JP4731728B2 - Infrared light control device - Google Patents

Infrared light control device Download PDF

Info

Publication number
JP4731728B2
JP4731728B2 JP2001165993A JP2001165993A JP4731728B2 JP 4731728 B2 JP4731728 B2 JP 4731728B2 JP 2001165993 A JP2001165993 A JP 2001165993A JP 2001165993 A JP2001165993 A JP 2001165993A JP 4731728 B2 JP4731728 B2 JP 4731728B2
Authority
JP
Japan
Prior art keywords
liquid crystal
wavelength
infrared light
selective reflection
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001165993A
Other languages
Japanese (ja)
Other versions
JP2002357815A (en
Inventor
ファイ ヤン
吉啓 古屋
千里 梶山
裕嗣 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Seiko Electric Co Ltd
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Seiko Electric Co Ltd
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, Seiko Electric Co Ltd, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2001165993A priority Critical patent/JP4731728B2/en
Publication of JP2002357815A publication Critical patent/JP2002357815A/en
Application granted granted Critical
Publication of JP4731728B2 publication Critical patent/JP4731728B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、新規な液晶光学材料に関し、特に、建築物や自動車の窓などに用いられる調光素子であり、可視光に対しては常に透明で、可視光よりも長波長の光(赤外線)に対しては広い波長幅(バンド幅:波長領域)にわたり、透過−反射の可逆的熱スイッチングを示す赤外線調光素子に関する。
【0002】
【従来の技術】
近年、ビルや住宅などの窓ガラスに、熱線反射などの種々の機能を有するものが用いられる傾向にある。熱線反射ガラスは、ガラス表面に多層薄膜を製膜し、これにより太陽光線中の赤外線を反射し、建築物内の温度上昇を抑え、冷房負荷を軽減するものである。しかし、該ガラスを用いた場合には可視光線の透過率の低下を招くこともある。また、季節により赤外線の透過率を任意に調整できるようなエレクトロクロミック材料の応用が検討されている。しかし、これには電場を用いるため、ガラス表面に透明電極を設け電気配線をする必要があり、製造および設置費用の面から高価となる。また、透過率の調整は、光線の吸収によるため、ガラス自体が高温になり、二次放射が起こるという問題が生じる。
これら以外にも、近年サーモクロミック材料の利用も研究されている。これは、高温において水に不溶、低温において可溶な、例えばポリイソプロピルアクリルアミドの水溶液を基板に挟み、低温において透明、高温において光を散乱する系を構築することが提案されている。しかしながら、この手法は省エネルギー目的は達成されるが、高温において光が散乱されるため、例えば、その用途が窓ガラスの場合、高温では磨りガラス状態であって、窓の外の景色が見えないという致命的な欠点があり、実用に供することができないのが現状である。
【0003】
上記課題を解決するために、液晶の温度変化における特異な性質を利用して、太陽光線中の特定波長の光線透過率、および光線反射率を制御可能な調光材料が研究され、このような調光材料として、スメクチックA⇔カイラルネマチック熱相転移を示す低分子液晶から成る調光材料が提案されている(特開平9−29882)。スメクチックA相は、平行配向した場合に、入射光がほとんど反射されずに透過する。また、カイラルネマチック相は、分子が螺旋状に配列しており、螺旋周期ピッチ長と平均屈折率の積に等しい波長を持ち、螺旋軸方向に平行に入射する円偏光を反射するという性質がある。この性質は選択反射と呼ばれ、選択反射される光の波長範囲、すなわち反射スペクトル幅は、液晶の光学的異方性である複屈折率とピッチ長の積で近似できることが報告されている(H. F. Gleeson, H. J. Coles, Mol. Cryst. Liq. Cryst., 1709-1734 (1989))。そのため、スメクチックA⇔カイラルネマチック熱相転移を示す低分子液晶は、室温前後で特定波長の光線透過率および光線反射率が変化し、省エネルギー化に大いに貢献し得る調光材料として注目されている。すなわち、約400nmから約750nm波長範囲の可視光線を透過させ、かつ室温で特定波長の光線透過率が変化し、例えば、気温の高い夏季においては、約750nmから約2000nm波長範囲の熱線を反射し、冷房負荷の軽減が図れ、また気温の低い冬期においては熱線を確保しつつ、暖房負荷の軽減を図ることができる。従って、該材料を建築物の窓材料などの用いた場合、十分な省エネルギー化が図れるという優れた効果を奏するものと期待される(特開平9−29882)。
【0004】
【発明が解決しようとする課題】
上記の調光材料に用いられるスメクチックA⇔カイラルネマチック熱相転移を示す低分子液晶材料は、室温前後で平行配向したスメクチックA相⇔平行配向したカイラルネマチック相熱相転移を可逆的に示すことが要求される。しかしながら、実際には、分子構造中に不斉炭素を有する光学活性化合物の螺旋捩れ力があるため、平行配向処理を施したセルにサンドイッチされた上記の低分子液晶は、カイラルネマチック相からゆっくりと冷却しても、スメクチックA相で平行分子配列とは成り難い。また、スメクチックA相での透過率はカイラルネマチック相からの冷却速度に強く依存し、冷却速度が速いほどスメクチックA相の透過率は低くなり、フォーカル・コニック配向という白濁状態を形成し易い。さらに、カイラルネマチック相では、選択反射の波長幅が狭く、選択反射の波長幅を任意に制御できないという欠点があった。
【0005】
【課題を解決するための手段】
本発明は、低分子液晶に加えて光重合性液晶モノマーを含む液晶組成物であって、室温付近でカイラルネマチック相を呈する液晶組成物を少なくとも一方が透明な平行配向処理された基板間に挟み、平行配向したカイラルネマチック相状態(プレーナ分子配列)で光重合性液晶モノマーを光重合させることにより形成され、可視光に対しては常に透明であり、それよりも長波長の光に対しては広い波長領域にわたり、透過−選択反射の可逆的熱スイッチングを示し、特に、温度の上昇にともない選択反射の長波長端が長波長側に、または、短波長端が短波長側にシフトすることを特徴とする赤外線調光素子を提供するものである。
【0006】
【発明の実施の形態】
以下に本発明の赤外線調光素子に付いて、具体的に説明する。図1は、本発明の赤外線調光素子の製作段階における各液晶状態での液晶分子の配向状態を示した断面模式図である。図1(a)は、セルに液晶組成物を注入した直後の液晶分子の配向状態である。図中の1,2は基板、3,4は平行配向膜、5,6はスペーサ、7は液晶分子、8は光重合モノマーである。
【0007】
本発明において、基板1,2は少なくとも一方が透明であり、ガラス板やプラスチックフィルム等を用いることができる。また、基板1,2の少なくとも一方には、内側表面に配向膜やラビング処理等の平行配向処理3,4を施す。図に示されるように、液晶組成物収容用セルは、一般に上下の基板1,2の間を、ガラスまたは光分子材料からなるスペーサ5,6で挟持されている。スペーサ5,6の厚みは、2〜50μm程度とする。
【0008】
セルへの光重合性液晶モノマーと低分子液晶からなる液晶組成物の注入は、液晶組成物が等方相状態を示す温度で、毛細管現象によりおこなう。
【0009】
図1(b)は、等方相からカイラルネマチック相となる温度TLまで冷却したときの液晶分子の配向状態である。液晶組成物中の液晶分子は螺旋配向をとり、その螺旋軸は基板に対して垂直となる。すなわち、液晶分子の長軸が基板に対して均一な平行配向(プレーナ配列)が得られるため、透明状態となる。
【0010】
図1(c)は、図1(b)の状態に紫外線を照射し、液晶組成物の光重合性液晶モノマー(8)を光重合させた後の液晶分子の配向状態である。図1(c)に示されるように、螺旋軸がセル基板表面に対して垂直で螺旋状の高分子ネットワーク9を持つ液晶高分子複合層が形成される。このとき、液晶分子の初期の分子配列は固定化され、透明な赤外線調光素子が得られる。
【0011】
カイラルネマチック液晶は、選択反射という性質があり、螺旋の向き、および螺旋周期ピッチ長Pと平均屈折率nの積と等しい波長λ(λ=nP)を持つ螺旋軸方向に平行に入射する円偏光を反射する。また、カイラルネマチック液晶の選択反射の波長幅(バンド幅)、すなわち、反射スペクトル幅△λは、一般に、液晶の光学的異方性である複屈折率△nとピッチ長Pの積△nPに近似できることは知られている。
【0012】
本発明の赤外線調光素子に用いられる液晶組成物の特徴の一つは、低分子液晶に加えて光重合性モノマーを含むことにある。このような本発明の赤外線調光素子においては、低分子液晶と高分子ネットワークとの界面における相互作用の強さは、界面からの距離に依存する。そのため、液晶高分子複合層中では、局所的にこの相互作用の強さが異なり、それに応じて、カイラルネマチック相の螺旋ピッチ長も局所的に異なる。従って、本発明の赤外線調光素子における選択反射のバンド幅△λは、△λ=△nPでなく、△λ=△n(P+△P)となる。すなわち、液晶光分子複合層中の低分子液晶と高分子ネットワークとの相互作用により、温度の変化に対して、カイラルネマチック層の螺旋構造のピッチ長の分布が広がり、選択反射のバンド幅は拡大される。さらに、照射する紫外線強度に勾配をつけたり、重合温度に勾配を設けたり、光重合性液晶モノマーを複数使用し、その間の反応性の差を利用して、選択反射のバンド幅△λを積極的に拡大してもよい。
【0013】
本発明の赤外線調光素子の更なる特徴は、低分子液晶または低分子液晶とともに用いるカイラルドーパントとして、螺旋捩れ力が温度に依存するものを用いることにあり、これにより、選択反射の長波長端が長波長側に、または短波長端が短波長側にシフトし選択反射の波長幅(バンド幅)が広くなる。
図2は、本発明に従い製作されるこのような赤外線調光素子の熱光学特性を示した模式図である。温度TL=288±5K、TH=303±5K、TL<TM<TH、赤外光領域を約750nmから約2000nmとする。図2(a)に用いる低分子液晶は、温度の上昇にともない螺旋捩れ力が小さくなるものであり、温度TLからTHまで加熱したときに、赤外光領域を選択反射できる螺旋ピッチ長を持つものである。このとき、(a)の赤外線調光素子は、温度TLにおいて約750nm付近の狭い範囲だけを反射する。温度THまで加熱していくと、温度の上昇にともない螺旋ピッチ長は長くなろうとするが、低分子液晶と高分子ネットワークの相互作用により、その界面付近と界面からの遠いところでのピッチ長に差が生じるため、選択反射の長波長端が長波長側にシフトし、約750nmから長波長側の約2000nmまでの広い範囲で赤外光の選択反射が可能となる。また、図2(b)に用いる低分子液晶は、温度の上昇にともない螺旋捩れ力が大きくなるものであり、温度TLからTHまで加熱したときに、赤外光領域を選択反射できる螺旋ピッチ長を持つものである。このとき(b)の赤外線調光素子は、温度TLにおいて、約2000nm付近の狭い範囲だけを反射する。温度THまで加熱していくと、温度の上昇にともない螺旋ピッチ長が短くなろうとするが、低分子液晶と高分子ネットワークの相互作用により、その界面付近と界面から遠いところでのピッチ長に差が生じるため、選択反射の短波長端が短波長側にシフトし、約2000nmから短波長側の約750nmまでの広い範囲で赤外光の選択反射が可能となる。それぞれ温度THからTLに降温すると、選択反射のバンド幅は、初期の狭い範囲に戻る。
【0014】
以上のようにして、本発明の赤外線調光素子は選択反射のバンド幅がきわめて拡大されている。すなわち、本発明の液晶光学材料は、可視光よりも長波長の光(赤外線)に対して500nm以上の波長幅(バンド幅)、一般的には500〜1500nmの波長幅(バンド幅)にわたり選択反射を行うことができる。
【0015】
カイラルネマチック相では、螺旋周期ピッチ長と平均屈折率の積に等しい波長を持ち螺旋軸方向に平行に入射する円偏光だけを反射するため、太陽光線中の赤外線に対する選択反射率は、通常約50%であるが、螺旋の向きが反対で、同じ組成の二つのセルを積み重ねてなるセルでは、カイラルネマチック相の選択反射率を90%以上にすることもできる。従って、螺旋捩れ力が温度に依存することに基づき、可視光に対しては常に透明だが赤外線に対して低温で狭範囲を反射、そして高温で広範囲を反射するとともに、反射効率の高い、可逆的熱スイッチングを示す熱感応性赤外遮光材料を実現することが可能となる。
【0016】
