TW201935825A - LLC quasi-resonant switching power supply - Google Patents

LLC quasi-resonant switching power supply Download PDF

Info

Publication number
TW201935825A
TW201935825A TW107113754A TW107113754A TW201935825A TW 201935825 A TW201935825 A TW 201935825A TW 107113754 A TW107113754 A TW 107113754A TW 107113754 A TW107113754 A TW 107113754A TW 201935825 A TW201935825 A TW 201935825A
Authority
TW
Taiwan
Prior art keywords
voltage
power switch
power supply
resonant switching
switching power
Prior art date
Application number
TW107113754A
Other languages
Chinese (zh)
Other versions
TWI669893B (en
Inventor
方倩
康曉智
褚海
楊東澤
周俊
Original Assignee
大陸商昂寶電子(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商昂寶電子(上海)有限公司 filed Critical 大陸商昂寶電子(上海)有限公司
Application granted granted Critical
Publication of TWI669893B publication Critical patent/TWI669893B/en
Publication of TW201935825A publication Critical patent/TW201935825A/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

The invention provides an LLC quasi-resonant switching power supply. The LLC quasi-resonant switching power supply comprises a first power switch, a second power switch, a transformer and a control chip, wherein the first power switch and the second power switch are connected in series, the control chip can be used for operatively switching on the first power switch or the second power switch according to change slope of a voltage of a connection node between the first power switch and the second power switch, an output voltage representation voltage repressing an output voltage of the LLC quasi-resonant switching power supply is generated by sampling a voltage of an auxiliary winding of the transformer, an output current representation voltage repressing an output current of the LLC quasi-resonant switching power supply is generated by sampling a current passing through the second power switch, and the first power switch or the second power switch is switched off according to one of the output voltage representation voltage and the output current representation voltage. According to the LLC quasi-resonant switching power supply provided by the embodiment of the invention, controlof the output current and the output voltage can be simultaneously achieved, and zero-voltage conduction of the power switches also can be achieved.

Description

LLC准諧振開關電源 LLC Quasi-Resonant Switching Power Supply

本發明涉及電路領域,更具體地涉及一種LLC准諧振開關電源。 The present invention relates to the field of circuits, and more particularly to an LLC quasi-resonant switching power supply.

第1圖示出了傳統的LLC准諧振開關電源的電路原理圖。在第1圖所示的LLC准諧振開關電源中,通過功率開關S1、S2的不斷開通和關斷來實現電感Lp、Ls與諧振電容Cr的諧振;諧振腔電流滯後於諧振腔電壓是實現功率開關S1、S2的零電壓導通的必要條件;當輸入電壓太低時,工作頻率太低,這會導致其工作於容性區域而無法實現功率開關S1、S2的零電壓導通。因此,傳統的LLC准諧振開關電源只能在交流輸入電壓為230V的單電壓條件下工作,並且需要前級加入Boost功率因數校正(即,Boost-PFC)電路才能實現寬電壓輸入和高功率因數。 Figure 1 shows the circuit schematic of a conventional LLC quasi-resonant switching power supply. In the LLC quasi-resonant switching power supply shown in Figure 1, the resonance of the inductors Lp, Ls and the resonant capacitor Cr is achieved by turning on and off the power switches S1 and S2; the resonant cavity current lags behind the resonant cavity voltage to achieve power Necessary conditions for zero voltage conduction of switches S1, S2; when the input voltage is too low, the operating frequency is too low, which will cause it to work in the capacitive region and fail to achieve zero voltage conduction of the power switches S1, S2. Therefore, the traditional LLC quasi-resonant switching power supply can only work under a single voltage condition with an AC input voltage of 230V, and it is necessary to add a Boost power factor correction (ie, Boost-PFC) circuit to the front stage to achieve wide voltage input and high power factor. .

鑒於以上所述的一個或多個問題,本發明提供了一種新穎的LLC准諧振開關電源。 In view of one or more of the problems described above, the present invention provides a novel LLC quasi-resonant switching power supply.

根據本發明實施例的LLC准諧振開關電源包括:相互串聯的第一功率開關和第二功率開關;變壓器;以及控制晶片,該控制晶片可操作以:基於第一功率開關與第二功率開關之間的連接節點處的電壓的變化斜率,開通第一功率開關或第二功率開關,通過對變壓器的輔助繞組上的電壓進行採樣,產生表徵LLC准諧振開關電源的輸出電壓的輸出電壓表徵電壓,通過對流過第二功率開關的電流進行採樣,產生表徵LLC准諧振開關電源的輸出電流的輸出電流錶征電壓,並且基於輸出電壓表徵電壓和輸出電流錶征電壓中的一者,關斷第一功率開關或第二功率開關。 An LLC quasi-resonant switching power supply according to an embodiment of the present invention includes: a first power switch and a second power switch connected in series; a transformer; and a control chip operable to: based on the first power switch and the second power switch The slope of the voltage change at the connection node between the two. Turn on the first power switch or the second power switch, and sample the voltage on the auxiliary winding of the transformer to generate an output voltage characterization voltage that characterizes the output voltage of the LLC quasi-resonant switching power supply. Sampling the current flowing through the second power switch to generate an output current characterizing voltage that characterizes the output current of the LLC quasi-resonant switching power supply, and turning off the first power switch based on one of the output voltage characterizing voltage and the output current characterizing voltage. Or a second power switch.

