TW201935875A - 相位追蹤參考信號符號映射 - Google Patents

相位追蹤參考信號符號映射 Download PDF

Info

Publication number
TW201935875A
TW201935875A TW107146124A TW107146124A TW201935875A TW 201935875 A TW201935875 A TW 201935875A TW 107146124 A TW107146124 A TW 107146124A TW 107146124 A TW107146124 A TW 107146124A TW 201935875 A TW201935875 A TW 201935875A
Authority
TW
Taiwan
Prior art keywords
wireless device
configuration
symbol
symbols
time slot
Prior art date
Application number
TW107146124A
Other languages
English (en)
Other versions
TWI794374B (zh
Inventor
白天楊
于爾根 尚塞
亞力山德羅斯 瑪諾拉寇斯
索尼 阿卡拉力南
濤 駱
君毅 李
Original Assignee
美商高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商高通公司 filed Critical 美商高通公司
Publication of TW201935875A publication Critical patent/TW201935875A/zh
Application granted granted Critical
Publication of TWI794374B publication Critical patent/TWI794374B/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2662Arrangements for Wireless System Synchronisation
    • H04B7/2668Arrangements for Wireless Code-Division Multiple Access [CDMA] System Synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2621Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using frequency division multiple access [FDMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/0013Rate matching, e.g. puncturing or repetition of code symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0035Synchronisation arrangements detecting errors in frequency or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本案內容提供了可以用於例如決定相位追蹤參考信號(PT-RS)模式/配置的技術。如本文所描述的,可以至少部分地基於在其中由於與分配給另一信號或分配給另一無線設備的時間或頻率資源中的至少一者衝突而預期要對PT-RS刪餘的一或多個符號、MCS及/或所預期的PT-RS密度,來將PT-RS映射到符號。