本発明の液晶光学材料を得るのに用いられる液晶組成物は、一般に、光重合性液晶モノマーと低分子液晶の他に、カイラルドーパントを含有し重合開始剤がドープされている。本発明において使用される光重合性液晶モノマー、あるいは光重合性モノマーとしては、アクリロイル基、ビニル基、エポキシ基等の汎用の光重合性基を有する高分子樹脂の前駆体であって、低分子液晶とカイラルドーパントに相溶し均一液晶を呈するものであればいずれも使用できるが、液晶相の配向が乱れないにするためには、光重合性基を2個有する2官能性モノマーが好ましい。特に、低分子液晶とカイラルドーパントとの相溶性の向上、およびコントラストを良好にするためには、液晶構造またはこれに類似する構造を分子構造中に含むものが好ましい。例えば、最低1個のベンゼン環をその分子構造中に含むのである。また、これらの光重合性液晶モノマー、あるいは光重合性モノマーは、単独あるいは多種のモノマー、オリゴマーと混同しても使用できる。また、光重合性液晶モノマーと低分子液晶は、それぞれの常光屈折率nと異常光屈折率nが、実質的に等しいものが好ましい。
【0017】
また、本発明において使用される低分子液晶は、室温付近、一般的に−20〜80℃においてカイラルネマチック相を呈し、螺旋捩れ力の温度依存性が大きなものが好ましい。例えば、温度の上昇にともない螺旋捩れ力が小さくなるものは、およそ−20〜30℃の温度範囲で昇温すると、ピッチ長が0.3〜0.6μmの範囲から1.0〜2.0μmの範囲へと変化し、逆に螺旋捩れ力が大きくなるものは、およそ15〜30℃の温度範囲で昇温すると、ピッチ長が1.5〜2.0μm範囲から0.3〜0.6μm範囲へと変化するのが好ましい。また、市販されているネマチック低分子液晶とカイラルドーパントを混合してもよく、このとき、カイラルネマチック相の螺旋捩れ力の温度依存性やピッチ長は、カイラルドーパントの種類や含有率を調整することにより制御可能である。
【0018】
例えば、ネマチック低分子液晶としてE7、E8、E44、E48、TL−205、TL−213、TL−215(メルク社製)等のものが好ましく使用されるが、これらに限定されるものではない。
【0019】
また、カイラルドーパントとしては、分子構造中に不斉炭素を有する光学活性化合物(不斉炭素を有する低分子液晶を含む)であって、本発明に従う赤外線調光素子を構築する光重合性液晶モノマーと低分子液晶の混合物に相溶するものが使用される。カイラルドーパントの混合比は、目的とする赤外線調光素子の螺旋ピッチにより決定される。市販されているCB−15、S(R)−811、S(R)−1082、ZLI−4572(4571)(メルク社製)、CM21(20)(チッソ社製)などのものが好ましく使用されるが、これらに限定されるものではない。螺旋ピッチ補償用として、2種類以上のカイラルドーパントを用いてもよい。カイラルドーパントは、一般に、液晶を形成する分子構造、またはそれに類似した構造を有する低分子化合物である。
【0020】
本発明に従う赤外線調光素子を製作するには、各成分の組成比は、光重合性液晶モノマーと低分子液晶の合計を100重量%として、光重合性液晶モノマーを1〜10重量%、低分子液晶を90〜99重量%とし、低分子液晶に対してカイラルドーパントを1〜30重量%とするのが好ましい。光重合性液晶モノマーを10重量%以上にすると、液晶分子と高分子ネットワークとの相互作用が強くなりすぎるため、液晶光学材料中に低分子液晶の螺旋構造のピッチ長は温度の上昇とともに変化し難くなる。一方、光重合性液晶モノマーの量が1wt%以下になると、赤外線調光素子の初期状態の選択反射する波長が固定化し難くなる。
【0021】
本発明に従う赤外線調光素子を製作するには、さらに、光重合性液晶モノマーに対して光重合開始剤を1〜30重量%添加するのが好ましい。該光重合開始剤としては、例えば、2,2−ジエトキシアセトフェノンなどのアセトフェノン系、ベンゾイン系、ベンゾフェノン系、チオキサンソン系、ジアゾニウム系、スルホニウム塩系、ヨードニウム塩系、セレニウム塩系等の通常の光重合剤が使用できる。光重合開始剤は、光重合性モノマーと低分子液晶の混合物に溶解、あるいは相溶するものが使用される。
【0022】
【実施例】
次に、本発明の実施例を記すが、本発明はこれらの実施例によって制限されるものではない。図3に、本実施例で使用した試料の化学構造式を示す。なお、図においてK、N、Iの間の数字は、K(結晶相)、N(ネマチック)、およびI(等方相)の間の相転移温度を示す。例えば、光重合性液晶モノマーMPBAHBは、結晶相−ネマチック相転移が356.4Kであり、ネマチック−等方相転移が388.8Kである。
【0023】
実施例1
光重合性液晶モノマー(MPBAHB、合成)4.5重量%、ネマチック低分子液晶(E48、メルク社製)80重量%、カイラルドーパント(CB−15、メルク社製)20重量%、光重合開始剤(2,2−ジメトキシ−2−フェニルアセトフェノン、TCI社製)0.9重量%を共通良溶媒であるアセトン溶液で混合してから溶媒蒸発法により液晶組成物混合液A2を調製した。次に、この液晶組成物混合液A2を液晶評価用標準平行配向セル(ポリイミド平行配向処理ソーダライムガラス、膜厚20μm、E・H・C(株)社製)に等方相状態で注入した後、等方相から温度273.2Kのカイラルネマチック相までゆっくりと冷却し、紫外線(4W、365nm)を20分間照射して、図1(c)に示される赤外線調光素子A1を製作した。
【0024】
図4は、紫外線照射後の赤外線調光素子A1から、液晶とカイラルドーパントだけを溶解するヘキサンで、赤外線調光素子から液晶とカイラルドーパントを抽出した後の高分子ネットワークの走査型電子顕微鏡による観察像である。図4から赤外線調光素子中に、螺旋軸がセル基板表面に対して垂直で螺旋状の高分子ネットワーク9が形成されることが明らかとなった。
【0025】
図5は、赤外線調光素子A1の異なる温度における反射率の波長依存性である。温度T1(273.2K)では、1000nm付近の狭い範囲で反射しているが、温度が上昇しT3(323.2K)では、1000nmから1400nmの広い範囲で反射することを示した。つまり、赤外線調光素子A1は、温度上昇にともない、赤外光領域で選択反射のバンド幅が広がることが確認された。
【0026】
実施例2
光重合性液晶モノマー(MPBAHB、合成)4.5重量%、ネマチック低分子液晶(E48、メルク社製)97.5重量%、カイラルドーパント(ZLI−4572、メルク社製)2.5重量%、光重合開始剤(2,2−ジメトキシ−2−フェニルアセトフェノン、TCI社製)0.9重量%を実施例1と同様にして、赤外線調光素子A2を製作した。
【0027】
図6は、赤外線調光素子A2の異なる温度における反射率の波長依存性である。温度T1(273.2K)では、1800nm付近の狭い範囲で反射しているが、温度が上昇しT3(353.2K)では、1800nmから1400nmの広い範囲で反射することを示した。つまり、赤外線調光素子A2は、温度上昇にともない、赤外光領域で選択反射のバンド幅が広がることが確認された。
【0028】
以上の結果から、本発明に従い作製された赤外線調光素子は、高分子ネットワークの存在により選択反射のバンド幅が拡大され、また、カイラルドーパントの種類や混合率を調整することで、選択反射のバンド域を制御可能であることが明らかとなった。
【0029】
【発明の効果】
以上説明したように、本発明で提供する調光用赤外線調光素子は、短波長光(可視光)に対しては常に透明であり、赤外光を含む長波長の光に対しては広い波長領域にわたり、透過−選択反射の可逆的熱スイッチングを示す、熱感応性の赤外遮断材料として実現されたものである。本発明の調光用液晶光学材料を、種々の建築物の窓、および車の窓材料として用いた場合、可視光線を透過しつつ、気温の高い夏季においては熱線を反射し、気温の低い冬季においては熱線を確保できるため、光熱費の軽減を図ることができる。従って、該材料を建築物および車の窓材料などに用いた場合には、省エネルギー化が図れるという優れた効果を奏す。
【図面の簡単な説明】
【図1】本発明の液晶光学材料の製作段階における各液晶状態での液晶分子の配向状態を示した模式図である。
【図2】本発明に従い製作される液晶光学材料の熱光学特性を示した模式図である。
【図3】本発明の実施例において使用された光重合性液晶モノマー、低分子液晶、カイラルドーパントおよび光重合開始剤の化学構造式である。
【図4】本発明の実施例1における評価セルA1から、液晶とカイラルドーパントを溶解するヘキサンで液晶とカイラルドーパントを抽出した後の高分子ネットワークの走査型電子顕微鏡による観察像である。
【図5】本発明の実施例1における、液晶光学材料A1の異なる温度における反射率の波長依存性である。
【図6】本発明の実施例2における、液晶光学材料A2の異なる温度における反射率の波長依存性である。
【符号の説明】
1,2 基板
3,4 平行配向膜
5,6 スペーサ
7 液晶分子
8 光重合性モノマー
9 高分子ネットワーク
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a novel liquid crystal optical material, and in particular, is a light control element used for buildings and automobile windows, and is always transparent to visible light and has a longer wavelength than visible light (infrared rays). The present invention relates to an infrared light control device that exhibits reversible thermal switching between transmission and reflection over a wide wavelength width (bandwidth: wavelength region).
[0002]
[Prior art]
In recent years, windows having various functions such as heat ray reflection tend to be used for window glass of buildings and houses. The heat ray reflective glass forms a multilayer thin film on the glass surface, thereby reflecting the infrared rays in the sunlight, suppressing the temperature rise in the building and reducing the cooling load. However, when the glass is used, the visible light transmittance may be reduced. In addition, applications of electrochromic materials that can arbitrarily adjust the infrared transmittance according to the season are being studied. However, since an electric field is used for this, it is necessary to provide a transparent electrode on the glass surface for electric wiring, which is expensive in terms of manufacturing and installation costs. Further, since the adjustment of the transmittance is based on the absorption of light, there is a problem that the glass itself becomes high temperature and secondary radiation occurs.
In addition to these, the use of thermochromic materials has recently been studied. It has been proposed that an aqueous solution of, for example, polyisopropylacrylamide that is insoluble in water at high temperatures and soluble in low temperatures, for example, is sandwiched between substrates to construct a system that is transparent at low temperatures and scatters light at high temperatures. However, although this method achieves the purpose of saving energy, light is scattered at a high temperature. For example, when the application is a window glass, it is in a frosted glass state at a high temperature, and the scenery outside the window cannot be seen. At present, there are fatal drawbacks that cannot be put to practical use.
[0003]