根據本發明實施例的LLC准諧振開關電源既可以同時實現對輸出電流和輸出電壓的控制,又可以實現功率開關的零電壓導通以減 小開關損耗、提高電源效率以及實現高功率因數。 The LLC quasi-resonant switching power supply according to the embodiment of the present invention can not only realize the control of the output current and the output voltage at the same time, but also realize the zero voltage conduction of the power switch to reduce Small switching losses, improved power supply efficiency, and high power factor.

S1、S2‧‧‧功率開關 S1, S2‧‧‧ Power Switch

Vout‧‧‧輸出電壓 Vout‧‧‧Output voltage

Lp、Ls‧‧‧電感 Lp, Ls‧‧‧Inductance

CC_comp‧‧‧恒流控制電壓 CC_comp‧‧‧Constant current control voltage

Cr‧‧‧諧振電容 Cr‧‧‧Resonant capacitor

CV_comp‧‧‧恒壓控制電壓 CV_comp‧‧‧Constant voltage control voltage

ILS‧‧‧電感電流 I LS ‧‧‧Inductor current

Io‧‧‧輸出電流 Io‧‧‧Output current

Rcs‧‧‧電流採樣電阻 Rcs‧‧‧Current Sampling Resistor

Vref_cc‧‧‧控制輸出電流的參考電壓 Vref_cc‧‧‧Controls the reference voltage of the output current

Cboost‧‧‧電容 Cboost‧‧‧Capacitor

comp‧‧‧控制電壓 comp‧‧‧Control voltage

t0-t6‧‧‧工作週期 t0-t6‧‧‧ Duty cycle

VCin‧‧‧輸入電容Cin上的電壓 VCin‧‧‧Voltage on input capacitor Cin

Cin‧‧‧輸入電容 Cin‧‧‧input capacitor

D1‧‧‧二極體 D1‧‧‧diode

VAC‧‧‧LLC准諧振開關電源的交流(AC)輸入電壓 V AC ‧‧‧LLC AC input voltage of quasi-resonant switching power supply

N‧‧‧變壓器的原邊側與副邊側的匝數比 Turn ratio of primary side and secondary side of N‧‧‧ transformer

GATEH、VHV、Vcr、VCboost、Vcs‧‧‧電壓 GATEH, V HV, Vcr, V Cboost, Vcs‧‧‧Voltage

VFB、CS、RV、VDD‧‧‧端子 VFB, CS, RV, VDD‧‧‧ terminals

ramp、Vref_cv、Vref_cc‧‧‧參考電壓 ramp, Vref_cv, Vref_cc‧‧‧ reference voltage

t0-t1、t1-t2、t2-t3、t4-t5、t5-t6‧‧‧期間 t0-t1, t1-t2, t2-t3, t4-t5, t5-t6‧‧‧

HV‧‧‧半橋中間節點 HV‧‧‧ Half-bridge intermediate node

T1a‧‧‧變壓器第一次級繞組 T1a‧‧‧Transformer first winding

T1b‧‧‧變壓器第二次級繞組 T1b‧‧‧Transformer secondary winding

T1c‧‧‧變壓器主繞組 T1c‧‧‧Transformer main winding

GND‧‧‧參考地 GND‧‧‧Reference ground

Cout‧‧‧輸出電容 Cout‧‧‧ output capacitor

Rfb1‧‧‧第一取樣分壓電阻 Rfb1‧‧‧first sampling voltage divider resistor

Rfb2‧‧‧第二取樣分壓電阻 Rfb2‧‧‧Second sampling voltage dividing resistor

NC‧‧‧無連接 NC‧‧‧No connection

從下面結合附圖對本發明的具體實施方式的描述中可以更好地理解本發明,其中:第1圖示出了傳統的LLC准諧振開關電源的電路原理圖;第2圖示出了根據本發明實施例的LLC准諧振開關電源的電路原理圖;第3圖示出了第2圖所示的LLC准諧振開關電源中的一些信號的時序圖;第4圖示出了第2圖所示的LLC准諧振開關電源在第3圖所示的t0-t1期間的等效電路圖;第5圖示出了第2圖所示的LLC准諧振開關電源在第3圖所示的t1-t2期間的等效電路圖;第6圖示出了第2圖所示的LLC准諧振開關電源在第3圖所示的t2-t3期間的等效電路圖;第7圖示出了第2圖所示的LLC准諧振開關電源在第3圖所示的t3-t4期間的等效電路圖;第8圖示出了第2圖所示的LLC准諧振開關電源在第3圖所示的t4-t5期間的等效電路圖;第9圖示出了第2圖所示的LLC准諧振開關電源在第3圖所示的t5-t6期間的等效電路圖;第10圖示出了第2圖所示的LLC准諧振開關電源中的控制晶片的示意框圖;以及第11圖示出了第10圖所示的恒流與恒壓控制模組的簡化電路圖。 The present invention can be better understood from the following description of specific embodiments of the present invention with reference to the accompanying drawings, wherein: FIG. 1 shows a circuit schematic diagram of a conventional LLC quasi-resonant switching power supply; and FIG. 2 shows a circuit diagram according to the present invention. The circuit schematic diagram of the LLC quasi-resonant switching power supply according to the embodiment of the invention; FIG. 3 shows a timing chart of some signals in the LLC quasi-resonant switching power supply shown in FIG. 2; The equivalent circuit diagram of the LLC quasi-resonant switching power supply during t0-t1 shown in Figure 3; Figure 5 shows the LLC quasi-resonant switching power supply shown in Figure 2 during t1-t2 shown in Figure 3 Figure 6 shows the equivalent circuit diagram of the LLC quasi-resonant switching power supply shown in Figure 2 during t2-t3 shown in Figure 3; Figure 7 shows the equivalent circuit shown in Figure 2 The equivalent circuit diagram of LLC quasi-resonant switching power supply during t3-t4 shown in FIG. 3; FIG. 8 shows the LLC quasi-resonant switching power supply shown in FIG. 2 during t4-t5 shown in FIG. 3. Equivalent circuit diagram; Figure 9 shows the equivalent circuit diagram of the LLC quasi-resonant switching power supply shown in Figure 2 during t5-t6 shown in Figure 3; FIG. 10 shows a schematic block diagram of a control chip in the LLC quasi-resonant switching power supply shown in FIG. 2; and FIG. 11 shows a simplified circuit diagram of the constant current and constant voltage control module shown in FIG. 10.