Description

相位追蹤參考信號符號映射
本專利申請案請求享受於2018年2月16日提出申請的名稱為「PHASE TRACKING REFERENCE SIGNAL SYMBOL MAPPING」的希臘專利申請案第20180100065號的優先權,其全部內容明確地經由引用方式併入本文中。
概括而言,本案內容的某些態樣涉及無線通訊,以及更特定而言,本案內容的某些態樣涉及用於至少部分地基於一或多個刪餘的相位追蹤參考信號(PT-RS)在時間-頻率資源的集合內來分配PT-RS的方法和裝置。
廣泛地部署無線通訊系統以提供各種電信服務,諸如電話、視訊、資料、訊息傳遞和廣播。典型的無線通訊系統可以採用能夠經由共享可用的系統資源(例如,頻寬、發射功率)來支援與多個使用者的通訊的多工存取技術。此種多工存取技術的實例包括長期進化(LTE)系統、分碼多工存取(CDMA)系統、分時多工存取(TDMA)系統、分頻多工存取(FDMA)系統、正交分頻多工存取(OFDMA)系統、單載波分頻多工存取(SC-FDMA)系統以及時分同步分碼多工存取(TD-SCDMA)系統。
在一些實例中,無線多工存取通訊系統可以包括多個基地台,每個基地台同時支援針對多個通訊設備(亦稱為使用者設備(UE))的通訊。在LTE或LTE-A網路中,一或多個基地台的集合可以定義eNodeB(eNB)。在其他實例中(例如,在下一代或5G網路中),無線多工存取通訊系統可以包括與多個中央單元(CU)(例如,中央節點(CN)、存取節點控制器(ANC)等)通訊的多個分散式單元(DU)(例如,邊緣單元(EU)、邊緣節點(EN)、無線電頭端(RH)、智能無線電頭端(SRH)、發送接收點(TRP)等),其中與中央單元通訊的一或多個分散式單元的集合可以定義存取節點(例如,新無線電基地台(NR BS)、新無線電節點B(NR NB)、網路節點、5G NB、gNB等)。基地台或DU可以在下行鏈路通道(例如,用於來自基地台或去往UE的傳輸)和上行鏈路通道(例如,用於從UE到基地台或分散式單元傳輸)上與UE的集合通訊。
已經在各種電信標準中採用了該等多工存取技術以提供共用協定,該共用協定使得不同的無線設備能夠在市級、國家級、區域級以及乃至全球層面通訊。新興的電信標準的實例是新無線電(NR),例如,5G無線電存取。NR是對由第三代合作夥伴計畫(3GPP)頒佈的LTE行動服務標準的增強集合。其被設計為經由提高頻譜效率、降低成本、改進服務、利用新頻譜,以及更好地與在下行鏈路(DL)上和在上行鏈路(UL)上使用具有循環字首(CP)的OFDMA的其他開放標準結合來更好地支援行動寬頻網際網路存取,以及支援波束成形、多輸入多輸出(MIMO)天線技術和載波聚合。
然而,隨著針對行動寬頻存取的需求持續增加,存在對NR技術的進一步改進的需求。優選地,該等改進應該適用於其他多工存取技術和採用該等技術的電信標準。
本案內容的系統、方法和設備各自具有若干態樣,其中沒有單個態樣單獨地負責其所期望的屬性。在不限制由所附請求項所表達的本案內容的範圍的情況下,現在將簡要地論述一些特徵。在考慮該論述之後,特別是在閱讀了標題為「具體實施方式」的部分之後,本領域技藝人士將理解本案內容的特徵如何提供包括在無線網路中的改進的通訊的優勢。
本案內容的某些態樣提供了一種用於由無線設備進行無線通訊的方法。無線設備可以是基地台或使用者設備。該方法通常包括決定針對無線設備用於通訊的時槽配置。該方法亦包括基於該時槽配置來決定與該無線設備相關聯的相位追蹤參考信號(PT-RS)刪餘配置。該方法亦包括至少部分地基於該時槽配置和該PT-RS刪餘配置來選擇針對該無線設備的PT-RS配置。
本案內容的某些態樣提供了一種用於由無線設備進行無線通訊的裝置。該無線設備可以是基地台或使用者設備。該裝置包括用於決定針對無線設備用於通訊的時槽配置的手段;用於基於該時槽配置來決定與該無線設備相關聯的相位追蹤參考信號(PT-RS)刪餘配置的手段;及用於至少部分地基於該時槽配置和該PT-RS刪餘配置來選擇針對該無線設備的PT-RS配置的手段。
本案內容的某些態樣提供了一種用於由無線設備進行無線通訊的裝置。該無線設備可以是基地台或使用者設備。該裝置包括至少一個處理器和耦合到該至少一個處理器的記憶體。該至少一個處理器被配置為進行以下操作:決定針對無線設備用於通訊的時槽配置;基於該時槽配置來決定與該無線設備相關聯的相位追蹤參考信號(PT-RS)刪餘配置;及至少部分地基於該時槽配置和該PT-RS刪餘配置來選擇針對該無線設備的PT-RS配置。
本案內容的某些態樣提供了一種用於由無線設備進行無線通訊的裝置。該無線設備可以是基地台或使用者設備。該裝置包括至少一個處理器和耦合到該至少一個處理器的記憶體。該至少一個處理器被配置為進行以下操作:決定針對無線設備用於通訊的時槽配置;基於該時槽配置來決定與該無線設備相關聯的相位追蹤參考信號(PT-RS)刪餘配置;及至少部分地基於該時槽配置和該PT-RS刪餘配置來選擇針對該無線設備的PT-RS配置。
本案內容的某些態樣提供了一種具有用於無線通訊的、儲存在其上的電腦可執行代碼的電腦可讀取媒體。該電腦可讀取媒體通常包括用於進行以下操作的代碼:決定針對無線設備用於通訊的時槽配置;基於該時槽配置來決定與該無線設備相關聯的相位追蹤參考信號(PT-RS)刪餘配置;及至少部分地基於該時槽配置和該PT-RS刪餘配置來選擇針對該無線設備的PT-RS配置。
某些態樣提供了方法、裝置以及具有儲存在其上的、用於進行以下操作的代碼的電腦可讀取媒體:基於調變和編碼方案(MCS)來決定在時間-頻率資源的集合內的PT-RS的時域密度;基於分配給其他信號的時間-頻率資源的集合的子集來決定PT-RS刪餘配置;基於時域密度和PT-RS刪餘配置來決定PT-RS配置;及根據PT-RS配置來發送至少一個PT-RS。
為了實現前述目的和相關目的,一或多個態樣包括在下文中充分描述並在請求項中特別指出的特徵。以下描述和附圖詳細闡述了一或多個態樣的某些說明性特徵。然而,該等特徵僅指示可以在其中採用各個態樣的原理的各種方式中的一些方式,以及該描述意欲包括所有此種態樣及其均等物。
本案內容的各態樣提供了用於由UE及/或BS進行PT-RS映射的新無線電(NR)(新無線電存取技術或5G技術)的裝置、方法、處理系統和電腦可讀取媒體。
NR可以支援各種無線通訊服務,諸如以寬頻寬(例如,80 MHz以上)為目標的增強型行動寬頻(eMBB)、以高載波頻率(例如,25 GHz及更高)為目標的毫米波(mmW)、以非向後相容MTC技術為目標的大容量MTC(mMTC)及/或以超可靠低時延通訊(URLLC)為目標的關鍵任務。該等服務可以包括時延和可靠性要求。該等服務亦可以具有不同的傳輸時間間隔(TTI),以滿足各自的服務品質(QoS)要求。此外,該等服務可以共存於同一子訊框中。
NR引入了網路截割的概念。例如,網路可以具有多個截割,其可以支援不同的服務,例如,萬物互聯(IoE)、URLLC、eMBB、車輛到車輛(V2V)通訊等。截割可以被定義為完整的邏輯網路,該邏輯網路包括網路功能的集合和提供特定網路功能和網路特性所需的對應的資源。
在5G NR系統中,相位追蹤參考信號(PT-RS)可以用於補償在時間上的相位及/或頻率誤差。例如,相位雜訊可以隨著振盪器載波頻率而增加。因此,PT-RS可以在高載波頻率(例如,以25 GHz及以上為目標的mmW)處使用以減輕相位雜訊。可以在下行鏈路及/或上行鏈路中(例如,在實體下行鏈路共享通道(PDSCH)/實體上行鏈路共享通道(PUSCH)資源區塊(RB)中)排程PT-RS,以校正相位誤差並減少解碼錯誤。
然而,在一些情況下,由於與其他(例如,高優先順序)信號/通道的衝突,PT-RS可以從PT-RS配置/模式刪餘。作為一個參考實例,在用於下行鏈路的給定符號中的PT-RS可以刪餘,以與針對通道狀態資訊參考信號(CSI-RS)所分配的資源衝突。在另一參考實例中,所分配的PT-RS可能與分配給其他無線設備的時間/頻率資源(例如,迷你時槽)衝突。在此種情況下,剩餘的PT-RS密度(例如,在進行刪餘之後)可能不足以用於無線設備進行校正相位和頻率誤差。此反過來可以降低無線設備的解碼速率。
因此,本案內容的各態樣提供了用於決定PT-RS時間-頻率模式的改進的技術,以此解釋PT-RS刪餘的情況。
例如,在一些態樣中,無線設備(例如,BS、UE等)可以辨識用於通訊的時槽配置。時槽配置可以包括針對下行鏈路或上行鏈路通訊所分配的時間-頻率資源的集合。時槽配置可以針對每個符號指示資料(例如,PDSCH、PUSCH)分配、參考信號分配(例如,DMRS、CSI-RS等)或其他信號。在一些情況下,時槽配置亦可以指示PT-RS時間/頻率密度(例如,在時間/頻率資源的集合內所分配的PT-RS的數量)。
無線設備可以部分地基於時槽配置來決定所預期的PT-RS刪餘模式(或配置)。例如,無線設備可以辨識可用於分配PT-RS的資源是否與針對另一信號或另一無線設備所分配的資源衝突或重疊。無線設備可以基於所預期的PT-RS刪餘模式和時槽配置來選擇PT-RS模式(或配置)。以該方式,本文所提供的技術賦能無線設備獲得足夠的相位追蹤參考,用於即使在存在多個刪餘的PT-RS的情況下亦校正相位/頻率誤差。
在下文中參考附圖更充分地描述了本案內容的各個態樣。然而,本案內容可以以許多不同的形式來體現,以及不應該被解釋為限於本案全部內容所提供的任何特定的結構或功能。更確切而言,提供該等態樣使得本案內容透徹和完整,以及將本案內容的範圍充分傳達至本領域技藝人士。基於本文中的教導,本領域技藝人士應當理解的是,無論是獨立於本案內容的任何其他態樣來實現,還是與本案內容的任何其他態樣相結合來實現,本案內容的範圍意欲覆蓋本文所揭示的公開內容的任何態樣。例如,可以使用本文中所陳述的任何數量的態樣來實現裝置,或者實踐方法。此外,本案內容的範圍意欲覆蓋使用除了本文所陳述的本案內容的各個態樣之外的或者不同於本文所陳述的本案內容的各個態樣的其他結構、功能或者結構和功能來實踐的此種裝置或者方法。應該理解的是,本文所揭示的本案內容的任何態樣可以經由請求項的一或多個元素來體現。
本文使用詞語「示例性」來意指「用作示例、實例或說明」。本文中被描述為「示例性」的任何態樣不必被解釋為比其他態樣優選或更有優勢。
儘管本文中描述了特定的態樣,但對該等態樣的許多變形和置換落入本案內容的範圍內。儘管提到了優選態樣的一些益處和優點,但是本案內容的範圍並不意欲限於特定的利益、用途或目的。更確切而言,本案內容的各態樣意欲廣泛地適用於不同的無線技術、系統配置、網路和傳輸協定,其中的一些在圖式中以及在優選態樣的如下描述中經由示例的方式加以說明。具體的描述和附圖對於本案內容僅僅是說明性的而不是對本案內容的限制,經由所附的專利申請範圍及其同等內容來限定本案內容的範圍。
本文所描述的技術可以用於各種無線通訊網路,諸如CDMA、TDMA、FDMA、OFDMA、SC-FDMA和其他網路。術語「網路」和「系統」經常互換使用。CDMA網路可以實現諸如通用陸地無線電存取(UTRA)、cdma2000等的無線技術。UTRA包括寬頻CDMA(WCDMA)、時分同步CDMA(TD-SCDMA)和CDMA的其他變形。cdma2000涵蓋IS-2000、IS-95和IS-856標準。TDMA網路可以實現諸如行動通訊全球系統(GSM)的無線電技術。OFDMA網路可以實現諸如進化的UTRA(E-UTRA)、超行動寬頻(UMB)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、快閃OFDM®等的無線電技術。UTRA和E-UTRA是通用行動電信系統(UMTS)的部分。在分頻雙工(FDD)和分時雙工(TDD)兩者中的3GPP長期進化(LTE)和改進的LTE(LTE-A)是使用E-UTRA的UMTS的新發佈版本,該E-UTRA在上行鏈路上採用OFDMA以及在下行鏈路上採用SC-FDMA。UTRA、E-UTRA、UMTS、LTE、LTE-A和GSM是在來自名稱為「第三代合作夥伴計畫」(3GPP)的組織的文件中描述的。cdma2000和UMB是在來自名稱為「第三代合作夥伴計畫2」(3GPP2)的組織的文件中描述的。本文中所描述的技術可以用於上文提及的無線網路和無線電技術以及其他無線網路和無線電技術,諸如5G nextgen/NR網路。 示例性無線通訊系統
