配向処理を施したポリイミド等の薄膜(配向膜)を配設することもできる。   The inner surface of the substrate may be subjected to an alignment (rubbing) process for aligning the liquid crystal material and the anisotropic polymer in a specific direction. In addition, a thin film (alignment film) such as polyimide subjected to alignment treatment can be provided.

本実施形態では、さらに、視野角制限透過フィルムや特定の角度の直線偏光のみを透過するフィルター(偏光板)などをPDLCの光の入射側か出射側に必要に応じて配設することができる。これらフィルムやフィルターの角度や偏光状態によって透過光量を可変とすることができ、より高度な光伝播制御が可能になる。例えば、PあるいはS偏光のどちらか一方の透過光量を優先的に温度で制御することができる。   In the present embodiment, a viewing angle limited transmission film or a filter (polarizing plate) that transmits only linearly polarized light at a specific angle can be disposed on the light incident side or the light emitting side of the PDLC as necessary. . The amount of transmitted light can be made variable depending on the angle and polarization state of these films and filters, and more advanced light propagation control is possible. For example, the transmitted light amount of either P or S polarized light can be controlled with temperature preferentially.

本発明は、前述のように、特定方向に配向し光学的異方性を有する高分子相中に、ネマチック−等方相転移点以下で配向秩序が高い状態となっている微細な低分子液晶滴が分散した構造であり、その構造により温度変化に対して光散乱/透明状態がスイッチングされる特性を示すものである。以下に、その構造の製造方法の一実施形態について説明する。   As described above, the present invention provides a fine low-molecular liquid crystal that has a high orientation order below the nematic-isotropic phase transition point in a polymer phase that is oriented in a specific direction and has optical anisotropy. It is a structure in which droplets are dispersed, and exhibits a characteristic that a light scattering / transparent state is switched with respect to a temperature change by the structure. Below, one Embodiment of the manufacturing method of the structure is described.

本実施形態に係る液晶と高分子の配向相分離構造の製造方法は、従来のPDLC作製で用いた光重合性モノマーに代えて、光重合性液晶モノマーを使用する。すなわち、光重合性液晶モノマーと液晶材料の混合液を、一対の基板の間に注入し、光照射によって光重合性液晶モノマーを重合させて液晶材料を相分離して液晶滴として分散させて上記の構造を得る。   The method for producing an alignment phase separation structure of liquid crystal and polymer according to the present embodiment uses a photopolymerizable liquid crystal monomer instead of the photopolymerizable monomer used in the conventional PDLC production. That is, a liquid mixture of a photopolymerizable liquid crystal monomer and a liquid crystal material is injected between a pair of substrates, the photopolymerizable liquid crystal monomer is polymerized by light irradiation, the liquid crystal material is phase-separated, and dispersed as liquid crystal droplets. Get the structure.

光重合性液晶モノマーの光重合過程における不均一露光によって、その光重合過程で高分子相と液晶材料の相とに相分離する際に光重合性液晶モノマーと液晶材料の分子配列方向を制御して、高分子相及び液晶材料の相を特定の方向に配向させることができる。なお、不均一露光とは、様々な粗さの光拡散板を通して照射強度分布を不均一にした状態で露光することである。光拡散板は、レーザ等の照射光源と照射対象面である基板との間に配置される。例えば、前記基板から10mm〜500mm程度離れた位置に光拡散板が配置される。光拡散板としては、各種の表面粗さを有する光拡散板、例えば、メッシュ番号♯240〜♯1500の光拡散板を使用することができる。光拡散板の配置される位置や光拡散板の表面粗さは上記した範囲に限定されるものではなく、光重合性液晶モノマーや液晶材料の種類、露光温度、光源波長等に応じて適宜設定される。また、光拡散板を介さずに露光(均一露光)することもできる。   The molecular alignment direction of the photopolymerizable liquid crystal monomer and the liquid crystal material is controlled by non-uniform exposure in the photopolymerization process of the photopolymerizable liquid crystal monomer when the polymer phase and the liquid crystal material phase are separated in the photopolymerization process. Thus, the polymer phase and the phase of the liquid crystal material can be aligned in a specific direction. In addition, nonuniform exposure is exposing in the state which made irradiation intensity distribution non-uniform through the light diffusing plate of various roughness. The light diffusing plate is disposed between an irradiation light source such as a laser and a substrate that is an irradiation target surface. For example, a light diffusing plate is disposed at a position about 10 mm to 500 mm away from the substrate. As the light diffusing plate, light diffusing plates having various surface roughness, for example, light diffusing plates having mesh numbers # 240 to # 1500 can be used. The position where the light diffusing plate is disposed and the surface roughness of the light diffusing plate are not limited to the above-mentioned ranges, but are appropriately set according to the type of photopolymerizable liquid crystal monomer or liquid crystal material, exposure temperature, light source wavelength, etc. Is done. Further, exposure (uniform exposure) can be performed without using a light diffusion plate.

また、基板として、予め分子配向処理を施した基板を用いることができる。例えば、内側面に配向処理を施した一対の基板の間、又は配向膜を配設した一対の基板の間に、光重合性液晶モノマーと液晶材料の混合液を注入することで、特定方向への配向秩序を高く維持することができ、光重合、相分離させることで高分子相及び液晶材料の相を特定の方向に配向させることができる。分子配合処理は、基板表面に対し平行かつ特定方向に配向づけられる処理、又は基板表面に垂直に配向づけられる処理のいずれの処理であってもよい。   Further, as the substrate, a substrate that has been subjected to molecular orientation treatment in advance can be used. For example, by injecting a liquid mixture of a photopolymerizable liquid crystal monomer and a liquid crystal material between a pair of substrates having an inner surface subjected to alignment treatment or between a pair of substrates having an alignment film disposed in a specific direction. Thus, the polymer phase and the phase of the liquid crystal material can be oriented in a specific direction by photopolymerization and phase separation. The molecular compounding process may be any of a process that is oriented in parallel and in a specific direction with respect to the substrate surface, or a process that is oriented perpendicularly to the substrate surface.