In order to solve the above-mentioned problems, a light control material capable of controlling the light transmittance and light reflectance of a specific wavelength in the sunlight using the unique property of the temperature change of the liquid crystal has been studied. As a light-modulating material, a light-modulating material comprising a low-molecular liquid crystal exhibiting a smectic A⇔chiral nematic thermal phase transition has been proposed (Japanese Patent Laid-Open No. 9-29882). When the smectic A phase is aligned in parallel, incident light is transmitted without being reflected. In addition, the chiral nematic phase has a property that molecules are arranged in a spiral shape, has a wavelength equal to the product of the helical period pitch length and the average refractive index, and reflects circularly polarized light incident parallel to the helical axis direction. . This property is called selective reflection, and it has been reported that the wavelength range of selectively reflected light, that is, the reflection spectrum width, can be approximated by the product of birefringence and pitch length, which is the optical anisotropy of liquid crystal ( HF Gleeson, HJ Coles, Mol. Cryst. Liq. Cryst., 1709-1734 (1989)). Therefore, a low molecular liquid crystal exhibiting a smectic A⇔chiral nematic thermal phase transition has attracted attention as a light-modulating material that can greatly contribute to energy saving by changing the light transmittance and light reflectance at a specific wavelength around room temperature. That is, visible light in the wavelength range of about 400 nm to about 750 nm is transmitted, and the light transmittance at a specific wavelength changes at room temperature. For example, in summer when the temperature is high, heat rays in the wavelength range of about 750 nm to about 2000 nm are reflected. In addition, the cooling load can be reduced, and in the winter when the temperature is low, the heating load can be reduced while securing the heat rays. Therefore, when this material is used as a window material for a building or the like, it is expected to have an excellent effect that sufficient energy saving can be achieved (Japanese Patent Laid-Open No. 9-29882).
[0004]
[Problems to be solved by the invention]
The low-molecular liquid crystal material exhibiting a smectic A-chiral nematic thermal phase transition used in the above light-modulating material can reversibly exhibit a smectic A-phase-parallel aligned chiral nematic phase thermal phase transition around room temperature. Required. However, in reality, the low-molecular liquid crystal sandwiched in the cell subjected to the parallel alignment treatment is slowly released from the chiral nematic phase because of the helical twisting power of the optically active compound having an asymmetric carbon in the molecular structure. Even when cooled, it is difficult to achieve a parallel molecular arrangement in the smectic A phase. Further, the transmittance in the smectic A phase strongly depends on the cooling rate from the chiral nematic phase, and the higher the cooling rate, the lower the transmittance of the smectic A phase, and it is easy to form a cloudy state called focal conic orientation. Further, the chiral nematic phase has a drawback that the wavelength width of selective reflection is narrow and the wavelength width of selective reflection cannot be arbitrarily controlled.
[0005]
[Means for Solving the Problems]
The present invention relates to a liquid crystal composition containing a photopolymerizable liquid crystal monomer in addition to a low-molecular liquid crystal, and sandwiching a liquid crystal composition exhibiting a chiral nematic phase near room temperature between substrates subjected to parallel alignment treatment at least one of which is transparent. , Formed by photopolymerizing photopolymerizable liquid crystal monomer in a parallel nematic nematic phase state (planar molecular alignment), always transparent for visible light, and for longer wavelength light It shows reversible thermal switching of transmission-selective reflection over a wide wavelength range, especially that the long wavelength end of selective reflection shifts to the long wavelength side or the short wavelength end shifts to the short wavelength side as the temperature rises. An infrared light control device is provided.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The infrared light control device of the present invention will be specifically described below. FIG. 1 is a schematic cross-sectional view showing the alignment state of liquid crystal molecules in each liquid crystal state in the manufacturing stage of the infrared light control device of the present invention. FIG. 1A shows the alignment state of liquid crystal molecules immediately after the liquid crystal composition is injected into the cell. In the figure, 1 and 2 are substrates, 3 and 4 are parallel alignment films, 5 and 6 are spacers, 7 is liquid crystal molecules, and 8 is a photopolymerization monomer.
[0007]
In the present invention, at least one of the substrates 1 and 2 is transparent, and a glass plate, a plastic film, or the like can be used. At least one of the substrates 1 and 2 is subjected to parallel alignment treatments 3 and 4 such as an alignment film and a rubbing treatment on the inner surface. As shown in the figure, the cell for accommodating a liquid crystal composition is generally sandwiched between upper and lower substrates 1 and 2 by spacers 5 and 6 made of glass or a photomolecular material. The thickness of the spacers 5 and 6 shall be about 2-50 micrometers.
[0008]
Injection of a liquid crystal composition comprising a photopolymerizable liquid crystal monomer and a low-molecular liquid crystal into the cell is performed by a capillary phenomenon at a temperature at which the liquid crystal composition exhibits an isotropic phase state.
[0009]
FIG. 1B shows the alignment state of the liquid crystal molecules when cooled from the isotropic phase to the temperature TL that becomes the chiral nematic phase. The liquid crystal molecules in the liquid crystal composition take a helical orientation, and the helical axis is perpendicular to the substrate. That is, since the liquid crystal molecules have a parallel alignment (planar alignment) in which the major axis of the liquid crystal molecules is uniform with respect to the substrate, the liquid crystal molecules become transparent.