圖1圖示示例性無線網路100(諸如新無線電(NR)或5G網路),在其中可以執行本案內容的各態樣,例如,用於決定針對無線設備用於校正相位/頻率誤差的PT-RS模式(配置)。UE 120、BS 110或其他實體被配置為決定PT-RS模式(配置)。在一些情況下,網路100可以是多截割網路,其中每個截割被定義為附隨在一起以滿足特定用例或商業模型的要求的充分配置的網路功能、網路應用和底層雲基礎設施的組合。
如在圖1中所示出的,無線通訊網路100可以包括多個基地台(BS)110和其他網路實體。BS可以是與使用者設備(UE)通訊的站。每個BS 110可以為特定地理區域提供通訊覆蓋。在3GPP中,根據使用術語的上下文,術語「細胞」可以指的是節點B(NB)的覆蓋區域及/或服務該覆蓋區域的NB子系統。在NR系統中,術語「細胞」和下一代節點B(gNB或gNodeB)、NR BS、5G NB、存取點(AP)或發送接收點(TRP)可以是可互換的。在一些實例中,細胞可能不一定是固定的,以及細胞的地理區域可以根據移動BS的位置來移動。在一些實例中,基地台可以經由各種類型的回載介面(諸如直接實體連接、無線連接、虛擬網路等)使用任何適當的傳輸網路,彼此互連及/或互連到在無線網路100中的一或多個其他基地台或網路節點(未圖示)。
通常,在給定的地理區域中可以部署任意數量的無線網路。每一個無線網路可以支援特定的無線電存取技術(RAT),以及可以在一或多個頻率上操作。RAT亦可以被稱作無線電技術、空中介面等。頻率亦可以被稱作為載波、次載波、頻率通道、音調、次頻帶等。每個頻率可以在給定的地理區域中支援單個RAT,以便於避免在不同的RAT的無線網路之間的干擾。在一些情況下,可以部署NR或者5G RAT網路。
BS可以為巨集細胞、微微細胞、毫微微細胞及/或其他類型的細胞提供通訊覆蓋。巨集細胞可以覆蓋相對大的地理區域(例如,半徑為數公里),以及可以允許由具有服務訂閱的UE進行的不受限制的存取。微微細胞可以覆蓋相對小的地理區域,以及可以允許由具有服務訂閱的UE進行的不受限制的存取。毫微微細胞可以覆蓋相對小的地理區域(例如,住宅),以及可以允許由具有與毫微微細胞的關聯的UE進行的受限制的存取(例如,在封閉使用者組(CSG)中的UE,在住宅中的使用者的UE等)。用於巨集細胞的BS可以稱為巨集BS。用於微微細胞的BS可以被稱為微微BS。用於毫微微細胞的BS可以被稱為毫微微BS或家庭BS。在圖1所示出的實例中,BS 110a、110b和110c可以分別是用於巨集細胞102a、102b和102c的巨集BS。BS 110x可以是用於微微細胞102x的微微BS。BS 110y和110z可以分別是用於毫微微細胞102y和102z的毫微微BS。BS可以支援一或多個(例如,三個)細胞。
無線通訊網路100亦可以包括中繼站。中繼站是接收來自上游站(例如,BS或UE)的對資料及/或其他資訊的傳輸以及向下游站(例如,UE或BS)發送對資料及/或其他資訊的傳輸的站。中繼站亦可以是對針對其他UE的傳輸進行中繼的UE。在圖1所示出的實例中,中繼站110r可以與BS 110a和UE 120r通訊,以便促進在BS 110a與UE 120r之間的通訊。中繼站亦可以被稱為中繼BS、中繼器等。
無線通訊網路100可以是包括不同類型的BS的異質網路,例如,巨集BS、微微BS、毫微微BS、中繼器等。該等不同類型的BS可以具有不同的發射功率位準、不同的覆蓋區域以及對在無線通訊網路100中的干擾的不同影響。例如,巨集BS可以具有高發射功率位準(例如,20瓦),而微微BS、毫微微BS和中繼器可以具有較低的發射功率位準(例如,1瓦)。
無線通訊網路100可以支援同步操作或非同步操作。對於同步操作,BS可以具有類似的訊框時序,以及來自不同BS的傳輸可以在時間上近似對準。對於非同步操作,BS可以具有不同的訊框時序,以及來自不同BS的傳輸可能不會在時間上對準。本文所描述的技術可以用於同步操作和非同步操作兩者。
網路控制器130可以耦合到一組BS,以及提供針對該等BS的協調和控制。網路控制器130可以經由回載與BS 110通訊。BS 110亦可以彼此通訊,經由無線或有線回載來(例如,直接地或間接地)進行通訊。
UE 120(例如,120x,120y等)可以是遍及無線通訊網路100來散佈的,以及每個UE可以是固定的或者行動的。UE亦可以被稱為行動站、終端、存取終端、使用者手段、站、使用者駐地設備(CPE)、蜂巢式電話、智慧型電話、個人數位助理(PDA)、無線數據機、無線通訊設備、手持設備、膝上型電腦、無線電話、無線區域迴路(WLL)站、平板電腦、相機、遊戲裝置、小筆電、智慧型電腦、超極本、家電、醫療設備或醫療裝置、生物計量感測器/設備、可穿戴設備(諸如智慧手錶、智慧服裝、智慧眼鏡、智慧腕帶、智慧珠寶(例如,智慧戒指、智慧手環等)、娛樂設備(例如,音樂設備、視訊設備、衛星無線電等)、車輛的部件或感測器、智慧型儀器表/感測器、工業製造設備、全球定位系統設備,或被配置為經由無線或有線媒體進行通訊的任何其他適當的設備。一些UE可以被認為是機器類型通訊(MTC)設備或進化型MTC(eMTC)設備。例如,MTC和eMTC UE包括可以與BS、另一設備(例如,遠端設備)或某種其他實體進行通訊的機器人、無人機、遠端設備、感測器、儀錶、監視器、位置標籤等。無線節點可以經由有線或無線通訊鏈路提供例如針對網路(例如,諸如網際網路或蜂巢網路的廣域網路)的連接或到網路的連接。一些UE可以被認為是物聯網路(IoT)設備,其可以是窄頻IoT(NB-IoT)設備。
某些無線網路(例如,LTE)在下行鏈路上利用正交分頻多工(OFDM)以及在上行鏈路上利用單載波分頻多工(SC-FDM)。OFDM和SC-FDM將系統頻寬劃分成多個(K個)正交次載波,其通常亦被稱為音調、頻段等。每個次載波可以是利用資料來調變的。通常,調變符號在頻域中利用OFDM來發送,以及在時域中利用SC-FDM來發送。在相鄰次載波之間的間隔可以是固定的,以及次載波的總數(K)可以依賴於系統頻寬。例如,次載波的間隔可以是15 kHz,以及最小的資源配置(稱為「資源區塊」(RB))可以是12個次載波(或180 kHz)。因此,對於1.25、2.5、5、10或20兆赫(MHz)的系統頻寬,標稱的快速傅立葉轉換(FFT)大小可以分別等於128、256、512、1024或2048。系統頻寬亦可以被劃分成次頻帶。例如,次頻帶可以覆蓋1.08 MHz(例如,6個資源區塊),以及對於1.25、2.5、5、10或20 MHz的系統頻寬,可以分別有1、2、4、8或16個次頻帶。
儘管本文所描述的實例的各態樣可以與LTE技術相關聯,但是本案內容的各態樣可以適用於其他無線通訊系統,諸如5G/NR。
NR可以在上行鏈路和下行鏈路上利用具有CP的OFDM,以及包括使用TDD以支援半雙工操作。可以支援波束成形並且可以動態配置波束方向。亦可以支援具有預編碼的MIMO傳輸。在DL中的MIMO配置可以支援多達8個發射天線,其中多層DL傳輸多達8個串流,以及每UE多達2個串流。可以支援具有每UE多達2個串流的多層傳輸。可以利用多達8個服務細胞來支援對多個細胞的聚合。
在一些實例中,可以排程對空中介面的存取。排程實體(例如,BS)分配用於在其服務區域或細胞內的在一些或所有設備和裝置之間進行通訊的資源。排程實體可以負責為一或多個從屬實體排程、分配、重新配置和釋放資源。亦即,對於被排程的通訊,從屬實體利用由排程實體所分配的資源。基地台不是可以用作排程實體的唯一實體。在一些實例中,UE可以用作排程實體,以及可以排程針對一或多個從屬實體(例如,一或多個其他UE)的資源,以及其他UE可以利用由UE排程的資源進行無線通訊。在一些實例中,UE可以用作在同級間(P2P)網路中及/或在網狀網路中的排程實體。在網狀網路實例中,除了與排程實體通訊之外,UE亦可以彼此直接通訊。
在一些情況下,兩個或更多個從屬實體(例如,UE)可以使用副鏈路信號與彼此通訊。此種副鏈路通訊的實際應用可以包括公共安全、近距服務、UE到網路中繼、車輛到車輛(V2V)通訊、萬物互聯(IoE)通訊、IoT通訊、任務關鍵網格及/或各種其他適當的應用。通常,副鏈路信號可以指從一個從屬實體(例如,UE1)傳送到另一從屬實體(例如,UE2)的信號,而不經由排程實體(例如,UE或BS)中繼該通訊,即使該排程實體亦可以用於排程及/或控制目的。在一些實例中,可以使用許可頻譜來傳送副鏈路信號(與通常使用免許可頻譜的無線區域網路不同)。
UE可以在各種無線電資源配置中操作,包括與使用專用資源集(例如,無線電資源控制(RRC)專用狀態等)發送引導頻相關聯的配置,或與使用公共資源集(例如,RRC公共狀態等)發送引導頻相關聯的配置。當在RRC專用狀態下操作時,UE可以選擇專用資源集用於向網路發送引導頻信號。當在RRC公共狀態下操作時,UE可以選擇公共資源集用於向網路發送引導頻信號。在任一種情況下,由UE所發送的引導頻信號可以由一或多個網路存取設備(諸如AN或DU,或其部分)來接收。每個接收方網路存取設備可以被配置為接收和量測在公共資源集上所發送的引導頻信號,以及亦接收和量測在分配給UE的專用資源集上所發送的引導頻信號,其中網路存取設備是針對UE的進行監測的、網路存取設備集合中的成員。接收方網路存取設備或接收方網路存取設備向其發送對引導頻信號的量測的CU中的一者或多者可以使用量測來辨識針對UE的服務細胞,或者發起對針對UE中的一或多個UE的服務細胞的改變。
在圖1中,具有雙箭頭的實線表示在UE與服務BS之間的期望的傳輸,該服務BS是被指定為在下行鏈路及/或上行鏈路上為UE服務的BS。具有雙箭頭的虛線表示在UE與BS之間的干擾傳輸。
圖2圖示可以在圖1中所示出的無線通訊網路100中實現的分散式無線電存取網路(RAN)200的示例性邏輯架構。5G存取節點206可以包括存取節點控制器(ANC)202。ANC 202可以是分散式RAN 200的中央單元(CU)。到下一代核心網路(NG-CN)204的回載介面可以終止於ANC 202。到相鄰的下一代存取節點(NG-AN)210的回載介面可以終止於ANC 202。 ANC 202可以包括一或多個TRP 208(例如,細胞、BS、gNB等)。
TRP 208可以是分散式單元(DU)。TRP 208可以連接到單個ANC(ANC 202)或者多於一個的ANC(未圖示)。例如,對於RAN共享、無線電即服務(RaaS)和服務特定AND部署,TRP 208可以連接到多於一個ANC。每個TRP 208可以包括一或多個天線端口。TRP 208可以被配置為單獨地(例如,動態選擇)或聯合地(例如,聯合傳輸)為去往UE的訊務來服務。
分散式RAN 200的邏輯架構可以支援跨不同部署類型的前傳解決方案。例如,該架構可以是基於發送網路能力(例如,頻寬,時延及/或信號干擾)的。
分散式RAN 200的邏輯架構可以與LTE共享特徵及/或部件。例如,下一代存取節點(NG-AN)210可以支援與NR的雙連接,以及可以共享用於LTE和NR的共同前傳。
分散式RAN 200的邏輯架構可以(例如,經由ANC 202在TRP內及/或跨越TRP)實現在TRP 208之間和在TRP 208之中的協調。可以不使用TRP間介面。