また、原料種、原料混合比、あるいは重合開始剤、増感剤、さらには界面活性剤などの添加物、あるいはラビングなどの表面配向処理法、あるいは露光時の温度や露光強度の空間的、時間的変調、さらにそれらの組み合わせを変えるなどして、偏光選択的に透明/散乱状態の温度による切り換えができる。また、二相液晶の挟持構造と露光用光源との間の特定の位置に光拡散用のガラスあるいはフィルムを追加挿入することもできる。   In addition, the raw material type, raw material mixing ratio, polymerization initiator, sensitizer, additive such as surfactant, surface alignment treatment method such as rubbing, or the temperature and exposure intensity of exposure and space, time It is possible to change the polarization / transparent state by temperature by changing the optical modulation and the combination thereof. Further, a glass or film for light diffusion can be additionally inserted at a specific position between the sandwich structure of the two-phase liquid crystal and the exposure light source.

液晶材料としては、ネマチック−等方相転移による光学異方−等方性変化を有するものであれば特に限定されず、市販原料を使用することができる。例えば、ネマチック−等方相転移温度(TNI)が20〜120℃の範囲の原料、複屈折率(Δn=ne-no)が0.06〜0.29の範囲の原料等を使用することができる。具体例として、4-シアノ-4'-ヘキシルビフェニル(メルク:K18、TNI:29℃)や、4-シアノ-4'-ペンチルビフェニル(メルク:K15、TNI:35℃)などのシアノビフェニル系の液晶材料、48℃にTNIを有するDIC株式会社のRDP-98487などを挙げることができる。これらは、ネマチック−等方相転移温度の低い液晶材料である。80℃以上の温度にネマチック−等方相転移温度をもつ液晶材料としては、メルクの製品名BL024やE44などを挙げることができる。これら液晶材料は何れでも使用可能であり、光透過状態の様々な切り換え温度を設計、作製することができる。 The liquid crystal material is not particularly limited as long as it has an optical anisotropic-isotropic change due to a nematic-isotropic phase transition, and commercially available materials can be used. For example, a raw material having a nematic-isotropic phase transition temperature (T NI ) in the range of 20 to 120 ° C., a raw material having a birefringence (Δn = n e -n o ) in the range of 0.06 to 0.29 can be used. . Specific examples include 4-cyano-4'-hexylbiphenyl (Merck: K18, T NI : 29 ° C) and 4-cyano-4'-pentylbiphenyl (Merck: K15, T NI : 35 ° C). a liquid crystal material system, and the like RDP-98487 of DIC Corporation having a T NI to 48 ° C.. These are liquid crystal materials having a low nematic-isotropic phase transition temperature. Examples of liquid crystal materials having a nematic-isotropic phase transition temperature at a temperature of 80 ° C. or higher include Merck's product names BL024 and E44. Any of these liquid crystal materials can be used, and various switching temperatures of the light transmission state can be designed and manufactured.

光重合性液晶モノマーとしては、例えば、アゾ、アゾキシ、ビフェニル、ターフェニル、エステル、シクロヘキサンといった系、さらに他の例としてアクリラート、メタクリラート、ジエン、シアナート、アクリロイ、ビニル、エポキシといった光重合性基を含むものなどを挙げることができる。具体例として、メルク社製のRM257、RM82、DIC(株)製のULC-001、ULC-011、ULC-008等を挙げることができる。メルク社製のRM257は、液晶性ジアクリレートモノマー:1,4-ジ(4-(3-アクリロイルオキシプロピルオキシ)ベンゾイルオキシ)-2-メチルベンゼンであり、複屈折率(Δn=npe-npo)が約0.18である。液晶材料である
メルク社製のK18もこのメルク社製のRM257の複屈折率の値に近く、両者を組み合わせて使用することで、本発明の所期の効果をより一層高めることができる。
Examples of the photopolymerizable liquid crystal monomer include azo, azoxy, biphenyl, terphenyl, ester, cyclohexane, and other examples include photopolymerizable groups such as acrylate, methacrylate, diene, cyanate, acryloyl, vinyl, and epoxy. The inclusion etc. can be mentioned. Specific examples include RM257 and RM82 manufactured by Merck, ULC-001, ULC-011 and ULC-008 manufactured by DIC Corporation. RM257 manufactured by Merck is a liquid crystalline diacrylate monomer: 1,4-di (4- (3-acryloyloxypropyloxy) benzoyloxy) -2-methylbenzene, and has a birefringence (Δn = n pe -n po ) is about 0.18. The liquid crystal material K18 made by Merck is also close to the value of the birefringence of RM257 made by Merck. By using both in combination, the intended effect of the present invention can be further enhanced.

光重合性液晶モノマーは、光重合性液晶モノマーと液晶材料の混合液中、例えば、20重量%以上90重量%以下の割合で含有することができる。   The photopolymerizable liquid crystal monomer can be contained in the liquid mixture of the photopolymerizable liquid crystal monomer and the liquid crystal material, for example, at a ratio of 20 wt% to 90 wt%.