[0010]
FIG. 1C shows the alignment state of the liquid crystal molecules after the state shown in FIG. 1B is irradiated with ultraviolet rays to photopolymerize the photopolymerizable liquid crystal monomer (8) of the liquid crystal composition. As shown in FIG. 1C, a liquid crystal polymer composite layer having a spiral polymer network 9 in which the spiral axis is perpendicular to the cell substrate surface is formed. At this time, the initial molecular arrangement of the liquid crystal molecules is fixed, and a transparent infrared light control device is obtained.
[0011]
The chiral nematic liquid crystal has a property of selective reflection, and is circularly polarized light that is incident in parallel to the direction of the helix and the helix axis direction having a wavelength λ (λ = nP) equal to the product of the helix period pitch length P and the average refractive index n. To reflect. Further, the wavelength width (band width) of selective reflection of chiral nematic liquid crystal, that is, the reflection spectrum width Δλ is generally the product ΔnP of the birefringence Δn and the pitch length P, which is the optical anisotropy of the liquid crystal. It is known that it can be approximated.
[0012]
One of the characteristics of the liquid crystal composition used in the infrared light control device of the present invention is that it contains a photopolymerizable monomer in addition to the low-molecular liquid crystal. In such an infrared light control device of the present invention, the strength of the interaction at the interface between the low-molecular liquid crystal and the polymer network depends on the distance from the interface. Therefore, the strength of this interaction is locally different in the liquid crystal polymer composite layer, and accordingly, the helical pitch length of the chiral nematic phase is also locally different. Therefore, the selective reflection bandwidth Δλ in the infrared light control device of the present invention is not Δλ = ΔnP but Δλ = Δn (P + ΔP). That is, due to the interaction between the low molecular liquid crystal and the polymer network in the liquid crystal photomolecular composite layer, the pitch length distribution of the spiral structure of the chiral nematic layer is broadened with respect to the temperature change, and the bandwidth of selective reflection is expanded. Is done. Furthermore, the selective reflection band width Δλ is positively applied using a gradient in the UV intensity to be irradiated, a gradient in the polymerization temperature, and the use of multiple photopolymerizable liquid crystal monomers and the difference in reactivity between them. You may enlarge it.
[0013]
A further feature of the infrared light control device of the present invention is that a low molecular liquid crystal or a chiral dopant used together with a low molecular liquid crystal uses a material whose helical torsional force depends on temperature. Shifts to the long wavelength side, or the short wavelength end shifts to the short wavelength side, and the wavelength width (bandwidth) of selective reflection becomes wide.
FIG. 2 is a schematic diagram showing the thermo-optical characteristics of such an infrared light control device manufactured according to the present invention. Temperature TL = 288 ± 5K, TH = 303 ± 5K, TL <TM <TH, and the infrared light region is about 750 nm to about 2000 nm. The low-molecular liquid crystal used in FIG. 2 (a) has a helical twisting length that can selectively reflect the infrared light region when heated from the temperature TL to TH, as the helical twisting force decreases as the temperature rises. Is. At this time, the infrared light control element of (a) reflects only a narrow range near about 750 nm at the temperature TL. As the temperature rises, the helical pitch length tends to increase as the temperature rises, but due to the interaction between the low-molecular liquid crystal and the polymer network, there is a difference in the pitch length between the vicinity of the interface and the distance from the interface. Therefore, the long wavelength end of selective reflection shifts to the long wavelength side, and selective reflection of infrared light is possible in a wide range from about 750 nm to about 2000 nm on the long wavelength side. The low-molecular liquid crystal used in FIG. 2B has a helical twisting force that increases as the temperature rises, and when heated from the temperature TL to TH, the helical pitch length that can selectively reflect the infrared light region. It has something. At this time, the infrared light control device of (b) reflects only a narrow range near about 2000 nm at the temperature TL. As the temperature rises, the helical pitch length tends to decrease as the temperature rises, but due to the interaction between the low-molecular liquid crystal and the polymer network, there is a difference in the pitch length near and far from the interface. Therefore, the short wavelength end of selective reflection shifts to the short wavelength side, and selective reflection of infrared light is possible in a wide range from about 2000 nm to about 750 nm on the short wavelength side. When the temperature decreases from the temperature TH to TL, the selective reflection bandwidth returns to the initial narrow range.
[0014]
As described above, the bandwidth of selective reflection is extremely enlarged in the infrared light control device of the present invention. That is, the liquid crystal optical material of the present invention is selected over a wavelength width (bandwidth) of 500 nm or more, generally a wavelength width (bandwidth) of 500 to 1500 nm with respect to light (infrared rays) having a longer wavelength than visible light. Reflection can be performed.
[0015]