邏輯功能可以動態分佈於分散式RAN 200的邏輯架構中。如將參考圖5更詳細地描述的,無線電資源控制(RRC)層、封包資料彙聚協定(PDCP)層、無線電鏈路控制(RLC)層、媒體存取控制(MAC)層和實體(PHY)層可以適配地置於DU(例如,TRP 208)或CU(例如,ANC 202)處。
圖3根據本案內容的各態樣示出分散式RAN 300的示例性實體架構。集中式核心網路單元(C-CU)302可以主管核心網路功能。C-CU 302可以是集中地部署的。C-CU 302功能可以被卸載(例如,至改進的無線服務(AWS)),以嘗試處理峰值容量。
集中式RAN單元(C-RU)304可以主管一或多個ANC功能。可選地,C-RU 304可以本端主管核心網路功能。C-RU 304可以具有分散式部署。C-RU 304可以接近網路邊緣。
DU 306可以主管一或多個TRP(邊緣節點(EN)、邊緣單元(EU)、無線電頭端(RH)、智能無線電頭端(SRH)等)。DU可以位於具有射頻(RF)功能的網路的邊緣處。
圖4圖示(如在圖1中所示出的)BS 110和UE 120的示例性部件,其可以用於實現本案內容的各態樣。例如,UE 120的天線452、處理器466、458、464及/或控制器/處理器480及/或BS 110的天線434、處理器420、430、438及/或控制器/處理器440可以用於執行本文所描述的用於PT-RS映射的技術和方法。
在基地台110處,發送處理器420可以從資料來源412接收資料,以及從控制器/處理器440接收控制資訊。控制資訊可以用於實體廣播通道(PBCH)、實體控制格式指示符通道(PCFICH)、實體混合ARQ指示符通道(PHICH)、實體下行鏈路控制通道(PDCCH)、組公共PDCCH(GC PDCCH)等。資料可以用於實體下行鏈路共享通道(PDSCH)等。處理器420可以處理(例如,編碼和符號映射)資料和控制資訊以分別獲得資料符號和控制符號。處理器420亦可以產生參考符號,例如,用於主要同步信號(PSS)、輔同步信號(SSS)和細胞特定參考信號(CRS)。若適用的話,發送(TX)多輸入多輸出(MIMO)處理器430可以對資料符號、控制符號及/或參考符號執行空間處理(例如,預編碼),以及可以向調變器(MOD)432a至432t提供輸出符號串流。每個調變器432可以處理各自的輸出符號串流(例如,用於OFDM等)以獲得輸出取樣串流。每個調變器可以進一步處理(例如,轉換成模擬、放大、濾波和升頻轉換)輸出取樣串流以獲得下行鏈路信號。來自調變器432a至432t的下行鏈路信號可以是分別經由天線434a至434t來發送的。
在UE 120處,天線452a至452r可以接收來自基地台110的下行鏈路信號,以及可以分別向在收發機中的解調器(DEMOD)454a至454r提供所接收的信號。每個解調器454可以對各自所接收的信號進行調節(例如,濾波、放大、降頻轉換和數位化)以獲得輸入樣本。每個解調器可以進一步處理輸入樣本(例如,用於OFDM等)以獲得所接收的符號。MIMO偵測器456可以從所有解調器454a至454r獲得所接收的符號,若適用的話,對所接收的符號執行MIMO偵測,以及提供偵測到的符號。接收處理器458可以處理(例如,解調、解交錯和解碼)偵測到的符號,將針對UE 120的經解碼的資料提供給資料槽460,以及將經解碼的控制資訊提供給控制器/處理器480。
在上行鏈路上,在UE 120處,發送處理器464可以接收和處理來自資料來源462的資料(例如,用於實體上行鏈路共享通道(PUSCH))以及來自控制器/處理器480的控制資訊(例如,用於實體上行鏈路控制通道(PUCCH))。發送處理器464亦可以產生針對參考信號的參考符號(例如,用於探測參考信號(SRS))。若適用的話,來自發送處理器464的符號可以由TX MIMO處理器466預編碼,由在收發機中的解調器454a至454r(例如,用於SC-FDM等)進一步處理,以及發送給基地台110。在BS 110處,來自UE 120的上行鏈路信號可以由天線434接收,由調變器432處理,若適用的話,由MIMO偵測器436偵測,以及由接收處理器438進一步處理,以獲得由UE 120發送的經解碼的資料和控制資訊。接收處理器438可以將經解碼的資料提供給資料槽439以及將經解碼的控制資訊提供給控制器/處理器440。
控制器/處理器440和480可以分別指導BS 110和UE 120處的操作。在BS 110處的處理器440及/或其他處理器和模組可以執行或指導用於本文所描述的技術的程序的執行。記憶體442和482可以分別儲存用於BS 110和UE 120的資料和程式碼。排程器444可以排程UE用於在下行鏈路及/或上行鏈路上的資料傳輸。
圖5圖示根據本案內容的各態樣示出用於實現通訊協定堆疊的實例的圖500。所示出的通訊協定堆疊可以由在無線通訊系統(諸如5G系統(例如,支援基於上行鏈路的行動性的系統))中進行操作的設備來實現。圖500圖示包括RRC層510、PDCP層515、RLC層520、MAC層525和PHY層530的通訊協定堆疊。在各種實例中,協定堆疊的層可以被實現為軟體的單獨模組、處理器或ASIC的部分、由通訊鏈路連接的非並置設備的部分或其各種組合。例如,並置的和非並置的實現方式可以用於針對網路存取設備(例如,AN、CU及/或DU)或UE的協定堆疊中。
第一選項505-a示出協定堆疊的拆分實現方式,其中協定堆疊的實現方式是在集中式網路存取設備(例如,在圖2中的ANC 202)與分散式網路存取設備(例如,在圖2中的DU 208)之間進行拆分的。在第一選項505-a中,RRC層510和PDCP層515可以由中央單元來實現,以及RLC層520、MAC層525和PHY層530可以由DU來實現。在各種實例中,CU和DU可以是並置或非並置的。第一選項505-a可能在巨集細胞、微細胞或微微細胞部署中是有用的。
第二選項505-b示出協定堆疊的統一實現方式,其中協定堆疊是在單個網路存取設備中實現的。在第二選項中,RRC層510、PDCP層515、RLC層520、MAC層525和PHY層530可以各自由AN來實現。第二選項505-b可能在毫微微細胞部署中是有用的。
不管網路存取設備是否實現部分或全部協定堆疊,UE皆可以實現如在505-c中所示出的整個協定堆疊(例如,RRC層510、PDCP層515、RLC層520、MAC層525和PHY層530)。
在LTE中,基本傳輸時間間隔(TTI)或封包持續時間是1 ms子訊框。在NR中,子訊框仍然是1 ms,但是基本TTI被稱為時槽。子訊框包含可變數量的時槽(例如,1、2、4、8、16 ...時槽),此取決於次載波間隔。NR RB是12個連續頻率次載波。NR可以支援15 KHz的基本次載波間隔,以及可以相對於基本次載波間隔來定義其他次載波間隔,例如,30 kHz、60 kHz、120 kHz、240 kHz等。符號和時槽長度與次載波間隔成比例。CP長度亦取決於次載波間隔。
圖6是示出用於NR的訊框格式600的實例的圖。可以將下行鏈路和上行鏈路中的每一者的傳輸等時線劃分為無線電訊框的單元。每個無線電訊框可以具有預定的持續時間(例如,10 ms),以及可以被劃分為10個子訊框,每個子訊框為1 ms,其索引為0到9。每個子訊框可以包括取決於次載波間隔的可變數量的時槽。每個時槽可以包括可變數量的符號週期(例如,7或14個符號),此取決於次載波間隔。可以為在每個時槽中的符號週期分配索引。可以稱為子時槽結構的迷你時槽是指具有小於時槽(例如,2、3或4個符號)的持續時間的發送時間間隔。
在時槽之每一者符號可以指示用於資料傳輸的鏈路方向(例如,DL、UL或靈活的),以及可以動態地切換針對每個子訊框的鏈路方向。鏈路方向可以基於時槽格式。每個時槽可以包括DL/UL資料以及DL/UL控制資訊。
在NR中,發送同步信號(SS)塊。SS塊包括PSS、SSS和兩個符號PBCH。SS塊可以在固定的時槽位置中來發送,諸如在圖6中所示出的符號0-3。PSS和SSS可以由UE用於細胞搜尋和獲取。例如,在SS塊中的通道中的一或多個通道可以用於量測。此種量測可以用於各種目的,諸如無線鏈路管理(RLM)、波束管理等。UE可以量測細胞品質並以量測報告的形式報告回品質,其可以由基地台用於波束管理和其他目的。PSS可以提供半訊框時序,SS可以提供CP長度和訊框時序。PSS和SSS可以提供細胞標識。PBCH攜帶一些基本系統資訊,諸如下行鏈路系統頻寬、在無線電訊框內的時序資訊、SS短脈衝集週期、系統訊框號等。 示例性PT-RS時域符號映射
如所指出的,5G NR系統可以使無線設備能夠使用PT-RS來及時追蹤和校正相位和頻率誤差。具體地,此種PT-RS可以在(例如,針對下行鏈路的)PDSCH及/或(例如,針對上行鏈路的)PUSCH資源區塊中來排程,以校正相位誤差並減少解碼錯誤。
圖7A根據本案內容的某些態樣示出PT-RS時間-頻率資源模式的一個參考實例。在頻域(y軸)中,每個PT-RS可以跨越被排程的PDSCH資源區塊(RB)來分佈。如在圖7A中所示出的,PT-RS包括在每隔一個RB中(例如,從圖7A的頂部開始,在每個符號(x軸)中,PT-RS包括在第二和第四RB中)。每個PT-RS可以每1/2/4個RB佔用一個資源元素(RE),其中1個RB包含12個音調或RE。在時域中,PT-RS在時槽內的PDSCH/PUSCH符號內可以是連續的或不連續的。例如,圖7A圖示PT-RS跨越五個OFDM符號是連續的參考實例。
圖7B根據本案內容的某些態樣示出PT-RS時間-頻率資源模式的另一參考實例。與圖7A相比,在圖7B中,PT-RS跨越五個OFDM符號在時間上是不連續的。亦即,從圖7A的左側開始,PT-RS包括在第一OFDM符號、第三OFDM符號和第五OFDM符號中。
在5G NR系統中,PT-RS的時域密度可以經由調變和編碼方案(MCS)來決定。基於MCS,PT-RS的時域密度可以是在時槽之每一者符號(例如,如在圖7A中所示出的)、在時槽中的每兩個符號(例如,如在圖7B中所示出的)、在時槽中的每四個符號(未圖示)等。通常,與較低的MCS相比,對於較高的MCS,足夠用於校正相位/頻率誤差的PT-RS的時域密度(例如,PT-RS的時域密度)可能較大。例如,在每個符號中的PT-RS(例如,如在圖87A中所示出的)可以提供大量的相位追蹤精度,但同時可能與大的管理負擔相關聯。另一態樣,某些低MCS資料可能不需要高精度相位追蹤來用於解碼,以及因此,在(例如,如在圖7B中的)每兩個符號中的PT-RS或某種其他較低時域PT-RS密度可能是足夠的。
另外,5G NR可以使無線設備能夠使用其他參考信號進行相位追蹤。在一個參考實例中,解調參考信號(DMRS)可以用於相位追蹤。在此種情況下,PT-RS可能不在DMRS符號中被分頻多工(例如,出現)。在一些態樣中,若針對PT-RS的時域密度是在每L個符號中的PT-RS,則跟隨DMRS的(L-1)個符號可能不與PT-RS映射。
在一些情況下,部分由於與其他信號/通道及/或用於其他使用者的資源的衝突,5G NR系統可以根據給定的PT-RS時間-頻率模式對一或多個PT-RS進行刪餘。例如,若相應的PUSCH/PDSCH RB與高優先順序信號/通道衝突,則可以對PT-RS進行刪餘。此種高優先順序信號的實例可以包括(例如,在PUSCH中的)探測參考信號和針對PDCCH、CSI-RS、SSB-PBCH等所配置的(例如,在PDSCH中的)一或多個控制資源集(核心集)。另外地,或者替代地,若用於其他使用者的迷你時槽的符號/RB的子集在時間上導致(例如,針對PT-RS)不連續的PDSCH/PUSCH分配,則可以對PT-RS進行刪餘。
圖8根據本案內容的某些態樣示出根據PT-RS時間-頻率模式來對PT-RS刪餘的情況的參考實例。在該實例中,為PT-RS分配跨越(例如,從圖8的頂部)第二行RB在每個OFDM符號中的資源。在圖8中的RB可以是用於PUSCH/PDSCH的RB。由於與分配給其他使用者的其他高優先順序信號/資源衝突,所以在RB2和RB3中對PT-RS進行刪餘,如虛線所示。
在用於將PT-RS映射到符號的5G NR中的當前技術通常不考慮如何基於與其他信號/使用者的衝突來對PT-RS刪餘。例如,當前技術首先通常基於假設不存在衝突的時域密度來分配PT-RS符號,以及隨後若存在任何衝突,則對PT-RS符號進行刪餘。然而,以此種方式執行PT-RS映射會降低無線設備的解碼效能。例如,剩餘的未刪餘的PT-RS密度可能低於預期值(例如,在一些情況下可以基於MCS的預先定義的臨限值),此可能使得無線設備具有較低的解碼速率。
圖9根據本案內容的某些態樣示出剩餘的未刪餘的PT-RS可能如何低於預定PT-RS密度的參考實例。在該實例中,預定的PT-RS密度是每2個符號(例如,L = 2)。根據當前規則,假設不存在CSI-RS或其他使用者的迷你時槽和相應的刪餘,則將PT-RS分配給第三和第五OFDM符號。然而,如所示出的,由於在(從圖9的左側)第三OFDM符號中的CSI-RS,以及在(從左側)第五和第六OFDM符號中的另一使用者的迷你時槽,無線設備不能夠獲得在2個符號內的(例如,來自DMRS的)相位追蹤參考。
因此,可能期望提供用於部分地基於預期的PT-RS刪餘配置來決定針對PT-RS的時間-頻率模式的技術,以試圖避免PT-RS密度低於預先定義的臨限值,以及避免無線設備的解碼速率不足。
圖10圖示用於無線通訊的示例性操作1000。根據某些態樣,操作1000可以例如由在基地台或使用者設備內的電路系統來執行,以用於決定PT-RS時間-頻率模式。圖4的控制器/處理器440和480可以用作用於本文所描述的操作1000的示例性電路系統。
操作1000可以在1002處開始,其中無線設備(例如,BS、UE等)決定用於通訊的時槽配置。時槽配置可以包括以下各項中的至少一項:用於一或多個子訊框的通道分配、參考信號配置,或在時間-頻率資源的集合內的PT-RS密度。無線設備可以基於信號傳遞(例如,由UE所接收的下行鏈路控制資訊(DCI))、來自網路的配置/信號傳遞、無線設備的能力等來決定時槽配置。
在1004處,無線設備基於時槽配置來決定與無線設備相關聯的PT-RS刪餘配置。在1006處,無線設備至少部分地基於該時槽配置和該PT-RS刪餘配置來選擇針對該無線設備的PT-RS配置。在一些態樣中,無線設備可以基於所選擇的PT-RS配置來接收一或多個PT-RS及/或基於所選擇的PT-RS配置來發送一或多個PT-RS。UE或BS可以基於所選擇的PT-RS配置來接收PT-RS。
在一些態樣中,時槽配置可以包括針對每個符號的分配(例如,是否將資料、DMRS、其他信號分配給符號),PT-RS時間/頻率密度等。在一些態樣中,無線設備可以經由根據時槽配置決定由於與分配給另一信號及/或另一無線設備的時間或頻率資源中的至少一者的衝突而預期要對PT-RS刪餘的一或多個符號,來決定PT-RS刪餘配置。例如,刪餘可能是由於與在核心集中所配置的PDCCH、針對其他使用者所配置的迷你時槽、CSI-RS、同步信號傳遞(例如,SSB-PBCH)、SRS等的衝突。在一些情況下,潛在的PT-RS刪餘可以是基於來自另一設備的信號傳遞(例如,RRC信號傳遞)的。
在一些態樣中,刪餘可能是由於多個分離的迷你時槽(例如,在時間上不連續)被排程用於相同的無線設備並且與相同的DMRS埠和PT-RS埠聚合的情況。亦即,決定PT-RS刪餘配置可以包括根據時槽配置決定將在時槽中的非連續符號分配給無線設備,以及決定其PT-RS預期要刪餘或不存在於在時槽中的未被分配的符號中。如在圖11中所示出的,例如,迷你時槽1和迷你時槽2是共享相同的DMRS/PT-RS端口的聚合迷你時槽。然而,因為該兩個迷你時槽在時間上由其他使用者的迷你時槽分開,所以無線設備可以對分配給在迷你時槽1和迷你時槽2內的資源的PT-RS進行刪餘。
在一些態樣中,若無線設備決定(在符號中)剩餘的PT-RS音調的數量低於臨限值及/或與將引起刪餘的高優先順序信號/通道衝突的資料RB的數量高於臨限值,則無線設備可以避免將PT-RS映射到此種符號,以及可以考慮將PT-RS移動到另一符號(例如,跟隨的符號或在分段引起刪餘之後的第一符號)。舉例而言,假設PT-RS出現在每L個符號中,若資料符號在先前的L-1個符號(或之前及/或跟隨的L-1個符號)中沒有相位追蹤參考,則無線設備可以將該資料符號與PT-RS進行映射。
圖12根據本案內容的某些態樣示出,當滿足某些條件時,在將PT-RS移動到另一符號之後的PT-RS模式/配置的參考實例。與在圖9中的PT-RS模式相比較,在圖12中的PT-RS模式包括在(從圖9的左側開始的)第四和第七OFDM符號中的PT-RS。
仍然參考圖12,在一些態樣中,若無線設備預測(例如,基於時槽配置)在符號中與引起衝突的其他信號重疊的RB的數量將大於X RB及/或在刪餘之後剩餘的PT-RS音調的數量將小於Y PT-RS音調,則無線設備可能不分配在該符號中的PT-RS。在一些態樣中,X和Y的值可以是預先定義的、根據標準來決定的、經由來自另一無線設備(例如,來自BS、網路等)的信號傳遞來指示的等。在一些態樣中,X可以等於在符號內被排程的總頻寬,以及Y可以等於1。另外地,若無線設備決定滿足該等條件中的任何一個條件,則無線設備可以將PT-RS移動到稍後合格的資料符號。稍後合格的資料符號可以是此種資料符號:在其中與引起衝突的其他信號重疊的RB的數量小於或等於X RB及/或在刪餘之後剩餘的PT-RS音調的數量大於或等於Y PT-RS音調。
另外地或替代地,在一些態樣中,無線設備可以在一或多個符號內改變PT-RS頻域模式。當刪餘導致剩餘的PT-RS的數量不足以進行相位追蹤時,無線設備可以改變PT-RS頻域模式。圖13A圖示刪餘可能如何導致用於可靠相位追蹤的剩餘PT-RS的數量不足的參考實例。如在圖13A中所示出的,在刪餘之後,在第三OFDM符號和第五OFDM符號中可能僅存在單個PT-RS。在此種情況下,無線設備可以經由分配在其中預期要對PT-RS刪餘的符號之每一者符號中的一或多個另外的PT-RS來選擇PT-RS配置。
圖13B根據本案內容的某些態樣示出,在增加PT-RS頻域密度之後的PT-RS模式/配置的參考實例。與在圖13A中的PT-RS模式相比較,在圖13B中的PT-RS模式包括在(從圖13B的左側開始的)第三和第五OFDM符號中的另外的PT-RS。(符號的)更新的頻域密度可以由不與高優先順序信號/其他使用者衝突的RB數量和/位置來決定。在此種情況下,若衝突的RB位置不同,則PT-RS音調位置可能從符號到符號是不同的。例如,無線設備可以基於不與在符號中分配給另一信號或分配給另一無線設備的頻率資源衝突的頻率資源的量,來(例如,從符號到符號)選擇符號的PT-RS頻域密度。當沒有衝突的剩餘的RB的數量減少(例如,低於臨限值)時,可以增加頻域密度。
另外地或替代地,在一些態樣中,無線設備可以將潛在的刪餘的PT-RS音調移位到另一位置。亦即,無線設備可以在預期要對PT-RS刪餘的一或多個符號中的每一個符號中,移位針對PT-RS所分配的頻率資源。經移位的音調的頻率模式可以是基於不引起衝突的資料RB的數量及/或位置的。
圖14根據本案內容的某些態樣示出,在移位一或多個潛在的刪餘的PT-RS音調之後的PT-RS模式/配置的參考實例。與在圖13A中的PT-RS模式相比較,在圖14中的PT-RS模式將在第三和第五OFDM符號中的刪餘的PT-RS移位到在(從圖13B的左側開始的)第三和第五OFDM符號中的每一者中的衝突的RB下方的RB。
在一些態樣中,若無線設備不能在第一符號之前在一或多個第二符號中獲得相位追蹤參考,則無線設備可以經由將至少一個PT-RS分配給第一符號來決定PT-RS配置。第二符號的數量可以是基於PT-RS時域密度的。作為一個參考實例,若無線設備不能從先前的(L-1)個符號獲得相位追蹤參考,則資料符號可以與PT-RS映射,其中1/L是PT-RS時間密度,亦即,PT-RS每L個符號出現一次。
在一些態樣中,若無線設備不能在第一符號之前在一或多個第二符號中獲得相位追蹤參考,以及無線設備決定其將不能在第一符號之後的一或多個第三符號中獲得相位追蹤參考,則無線設備可以經由將至少一個PT-RS分配給第一符號來決定PT-RS配置。第二符號的數量和第三符號的數量可以是基於PT-RS時域密度的。作為一個參考實例,若無線設備不能從先前/隨後的(L-1)個符號獲得相位追蹤參考,則資料符號可以與PT-RS映射,其中1/L是PT-RS時間密度,亦即,PT-RS每L個符號出現一次。
根據各態樣,UE或BS基於調變和編碼方案(MCS)來決定在時間-頻率資源的集合內的PT-RS的時域密度。UE或BS基於分配給其他信號的時間-頻率資源的集合的子集來決定PT-RS刪餘配置。UE或BS基於時域密度和PT-RS刪餘配置來決定PT-RS配置。UE或BS根據PT-RS配置發送至少一個PT-RS。
圖15圖示通訊設備1500,該通訊設備1500可以包括被配置為執行用於本文所揭示的技術的操作(諸如在圖10中所示出的操作)和本文所描述的且在附圖中所示出的其他態樣的(例如,與功能模組部件相對應的)各種部件。通訊設備1500包括耦合到收發機1508的處理系統1502。收發機1508被配置為經由天線1510發送和接收用於通訊設備1500的信號,諸如本文所描述的各種信號。處理系統1502可以被配置為執行用於通訊設備1500的處理功能,包括處理由通訊設備1500所接收的及/或要發送的信號。
處理系統1502包括經由匯流排1506耦合到電腦可讀取媒體/記憶體1512的處理器1504。在某些態樣中,電腦可讀取媒體/記憶體1512被配置為儲存指令(例如,電腦可執行代碼),該等指令當由處理器1504執行時使處理器1504執行在圖10中所示出的操作,或者用於執行本文所論述的用於PT-RS符號映射的各種技術的其他操作。在某些態樣中,電腦可讀取媒體/記憶體1512儲存代碼1514,其用於決定針對無線設備用於通訊的時槽配置,以及基於該時槽配置來決定與該無線設備相關聯的相位追蹤參考信號(PT-RS)刪餘配置,以及代碼1516,其用於至少部分地基於該時槽配置和該PT-RS刪餘配置來選擇針對該無線設備的PT-RS配置。
在某些態樣中,處理器1504具有被配置為實現儲存在電腦可讀取媒體/記憶體1512中的代碼的電路系統。處理器1504包括用於決定針對無線設備用於通訊的時槽配置,以及基於該時槽配置來決定與該無線設備相關聯的相位追蹤參考信號(PT-RS)刪餘配置的電路系統(未圖示),以及用於至少部分地基於該時槽配置和該PT-RS刪餘配置來選擇針對該無線設備的PT-RS配置的電路系統。
如本文所使用的,相位追蹤參考可以指DMRS符號或具有是非衝突資料RB的至少X RB及/或至少Y PT-RS音調的資料符號。
有利地,本文所提供的技術可以用於決定PT-RS時間-頻率模式/配置,該PT-RS時間-頻率模式/配置使得無線設備能夠在存在多個刪餘的PT-RS的情況下獲得足夠的相位追蹤參考。
本文所揭示的方法包括用於實現所描述的方法的一或多個步驟或動作。在不背離請求項的範圍的情況下,方法步驟及/或動作可以彼此互換。換言之,除非指定了特定的步驟或動作次序,否則可以在不背離請求項的範圍的情況下,修改特定步驟及/或動作的次序及/或使用。
如本文所使用的,涉及項目列表「中的至少一個」的短語指的是該等項目的任何組合,包括單個成員。作為實例,「a、b或c中的至少一個」意在覆蓋a、b、c、a-b、a-c、b-c和a-b-c,以及與多個相同元素(例如,a-a、a-a-a、a-a-b、a-a-c、a-b-b、a-c-c、b-b、b-b-b、b-b-c、c-c和c-c-c或a、b和c的任何其他排序)的任何組合。
如本文所使用的,術語「決定」包含各種各樣的動作。例如,「決定」可以包括計算、運算、處理、匯出、調查、檢視(例如,在表、資料庫或另外的資料結構中檢視)、查明等。此外,「決定」可以包括接收(例如,接收資訊)、存取(例如,存取在記憶體中的資料)等。此外,「決定」可以包括解決、選擇、挑選、建立等。
在一些情況下,設備可以具有用於輸出訊框以進行傳輸的介面,而不是實際發送訊框。例如,處理器可以經由匯流排介面將訊框輸出到RF前端以進行傳輸。類似地,設備可以具有介面以獲得從另一設備接收到的訊框,而不是實際接收訊框。例如,處理器可以經由匯流排介面從RF前端獲得(或接收)訊框以進行傳輸。
上述方法的各種操作可以由能夠執行對應功能的任何適當的手段來執行。該手段可以包括各種硬體及/或軟體部件及/或模組,包括但不限於電路、特殊應用積體電路(ASIC)或處理器。通常,在存在圖中所示的操作的情況下,彼等操作可以具有對應的配對功能手段部件,其具有類似的編號。
例如,用於發送的手段、用於接收的手段、用於決定的手段、用於執行的手段、用於參與的手段、用於指示的手段、用於建立的手段、用於移位的手段、用於刪餘的手段、用於配置的手段、用於發送信號的手段、用於傳輸的手段,用於發送的手段、用於通訊的手段、用於儲存的手段、用於辨識的手段、用於偵測的手段、用於保護的手段、用於選擇的手段、用於避免的手段、用於調整的手段、用於分配的手段、用於增加的手段、用於變化的手段、用於存取的手段、用於丟棄的手段、用於產生的手段及/或用於提供的手段可以包括在BS 110或UE 120處的一或多個處理器或天線,諸如在BS 110處的發送處理器420、控制器/處理器440、接收處理器438或天線434,及/或在UE 120處的發送處理器464、控制器/處理器480、接收處理器458或天線452。
結合本案內容所描述的各種說明性的邏輯區塊、模組和電路可以利用被設計為執行本文所描述的功能的通用處理器、數位信號處理器(DSP)、特殊應用積體電路(ASIC)、現場可程式設計門控陣列(FPGA)或其他可程式設計邏輯裝置(PLD)、個別閘門或電晶體邏輯、個別硬體部件或其任何組合來實現或執行。通用處理器可以是微處理器,但在替代的方案中,處理器可以是任何商業可得的處理器、控制器、微控制器或狀態機。處理器亦可以被實現為計算設備的組合,例如,DSP和微處理器的組合、多個微處理器、與DSP核心相結合的一或多個微處理器,或任何其他此種配置。
若在硬體中實現,則示例性硬體設定可以包括在無線節點中的處理系統。處理系統可以是利用匯流排架構來實現的。根據處理系統的具體應用和整體設計約束,匯流排可以包括任意數量的互連匯流排和橋接器。匯流排可以將包括處理器、機器可讀取媒體和匯流排介面的各種電路連結在一起。匯流排介面可以用於經由匯流排將網路介面卡等連接到處理系統。網路介面卡可以用於實現PHY層的信號處理功能。在使用者終端120(參見圖1)的情況下,使用者介面(例如,小型鍵盤、顯示器、滑鼠、操縱桿等)亦可以連接到匯流排。匯流排亦可以連結各種其他電路,諸如時序源、周邊設備、電壓調節器、功率管理電路等,此在本領域中是眾所周知的,以及因此,將不再進行任何進一步的描述。處理器可以是利用一或多個通用及/或專用處理器來實現的。實例包括微處理器、微控制器、DSP處理器和可以執行軟體的其他電路系統。本領域技藝人士將認識到根據具體應用和對整個系統施加的整體設計約束如何來最佳地實現針對處理系統所描述的功能。
若在軟體中實現,則功能可以是作為在電腦可讀取媒體上的一或多個指令或代碼來儲存或發送的。軟體應廣義地解釋為意指指令、資料或其任何組合,無論被稱為軟體、韌體、中介軟體、微代碼、硬體描述語言或其他。電腦可讀取媒體包括電腦儲存媒體和通訊媒體兩者,該通訊媒體包括促進將電腦程式從一個地方轉移到另一個地方的任何媒體。處理器可以負責管理匯流排和一般處理,包括對儲存在機器可讀儲存媒體上的軟體模組的執行。電腦可讀取儲存媒體可以耦合到處理器,使得處理器可以從儲存媒體讀取資訊,以及將資訊寫入儲存媒體。在替代方案中,儲存媒體可以整合到處理器。舉例而言,機器可讀取媒體可以包括傳輸線、經由資料調變的載波及/或在其上儲存有指令的與無線節點分開的電腦可讀取儲存媒體,所有該等皆可以經由匯流排介面由處理器來存取。替代地,或者另外地,機器可讀取媒體或其任何部分可以整合到處理器中,諸如該情況可以具有快取記憶體及/或通用暫存器檔。機器可讀儲存媒體的實例可以包括,舉例而言,RAM(隨機存取記憶體)、快閃記憶體、ROM(唯讀記憶體)、PROM(可程式設計唯讀記憶體)、EPROM(可抹除可程式設計唯讀記憶體)、EEPROM(電子可抹除可程式設計唯讀記憶體)、暫存器、磁碟、光碟、硬碟,或任何其他適當的儲存媒體,或其任何組合。機器可讀取媒體可以體現在電腦程式產品中。
軟體模組可以包括單個指令或多個指令,以及可以分佈在多個不同的程式碼片段上,分佈在不同程式之中以及跨越多個儲存媒體來分佈。電腦可讀取媒體可以包括多個軟體模組。軟體模組包括指令,該等指令當由諸如處理器的裝置執行時使處理系統執行各種功能。軟體模組可以包括發送模組和接收模組。每一個軟體模組可以存在於單個儲存裝置中,或者是跨越多個儲存裝置來分佈的。舉例而言,當發生觸發事件時,可以將軟體模組從硬碟載入到RAM中。在對軟體模組的執行期間,處理器可以將指令中的一些指令載入到快取記憶體中,以提高存取速度。隨後,可以將一或多個快取記憶體線載入到通用暫存器檔中,用於由處理器來執行。當參考下文的軟體模組的功能時,將理解此種功能是在執行來自該軟體模組的指令時由處理器實現的。
此外,將任何連接適當地稱為電腦可讀取媒體。例如,若使用同軸電纜、光纖光纜、雙絞線、數位使用者線路(DSL)或諸如紅外線(IR)、無線電和微波的無線技術,從網站、伺服器或其他遠端源反射軟體,則同軸電纜、光纖光纜、雙絞線、DSL或諸如紅外線、無線電和微波的無線技術包含在媒體的定義中。如本文所使用的,磁碟和光碟包括壓縮光碟(CD)、雷射光碟、光碟、數位多功能光碟(DVD)、軟碟和藍光®光碟,其中磁碟通常磁性地複製資料,而光碟則利用雷射來光學地複製資料。因此,在一些態樣中,電腦可讀取媒體可以包括非暫時性電腦可讀取媒體(例如,有形媒體)。此外,對於其他態樣,電腦可讀取媒體可以包括暫時的電腦可讀取媒體(例如,信號)。上述的組合亦應包括在電腦可讀取媒體的範圍內。
進一步地,應瞭解的是,若適用的話,用於執行本文所描述的方法和技術的模組及/或其他適當的手段可以由使用者終端及/或基地台下載及/或以其他方式獲得。例如,此種設備可以耦合到伺服器,以促進對用於執行本文所描述的方法的手段的傳送。或者,本文所描述的各種方法可以是經由儲存手段(例如,RAM、ROM、諸如壓縮光碟(CD)或軟碟等的實體儲存媒體等)來提供的,使得使用者終端及/或基地台可以在與設備耦合或向設備提供儲存手段時獲得各種方法。此外,可以利用用於向設備提供本文中所描述的方法和技術的任何其他適當的技術。
要理解的是,請求項不限於上文所示出的精確配置和部件。在不背離請求項範圍的情況下,可以對上文所描述的方法和裝置的安排、操作和細節進行各種修改、改變和變化。
100‧‧‧無線網路
102a‧‧‧巨集細胞
102b‧‧‧巨集細胞
102c‧‧‧巨集細胞
102x‧‧‧微微細胞
102y‧‧‧毫微微細胞
102z‧‧‧毫微微細胞
110‧‧‧基地台
110a‧‧‧基地台
110b‧‧‧基地台
110c‧‧‧基地台
110r‧‧‧中繼站
110x‧‧‧基地台
110y‧‧‧基地台
110z‧‧‧基地台
120‧‧‧使用者設備
120r‧‧‧UE
120x‧‧‧UE
120y‧‧‧UE
130‧‧‧網路控制器
200‧‧‧分散式無線電存取網路
202‧‧‧存取節點控制器
204‧‧‧下一代核心網路
206‧‧‧5G存取節點
208‧‧‧TRP
210‧‧‧下一代存取節點
300‧‧‧分散式RAN
302‧‧‧C-CU
304‧‧‧集中式RAN單元
306‧‧‧DU
412‧‧‧資料來源
420‧‧‧處理器
430‧‧‧發送(TX)多輸入多輸出(MIMO)處理器
432a‧‧‧調變器
432t‧‧‧調變器
434a‧‧‧天線
434t‧‧‧天線
436‧‧‧MIMO偵測器
438‧‧‧處理器
439‧‧‧資料槽
440‧‧‧控制器/處理器
442‧‧‧記憶體
444‧‧‧排程器
452a‧‧‧天線
452r‧‧‧天線
454a‧‧‧解調器
454r‧‧‧解調器
456‧‧‧MIMO偵測器
458‧‧‧處理器
460‧‧‧資料槽
462‧‧‧資料來源
464‧‧‧處理器
466‧‧‧處理器
480‧‧‧控制器/處理器
482‧‧‧記憶體
500‧‧‧圖
505-a‧‧‧第一選項
505-b‧‧‧第二選項
510‧‧‧RRC層
515‧‧‧PDCP層
520‧‧‧RLC層
525‧‧‧MAC層
530‧‧‧PHY層
600‧‧‧訊框格式
1000‧‧‧操作
1002‧‧‧步驟
1004‧‧‧步驟
1006‧‧‧步驟
1500‧‧‧通訊設備
1502‧‧‧處理系統
1504‧‧‧處理器
1506‧‧‧匯流排
1508‧‧‧收發機
1510‧‧‧天線
1512‧‧‧電腦可讀取媒體/記憶體
1514‧‧‧代碼
1516‧‧‧代碼
為詳細理解本案內容的上文所記載的特徵的方式,可以經由參照各態樣來將上文所簡要總結的進行更詳細的描述,其中的一些在附圖中示出。然而,應注意,附圖僅圖示本案內容的某些典型態樣,因此不應被視為限制其範圍,因為描述可以承認其他同等有效的態樣。
圖1是概念性地圖示根據本案內容的某些態樣的示例性電信系統的方塊圖。
圖2是根據本案內容的某些態樣示出分散式無線存取網路(RAN)的示例性邏輯架構的方塊圖。
圖3是根據本案內容的某些態樣示出分散式RAN的示例性實體架構的圖。
圖4是根據本案內容的某些態樣概念性地示出示例性基地台(BS)和使用者設備(UE)的設計的方塊圖。
圖5是根據本案內容的某些態樣示出用於實現通訊協定堆疊的實例的圖。
圖6根據本案內容的某些態樣示出用於新無線電(NR)系統的訊框格式的實例。
圖7A-7B根據本案內容的某些態樣示出示例性PT-RS時間-頻率資源模式。
圖8根據本案內容的某些態樣示出具有一或多個刪餘的PT-RS的PT-RS時間-頻率資源模式的實例。
圖9根據本案內容的某些態樣示出在PT-RS時間-頻率資源模式中的剩餘的未刪餘的PT-RS的實例。
圖10是根據本案內容的某些態樣示出用於在網路中的無線通訊的示例性操作的流程圖。
圖11根據本案內容的某些態樣示出具有聚合的迷你時槽的時間-頻率資源模式的實例。
圖12根據本案內容的某些態樣示出當滿足某些條件時,在將PT-RS移動到另一符號之後的PT-RS模式/配置的實例。
圖13A根據本案內容的某些態樣示出在進行刪餘之後的PT-RS時間-頻率資源模式的實例。
圖13B根據本案內容的某些態樣示出,在增加PT-RS頻域密度之後的PT-RS模式/配置的實例。
圖14根據本案內容的某些態樣示出,在移位一或多個潛在的刪餘的PT-RS音調之後的PT-RS模式/配置的實例。
圖15根據本案內容的各態樣示出示例性通訊設備,其可以包括被配置為執行用於本文所揭示的技術的操作的各種部件。
為了便於理解,在可能的情況下,使用相同的元件符號來指定附圖中共有的相同元素。可以預期的是,在一個實施例中所揭示的元素可以有利地用於其他實施例而無需具體敘述。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無