下面將詳細描述本發明的各個方面的特徵和示例性實例。在下面的詳細描述中,提出了許多具體細節,以便提供對本發明的全面理解。但是,對於本領域技術人員來說很明顯的是,本發明可以在不需 要這些具體細節中的一些細節的情況下實施。下面對實施例的描述僅僅是為了通過示出本發明的示例來提供對本發明的更好的理解。本發明決不限於下面所提出的任何具體配置和演算法,而是在不脫離本發明的精神的前提下覆蓋了元素、部件和演算法的任何修改、替換和改進。在附圖和下面的描述中,沒有示出公知的結構和技術,以便避免對本發明造成不必要的模糊。 The features and exemplary examples of various aspects of the invention will be described in detail below. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it is obvious to those skilled in the art that the present invention can be used without To be implemented without some of these specific details. The following description of the embodiments is merely for providing a better understanding of the present invention by showing examples of the present invention. The invention is by no means limited to any specific configuration and algorithm proposed below, but covers any modification, replacement and improvement of elements, components and algorithms without departing from the spirit of the invention. In the drawings and the following description, well-known structures and techniques are not shown in order to avoid unnecessarily obscuring the present invention.

第2圖示出了根據本發明實施例的LLC准諧振開關電源的電路原理圖。在第2圖所示的LLC准諧振開關電源中,通過功率開關S1、S2的不斷開通和關斷來達到所需的輸出電壓和/或輸出電流。 FIG. 2 shows a circuit schematic diagram of an LLC quasi-resonant switching power supply according to an embodiment of the present invention. In the LLC quasi-resonant switching power supply shown in FIG. 2, the required output voltage and / or output current is achieved by turning on and off the power switches S1 and S2.

第3圖示出了第2圖所示的LLC准諧振開關電源中的一些信號的時序圖。在第3圖所示的時序圖中,GATEH表示第2圖所示的控制晶片的GATEH端子處的電壓(即,功率開關S1的驅動電壓),GATEL表示第2圖所示的控制晶片的GATEL端子處的電壓(即,功率開關S2的驅動電壓),VHV表示功率開關S1與S2之間的連接節點(即,第2圖所示的HV點)處的電壓,Vcr表示諧振電容Cr上的電壓,VCboost表示電容Cboost上的電壓,ILS表示流過電感Ls的電感電流,Vcs表示電流採樣電阻Rcs上的電壓。 FIG. 3 shows a timing diagram of some signals in the LLC quasi-resonant switching power supply shown in FIG. 2. In the timing chart shown in FIG. 3, GATEH indicates the voltage at the GATEH terminal of the control chip shown in FIG. 2 (that is, the driving voltage of the power switch S1), and GATEL indicates the GATEL of the control chip shown in FIG. 2. The voltage at the terminals (ie, the driving voltage of the power switch S2), V HV represents the voltage at the connection node (ie, the HV point shown in Figure 2) between the power switches S1 and S2, and Vcr represents the resonance capacitor Cr V Cboost represents the voltage on the capacitor Cboost, I LS represents the inductor current flowing through the inductor Ls, and Vcs represents the voltage on the current sampling resistor Rcs.

如第3圖所示,功率開關S1和S2的導通時間完全一致,因此流過功率開關S1和S2的電流相等,即流過電流採樣電阻Rcs的電流是流過電感Ls的電感電流ILs的一半。 As shown in Figure 3, the on-times of the power switches S1 and S2 are completely the same, so the currents flowing through the power switches S1 and S2 are equal, that is, the current flowing through the current sampling resistor Rcs is the inductor current I Ls flowing through the inductor Ls . half.

第3圖所示的t0-t6為第2圖所示的LLC准諧振開關電源的一個工作週期。下面結合第2圖至第9圖,詳細說明第2圖所示的LLC准諧振開關電源的工作過程。 T0-t6 shown in FIG. 3 is a duty cycle of the LLC quasi-resonant switching power supply shown in FIG. 2. The following describes in detail the working process of the LLC quasi-resonant switching power supply shown in FIG. 2 with reference to FIGS. 2 to 9.