In the chiral nematic phase, only circularly polarized light having a wavelength equal to the product of the helical periodic pitch length and the average refractive index and reflecting in parallel with the direction of the helical axis is reflected. However, in a cell in which two cells having the same composition are stacked with opposite spiral directions, the selective reflectance of the chiral nematic phase can be 90% or more. Therefore, based on the fact that the helical twisting force depends on the temperature, it is always transparent to visible light, but reflects a narrow range at a low temperature and reflects a wide range at a high temperature, and reversible with high reflection efficiency. It becomes possible to realize a heat-sensitive infrared light shielding material exhibiting thermal switching.
[0016]
The liquid crystal composition used to obtain the liquid crystal optical material of the present invention generally contains a chiral dopant in addition to a photopolymerizable liquid crystal monomer and a low molecular liquid crystal, and is doped with a polymerization initiator. The photopolymerizable liquid crystal monomer or photopolymerizable monomer used in the present invention is a precursor of a polymer resin having a general-purpose photopolymerizable group such as an acryloyl group, a vinyl group, or an epoxy group, and has a low molecular weight. Any of those which are compatible with the liquid crystal and the chiral dopant and exhibit a uniform liquid crystal can be used. However, in order not to disturb the alignment of the liquid crystal phase, a bifunctional monomer having two photopolymerizable groups is preferable. In particular, in order to improve the compatibility between the low-molecular liquid crystal and the chiral dopant and improve the contrast, it is preferable to include a liquid crystal structure or a similar structure in the molecular structure. For example, it contains at least one benzene ring in its molecular structure. Also, these photopolymerizable liquid crystal monomers or photopolymerizable monomers can be used alone or mixed with various monomers and oligomers. The low molecular weight liquid crystal and a photopolymerizable liquid crystal monomer, each of the ordinary refractive index n o and extraordinary refractive index n e is, those substantially equal is preferred.
[0017]
The low-molecular liquid crystal used in the present invention preferably has a chiral nematic phase near room temperature, generally -20 to 80 ° C., and has a large temperature dependence of the helical twisting force. For example, when the helical twisting force decreases as the temperature increases, the pitch length increases from 0.3 to 0.6 μm to 1.0 to 2.0 μm when the temperature rises in the temperature range of approximately −20 to 30 ° C. When the spiral torsional force increases to a temperature range of about 15 to 30 ° C., the pitch length increases from 1.5 to 2.0 μm to 0.3 to 0.6 μm. It is preferable to change to the range. Also, commercially available nematic low-molecular liquid crystals and chiral dopants may be mixed. At this time, the temperature dependence and pitch length of the helical twisting force of the chiral nematic phase can be adjusted by adjusting the kind and content of the chiral dopant. It can be controlled by.
[0018]
For example, E7, E8, E44, E48, TL-205, TL-213, TL-215 (manufactured by Merck) and the like are preferably used as the nematic low-molecular liquid crystal, but are not limited thereto.
[0019]
The chiral dopant is an optically active compound having an asymmetric carbon in its molecular structure (including a low-molecular liquid crystal having an asymmetric carbon), and a photopolymerizable liquid crystal monomer for constructing an infrared light control device according to the present invention. And those that are compatible with a mixture of low molecular liquid crystals. The mixing ratio of the chiral dopant is determined by the helical pitch of the target infrared light control device. Commercially available products such as CB-15, S (R) -811, S (R) -1082, ZLI-4572 (4571) (made by Merck), CM21 (20) (made by Chisso) are preferably used. However, it is not limited to these. Two or more types of chiral dopants may be used for helical pitch compensation. The chiral dopant is generally a low molecular compound having a molecular structure forming a liquid crystal or a similar structure thereto.
[0020]
In order to fabricate the infrared light control device according to the present invention, the composition ratio of each component is such that the total of the photopolymerizable liquid crystal monomer and the low molecular liquid crystal is 100% by weight, the photopolymerizable liquid crystal monomer is 1 to 10% by weight, and low. It is preferable that the molecular liquid crystal is 90 to 99% by weight and the chiral dopant is 1 to 30% by weight with respect to the low molecular liquid crystal. When the photopolymerizable liquid crystal monomer is 10% by weight or more, the interaction between the liquid crystal molecules and the polymer network becomes too strong, so the pitch length of the helical structure of the low-molecular liquid crystal in the liquid crystal optical material changes with increasing temperature. It becomes difficult. On the other hand, when the amount of the photopolymerizable liquid crystal monomer is 1 wt% or less, it is difficult to fix the wavelength for selective reflection in the initial state of the infrared light control device.
[0021]
In order to manufacture the infrared light control device according to the present invention, it is preferable to add 1 to 30% by weight of a photopolymerization initiator with respect to the photopolymerizable liquid crystal monomer. Examples of the photopolymerization initiator include normal light such as acetophenone series such as 2,2-diethoxyacetophenone, benzoin series, benzophenone series, thioxanthone series, diazonium series, sulfonium salt series, iodonium salt series, and selenium salt series. A polymerization agent can be used. As the photopolymerization initiator, one that is soluble or compatible with a mixture of a photopolymerizable monomer and a low molecular liquid crystal is used.
[0022]
【Example】