Claims (20)

  1. 一種用於無線通訊的方法,包括: 決定針對一無線設備用於通訊的一時槽配置; 基於該時槽配置來決定與該無線設備相關聯的一相位追蹤參考信號(PT-RS)刪餘配置;及 至少部分地基於該時槽配置和該PT-RS刪餘配置來選擇針對該無線設備的一PT-RS配置。
  2. 根據請求項1之方法,亦包括: 基於所選擇的該PT-RS配置來接收一或多個PT-RS,其中該無線設備是一使用者設備(UE)。
  3. 根據請求項1之方法,亦包括: 基於所選擇的該PT-RS配置來接收一或多個PT-RS,其中該無線設備是一基地台。
  4. 根據請求項1之方法,亦包括: 基於所選擇的該PT-RS配置來發送一或多個PT-RS,其中該無線設備是一基地台。
  5. 根據請求項1之方法,亦包括: 基於所選擇的該PT-RS配置來發送一或多個PT-RS,其中該無線設備是一使用者設備。
  6. 根據請求項1之方法,其中該時槽配置包括以下各項中的至少一項:針對一或多個子訊框的一通道分配、一參考信號配置,或在一時間-頻率資源的集合內的PT-RS密度。
  7. 根據請求項6之方法,其中該PT-RS密度是至少部分地基於由該無線設備所使用的一調變和編碼方案(MCS)的。
  8. 根據請求項6之方法,其中: 選擇該PT-RS配置包括若該無線設備不能在一第一符號之前的一或多個第二符號中獲得一相位追蹤參考,則向該第一符號分配至少一個PT-RS;及 該第二符號的一數量是基於該PT-RS密度的。
  9. 根據請求項6之方法,其中: 選擇該PT-RS配置包括若該無線設備不能在一第一符號之前的一或多個第二符號中獲得一相位追蹤參考,以及該無線設備決定其將不能在該第一符號之後的一或多個第三符號中獲得該相位追蹤參考,則向該第一符號分配至少一個PT-RS;及 該第二符號的一數量和該第三符號的一數量是基於該PT-RS密度的。
  10. 根據請求項8之方法,其中該相位追蹤參考包括: 在該第一符號中的一解調參考信號;或者 以下情況中的至少一種情況中的一資料符號:與其他信號或另一無線裝置衝突的頻率資源的一量低於一第一臨限值,或者在刪餘之後能夠用於分配PT-RS的剩餘的頻率資源的一數量高於一第二臨限值。
  11. 根據請求項1之方法,其中決定該PT-RS刪餘配置包括根據該時槽配置來決定在其中由於與分配給另一信號或分配給另一無線設備的時間或頻率資源中的至少一者衝突而預期要對一PT-RS刪餘的一或多個符號。
  12. 根據請求項11之方法,其中決定該PT-RS刪餘配置包括: 根據該時槽配置來決定將在一時槽中的非連續符號分配給該無線設備;及 決定一或多個PT-RS預期要刪餘或不存在於該時槽中的一或多個未被分配的符號中。
  13. 根據請求項11之方法,其中該另一信號包括一探測參考信號(SRS)、一實體下行鏈路控制通道、一通道狀態資訊參考信號(CSI-RS)或一同步信號。
  14. 根據請求項11之方法,其中選擇該PT-RS配置包括: 若為以下各項中的至少一項,則避免將一PT-RS分配給該一或多個符號中的至少一第一符號: 在該第一符號中與分配給該其他信號或該其他無線設備的時間或頻率資源中的一者衝突的頻率資源的一量高於一第一臨限值;或者 在該第一符號中在刪餘之後能夠用於分配一PT-RS的頻率資源的一數量低於一第二臨限值;及 將一PT-RS分配給至少一第二符號,其中以下各項中的至少一項: 在該第二符號中與分配給該其他信號或該其他無線設備的時間或頻率資源中的一者衝突的頻率資源的一量低於該第一臨限值;或者 在該第二符號中在刪餘之後能夠用於分配一PT-RS的頻率資源的一數量高於該第二臨限值。
  15. 根據請求項14之方法,其中該第一臨限值和該第二臨限值是基於來自另一無線設備的信號傳遞或一或多個預先定義的臨限值中的至少一者來辨識的。
  16. 根據請求項15之方法,其中該一或多個預先定義的臨限值是在一標準中的。
  17. 根據請求項11之方法,其中選擇該PT-RS配置包括在預期要對一PT-RS刪餘的該一或多個符號中的每一個符號中分配一或多個另外的PT-RS。
  18. 根據請求項11之方法,其中選擇該PT-RS配置亦是基於不與分配給該其他信號或該其他無線設備的該頻率資源衝突的頻率資源的一量的。
  19. 根據請求項18之方法,其中選擇該PT-RS配置亦包括基於不與在符號中分配給該其他信號或該其他無線設備的該頻率資源衝突的該頻率資源的一量,來選擇該符號的一PT-RS頻域密度。
  20. 根據請求項11之方法,其中選擇該PT-RS配置包括在預期要對PT-RS刪餘的該一或多個符號中的每一個符號中,移位針對該PT-RS所分配的該等頻率資源。
TW107146124A 2018-02-16 2018-12-20 相位追蹤參考信號符號映射 TWI794374B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GR20180100065 2018-02-16
GR20180100065 2018-02-16
??20180100065 2018-02-16
US16/225,246 US10873389B2 (en) 2018-02-16 2018-12-19 Phase tracking reference signal symbol mapping
US16/225,246 2018-12-19

Publications (2)

Publication Number Publication Date
TW201935875A true TW201935875A (zh) 2019-09-01
TWI794374B TWI794374B (zh) 2023-03-01

Family

ID=67616522

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107146124A TWI794374B (zh) 2018-02-16 2018-12-20 相位追蹤參考信號符號映射

Country Status (10)

Country Link
US (1) US10873389B2 (zh)
EP (2) EP3753167B1 (zh)
JP (2) JP7440416B2 (zh)
KR (1) KR20200118431A (zh)
CN (1) CN111713061B (zh)
AU (1) AU2018409250B2 (zh)
BR (1) BR112020016296A2 (zh)
SG (1) SG11202006961TA (zh)
TW (1) TWI794374B (zh)
WO (1) WO2019160606A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10965415B2 (en) * 2017-03-25 2021-03-30 Lg Electronics Inc. Method for assigning PTRS for phase noise removal in wireless communication system, and device therefor
EP3459201B1 (en) * 2017-06-16 2019-12-18 Telefonaktiebolaget LM Ericsson (Publ) Joint resource map design of dm-rs and pt-rs
GB201802543D0 (en) * 2018-02-16 2018-04-04 Samsung Electronics Co Ltd Reference signal configuration in a telecommunication system
KR102484605B1 (ko) * 2019-11-03 2023-01-04 엘지전자 주식회사 Nr v2x에서 sl 전송을 수행하는 방법 및 장치
CN113141219B (zh) * 2020-01-19 2022-06-21 大唐移动通信设备有限公司 一种天线校准的方法、装置及系统
WO2021168720A1 (en) 2020-02-27 2021-09-02 Qualcomm Incorporated Phase tracking reference signal configuration for transmission repetitions
US11632210B2 (en) * 2020-05-08 2023-04-18 Qualcomm Incorporated Enhanced phase tracking reference signal
WO2021253258A1 (en) * 2020-06-17 2021-12-23 Qualcomm Incorporated Phase-tracking reference signal alignment for physical shared channel
US20220070823A1 (en) * 2020-08-28 2022-03-03 Qualcomm Incorporated Techniques for flexible reference signal patterns in wireless communications systems
US11588597B2 (en) * 2020-11-09 2023-02-21 Qualcomm Incorporated Determining a density of a phase tracking reference signal
CN114186572B (zh) * 2021-11-08 2023-07-25 南京信息工程大学 一种基于冲突时隙协调的未知标签识别方法及系统
CN116723576A (zh) * 2022-02-28 2023-09-08 展讯通信(上海)有限公司 一种频域密度确定方法、装置、芯片及模组设备
WO2023201643A1 (zh) * 2022-04-21 2023-10-26 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007135964A1 (ja) * 2006-05-19 2007-11-29 Panasonic Corporation 無線通信装置及び無線通信方法
US8923197B2 (en) * 2011-06-01 2014-12-30 Samsung Electronics Co., Ltd. Methods and apparatus to transmit and receive synchronization signal and system information in a wireless communication system
KR102263020B1 (ko) * 2011-09-30 2021-06-09 인터디지탈 패튼 홀딩스, 인크 무선 통신의 다중점 송신
US9634876B2 (en) * 2013-03-28 2017-04-25 Telefonaktiebolaget Lm Ericsson (Publ) Phase reference symbol format for OFDM phase synchronization
US9608690B2 (en) * 2014-07-17 2017-03-28 Qualcomm Incorporated Type 1 and type 2 hopping for device-to-device communications
US11581999B2 (en) * 2014-10-08 2023-02-14 Qualcomm Incorporated Reference signal design for wireless communications
US10439663B2 (en) * 2016-04-06 2019-10-08 Qualcomm Incorporated Methods and apparatus for phase noise estimation in data symbols for millimeter wave communications
US10771299B2 (en) * 2016-08-10 2020-09-08 Qualcomm Incorporated Reference signal configurations for doppler support in new radio design
WO2018230900A1 (en) * 2017-06-15 2018-12-20 Samsung Electronics Co., Ltd. Method and apparatus for allocating ptrs in next generation communication system

Also Published As

Publication number Publication date
EP4239938A3 (en) 2023-12-06
JP2023184601A (ja) 2023-12-28
US20190260466A1 (en) 2019-08-22
AU2018409250A1 (en) 2020-08-20
EP3753167B1 (en) 2023-06-28
US10873389B2 (en) 2020-12-22
EP3753167A1 (en) 2020-12-23
EP4239938A2 (en) 2023-09-06
CN111713061A (zh) 2020-09-25
BR112020016296A2 (pt) 2020-12-15
KR20200118431A (ko) 2020-10-15
JP7440416B2 (ja) 2024-02-28
CN111713061B (zh) 2023-08-18
WO2019160606A1 (en) 2019-08-22
JP2021514133A (ja) 2021-06-03
TWI794374B (zh) 2023-03-01
AU2018409250B2 (en) 2023-06-22
SG11202006961TA (en) 2020-08-28

Similar Documents

Publication Publication Date Title
JP7412478B2 (ja) グループ共通pdcch中のスロットフォーマットインジケータ(sfi)とスロットアグリゲーションレベル表示およびsfi競合取扱
TWI794374B (zh) 相位追蹤參考信號符號映射
TWI812783B (zh) 利用不相交資源區塊的針對多trp的pdcch訊號傳遞
CN112753169B (zh) 用于报告波束对应性状态的系统和方法
TWI762700B (zh) 用於載波聚合中的srs天線切換的方法和裝置
TWI749241B (zh) 用於實體廣播通道(pbch)傳輸的解調參考信號(dmrs)序列產生和資源映射
TW201947967A (zh) 對控制資源集(coreset)的信號通知
KR20190132450A (ko) 단일-캐리어 파형에 대한 제어 리소스 세트
TWI721289B (zh) 用於多種無線電存取技術的緩衝器管理的方法、設備、及電腦可讀取媒體
TW201924376A (zh) 非週期性追蹤參考信號
TW201902251A (zh) 利用次頻帶和干擾量測的無線電鏈路監測
CN111727621A (zh) 分组重复的配置、激活和停用
CN111344976B (zh) 隐式确认(ack)映射
TWI816894B (zh) 對處理的下行鏈路控制資訊(dci)的數量的限制
TWI732154B (zh) 使用互補上行鏈路載波之有效的資料排程
JP7419236B2 (ja) アップリンク電力制御構成
TW201836285A (zh) 用於emtc中的大頻寬分配的頻率跳變設計
TW201902275A (zh) 在新無線中多工傳呼信號與同步信號
TW202005169A (zh) 用於多天線使用者設備的保護時段最佳化
TW201904337A (zh) 用於低時延通訊的縮短傳輸時間間隔(stti)配置
TW201924390A (zh) 無線通訊中的干擾緩解
TWI766043B (zh) 短脈衝通道設計及多工
TW201902171A (zh) 取決於頻寬的控制大小
TW202106087A (zh) 多個跨載波排程分量載波(cc)