第4圖示出了第2圖所示的LLC准諧振開關電源在第3圖所示的t0-t1期間的等效電路圖。如第4圖所示,在t0-t1期間,功率開關S1導通,輸入電容Cin上的電壓對電感Lp及Ls充電同時對諧振電容Cr和電容Cboost正向充電,電感電流ILs增大;電感電流ILs從變壓器的原邊側傳輸到變壓器的副邊側,然後通過二極體D1流向輸出端;當電容Cboost上的電壓達到VCin-VAC時,此階段結束。其中,VCin表示輸入電容 Cin上的電壓,VAC表示LLC准諧振開關電源的交流(AC)輸入電壓。 Fig. 4 shows an equivalent circuit diagram of the LLC quasi-resonant switching power supply shown in Fig. 2 during the period t0-t1 shown in Fig. 3. As shown in Figure 4, during t0-t1, the power switch S1 is turned on, and the voltage on the input capacitor Cin charges the inductors Lp and Ls while charging the resonant capacitor Cr and the capacitor Cboost in the forward direction, and the inductor current I Ls increases; The current I Ls is transmitted from the primary side of the transformer to the secondary side of the transformer, and then flows to the output terminal through the diode D1; when the voltage on the capacitor Cboost reaches V Cin -V AC , this phase ends. Among them, V Cin represents the voltage on the input capacitor Cin, and V AC represents the alternating current (AC) input voltage of the LLC quasi-resonant switching power supply.

第5圖示出了第2圖所示的LLC准諧振開關電源在第3圖所示的t1-t2期間的等效電路圖。如第5圖所示,在t1-t2期間,功率開關S1導通,AC輸入電壓VAC對電感Lp及Ls充電同時對諧振電容Cr正向充電,電感電流ILs增大;電感電流ILs從變壓器的原邊側傳輸到變壓器的副邊側,然後通過二極體D1流向輸出端;當功率開關S1關斷時,此階段結束。 Fig. 5 shows an equivalent circuit diagram of the LLC quasi-resonant switching power supply shown in Fig. 2 during the period t1-t2 shown in Fig. 3. As shown in Figure 5, during t1-t2, the power switch S1 is turned on, the AC input voltage V AC charges the inductors Lp and Ls and charges the resonant capacitor Cr in the forward direction, and the inductor current I Ls increases; the inductor current I Ls starts from The primary side of the transformer is transmitted to the secondary side of the transformer, and then flows to the output terminal through the diode D1; this phase ends when the power switch S1 is turned off.

第6圖示出了第2圖所示的LLC准諧振開關電源在第3圖所示的t2-t3期間的等效電路圖。如第6圖所示,在t2時刻,功率開關S1關斷,功率開關S2的體二極體導通;控制晶片通過HV點處的電壓VHV的斜率變化檢測到功率開關S2的體二極體導通後,開通功率開關S2從而實現功率開關S2的零電壓導通;在t2-t3期間,電感Lp及Ls對諧振電容Cr正向放電;電感電流ILs從變壓器的原邊側傳輸到變壓器的副邊側,然後通過二極體D1流向輸出端;當電感電流ILs降為零同時諧振電容Cr上的電壓VCr達到正向最大時,此階段結束。 Fig. 6 shows an equivalent circuit diagram of the LLC quasi-resonant switching power supply shown in Fig. 2 during the period t2-t3 shown in Fig. 3. As shown in FIG. 6, at time t2, the power switch S1 is turned off, and the body diode of the power switch S2 is turned on; the control chip detects the body diode of the power switch S2 by the slope change of the voltage V HV at the HV point. After being turned on, the power switch S2 is turned on to achieve zero-voltage conduction of the power switch S2; during t2-t3, the inductors Lp and Ls discharge the resonant capacitor Cr in the forward direction; the inductor current I Ls is transmitted from the primary side of the transformer to the secondary side of the transformer. The side, then flows to the output terminal through the diode D1; when the inductor current I Ls drops to zero and the voltage V Cr on the resonant capacitor Cr reaches the maximum forward value, this phase ends.

第7圖示出了第2圖所示的LLC准諧振開關電源在第3圖所示的t3-t4期間的等效電路圖。如第7圖所示,在t3-t4期間,電容Cboost和諧振電容Cr對電感Lp及Ls放電;電容Cboost上的電壓VCboost和諧振電容Cr上的電壓Vcr減小,電感電流ILs負向增大;電感電流ILs從變壓器的原邊側傳輸到變壓器的副邊側,然後通過二極體D2流向輸出端;當電容Cboost上的電壓VCboost減小至0V時,此階段結束。 FIG. 7 shows an equivalent circuit diagram of the LLC quasi-resonant switching power supply shown in FIG. 2 during t3-t4 shown in FIG. 3. As shown in Figure 7, during t3-t4, the capacitor Cboost and the resonant capacitor Cr discharge the inductance Lp and Ls; the voltage V Cboost on the capacitor Cboost and the voltage Vcr on the resonant capacitor Cr decrease, and the inductor current I Ls is negative Increase; the inductor current I Ls is transmitted from the primary side of the transformer to the secondary side of the transformer, and then flows to the output terminal through the diode D2; when the voltage V Cboost on the capacitor Cboost decreases to 0V, this phase ends.