Next, examples of the present invention will be described, but the present invention is not limited to these examples. FIG. 3 shows the chemical structural formula of the sample used in this example. In FIG. 3 , numbers between K, N, and I indicate phase transition temperatures between K (crystalline phase), N (nematic), and I (isotropic phase). For example, the photopolymerizable liquid crystal monomer MPBAHB has a crystal phase-nematic phase transition of 356.4K and a nematic-isotropic phase transition of 388.8K.
[0023]
Example 1
4.5% by weight of photopolymerizable liquid crystal monomer (MPBAHB, synthesis), 80% by weight of nematic low-molecular liquid crystal (E48, manufactured by Merck), 20% by weight of chiral dopant (CB-15, manufactured by Merck), photopolymerization initiator After mixing 0.9% by weight (2,2-dimethoxy-2-phenylacetophenone, manufactured by TCI) with an acetone solution which is a common good solvent, a liquid crystal composition mixed liquid A2 was prepared by a solvent evaporation method. Next, this liquid crystal composition mixed liquid A2 was injected in an isotropic phase state into a standard parallel alignment cell for liquid crystal evaluation (polyimide parallel alignment treatment soda lime glass, film thickness 20 μm, manufactured by EHC Co., Ltd.). Thereafter, the mixture was slowly cooled from the isotropic phase to a chiral nematic phase having a temperature of 273.2 K, and irradiated with ultraviolet rays (4 W, 365 nm) for 20 minutes to produce an infrared light control device A1 shown in FIG.
[0024]
FIG. 4 shows a scanning electron microscope observation of the polymer network after extracting the liquid crystal and the chiral dopant from the infrared light control device with hexane which dissolves only the liquid crystal and the chiral dopant from the infrared light control device A1 after the ultraviolet irradiation. It is a statue. From FIG. 4, it has been clarified that the spiral polymer network 9 is formed in the infrared light control device with the spiral axis perpendicular to the cell substrate surface.
[0025]
FIG. 5 shows the wavelength dependence of the reflectance at different temperatures of the infrared light control device A1. At temperature T1 (273.2K), the light is reflected in a narrow range near 1000 nm. However, the temperature rises, and at T3 (323.2K), the light is reflected in a wide range from 1000 nm to 1400 nm. That is, it was confirmed that the bandwidth of selective reflection of the infrared light control device A1 widens in the infrared light region as the temperature rises.
[0026]
Example 2
4.5% by weight of photopolymerizable liquid crystal monomer (MPBAHB, synthesis), 97.5% by weight of nematic low-molecular liquid crystal (E48, manufactured by Merck), 2.5% by weight of chiral dopant (ZLI-4572, manufactured by Merck), An infrared light control device A2 was produced in the same manner as in Example 1 except that 0.9% by weight of a photopolymerization initiator (2,2-dimethoxy-2-phenylacetophenone, manufactured by TCI) was used.
[0027]
FIG. 6 shows the wavelength dependence of the reflectance at different temperatures of the infrared light control device A2. At temperature T1 (273.2K), the light is reflected in a narrow range near 1800 nm. However, the temperature rises, and at T3 (353.2K), the light is reflected in a wide range from 1800 nm to 1400 nm. That is, it was confirmed that the bandwidth of selective reflection of the infrared light control element A2 increases in the infrared light region as the temperature rises.
[0028]
From the above results, the infrared light control device manufactured according to the present invention has a selective reflection bandwidth that is enlarged due to the presence of the polymer network, and by adjusting the kind and mixing ratio of the chiral dopant, It became clear that the band range could be controlled.
[0029]
【The invention's effect】
As described above, the infrared light control device for light control provided by the present invention is always transparent for short wavelength light (visible light) and wide for long wavelength light including infrared light. It has been realized as a heat-sensitive infrared blocking material that exhibits reversible thermal switching of transmission-selective reflection over the wavelength range. When the liquid crystal optical material for light control of the present invention is used as a window material of various buildings and a window of a car, it transmits visible light, reflects heat rays in summer when the temperature is high, and winter when the temperature is low. Since a heat ray can be secured in, the utility cost can be reduced. Therefore, when this material is used for building materials, car window materials, etc., an excellent effect is achieved in that energy saving can be achieved.
[Brief description of the drawings]
FIG. 1 is a schematic view showing the alignment state of liquid crystal molecules in each liquid crystal state in the production stage of the liquid crystal optical material of the present invention.
FIG. 2 is a schematic diagram showing thermo-optical characteristics of a liquid crystal optical material manufactured according to the present invention.
FIG. 3 is a chemical structural formula of a photopolymerizable liquid crystal monomer, a low-molecular liquid crystal, a chiral dopant, and a photopolymerization initiator used in Examples of the present invention.
4 is a scanning electron microscope observation image of a polymer network after extracting liquid crystal and chiral dopant from hexane that dissolves liquid crystal and chiral dopant from evaluation cell A1 in Example 1 of the present invention. FIG.
FIG. 5 shows the wavelength dependence of the reflectance at different temperatures of the liquid crystal optical material A1 in Example 1 of the present invention.
FIG. 6 shows the wavelength dependence of the reflectance at different temperatures of the liquid crystal optical material A2 in Example 2 of the present invention.
[Explanation of symbols]
1, 2 Substrate 3, 4 Parallel alignment film 5, 6 Spacer 7 Liquid crystal molecule 8 Photopolymerizable monomer 9 Polymer network