混合液には、さらに、液晶材料や光重合性液晶モノマーに合わせた光重合開始剤、増感剤等を配合することができる。これらの添加剤の配合は特性向上に有効な手段である。具体例として、3,3',4,4'-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチルプロピオフェノン、2,2'-アゾビス(イソブチロニトリル)、アゾビスイソブチロニトリル(AIBN)、ローズベンガル、ローダミン6G、3,3'−カルボニルビス(7−ジエチルアミノクマリン)等が挙げられる。さらに、作製原料の粘性調整や均一混合を手助けするために、界面活性剤を入れると有効な場合がある。具体例として、オクタン酸、ラウリル硫酸ナトリウム等が挙げられる。また、さらに色素を添加することもできる。   The liquid mixture can further contain a photopolymerization initiator, a sensitizer, and the like that match the liquid crystal material and the photopolymerizable liquid crystal monomer. The blending of these additives is an effective means for improving the characteristics. Specific examples include 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-dimethoxy-1,2-diphenylethane-1 -One, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methylpropiophenone, 2,2'-azobis (isobutyronitrile), azobisisobutyronitrile (AIBN), rose bengal, rhodamine 6G, 3,3′-carbonylbis (7-diethylaminocoumarin) and the like can be mentioned. Furthermore, it may be effective to add a surfactant in order to assist the viscosity adjustment and uniform mixing of the raw material to be produced. Specific examples include octanoic acid and sodium lauryl sulfate. Further, a dye can be further added.

以上のようにして作製された液晶と高分子の配向相分離構造は、ネマチック−等方相転移点温度を超える温度では光散乱状態、ネマチック−等方相転移点温度未満の温度では光透過状態に可逆的に変化する特性を有する。   The aligned phase separation structure of the liquid crystal and polymer prepared as described above is in a light scattering state at a temperature exceeding the nematic-isotropic phase transition temperature, and in a light transmitting state at a temperature below the nematic-isotropic phase transition temperature. Have reversibly changing characteristics.

以下に実施例を示し、さらに詳しく説明する。もちろん以下の例によって本発明が限定されることはない。   Hereinafter, examples will be shown and described in more detail. Of course, the present invention is not limited to the following examples.

本実施例で作製した試料(PDLC)1〜5の作製条件を表1に示す。試料は下記のとおり作製した。   Table 1 shows the production conditions of the samples (PDLC) 1 to 5 produced in this example. Samples were prepared as follows.

液晶材料としてネマチック液晶:4-シアノ-4'-ヘキシルビフェニル(メルク:K18)、光重合性液晶モノマーとして液晶性ジアクリレートモノマー:1,4-ジ(4-(3-アクリロイルオキシプロピルオキシ)ベンゾイルオキシ)-2-メチルベンゼン(メルク:RM257)を、重量比70:30または60:40または50:50で混合し、さらにこれに光重合開始剤と色素として、N-フェニルグリシン(NPG:東京化成)とジブロモフルオレセイン(DBF:東京化成)をそれぞれ0.1、0.1(重量%)、あるいは1-ハイドロキシシクロヘキシルフェニルケトン(和光純薬:HCHPK)を1(重量%)加え、80℃に維持しつつ攪拌して均一な液状混合原料を作製した。   Nematic liquid crystal as liquid crystal material: 4-cyano-4'-hexylbiphenyl (Merck: K18), liquid crystal diacrylate monomer as photopolymerizable liquid crystal monomer: 1,4-di (4- (3-acryloyloxypropyloxy) benzoyl Oxy) -2-methylbenzene (Merck: RM257) was mixed at a weight ratio of 70:30, 60:40, or 50:50, and N-phenylglycine (NPG: Tokyo) as a photopolymerization initiator and pigment. Kasei) and dibromofluorescein (DBF: Tokyo Kasei) 0.1, 0.1 (wt%) or 1-hydroxycyclohexyl phenyl ketone (Wako Pure Chemicals: HCHPK) 1 (wt%), respectively, and stirring while maintaining at 80 ° C Thus, a uniform liquid mixed raw material was produced.

一対のガラス基板で10あるいは30μm程に固定した隙間に上記の液状混合原料を注入し、照射対象面であるガラス基板から距離10mm離れた位置に配置したメッシュ番号♯1500の光拡散板を介して、この液状混合原料を光重合するのに適した波長532nmのレーザをガラス基板中の面内で散乱させ面内位置で不均一強度分布を持たせ露光した(なお、試料5については紫外線(中心波長351nm)露光して作製した)。この不均一露光によって、強度の高い部分は光重合性液晶モノマーが重合し、強度が低い部分は液晶が凝集し、その結果、液晶相と高分子相に相分離し、その際に、液晶及び高分子の両相の分子が配向付けられた。   The above liquid mixed raw material is injected into a gap fixed to about 10 or 30 μm with a pair of glass substrates, and is passed through a light diffusion plate of mesh number # 1500 arranged at a distance of 10 mm from the glass substrate that is the irradiation target surface. Then, a laser with a wavelength of 532 nm suitable for photopolymerization of this liquid mixed raw material was scattered in the plane of the glass substrate and exposed with a non-uniform intensity distribution at the in-plane position. (Wavelength: 351 nm)). By this non-uniform exposure, the photopolymerizable liquid crystal monomer is polymerized in the high strength portion, and the liquid crystal is aggregated in the low strength portion, resulting in phase separation into a liquid crystal phase and a polymer phase. The molecules in both phases of the polymer were oriented.