第8圖示出了第2圖所示的LLC准諧振開關電源在第3圖所示的t4-t5期間的等效電路圖。如第8圖所示,在t4-t5期間,諧振電容Cr對電感Lp及Ls放電;諧振電容Cr上的電壓Vcr減小,電感電流ILS負向增大;電感電流ILs從變壓器的原邊側傳輸到變壓器的副邊側,然後通過二極體D2流向輸出端;當功率開關S2關斷時,此階段結束。 Fig. 8 shows an equivalent circuit diagram of the LLC quasi-resonant switching power supply shown in Fig. 2 during the period t4-t5 shown in Fig. 3. As shown in Figure 8, during t4-t5, the resonant capacitor Cr discharges the inductors Lp and Ls; the voltage Vcr on the resonant capacitor Cr decreases, and the inductor current I LS increases negatively; the inductor current I Ls decreases from the original transformer The side is transmitted to the secondary side of the transformer, and then flows to the output through the diode D2; when the power switch S2 is turned off, this phase ends.

第9圖示出了第2圖所示的LLC准諧振開關電源在第3圖所示的t5-t6期間的等效電路圖。如第9圖所示,在t5時刻,功率開關S2關斷,功率開關S1的體二極體導通;控制晶片通過HV點處的電壓 VHV的斜率變化檢測到功率開關S1的體二極體導通後,開通功率開關S1從而實現功率開關S1的零電壓導通;在t5-t6期間,電感Lp及Ls對諧振電容Cr反向放電;電感電流ILs從變壓器的原邊側傳輸到變壓器的副邊側,然後通過二極體D2流向輸出端;當電感電流ILS降為零同時諧振電容Cr上的電壓VCr達到反向最大時,此階段結束。 Fig. 9 shows an equivalent circuit diagram of the LLC quasi-resonant switching power supply shown in Fig. 2 during the period t5-t6 shown in Fig. 3. As shown in FIG. 9, at time t5, the power switch S2 is turned off, and the body diode of the power switch S1 is turned on; the control chip detects the body diode of the power switch S1 through the slope change of the voltage V HV at the HV point. After being turned on, the power switch S1 is turned on to realize zero-voltage conduction of the power switch S1; during t5-t6, the inductors Lp and Ls discharge the resonant capacitor Cr in the reverse direction; the inductor current I Ls is transmitted from the primary side of the transformer to the transformer's secondary side. Side, and then flows to the output terminal through the diode D2; when the inductor current I LS drops to zero and the voltage V Cr on the resonant capacitor Cr reaches the reverse maximum, this phase ends.

第10圖示出了第2圖所示的LLC准諧振開關電源中的控制晶片的示意框圖。在第10圖所示的控制晶片中,經由VFB端子對變壓器的輔助繞組上的電壓進行採樣,得到表徵輸出電壓Vout的輸出電壓表徵電壓;經由CS端子對流過功率開關S2的電流進行採樣,得到表徵輸出電流(即,LLC准諧振開關電源的輸出電流)的輸出電流錶征電壓;恒流與恒壓控制模組基於輸出電流錶征電壓和輸出電壓表徵電壓,產生恒流控制電壓CC_comp和恒壓控制電壓CV_comp;當恒流控制電壓CC_comp高於恒壓控制電壓CV_comp時,比較器通過對恒壓控制電壓CV_comp與振盪器產生的參考電壓ramp進行比較來決定功率開關S1或S2的關斷時刻;當恒壓控制電壓CV_comp高於恒流控制電壓CC_comp時,比較器通過對恒流控制電壓CC_comp與振盪器產生的參考電壓ramp進行比較來決定功率開關S1或S2的關斷時刻;當功率開關S1關斷時,經由RV端子檢測HV點處的電壓VHV的下降沿來決定功率開關S2的體二極體的導通時刻,然後在GATEL端子輸出高電平以開通功率開關S2,實現功率開關S2的零電壓導通;當功率開關S2關斷時,經由RV端子檢測HV點處的電壓VHV的上升沿來決定功率開關S1的體二極體的導通時刻,然後在GATEH端子輸出高電平以開通功率開關S1,實現功率開關S1的零電壓導通。 FIG. 10 shows a schematic block diagram of a control chip in the LLC quasi-resonant switching power supply shown in FIG. 2. In the control chip shown in FIG. 10, the voltage on the auxiliary winding of the transformer is sampled through the VFB terminal to obtain an output voltage characterization voltage representing the output voltage Vout; and the current flowing through the power switch S2 is sampled through the CS terminal to obtain The output current characterization voltage that characterizes the output current (ie, the output current of the LLC quasi-resonant switching power supply); the constant current and constant voltage control module generates a constant current control voltage CC_comp and constant voltage control based on the output current characterization voltage and output voltage characterization voltage Voltage CV_comp; when the constant current control voltage CC_comp is higher than the constant voltage control voltage CV_comp, the comparator determines the off time of the power switch S1 or S2 by comparing the constant voltage control voltage CV_comp with the reference voltage ramp generated by the oscillator; when When the constant voltage control voltage CV_comp is higher than the constant current control voltage CC_comp, the comparator determines the off time of the power switch S1 or S2 by comparing the constant current control voltage CC_comp with the reference voltage ramp generated by the oscillator; when the power switch S1 is turned off when off, via a falling edge of the voltage V HV at point HV RV detection terminal determines the power of the body diode of switch S2 Conduction time, and then outputs a high level GATEL terminal S2 to turn on the power switch, to achieve zero-voltage turn-on of the power switch S2; S2 when the power switch is turned off, the voltage V HV to rising through the terminal HV was detected at the point RV The body diode of the power switch S1 is determined to be turned on, and then a high level is output at the GATEH terminal to turn on the power switch S1 to achieve zero-voltage conduction of the power switch S1.

由於經由CS端子對流過功率開關S2的電流進行採樣,而流過功率開關S2的電流是電感電流ILs的一半,所以可以如下計算輸出電流: Since the current flowing through the power switch S2 is sampled through the CS terminal, and the current flowing through the power switch S2 is half of the inductor current ILs, the output current can be calculated as follows:

其中,Io表示輸出電流,Vref_cc表示用於控制輸出電流的參考電壓,N表示變壓器的原邊側與副邊側的匝數比。 Among them, Io represents the output current, Vref_cc represents the reference voltage for controlling the output current, and N represents the turns ratio of the primary side and the secondary side of the transformer.

第11圖示出了第10圖所示的恒流與恒壓控制模組的簡 化電路圖。如第11圖所示,VFB端子處的輸出電壓表徵電壓與參考電壓Vref_cv一起送入運算放大器通過電容補償產生恒壓控制電壓CV_comp,CS端子處的輸出電流錶征電壓經過整流取絕對值後與參考電壓Vref_cc一起送入運算放大器通過電容補償產生恒流控制電壓CC_comp。 Figure 11 shows a simplified diagram of the constant current and constant voltage control module shown in Figure 10. Circuit diagram. As shown in Figure 11, the output voltage characterization voltage at the VFB terminal is sent to the operational amplifier together with the reference voltage Vref_cv to generate a constant voltage control voltage CV_comp through capacitance compensation. The output current characterization voltage at the CS terminal is rectified to take the absolute value and reference The voltage Vref_cc is sent to the operational amplifier together to generate a constant current control voltage CC_comp through capacitance compensation.

當第2圖所示的LLC准諧振電源接入交流(AC)輸入電壓時,在第10圖所示的控制晶片中:VDD端子處的電壓增大;當VDD端子處的電壓達到第一閾值時,欠壓保護(Under Voltage Lock Out,UVLO)模組控制其他各模組開始工作;恒流與恒壓控制模組基於VFB端子和CS端子處的輸出電壓表徵電壓和輸出電流錶征電壓,產生恒流控制電壓CC_comp和恒壓控制電壓CV_comp;類比與軟啟動模組基於恒流控制電壓CC_comp和恒壓控制電壓CV_comp,產生最終控制LLC准諧振電源的工作頻率的控制電壓comp(當恒流控制電壓CC_comp高於恒壓控制電壓CV_comp時,利用恒壓控制電壓CV_comp控制LLC准諧振電源的工作頻率;當恒壓控制電壓CV_comp高於恒流控制電壓CC_comp時,利用恒流控制電壓CC_comp控制LLC准諧振電源的工作頻率);同時,類比與軟啟動模組對控制電壓comp由0V慢慢升高至恒流控制電壓CC_comp或恒壓控制電壓CV_comp的過程進行控制,並且在輸出電流錶征電壓指示輸出電流過小時產生電流故障指示信號;類比與軟啟動模組產生的控制電壓comp被送入脈寬調變(pulse-width modulation,PWM)比較器的反向輸入端;振盪器模組產生的固定速率上升的參考電壓ramp被送入PWM比較器的正向輸入端;當參考電壓ramp上升至控制電壓comp時,PWM比較器產生用於關斷功率開關S1或S2的關斷信號;零電壓開關(zero-voltage switch,ZVS)檢測模組經由RV端子檢測HV點處的電壓VHV的斜率;當HV點處的電壓VHV的斜率減小至第二閾值時,ZVS檢測模組產生用於開通功率開關S1或S2的開通信號;內部過溫保護模組判斷控制晶片內部是否發生過溫,並產生過溫表徵信號(例如,在控制晶片內部發生過溫時產生高電平的過溫表徵電壓);故障模組基於來自類比控制與軟啟動模組的電流故障指示信號和來自內部過溫模組的過溫表徵信號,產生故障指示信號;邏輯模組基於來自ZVS檢測模組的開通信號、來 自PWM比較器的關斷信號、以及來自故障模組的故障指示信號,產生用於控制功率開關S1和S2的開關信號;第一驅動器和第二驅動器模組基於來自邏輯模組的開關信號產生用於驅動功率開關S1和S2的驅動信號,使得功率開關S1和S2交替導通。 When the LLC quasi-resonant power supply shown in Figure 2 is connected to an alternating current (AC) input voltage, in the control chip shown in Figure 10: the voltage at the VDD terminal increases; when the voltage at the VDD terminal reaches the first threshold Under voltage lock out (UVLO) module controls other modules to start working; the constant current and constant voltage control module is based on the output voltage characterization voltage and output current characterization voltage at the VFB terminal and CS terminal to generate Constant-current control voltage CC_comp and constant-voltage control voltage CV_comp; analog and soft-start module based on constant-current control voltage CC_comp and constant-voltage control voltage CV_comp to generate a control voltage comp that ultimately controls the operating frequency of the LLC quasi-resonant power supply (when constant current control When the voltage CC_comp is higher than the constant voltage control voltage CV_comp, the constant frequency control voltage CV_comp is used to control the operating frequency of the LLC quasi-resonant power supply; when the constant voltage control voltage CV_comp is higher than the constant current control voltage CC_comp, the constant current control voltage CC_comp is used to control the LLC standard The operating frequency of the resonant power supply); at the same time, the control voltage comp of the analog and soft-start modules gradually rises from 0V to the constant current control voltage CC_comp or the constant voltage control voltage CV_ The comp process is controlled, and a current fault indication signal is generated when the output current characteristic voltage indicates that the output current is too small; the analog and control voltage comp generated by the soft-start module is sent to a pulse-width modulation (PWM) comparison The reverse input of the comparator; the fixed-rate rising reference voltage ramp generated by the oscillator module is sent to the forward input of the PWM comparator; when the reference voltage ramp rises to the control voltage comp, the PWM comparator generates Turn off the shutdown signal of the power switch S1 or S2; the zero-voltage switch (ZVS) detection module detects the slope of the voltage VHV at the HV point through the RV terminal; when the slope of the voltage VHV at the HV point decreases to At the second threshold, the ZVS detection module generates an opening signal for turning on the power switch S1 or S2; the internal over-temperature protection module determines whether an over-temperature occurs in the control chip and generates an over-temperature characterization signal (for example, in the control chip) High-temperature over-temperature characterization voltage is generated when over-temperature occurs; the fault module is based on the current fault indication signal from the analog control and soft-start modules and the over-temperature from the internal over-temperature module. Temperature characterization signal to generate fault indication signal; the logic module is based on the opening signal from the ZVS detection module. The shutdown signal from the PWM comparator and the fault indication signal from the fault module generate switching signals for controlling the power switches S1 and S2; the first driver and the second driver module are generated based on the switching signals from the logic module The driving signals for driving the power switches S1 and S2 cause the power switches S1 and S2 to be turned on alternately.

根據本發明實施例的LLC准諧振開關電源既可以同時實現對輸出電流和輸出電壓的控制,又可以實現功率開關的零電壓導通以減小開關損耗、提高電源效率以及實現高功率因數。 The LLC quasi-resonant switching power supply according to the embodiment of the present invention can not only control output current and output voltage at the same time, but also realize zero voltage conduction of the power switch to reduce switching loss, improve power efficiency, and achieve high power factor.

本發明可以以其他的具體形式實現,而不脫離其精神和本質特徵。例如,特定實施例中所描述的演算法可以被修改,而系統體系結構並不脫離本發明的基本精神。因此,當前的實施例在所有方面都被看作是示例性的而非限定性的,本發明的範圍由所附權利要求而非上述描述定義,並且,落入權利要求的含義和等同物的範圍內的全部改變從而都被包括在本發明的範圍之中。 The present invention may be implemented in other specific forms without departing from the spirit and essential characteristics thereof. For example, the algorithms described in particular embodiments may be modified without the system architecture departing from the basic spirit of the invention. Therefore, the present embodiments are to be considered in all respects as illustrative and not restrictive, the scope of the present invention is defined by the appended claims rather than the above description, and falls within the meaning and equivalent of the claims All changes within the scope are thus included in the scope of the present invention.

Claims (5)

一種LLC准諧振開關電源,包括:相互串聯的第一功率開關和第二功率開關;變壓器;以及控制晶片,該控制晶片可操作以:基於所述第一功率開關與所述第二功率開關之間的連接節點處的電壓的變化斜率,開通所述第一功率開關或所述第二功率開關,通過對所述變壓器的輔助繞組上的電壓進行取樣,產生表徵所述LLC准諧振開關電源的輸出電壓的輸出電壓表徵電壓,通過對流過所述第二功率開關的電流進行採樣,產生表徵所述LLC准諧振開關電源的輸出電流的輸出電流錶征電壓,並且基於所述輸出電壓表徵電壓和所述輸出電流錶征電壓中的一者,關斷所述第一功率開關或所述第二功率開關。 An LLC quasi-resonant switching power supply includes: a first power switch and a second power switch connected in series; a transformer; and a control chip operable to: based on the first power switch and the second power switch. The slope of the voltage change at the connection node between the two nodes is turned on. The first power switch or the second power switch is turned on, and the voltage on the auxiliary winding of the transformer is sampled to generate the characteristic of the LLC quasi-resonant switching power supply. The output voltage characterizing voltage of the output voltage is obtained by sampling the current flowing through the second power switch to generate an output current characterizing voltage characterizing the output current of the LLC quasi-resonant switching power supply, and characterizing the voltage and the voltage based on the output voltage. One of the output current characterization voltages turns off the first power switch or the second power switch. 如申請專利範圍第1項所述的LLC准諧振開關電源,其中,當所述輸出電壓表徵電壓高於所述輸出電流錶征電壓時,所述控制晶片基於所述輸出電流錶征電壓決定所述第一功率開關或所述第二功率開關的關斷時刻。 The LLC quasi-resonant switching power supply according to item 1 of the scope of patent application, wherein when the output voltage characteristic voltage is higher than the output current characteristic voltage, the control chip determines the first An off time of a power switch or the second power switch. 如申請專利範圍第1項所述的LLC准諧振開關電源,其中,當所述輸出電流錶征電壓高於所述輸出電壓表徵電壓時,所述控制晶片基於所述輸出電壓表徵電壓決定所述第一功率開關或所述第二功率開關的關斷時刻。 The LLC quasi-resonant switching power supply according to item 1 of the scope of patent application, wherein when the output current characteristic voltage is higher than the output voltage characteristic voltage, the control chip determines the An off time of a power switch or the second power switch. 如申請專利範圍第1項所述的LLC准諧振開關電源,其中,當所述第一功率開關關斷時,所述控制晶片基於所述第一功率開關與所述第二功率開關之間的連接節點處的電壓的下降沿決定所述第二功率開關的導通時刻。 The LLC quasi-resonant switching power supply according to item 1 of the scope of patent application, wherein, when the first power switch is turned off, the control chip is based on the distance between the first power switch and the second power switch. The falling edge of the voltage at the connection node determines the on-time of the second power switch. 如申請專利範圍第1項所述的LLC准諧振開關電源,其中,當所述第二功率開關關斷時,所述控制晶片基於所述第一功率開關與所述第二功率開關之間的連接節點處的電壓的上升沿決定所述第一功率開關的導通時刻。 The LLC quasi-resonant switching power supply according to item 1 of the scope of patent application, wherein, when the second power switch is turned off, the control chip is based on a voltage between the first power switch and the second power switch. The rising edge of the voltage at the connection node determines the on-time of the first power switch.
TW107113754A 2018-02-02 2018-04-23 LLC quasi-resonant switching power supply TWI669893B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
??201810105146.0 2018-02-02
CN201810105146.0A CN108365766B (en) 2018-02-02 2018-02-02 LLC quasi-resonance switch power supply

Publications (2)

Publication Number Publication Date
TWI669893B TWI669893B (en) 2019-08-21
TW201935825A true TW201935825A (en) 2019-09-01

Family

ID=63004258

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107113754A TWI669893B (en) 2018-02-02 2018-04-23 LLC quasi-resonant switching power supply

Country Status (2)

Country Link
CN (1) CN108365766B (en)
TW (1) TWI669893B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391163B (en) * 2018-11-13 2020-12-01 深圳创维-Rgb电子有限公司 LLC switching power supply and display device
CN113992018B (en) * 2021-09-30 2023-12-26 昂宝电子(上海)有限公司 Quasi-resonant switching power supply, control chip and control method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2884075A1 (en) * 2005-04-04 2006-10-06 Thomson Licensing Sa Semi-bridge type high frequency DC/DC converter for e.g. apparatus providing isolated DC output voltage, has low value capacitor resonating with leakage inductance, and switches that are switched when current in inductance is not null
US8693213B2 (en) * 2008-05-21 2014-04-08 Flextronics Ap, Llc Resonant power factor correction converter
JP5544745B2 (en) * 2009-04-16 2014-07-09 サンケン電気株式会社 Power factor converter
WO2011116225A1 (en) * 2010-03-17 2011-09-22 Power Systems Technologies, Ltd. Control system for a power converter and method of operating the same
JP2012050264A (en) * 2010-08-27 2012-03-08 Minebea Co Ltd Load driving device
CN203387407U (en) * 2013-07-17 2014-01-08 潘海铭 LLC resonant converter light load control device
TWI596880B (en) * 2014-06-30 2017-08-21 光寶科技股份有限公司 A quasi-resonant half-bridge converter and control method
US9559602B2 (en) * 2015-02-26 2017-01-31 Infineon Technologies Austria Ag Magnetizing current based control of resonant converters
US10277130B2 (en) * 2015-06-01 2019-04-30 Microchip Technolgoy Incorporated Primary-side start-up method and circuit arrangement for a series-parallel resonant power converter
TWI587620B (en) * 2016-05-02 2017-06-11 國立虎尾科技大學 Synchronous buck dc-dc converter with high conversion efficiency

Also Published As

Publication number Publication date
TWI669893B (en) 2019-08-21
CN108365766A (en) 2018-08-03
CN108365766B (en) 2020-06-12

Similar Documents

Publication Publication Date Title
KR101931448B1 (en) System and method for a startup cell circuit
US9812975B2 (en) Resonant converter with capacitive mode control and associated control method
US8107263B2 (en) Series resonant converter
US6639811B2 (en) Switching power supply unit
US9866108B2 (en) PFC shutdown circuit for light load
US9647566B2 (en) Switching power supply apparatus
CN108702085B (en) DC/DC resonant converter and power factor correction using resonant converter and corresponding control method
KR101739552B1 (en) Hold-up time extending circuit and converter comprising the same
CN209748411U (en) Electronic system and controller for operating a converter
CN111555629B (en) Resonant converter and control circuit and control method thereof
CN111726005A (en) Phase-shifted full-bridge converter, method of operating a phase-shifted full-bridge converter and AC/DC converter
US20100202167A1 (en) Soft switching power converter with a variable switching frequency for improving operation and efficiency
WO2017137406A1 (en) Dc/dc resonant converters and power factor correction using resonant converters, and corresponding control methods.
TWI650927B (en) Zero voltage switching flyback converter for primary switch turn-off transitions
JP5042881B2 (en) Switching power supply
TWI669893B (en) LLC quasi-resonant switching power supply
JP5042879B2 (en) Switching power supply
US11245338B2 (en) Alternating current-direct current conversion circuit, alternating current-direct current conversion method and charger
CN113726174B (en) Control circuit and resonant converter using same
CN112953241A (en) Power converter
JP5042882B2 (en) Switching power supply
TWI815214B (en) Quasi-resonant switching power supply and its control chip and control method
CN221177557U (en) Half-bridge driving circuit and switching power supply
CN110291708B (en) LLC controller and control method
KR102030918B1 (en) High Efficiency EV Charger with Small Ripple Current