Claims (2)

光重合性液晶モノマーと低分子液晶とを含む液晶組成物であって、室温付近でカイラルネマチック相を呈する液晶組成物を、少なくとも一方が透明な平行配向処理された基板間に挟み、平行配向したカイラルネマチック相状態(プレーナ分子配列)で光重合性液晶モノマーを光重合させることにより形成され、可視光に対しては常に透明であり、温度の上昇にともない、750nmから2000nmの波長範囲で赤外光の選択反射が可能であることを特徴とする赤外線調光素子。A liquid crystal composition comprising a photopolymerizable liquid crystal monomer and a low molecular liquid crystal, wherein a liquid crystal composition exhibiting a chiral nematic phase near room temperature is sandwiched between substrates subjected to parallel alignment treatment at least one of which is aligned in parallel. It is formed by photopolymerizing a photopolymerizable liquid crystal monomer in a chiral nematic phase state (planar molecular arrangement), is always transparent to visible light, and is infrared in the wavelength range from 750 nm to 2000 nm as the temperature rises. An infrared light control device capable of selectively reflecting light. 温度の上昇にともない、前記波長範囲内で、選択反射の長波長端が、上昇前の温度における選択反射の波長よりも長波長側にシフトして選択反射の波長幅が広くなり、または、選択反射の短波長端が、上昇前の温度における選択反射の波長よりも短波長側にシフトして選択反射の波長幅が広くなることを特徴とする請求項1に記載の赤外線調光素子。As the temperature rises, the long wavelength end of selective reflection shifts to the longer wavelength side than the wavelength of selective reflection at the temperature before the rise within the above wavelength range, and the wavelength width of selective reflection becomes wider or selected. The infrared light control device according to claim 1, wherein the short wavelength end of reflection shifts to a shorter wavelength side than the wavelength of selective reflection at a temperature before the increase, and the wavelength width of selective reflection becomes wider .
JP2001165993A 2001-06-01 2001-06-01 Infrared light control device Expired - Fee Related JP4731728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001165993A JP4731728B2 (en) 2001-06-01 2001-06-01 Infrared light control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001165993A JP4731728B2 (en) 2001-06-01 2001-06-01 Infrared light control device