上記のレーザ露光は具体的には、20〜60℃の範囲内で一定温度に調整しながら、約5分行った。その後、UVランプ(波長365nm)で5分ほど照射して重合により形成した構造を定着させて試料(PDLC)を得た。   Specifically, the above laser exposure was performed for about 5 minutes while adjusting the temperature to a constant temperature within a range of 20 to 60 ° C. Thereafter, irradiation with a UV lamp (wavelength 365 nm) for about 5 minutes fixed the structure formed by polymerization to obtain a sample (PDLC).

本実施例では、ガラス基板として透明な素ガラス基板(配向処理なし)を用いて試料(PDLC)を作製している。また、材料の配向をより効果的に制御するため、水平配向処理ポリイミド膜付き透明ガラス基板(以下、水平配向処理基板ともいう)、及びガラス面鉛直配向処理を施した透明ガラス基板(セチルトリメチルアンモニウムブロマイド膜付き)(以下、ガラス面鉛直配向処理基板ともいう)をそれぞれ用いて試料(PDLC)を作製してもいる。   In this embodiment, a sample (PDLC) is manufactured using a transparent raw glass substrate (without alignment treatment) as a glass substrate. In order to control the orientation of the material more effectively, a transparent glass substrate with a horizontal alignment treatment polyimide film (hereinafter also referred to as a horizontal alignment treatment substrate), and a transparent glass substrate (cetyltrimethylammonium that has been subjected to a glass surface vertical alignment treatment) Samples (PDLC) are also produced using each (with a bromide film) (hereinafter also referred to as a glass surface vertical alignment substrate).

試料1の光学顕微鏡写真および試料断面のSEM写真をそれぞれ図3(a)と(b)に示す。 FIGS. 3 (a) and 3 (b) show an optical micrograph of sample 1 and an SEM photograph of the sample cross section, respectively.

図3(a)は、クロスニコル配置の偏光顕微モードとし微細な光学異方構造を観察したもので、ミクロンオーダーでランダムな濃淡画像が見られ、これらは低分子液晶と液晶ポリマーの僅かな配向秩序性の違いが現れていると考えられる。図3(b)は、作製した試料を割って断面を出し、ガラス基板から露出した断面付近の低分子液晶をメタノールで洗い流して残った高分子相モフォロジーを観察したものである。断面上部の凹凸や微細な孔や窪みには低分子液晶の凝集滴が存在し相分離構造が形成されていたことを示唆する。   Fig. 3 (a) shows a microscopic anisotropic structure in a crossed-Nicol arrangement with a polarization microscope mode. Random grayscale images can be seen on the micron order. These are slight alignments of low-molecular liquid crystals and liquid-crystal polymers. It seems that the difference in order appears. FIG. 3 (b) shows a cross-section obtained by breaking the prepared sample, and the polymer phase morphology remaining after rinsing the low-molecular liquid crystal near the cross-section exposed from the glass substrate with methanol is observed. This suggests that a phase-separated structure was formed due to the presence of aggregated droplets of low-molecular liquid crystals in the irregularities and fine holes and depressions at the top of the cross section.

図4から図8に、PとS偏光に分けて異なる温度で測定した試料1〜5の分光透過率を示す。分光透過率は、PおよびS偏光(図1あるいは図2を参照)の垂直入射・透過で測った透過率であり、20℃および35℃の2つの試料温度で測定している。   4 to 8 show spectral transmittances of Samples 1 to 5 measured at different temperatures by dividing them into P and S polarized light. The spectral transmittance is a transmittance measured at normal incidence / transmission of P and S polarized light (see FIG. 1 or FIG. 2), and is measured at two sample temperatures of 20 ° C. and 35 ° C.

図4(a)は試料1の分光透過率を示しており、図5は試料2の分光透過率を示している。試料2は、ガラス基板としてガラス面鉛直配向処理基板を用い、露光温度を40℃にした点で試料1と異なっている。   4A shows the spectral transmittance of Sample 1, and FIG. 5 shows the spectral transmittance of Sample 2. FIG. Sample 2 differs from Sample 1 in that a glass surface vertical alignment treatment substrate is used as the glass substrate, and the exposure temperature is 40 ° C.

水平配向処理基板の配向はP偏光と同方向となっており、その結果、図4(a)で示すように、低温ではPおよびS偏光ともに高透過率を示し、高温になると両偏光ともに透過率が下がり、とくにP偏光が選択的に下がる。この透過変化の様子を図4(b)に写真で示す。   As shown in Fig. 4 (a), the orientation of the horizontally aligned substrate is the same as that of P-polarized light. As a result, both P and S-polarized light show high transmittance at low temperatures, and both polarized light are transmitted at high temperatures. The rate is lowered, and in particular, P-polarized light is selectively lowered. The state of this transmission change is shown in the photograph in FIG.

一方、基板面に鉛直方向で配向処理すると、分子はその方向に沿って並ぶ、いわゆるホメオトロピック配向の傾向を示す。その結果、図5に示すように、PおよびS偏光に依存なく低温で高透過率、高温で低透過率を示す素子とすることができる。   On the other hand, when the alignment treatment is performed on the substrate surface in the vertical direction, the molecules are arranged along the direction to show a so-called homeotropic alignment tendency. As a result, as shown in FIG. 5, an element exhibiting high transmittance at a low temperature and low transmittance at a high temperature can be obtained without depending on P and S polarized light.

図6は、試料3の分光透過率を示している。試料3は、K18とRM257の組成比が試料1と比べると10重量%異なるが、基本的には相転移点より十分に高い温度(60℃)で露光したことに効果を見た結果である。   FIG. 6 shows the spectral transmittance of Sample 3. In Sample 3, the composition ratio of K18 and RM257 differs by 10% by weight compared to Sample 1, but basically the effect is seen when exposed at a temperature (60 ° C) sufficiently higher than the phase transition point. .

図6に示すように、図4の結果と温度に対する振る舞いが逆転し、低温で低透過率、高温で高透過率になる。光透過状態の熱応答特性は、原料種や混合比率を選ぶことで制御できるが、本結果のように、配向処理条件や作製温度を変えることで、使用する原料やその組成を大きく変えなくても様々な特性制御ができる。   As shown in FIG. 6, the behavior with respect to temperature is reversed from the result of FIG. 4, and low transmittance is obtained at a low temperature and high transmittance is obtained at a high temperature. Although the thermal response characteristics in the light transmission state can be controlled by selecting the raw material species and mixing ratio, as shown in this result, changing the alignment treatment conditions and the preparation temperature does not significantly change the raw material used or its composition. Can also control various characteristics.

図7は、試料4の分光透過率を示している。図7に示すように、配向膜を付けない素ガラス基板で作製した試料でも機能をある程度発現できることを見出した。   FIG. 7 shows the spectral transmittance of Sample 4. As shown in FIG. 7, it was found that the function can be expressed to some extent even in a sample manufactured using a bare glass substrate without an alignment film.

図8は、試料5の分光透過率を示している。本試料では、重合開始剤としてより紫外に応答するHCHPKを使用し、温度を30℃とし、紫外線(中心波長351nm)露光した。図8の結果から、本試料においても光透過状態が偏光選択的に制御される機能が発現できることが確認された。   FIG. 8 shows the spectral transmittance of Sample 5. In this sample, HCHPK that responds more to ultraviolet rays was used as a polymerization initiator, the temperature was set to 30 ° C., and ultraviolet rays (center wavelength: 351 nm) were exposed. From the results of FIG. 8, it was confirmed that the function of controlling the light transmission state in a polarization selective manner can be exhibited also in this sample.

本実施例として作製した試料(PDLC)6〜19の作製条件を表2に示す。試料は下記のとおり作製した。   Table 2 shows the production conditions of the samples (PDLC) 6 to 19 produced as this example. Samples were prepared as follows.

表2に記載の試料6から19においては、液晶材料としてネマチック液晶:4-シアノ-4'-ヘキシルビフェニル(メルク:K18)あるいは4-シアノ-4'-ペンチルビフェニル(メルク:K15)、光重合性液晶モノマーとして液晶性ジアクリレートモノマー:1,4-ジ(4-(3-アクリロイルオキシプロピルオキシ)ベンゾイルオキシ)-2-メチルベンゼン(メルク:RM257)を用いた。この液晶材料と光重合性液晶モノマーとを重量比50:50で混合し、さらにこれに光重合開始剤と色素として、N-フェニルグリシン(NPG:東京化成)とジブロモフルオレセイン(DBF:東京化成)をそれぞれ0.1、0.1(重量%)、あるいは1-ハイドロキシシクロヘキシルフェニルケトン(和光純薬:HCHPK)を1(重量%)加え、80℃に維持しつつ攪拌して均一な液状混合原料を作製した。   In samples 6 to 19 shown in Table 2, nematic liquid crystal: 4-cyano-4'-hexylbiphenyl (Merck: K18) or 4-cyano-4'-pentylbiphenyl (Merck: K15) as a liquid crystal material, photopolymerization As the liquid crystal monomer, liquid crystal diacrylate monomer: 1,4-di (4- (3-acryloyloxypropyloxy) benzoyloxy) -2-methylbenzene (Merck: RM257) was used. This liquid crystal material and photopolymerizable liquid crystal monomer are mixed at a weight ratio of 50:50, and N-phenylglycine (NPG: Tokyo Kasei) and dibromofluorescein (DBF: Tokyo Kasei) are used as a photopolymerization initiator and pigment. Were added in 0.1, 0.1 (wt%) or 1 (wt%) 1-hydroxycyclohexyl phenyl ketone (Wako Pure Chemicals: HCHPK) and stirred while maintaining at 80 ° C to prepare a uniform liquid mixed raw material.

一対のガラス基板で10μm程に固定した隙間に上記の液状混合原料を注入し、照射対象面であるガラス基板から距離20mm又は500mm離れた位置に配置したメッシュ番号♯240〜♯1500の光拡散板を介して、この液状混合原料を光重合するため波長532nmあるいは351nmのレーザをガラス基板中の面内で散乱させ面内位置で不均一強度分布を持たせ露光した。この露光によって、強度の高い部分は光重合性液晶モノマーが重合し、強度が低い部分は液晶が凝集し、その結果、液晶相と高分子相に相分離し、その際に、液晶及び高分子の両相の分子が配向付けられた。なお、試料6については、光拡散板を介さず露光して作製した。   A light diffusion plate of mesh numbers # 240 to # 1500, in which the above liquid mixed raw material is injected into a gap fixed to about 10 μm by a pair of glass substrates and arranged at a distance of 20 mm or 500 mm from the glass substrate as the irradiation target surface Then, in order to photopolymerize this liquid mixed raw material, a laser having a wavelength of 532 nm or 351 nm was scattered in the plane of the glass substrate and exposed with a non-uniform intensity distribution in the plane. By this exposure, the photopolymerizable liquid crystal monomer is polymerized in the high-strength portion, and the liquid crystal is aggregated in the low-strength portion, resulting in phase separation into a liquid crystal phase and a polymer phase. The molecules of both phases were oriented. Sample 6 was prepared by exposure without using a light diffusion plate.

上記のレーザ露光は具体的には、30〜50℃の範囲内で一定温度に調整しながら、約5分行った。その後、UVランプ(波長365nm)で5分ほど照射して重合により形成した構造を定着させて試料(PDLC)を得た。   Specifically, the above laser exposure was performed for about 5 minutes while adjusting to a constant temperature within a range of 30 to 50 ° C. Thereafter, irradiation with a UV lamp (wavelength 365 nm) for about 5 minutes fixed the structure formed by polymerization to obtain a sample (PDLC).

試料6から19では、材料の配向をより効果的に制御するため、水平配向処理基板を用いて試料(PDLC)を作製した。   In Samples 6 to 19, in order to more effectively control the orientation of the material, a sample (PDLC) was prepared using a horizontal alignment substrate.

液晶と光重合性モノマーの組合せによっては、均一露光では相分離構造が制御し難い場合があり、その際は照射光源と照射対象面との間の光路中の適切な位置に、光拡散板を挿入することで解決することができる。図9はその実施例で、光拡散板を入れて照射面で不均一強度分布を形成し、露光作製した場合に得られた試料の温度に対する透過率変化の幅を示している。図9aは光拡散板の目の細かさ(粗さ)が透過率変化の幅に及ぼす効果を示している。この原料系では、光拡散板無しでは透過率変化が発現しないが、光拡散板の目が細かくなる(横軸に示す番号が増える)とともに透過率変化の幅が増大する。一方、光拡散板と照射対象面との距離を変えた際の効果を調べたところ、図9bに示すように、距離が20mmと近い場合に透過率変化幅が増えた。この原料系ではさらに照射対象面との距離を縮めて照射すれば透過率変化の幅が増える可能性が高い。光拡散板を介した照射時の露光温度の影響については図9cに示すように、適切な温度が存在し、この原料系の場合には40℃が適切な温度であることがわかった。また、図9dに示すように、原料系と露光波長とのマッチングも検討するべき項目であり、波長に合わせた重合開始剤などの選択により、透過率変化幅を最大限に向上することが可能である。
本相分離構造により生じる散乱光は偏光選択性が高くすることが可能で、それは図4のスペクトルデータから明らかであるが、同試料でさらに図10に一例として、直交する偏光成分毎(PおよびS偏光成分)に視覚的な結果を示す。図10(a)の写真に示すように、本試料を通して像を観察すると、相転移点より低温側ではPおよびSの両偏光で本試料が透明状態となっているため観察される像は鮮明である。昇温して相転移温度を超えると、P偏光では光散乱状態となり本試料を通して像を観察できないが、S偏光ではある程度の透明状態を維持しており、本試料を通して像を観察できる。図10(b)は、偏光成分別に濁り度(Haze)と温度との関係を示している。この図では、30℃近傍で透明状態又は光散乱状態に変化し、光散乱状態は偏光成分により異なっている。
Depending on the combination of liquid crystal and photopolymerizable monomer, it may be difficult to control the phase separation structure in uniform exposure, in which case the light diffusion plate is placed at an appropriate position in the optical path between the irradiation light source and the irradiation target surface. It can be solved by inserting. FIG. 9 shows the width of the change in transmittance with respect to the temperature of the sample obtained in the embodiment when a light diffusing plate is inserted to form a non-uniform intensity distribution on the irradiated surface and exposure is performed. FIG. 9a shows the effect of the fineness (roughness) of the light diffusion plate on the width of the transmittance change. In this raw material system, the transmittance change does not appear without the light diffusing plate, but the width of the transmittance change increases as the light diffusing plate becomes finer (the number shown on the horizontal axis increases). On the other hand, when the effect of changing the distance between the light diffusing plate and the irradiation target surface was examined, as shown in FIG. 9b, the transmittance change width increased when the distance was close to 20 mm. In this raw material system, if the distance from the irradiation target surface is further reduced and irradiated, there is a high possibility that the width of the transmittance change will increase. About the influence of the exposure temperature at the time of irradiation through a light diffusing plate, as shown in FIG. 9c, it turned out that a suitable temperature exists and in this raw material system, 40 degreeC is a suitable temperature. In addition, as shown in Fig. 9d, matching between the raw material system and the exposure wavelength is also an item to be examined. By selecting a polymerization initiator according to the wavelength, the transmittance change width can be maximized. It is.
Scattered light generated by this phase separation structure can have high polarization selectivity, which is apparent from the spectral data of FIG. 4, but for each sample of orthogonal polarization components (P and Visual results are shown in (S-polarized component). As shown in the photograph in Fig. 10 (a), when the image is observed through the sample, the image observed is clear because the sample is transparent with both P and S polarized light at a lower temperature than the phase transition point. It is. When the temperature rises and the phase transition temperature is exceeded, the light is scattered in the P-polarized light and the image cannot be observed through the sample, but the image is observed through the sample because the S-polarized light maintains a certain degree of transparency. FIG. 10 (b) shows the relationship between turbidity (Haze) and temperature for each polarization component. In this figure, it changes to a transparent state or a light scattering state around 30 ° C., and the light scattering state varies depending on the polarization component.

Claims (15)

異方性高分子中に液晶材料が配向した状態で液晶滴として分散してなる、液晶と高分子の配向相分離構造であって、
前記液晶滴中の液晶材料は、その温度変化によって、ネマチック相と等方相間の相転移を生じ、その相転移により、前記液晶滴は、光学異方性−等方性変化を起こし、
前記相転移点以下の所定温度では、ネマチック状態にある前記液晶滴の屈折率は、独立した偏光成分ごとに、前記異方性高分子の屈折率に合致し、
前記相転移点を超える温度では光散乱状態、前記相転移点未満の温度では光透過状態に、可逆的に変化可能であることを特徴とする、液晶と高分子の配向相分離構造。
An alignment phase separation structure of a liquid crystal and a polymer, which is dispersed as liquid crystal droplets in a state where a liquid crystal material is aligned in an anisotropic polymer,
The liquid crystal material in the liquid crystal droplets causes a phase transition between a nematic phase and an isotropic phase due to a temperature change thereof, and the liquid crystal droplets undergo an optical anisotropy-isotropic change due to the phase transition,
At a predetermined temperature below the phase transition point, the refractive index of the liquid crystal droplets in a nematic state matches the refractive index of the anisotropic polymer for each independent polarization component,
An oriented phase separation structure of liquid crystal and polymer, which can reversibly change to a light scattering state at a temperature exceeding the phase transition point and to a light transmission state at a temperature lower than the phase transition point.
異方性高分子中に液晶材料が配向した状態で相分離して液晶滴として分散してなり、それら液晶滴が高分子相の中で不規則な位置に分布し且つそれらの液晶滴内部の液晶分子が異方性高分子の配向と同方向に配向づけられていることを特徴とする請求項1に記載の液晶と高分子の配向相分離構造。   In the anisotropic polymer, the liquid crystal material is phase-separated and dispersed as liquid crystal droplets in an oriented state, the liquid crystal droplets are distributed at irregular positions in the polymer phase, and the inside of the liquid crystal droplets 2. The liquid crystal / polymer oriented phase separation structure according to claim 1, wherein the liquid crystal molecules are oriented in the same direction as the orientation of the anisotropic polymer. 前記構造で発生させた散乱光の光波が一つの特定方向に偏光を帯び、ネマチック相と等方相間の相転移点を超える温度域においてその特定方向と垂直方向な偏光成分で光透過状態を保持可能であることを特徴とする請求項1又は2に記載の液晶と高分子の配向相分離構造。   The light wave of the scattered light generated in the structure is polarized in one specific direction, and maintains a light transmission state with a polarization component perpendicular to the specific direction in the temperature range exceeding the phase transition point between the nematic phase and the isotropic phase. 3. The alignment phase separation structure of liquid crystal and polymer according to claim 1 or 2, which is possible. 前記液晶滴の大きさが、10nm以上10μm以下の範囲内であることを特徴とする請求項1から3のいずれか一項に記載の液晶と高分子の配向相分離構造。   4. The liquid crystal and polymer oriented phase separation structure according to claim 1, wherein the size of the liquid crystal droplets is in the range of 10 nm to 10 μm. 前記液晶材料は、20℃以上120℃以下の範囲内にネマチック相と等方相間の相転移点を有することを特徴とする請求項1から4のいずれか一項に記載の液晶と高分子の配向相分離構造。   The liquid crystal material according to any one of claims 1 to 4, wherein the liquid crystal material has a phase transition point between a nematic phase and an isotropic phase within a range of 20 ° C or higher and 120 ° C or lower. Oriented phase separation structure. 前記構造が、可視又は近赤外線透過性を有する一対の基板の間に挟まれていることを特徴とする請求項1から5のいずれか一項に記載の液晶と高分子の配向相分離構造。   6. The liquid crystal and polymer alignment phase separation structure according to claim 1, wherein the structure is sandwiched between a pair of substrates having visible or near infrared transmittance. 前記一対の基板が、軟質材で形成されていることを特徴とする請求項6に記載の液晶と高分子の配向相分離構造。   The liquid crystal and polymer alignment phase separation structure according to claim 6, wherein the pair of substrates are made of a soft material. 前記一対の基板間の距離が、5μm以上500μm以下の範囲内であることを特徴とする請求項6又は7に記載の液晶と高分子の配向相分離構造。   8. The liquid crystal / polymer alignment phase separation structure according to claim 6, wherein a distance between the pair of substrates is in a range of 5 μm or more and 500 μm or less. 前記基板の内側面に、特定方向に分子配向させる配向膜を有することを特徴とする請求項6から8のいずれか一項に記載の液晶と高分子の配向相分離構造。   The liquid crystal and polymer alignment phase separation structure according to any one of claims 6 to 8, further comprising an alignment film for molecular alignment in a specific direction on an inner surface of the substrate. 請求項1から9のいずれかの液晶と高分子の配向相分離構造を有することを特徴とする調光窓ガラス。   10. A light control window glass comprising the liquid crystal and polymer alignment phase separation structure according to claim 1. 請求項1から9のいずれかの液晶と高分子の配向相分離構造を製造するための方法であって、
一対の基板の間に、光重合性液晶モノマーと液晶材料との混合液を注入し、次いで、光照射によって前記光重合性液晶モノマーを重合させて前記液晶材料を相分離して液晶滴として分散させることを特徴とする液晶と高分子の配向相分離構造の製造方法。
A method for producing an aligned phase separation structure of a liquid crystal and a polymer according to any one of claims 1 to 9,
A liquid mixture of a photopolymerizable liquid crystal monomer and a liquid crystal material is injected between a pair of substrates, and then the photopolymerizable liquid crystal monomer is polymerized by light irradiation to phase-separate the liquid crystal material and disperse it as liquid crystal droplets. A method for producing an oriented phase separation structure of a liquid crystal and a polymer, characterized by comprising:
前記光照射は、照射強度分布を不均一にした状態で露光することを特徴とする請求項11に記載の液晶と高分子の配向相分離構造の製造方法。   The method according to claim 11, wherein the light irradiation is performed in a state where the irradiation intensity distribution is nonuniform. 光拡散板を介して光照射することを特徴とする請求項12に記載の液晶と高分子の配向相分離構造の製造方法。   The method for producing an aligned phase separation structure of liquid crystal and polymer according to claim 12, wherein light is irradiated through a light diffusion plate. 前記基板として、予め分子配向処理を施した基板を用いることを特徴とする請求項11から13のいずれか一項に記載の液晶と高分子の配向相分離構造の製造方法。   14. The method for producing an aligned phase separation structure of liquid crystal and polymer according to any one of claims 11 to 13, wherein a substrate that has been subjected to a molecular alignment process in advance is used as the substrate. 前記分子配向処理は、基板表面に対し平行かつ特定方向に配向づけられる処理、又は基板表面に垂直に配向づけられる処理であることを特徴とする請求項14に記載の液晶と高分子の配向相分離構造の製造方法。   15. The alignment phase of liquid crystal and polymer according to claim 14, wherein the molecular alignment treatment is a treatment that is aligned in a specific direction parallel to the substrate surface, or a treatment that is aligned perpendicularly to the substrate surface. A method for manufacturing a separation structure.
JP2012275049A 2011-12-27 2012-12-17 Aligned phase separation structure of liquid crystal and polymer and production method thereof Active JP6066057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012275049A JP6066057B2 (en) 2011-12-27 2012-12-17 Aligned phase separation structure of liquid crystal and polymer and production method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011286826 2011-12-27
JP2011286826 2011-12-27
JP2012275049A JP6066057B2 (en) 2011-12-27 2012-12-17 Aligned phase separation structure of liquid crystal and polymer and production method thereof

Publications (3)

Publication Number Publication Date
JP2013152445A JP2013152445A (en) 2013-08-08
JP2013152445A5 JP2013152445A5 (en) 2016-01-21
JP6066057B2 true JP6066057B2 (en) 2017-01-25

Family

ID=49048793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012275049A Active JP6066057B2 (en) 2011-12-27 2012-12-17 Aligned phase separation structure of liquid crystal and polymer and production method thereof

Country Status (1)

Country Link
JP (1) JP6066057B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4303648A1 (en) * 2021-03-01 2024-01-10 Mitsubishi Chemical Corporation Liquid crystal element and emulsion composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES8802407A1 (en) * 1985-09-17 1988-05-16 Univ Kent State Ohio Liq. crystal light modulating materials
JP2933816B2 (en) * 1993-07-15 1999-08-16 シャープ株式会社 Liquid crystal display device and method of manufacturing the same
JP5308047B2 (en) * 2008-03-27 2013-10-09 豊田合成株式会社 Colloidal crystal composition
JP5217664B2 (en) * 2008-06-11 2013-06-19 独立行政法人産業技術総合研究所 Temperature-sensitive light control element and manufacturing method thereof

Also Published As

Publication number Publication date
JP2013152445A (en) 2013-08-08

Similar Documents

Publication Publication Date Title
Guo et al. Preparation of a thermally light-transmittance-controllable film from a coexistent system of polymer-dispersed and polymer-stabilized liquid crystals
Zhang et al. Temperature‐responsive photonic devices based on cholesteric liquid crystals
Mucha Polymer as an important component of blends and composites with liquid crystals
JP6073395B2 (en) Temperature response switching type optical filter incorporating refractive optical structure
Wu et al. Photoinduced alignment of polymer liquid crystals containing azobenzene moieties in the side chain. 1. Effect of light intensity on alignment behavior
US20080106689A1 (en) Display Element And Display Device
Nasir et al. Polymer-dispersed liquid-crystal-based switchable glazing fabricated via vacuum glass coupling
Zhang et al. Reversible thermochromic photonic coatings with a protective topcoat
JP2001513908A (en) Electro-optic glazing structure with reflective and transmissive modes of operation
KR20120005027A (en) Thermally switched optical filter incorporating a guest-host architecture
Sharma et al. Simultaneous effects of external stimuli on preparation and performance parameters of normally transparent reverse mode polymer-dispersed liquid crystals—a review
Ahmad et al. Current trends in studies on reverse-mode polymer dispersed liquid-crystal films—A review
TWI579370B (en) Switching element containing a liquid-crystalline medium
Guo et al. Effect of network concentration on the performance of polymer-stabilized cholesteric liquid crystals with a double-handed circularly polarized light reflection band
JP4731728B2 (en) Infrared light control device
Shen et al. Recent progress in liquid crystal‐based smart windows: materials, structures, and design
US10031364B2 (en) Polymer-dispersed blue-phase liquid crystal films
Kakiuchida et al. Reverse-mode thermoresponsive light attenuators produced by optical anisotropic composites of nematic liquid crystals and reactive mesogens
JP2001091930A (en) Liquid crystal display body and its production
JPH09152501A (en) Optical element and its production as well as high-polymer liquid crystal composition for optical element
De Sio et al. Dynamic photonic materials based on liquid crystals
Kakiuchida et al. Thermoresponsive reflective scattering of meso-scale phase separation structures of uniaxially orientation-ordered liquid crystals and reactive mesogens
JP5217664B2 (en) Temperature-sensitive light control element and manufacturing method thereof
JP6066057B2 (en) Aligned phase separation structure of liquid crystal and polymer and production method thereof
CN109085712B (en) Temperature response type liquid crystal material, light regulator and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161213

R150 Certificate of patent or registration of utility model

Ref document number: 6066057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250