Publications (2)

Publication Number Publication Date
JP2002357815A JP2002357815A (en) 2002-12-13
JP4731728B2 true JP4731728B2 (en) 2011-07-27

Family

ID=19008592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001165993A Expired - Fee Related JP4731728B2 (en) 2001-06-01 2001-06-01 Infrared light control device

Country Status (1)

Country Link
JP (1) JP4731728B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200058930A (en) * 2018-11-20 2020-05-28 한국기계연구원 Cooling and heating film

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2634506T3 (en) * 2007-01-24 2017-09-28 Ravenbrick, Llc Thermally switched down conversion optical filter
US7755829B2 (en) 2007-07-11 2010-07-13 Ravenbrick Llc Thermally switched reflective optical shutter
CN101868738B (en) 2007-09-19 2013-05-15 雷文布里克有限责任公司 Low-emissivity window films and coatings incorporating nanoscale wire grids
US8169685B2 (en) 2007-12-20 2012-05-01 Ravenbrick, Llc Thermally switched absorptive window shutter
EP2269100A4 (en) 2008-04-23 2011-12-28 Ravenbrick Llc Glare management of reflective and thermoreflective surfaces
US9116302B2 (en) 2008-06-19 2015-08-25 Ravenbrick Llc Optical metapolarizer device
CN102187262B (en) 2008-08-20 2013-06-19 雷文布里克有限责任公司 Methods for fabricating thermochromic filters
KR101787767B1 (en) 2009-04-10 2017-10-18 라벤브릭 엘엘씨 Thermally switched optical filter incorporating a guest-host architecture
US8643795B2 (en) 2009-04-10 2014-02-04 Ravenbrick Llc Thermally switched optical filter incorporating a refractive optical structure
WO2011053853A2 (en) 2009-10-30 2011-05-05 Ravenbrick Llc Thermochromic filters and stopband filters for use with same
JP5890390B2 (en) 2010-03-29 2016-03-22 レイブンブリック,エルエルシー Polymer-stabilized thermotropic liquid crystal device
US8699114B2 (en) 2010-06-01 2014-04-15 Ravenbrick Llc Multifunctional building component
GB201009488D0 (en) * 2010-06-07 2010-07-21 Merck Patent Gmbh Switch element comprising a liquid-crystaline medium
GB2489670A (en) * 2011-03-28 2012-10-10 Sharp Kk Temperature dependent smart window
WO2013033608A2 (en) 2011-09-01 2013-03-07 Wil Mccarthy Thermotropic optical shutter incorporating coatable polarizers
US9869887B2 (en) * 2011-11-30 2018-01-16 Alphamicron Incorporated Adaptive liquid crystal structural interface
JP6058706B2 (en) * 2015-01-22 2017-01-11 昭文 荻原 Manufacturing method of light control element, manufacturing method of laminated light control element, light control method
CN106646985B (en) * 2016-11-16 2021-06-22 深圳市国华光电科技有限公司 Infrared reflecting device with tunable wave band and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445193A (en) * 1990-06-12 1992-02-14 Olympus Optical Co Ltd Optical element
JPH06222342A (en) * 1993-01-27 1994-08-12 Asahi Glass Co Ltd Liquid crystal light control element
BE1007485A3 (en) * 1993-09-08 1995-07-11 Philips Electronics Nv SWITCHABLE cholesteric filter AND LIGHTS WITH A FILTER.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200058930A (en) * 2018-11-20 2020-05-28 한국기계연구원 Cooling and heating film
KR102133941B1 (en) * 2018-11-20 2020-07-14 한국기계연구원 Cooling and heating film

Also Published As

Publication number Publication date
JP2002357815A (en) 2002-12-13

Similar Documents

Publication Publication Date Title
JP4731728B2 (en) Infrared light control device
Yang et al. Thermally bandwidth-controllable reflective polarizers from (polymer network/liquid crystal/chiral dopant) composites
JP6073395B2 (en) Temperature response switching type optical filter incorporating refractive optical structure
US6633354B2 (en) Spectrum-controllable reflective polarizers having electrically-switchable modes of operation
US10247936B2 (en) Thermally switched optical filter incorporating a guest-host architecture
KR100257886B1 (en) Polymer liquid crystal
KR101872545B1 (en) Switch element comprising a liquid-crystalline medium
US8144275B2 (en) Thermal tuning glazing structures comprising a cholesteric liquid crystal
KR101831471B1 (en) Switch element comprising a liquid-crystalline medium
US9869887B2 (en) Adaptive liquid crystal structural interface
Oh et al. Thermal control of transmission property by phase transition in cholesteric liquid crystals
KR101820989B1 (en) Optical switch element comprising a liquid-crystalline medium
US8613985B2 (en) Liquid crystal/polymer composite
Zhang et al. Research progress of cholesteric liquid crystals with broadband reflection characteristics in application of intelligent optical modulation materials
He et al. Broadband reflective liquid crystal films induced by facile temperature-dependent coexistence of chiral nematic and TGB phase
JPH0929882A (en) Light adjusting material
Lub et al. Colourful photo-curable coatings for application in the electro-optical industry
Yang et al. Research advance in polymer stabilized liquid crystals
JP2002146353A (en) Liquid crystal optical material utilizing polymer network formed from polymerizable disk monomer
JP2002265945A (en) Liquid-crystalline optical material for light modulation
Kemiklioglu et al. Effect of achiral halogen-substituted bent-core molecules on the blue phases
JP2001100171A (en) Liquid crystal, optical material for thermal writing using side-chain liquid crystal copolymer
JP6066057B2 (en) Aligned phase separation structure of liquid crystal and polymer and production method thereof
MEHDI JAFARIMOGHADAM et al. Near-Infrared Reflecting/Transmitting Smart Windows Based on Chiral Nematic
KR100425263B1 (en) Circular polarizer with liquid crystal polymer and photosensitive chiral dopant and the manufacture thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080515

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4731728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees