TW201934474A - Methods for the purification of diborane - Google Patents
Methods for the purification of diborane Download PDFInfo
- Publication number
- TW201934474A TW201934474A TW108102962A TW108102962A TW201934474A TW 201934474 A TW201934474 A TW 201934474A TW 108102962 A TW108102962 A TW 108102962A TW 108102962 A TW108102962 A TW 108102962A TW 201934474 A TW201934474 A TW 201934474A
- Authority
- TW
- Taiwan
- Prior art keywords
- diborane
- mixture
- gas
- liquid
- borane
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B35/00—Boron; Compounds thereof
- C01B35/02—Boron; Borides
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
Abstract
Description
乙硼烷係矽及矽-鍺半導體結晶層中p型摻雜劑硼之重要氣體源,其藉由原位摻雜磊晶製程或電漿/離子植入製程施加。乙硼烷亦用於製造經摻雜矽電介質(硼矽酸鹽玻璃)。乙硼烷之另一應用係作為鎢原子層沈積(ALD)中之還原劑。An important gas source for the p-type dopant boron in the diborane-based silicon and silicon-germanium semiconductor crystal layers is applied by an in-situ doping epitaxial process or a plasma / ion implantation process. Diborane is also used to make doped silicon dielectrics (borosilicate glass). Another application of diborane is as a reducing agent in tungsten atomic layer deposition (ALD).
然而,在室溫下,乙硼烷將緩慢分解為高級硼烷(BxHy,其中x>2且y>6)及氫氣。典型高級硼烷係丁硼烷B4 H10 、戊硼烷B5 H9 及癸硼烷B10 H14 ,該等可藉由基於GC之方法(例如GC-MS及GC-DID)及FTIR分析技術進行檢測。由於乙硼烷(B2 H6 )之不穩定性,在高壓氣體或氣體混合物中、特定地在氣缸產品中運輸、儲存及使用期間,若不加以控制,高級硼烷之含量可持續增加。氣體混合物中之乙硼烷濃度越高(例如30%)、氣缸壓力越高及非氫氣平衡氣體(例如氬及氮),分解問題變得越糟。高級硼烷可能有害於半導體製造製程。在前緣PMOS FinFET電晶體之原位摻雜嵌入矽-鍺(eSiGe)源極及汲極沈積中,高級硼烷分子可併入eSiGe層中並產生結晶缺陷。However, at room temperature, diborane will slowly decompose into higher borane (BxHy, where x> 2 and y> 6) and hydrogen. Typical higher borane-based butorane B 4 H 10 , pentane B 5 H 9 and decorane B 10 H 14. These can be achieved by GC-based methods (such as GC-MS and GC-DID) and FTIR Analysis technology for detection. Due to the instability of diborane (B 2 H 6 ), the content of higher borane can increase continuously if it is not controlled during transportation, storage and use in high pressure gas or gas mixture, specifically in cylinder products. The higher the diborane concentration in the gas mixture (eg 30%), the higher the cylinder pressure and the non-hydrogen equilibrium gases (eg argon and nitrogen), the worse the decomposition problem becomes. Higher boranes can be detrimental to semiconductor manufacturing processes. In-situ doping of leading edge PMOS FinFET transistors embedded in silicon-germanium (eSiGe) source and drain deposition, advanced borane molecules can be incorporated into the eSiGe layer and cause crystal defects.
在恆定冷卻的同時運輸純B2 H6 及乙硼烷混合物可係延長產品儲放壽命之解決方案。然而,在國際運輸要求及當地儲存要求及條件下可難以滿足。Transporting a mixture of pure B 2 H 6 and diborane while constant cooling can be a solution to extend the shelf life of the product. However, it can be difficult to meet international transportation requirements and local storage requirements and conditions.
在使用點產生B2 H6 可係另一解決方案,以在高級硼烷雜質含量增加之前使用該產品。然而,在當前使用鹵化硼及金屬鹵化物反應物之合成方法中,產生高純度B2 H6 存在困難或效率低下。Producing B 2 H 6 at the point of use can be another solution to use the product before the higher borane impurity content increases. However, in current synthesis methods using boron halide and metal halide reactants, it is difficult or inefficient to produce high purity B 2 H 6 .
業內仍需要藉由去除高級硼烷來純化乙硼烷及其混合物以為當地半導體客戶提供新鮮及高純度乙硼烷產品。The industry still needs to purify diborane and its mixtures by removing advanced borane to provide local semiconductor customers with fresh and high-purity diborane products.
在本發明中,提出適於在當地或現場純化乙硼烷及其混合物氣體之純化方法。由此,使所述問題最小化。當地純化靠近同一國家或地區之客戶群。純化之位置可係區域ESG生產工廠或視需要在客戶現場或通常乙硼烷混合物供應系統或子系統。In the present invention, a purification method suitable for purifying diborane and its mixture gas locally or in situ is proposed. Thereby, the problem is minimized. Local purification of customer groups close to the same country or region. The purification location can be a regional ESG production plant or, if necessary, at the customer site or usually a diborane mixture supply system or subsystem.
在三個不同實施例中揭示本發明之純化方法。第一者係氣相乙硼烷混合物冷阱。第二實施例使用液體過濾技術促進液相乙硼烷及氫氣分離及高級硼烷去除。第三實施例使用氣/液相之低溫蒸餾。The purification method of the present invention is disclosed in three different examples. The first is a cold trap for a gas phase diborane mixture. The second embodiment uses liquid filtration technology to promote liquid phase diborane and hydrogen separation and higher borane removal. The third embodiment uses low temperature distillation of gas / liquid phase.
因此,該三個實施例可概述如下。第一實施例係自含有高級硼烷、乙硼烷及平衡氣體(例如氫氣)之混合物去除高級硼烷雜質之方法,其包含藉由本文所述之方法將氣體混合物進給至冷阱,但維持乙硼烷與平衡氣體之摻和比率。Therefore, the three embodiments can be summarized as follows. The first embodiment is a method for removing higher borane impurities from a mixture containing higher borane, diborane, and an equilibrium gas (such as hydrogen), which comprises feeding the gas mixture to a cold trap by the method described herein, but Maintain the blending ratio of diborane to the equilibrium gas.
第二實施例係自含有高級硼烷、乙硼烷及平衡氣體之混合物去除高級硼烷之方法,其包含藉由本文所述之方法將混合物進給至乙硼烷液化單元、隨後液體過濾單元,其中在分離製程中產生之經純化液體乙硼烷可用於隨後與平衡氣體摻和。The second embodiment is a method for removing higher borane from a mixture containing higher borane, diborane, and equilibrium gas, which comprises feeding the mixture to a diborane liquefaction unit followed by a liquid filtration unit by the method described herein. The purified liquid diborane produced in the separation process can be used for subsequent blending with the equilibrium gas.
第三實施例係自含有高級硼烷、乙硼烷及平衡氣體之混合物去除高級硼烷之方法,其包含藉由本文所述之方法將混合物進給至蒸餾塔。The third embodiment is a method for removing higher borane from a mixture containing higher borane, diborane, and equilibrium gas, which comprises feeding the mixture to a distillation column by the method described herein.
在第一實施例中,揭示自含有乙硼烷、高級硼烷及平衡氣體之混合物去除高級硼烷之方法,其包含以下步驟:將氣體混合物進給至至少一個冷阱,其中高級硼烷凝固於冷阱之壁上;回收乙硼烷及平衡氣體混合物,而不實質上液化乙硼烷,由此維持乙硼烷與平衡氣體之比率;在回收乙硼烷及平衡氣體之後將再生氣體進給至該至少一個冷阱,由此使該至少一個冷阱再生;及將高級硼烷及再生氣體作為廢物排出。In a first embodiment, a method for removing higher borane from a mixture containing diborane, higher borane, and equilibrium gas is disclosed, which comprises the following steps: feeding the gas mixture to at least one cold trap, wherein the higher borane is solidified On the wall of the cold trap; recovering the diborane and equilibrium gas mixture without substantially liquefying diborane, thereby maintaining the ratio of diborane to the equilibrium gas; after recovering the diborane and equilibrium gas, the regeneration gas is fed into To the at least one cold trap, thereby regenerating the at least one cold trap; and discharging higher borane and regeneration gas as waste.
在第二實施例中,揭示自含有乙硼烷、高級硼烷及平衡氣體之混合物去除高級硼烷之方法,其包含以下步驟:將氣體混合物進給至冷阱液體分離器,以使大部分乙硼烷及高級硼烷凝結;自冷阱液體分離器脫除該平衡氣體;過濾冷阱中之液體以去除呈固體(冰)粒子形式之高級硼烷;自冷阱液體分離器回收純化乙硼烷液體;將經回收之純化乙硼烷液體進給至熱交換器,其中該經純化液體乙硼烷形成經純化氣態乙硼烷;及將選自由氫氣、氬氣及氮氣組成之群之平衡氣體與經純化氣體乙硼烷摻和,由此形成具有經純化氣態乙硼烷之氣態混合物。In a second embodiment, a method for removing higher borane from a mixture containing diborane, higher borane, and equilibrium gas is disclosed, which includes the following steps: feeding the gas mixture to a cold trap liquid separator so that most of the Diborane and higher borane condensate; remove the equilibrium gas from the cold trap liquid separator; filter the liquid in the cold trap to remove the higher borane in the form of solid (ice) particles; recover and purify the second Borane liquid; feeding the recovered purified diborane liquid to a heat exchanger, wherein the purified liquid diborane forms a purified gaseous diborane; and selected from the group consisting of hydrogen, argon, and nitrogen The equilibrium gas is blended with the purified gas diborane, thereby forming a gaseous mixture having the purified gaseous diborane.
在另一實施例中,揭示自含有乙硼烷、高級硼烷及平衡氣體之混合物去除高級硼烷之方法,其包含以下步驟:將混合物進給至蒸餾塔,其中自蒸餾塔之頂部回收純化乙硼烷及氫氣之氣態混合物,並自蒸餾塔之底部丟棄作為廢物之含有乙硼烷及大部分高級硼烷之液體廢物之液體廢物;將經回收氣態混合物進給至冷阱,其中形成經純化液體乙硼烷;將經純化液體乙硼烷進給至熱交換器,由此形成氣態乙硼烷;及自熱交換器回收氣態乙硼烷以進一步與平衡氣體摻和。In another embodiment, a method for removing higher borane from a mixture containing diborane, higher borane, and equilibrium gas is disclosed, which comprises the following steps: feeding the mixture to a distillation column, wherein the purification is recovered from the top of the distillation column A gaseous mixture of diborane and hydrogen, and the liquid waste containing diborane and most of the higher-borane liquid wastes as waste is discarded from the bottom of the distillation column; the recovered gaseous mixture is fed to a cold trap, where the Purifying the liquid diborane; feeding the purified liquid diborane to a heat exchanger, thereby forming a gaseous diborane; and recovering the gaseous diborane from the heat exchanger to further blend with the equilibrium gas.
在第一實施例中,在有限去除高級硼烷的同時,乙硼烷氣體混合物將維持初始混合比率。此方法將對低濃度乙硼烷混合物(例如1%至5%乙硼烷於氫氣中)有效。此方法將適於例如客戶現場乙硼烷混合物供應系統或子系統。In the first embodiment, the diborane gas mixture will maintain the initial mixing ratio while limited removal of the higher borane. This method will be effective for low-concentration diborane mixtures (eg, 1% to 5% diborane in hydrogen). This method would be suitable, for example, at a customer site diborane mixture supply system or subsystem.
第一實施例之優點包括保持高於乙硼烷凝結溫度,由此維持與平衡氣體之初始乙硼烷混合比率。較低之溫度在使高級硼烷凝結時將更佳,同時仍將產生高級硼烷雜質B4 H10 高達氣體混合物之百萬分之十的乙硼烷混合物。Advantages of the first embodiment include maintaining above the diborane condensation temperature, thereby maintaining the initial diborane mixing ratio with the equilibrium gas. Lower temperatures will be better when the higher borane is condensed, while still producing a higher borane impurity B 4 H 10 mixture of diborane up to ten parts per million of the gas mixture.
在第二實施例中,產生液相乙硼烷。此混合物將具有較在第一實施例中所達成濃度低之高級硼烷濃度。此方法可用於產生具有所選平衡氣體(例如氫氣、氬氣或氮氣)之混合物且可關於最終使用者之場所就地生產。In a second embodiment, liquid phase diborane is produced. This mixture will have a higher higher borane concentration than that achieved in the first embodiment. This method can be used to produce a mixture with a selected equilibrium gas (such as hydrogen, argon or nitrogen) and can be produced on-site with respect to the end-user's premises.
第二實施例提供諸如低溫之優點,乙硼烷在氫氣保持呈氣相的同時經液化。經純化乙硼烷可經保持以便今後與適當平衡氣體混合或與純氫氣流重新混合。冷凍器溫度可低至-135℃。當使用低溫氣體作為冷卻劑時,亦可在乙硼烷達到其-164.9℃之三相點之前施加更低的溫度。The second embodiment provides advantages such as low temperature, and diborane is liquefied while the hydrogen gas remains in the gas phase. Purified diborane can be maintained for future mixing with an appropriate equilibrium gas or remixing with a pure hydrogen stream. Freezer temperature can be as low as -135 ° C. When using low-temperature gas as a coolant, a lower temperature can also be applied before diborane reaches its triple point of -164.9 ° C.
第三實施例使用低溫蒸餾以純化乙硼烷進料流混合物。此實施例可取決於期望結果及操作條件來自進料流混合物產生較高純度之乙硼烷或稍微降低純度之乙硼烷。The third example uses cryogenic distillation to purify the diborane feed stream mixture. This example may depend on the desired results and operating conditions from either a higher purity diborane produced by the feed stream mixture or a slightly reduced purity diborane.
第三實施例亦提供具有較小乙硼烷液體流量之高級硼烷的去除。經回收的乙硼烷液體可收集於冷阱中,以便將來與所選平衡氣體混合。可採用10個理論級且仍達成低至十億分之一的B4 H10 污染物含量。The third embodiment also provides the removal of higher borane with smaller diborane liquid flow. The recovered diborane liquid can be collected in a cold trap for future mixing with the selected equilibrium gas. B 4 H 10 pollutant levels of 10 theoretical levels can still be reached and still reach as low as 1 part per billion.
第二及第三實施例二者均可採用全範圍之乙硼烷混合物且並不像第一實施例中所用的那樣限於較低乙硼烷混合物比率。儘管兩個實施例均可用於區域純化工廠或客戶現場,但其在供應商之區域純化工廠中使用時效率最高。Both the second and third embodiments can use a full range of diborane mixtures and are not limited to lower diborane mixture ratios as used in the first embodiment. Although both embodiments can be used in a regional purification plant or a customer site, they are most efficient when used in a supplier's regional purification plant.
在所有該等實施例中,可併入分析設備以量測純化氣體流之高級硼烷濃度。分析方法通常係用於高級硼烷之FTIR及基於GC之方法(例如GC-MS及GC-DID)。用於調整混合比率之量測亦可使用二元氣體分析儀實施。In all such embodiments, analytical equipment may be incorporated to measure the higher borane concentration of the purified gas stream. Analytical methods are commonly used for FTIR of higher borane and GC-based methods (such as GC-MS and GC-DID). The measurement for adjusting the mixing ratio can also be performed using a binary gas analyzer.
高級硼烷可選自由丁硼烷、戊硼烷及癸硼烷組成之群。The higher borane can be selected from the group consisting of butane, pentane and decane.
對於第一實施例之方法,混合物中之乙硼烷通常將以莫耳或體積計低於5%、通常以莫耳或體積計1或2%及以下。在第二及第三實施例中,對乙硼烷濃度沒有限制。For the method of the first embodiment, the diborane in the mixture will generally be less than 5% by mole or volume, and usually 1 or 2% and less by mole or volume. In the second and third embodiments, there is no limitation on the diborane concentration.
對於100%乙硼烷進料,根據供應商資訊,B4 H10 通常以約百萬分之二百存在。不同進料混合物將具有B4 H10 濃度,該等濃度經平衡氣體莫耳分率稀釋。然而,熱分解係動力學過程與鏈反應,該等鏈反應形成更高級且更穩定氫化硼烷聚合物。因此,可量測之高級硼烷(例如丁硼烷、戊硼烷及癸硼烷)係反應中間體。因此,濃度可因具體情形而不同。如本發明中所體現之純化目標在實施例1、2及3中分別係達成個位數百萬分率、亞百萬分率及十億分率之高級硼烷含量。For a 100% diborane feed, according to supplier information, B 4 H 10 is typically present at about two hundred parts per million. The different feed mixtures will have B 4 H 10 concentrations which are diluted by the equilibrium gas Mohr fraction. However, thermal decomposition is a kinetic process that reacts with chains that form higher order and more stable hydrogenated borane polymers. Therefore, measurable higher boranes (such as butane, pentane and decane) are reaction intermediates. Therefore, the concentration may vary from case to case. The purification targets as embodied in the present invention in Examples 1, 2 and 3 are to achieve single-digit millionth, sub-millionth, and billionth-order higher borane contents, respectively.
經純化乙硼烷通常將呈乙硼烷氣體混合物之形式或純乙硼烷液體形式。The purified diborane will generally be in the form of a diborane gas mixture or a pure diborane liquid.
最終使用者可決定乙硼烷濃度並基於純乙硼烷液體選擇平衡氣體。因此,平衡氣體可選自氫氣、氮氣及氬氣之群。The end user can determine the diborane concentration and select an equilibrium gas based on the pure diborane liquid. Therefore, the equilibrium gas may be selected from the group of hydrogen, nitrogen, and argon.
高級硼烷在經純化乙硼烷中之濃度將在1 ppb至0.1 ppm之範圍內。The concentration of higher borane in purified diborane will range from 1 ppb to 0.1 ppm.
相關申請案之交叉參考Cross-reference to related applications
此申請案主張2018年1月26日提出申請之美國臨時專利申請案第62/622,199號之優先權。This application claims priority from US Provisional Patent Application No. 62 / 622,199, filed on January 26, 2018.
圖1係顯示乙硼烷及各種高級硼烷之蒸氣壓力對溫度之圖表。曲線僅適用於液相材料。應注意,B4 H10 在-120.8℃以下係固體/蒸氣相。B4 H10 由於在所有高級硼烷中最具揮發性,故其係關鍵高級硼烷雜質。當乙硼烷分壓超過蒸氣壓力線時,乙硼烷將為蒸氣-液體混合物。氫氣保持為氣相。Figure 1 is a graph showing vapor pressure versus temperature for diborane and various higher boranes. The curve applies only to liquid materials. It should be noted that B 4 H 10 is a solid / vapor phase below -120.8 ° C. B 4 H 10 is the key higher borane impurity because it is the most volatile of all higher boranes. When the diborane partial pressure exceeds the vapor pressure line, the diborane will be a vapor-liquid mixture. The hydrogen remains in the gas phase.
圖2係乙硼烷及高級硼烷之氣相/液相及氣相/固相之蒸氣壓力曲線的圖表。提供關於蒸氣壓力曲線之雅斯手冊(Yaws handbook)。摘錄蒸發熱並加入固體之估計熔化熱。因此,圖2中顯示估計的固體昇華蒸氣壓力。FIG. 2 is a graph of vapor pressure / liquid phase and vapor phase / solid phase vapor pressure curves of diborane and higher borane. Yaws handbook on vapor pressure curves. Extract the heat of evaporation and add the estimated heat of fusion of the solid. Therefore, the estimated solid sublimation vapor pressure is shown in FIG. 2.
圖3係在本發明之第一實施例中使用冷阱之純化製程之示意圖10。將高級硼烷、乙硼烷及平衡氣體之全氣相乙硼烷混合物藉助進給線12進給並分成兩個線14及16。進料通常係較低百分比之乙硼烷,大約1至5%混合物。此允許採用較低溫度以更有效去除混合物中之高級硼烷。將分開進料氣體藉助閥V1及V2以及線18及20分別進給至拋光冷阱床A及B。FIG. 3 is a schematic diagram 10 of a purification process using a cold trap in the first embodiment of the present invention. A full-phase diborane mixture of higher borane, diborane, and equilibrium gas is fed by a feed line 12 and divided into two lines 14 and 16. The feed is usually a lower percentage of diborane, approximately 1 to 5% mixture. This allows lower temperatures to be used to more effectively remove higher borane from the mixture. The separate feed gases are fed to the polished cold trap beds A and B via valves V1 and V2 and lines 18 and 20, respectively.
冷阱床通常係結構化熱交換部件,例如其具有流動冷卻劑之束管,其具有與導熱金屬材料之最大化熱交換表面。在圍繞熱交換器部件之氣體接觸空間中,添加吸附劑材料(例如沸石或金屬-有機-框架)以增加冷阱床之高級硼烷去除能力。自每一床A及B之底部延伸之線22及24係由閥V3及V4控制,以允許藉助線26回收經純化氣體混合物。A cold trap bed is usually a structured heat exchange component, such as a tube with a flowing coolant, which has a surface that maximizes heat exchange with a thermally conductive metal material. In the gas contact space surrounding the heat exchanger components, an adsorbent material (such as zeolite or metal-organic-framework) is added to increase the advanced borane removal capability of the cold trap bed. Lines 22 and 24 extending from the bottom of each bed A and B are controlled by valves V3 and V4 to allow the purified gas mixture to be recovered by means of line 26.
較佳在多床系統中,一個床處於生產模式,而另一床處於再生模式。在此實施例中,將氫再生氣體進給至線28並藉由閥V5或V6進行流量控制。當一個床處於生產模式時,相應閥V5或V6關閉,而至另一床之閥V6或V5打開,以允許氫分別藉助線30及34或32及36流動至其。此再生將去除高級硼烷。當另一床已達到高級硼烷之預定限值時,將流顛倒且正生產之床現在經再生且先前再生之床開始生產乙硼烷。此循環之優點在於可達成連續或半連續操作。再生製程可在室溫或升高溫度下進行。Preferably in a multi-bed system, one bed is in production mode and the other bed is in regeneration mode. In this embodiment, the hydrogen regeneration gas is fed to the line 28 and the flow rate is controlled by a valve V5 or V6. When one bed is in production mode, the corresponding valve V5 or V6 is closed, and the valve V6 or V5 to the other bed is opened to allow hydrogen to flow to it via lines 30 and 34 or 32 and 36, respectively. This regeneration will remove higher borane. When the other bed has reached the predetermined limit for higher borane, the bed in which the flow is reversed and is being produced is now regenerated and the previously regenerated bed begins to produce diborane. The advantage of this cycle is that continuous or semi-continuous operation can be achieved. The regeneration process can be performed at room temperature or elevated temperature.
為保持初始乙硼烷混合比率,乙硼烷必須藉由設定溫度下限保持呈氣相而不凝結。因此,在不實質上液化乙硼烷的情形下,維持初始乙硼烷氣體混合物比率。較冷溫度通常較佳以使高級硼烷凝結。由於此權衡,高級硼烷濃度可高達純化乙硼烷混合物氣體流之數10 ppm含量。如圖4中所示,目標床(阱溫度)對混合物中乙硼烷之最大百分比之估計。而且,在右側軸上係B4 H10 之量(以百萬分率計)對阱溫度。較高之阱溫度可導致進料混合物中較高之乙硼烷量以及較高之B4 H10 量二者。因此,在 -110℃下,5%乙硼烷混合物將具有26 ppm之B4 H10 於經純化混合物中之上限。對於2%乙硼烷混合物,阱溫度為-123℃,且B4 H10 濃度可高達4.4 ppm。在該等實例中,總壓力為6巴(bara)。To maintain the initial diborane mixing ratio, diborane must be kept in a gas phase by setting a lower temperature limit without condensing. Therefore, without substantially liquefying diborane, the initial diborane gas mixture ratio is maintained. Cooler temperatures are usually preferred to allow higher borane to condense. Due to this trade-off, higher borane concentrations can be as high as 10 ppm of the purified diborane mixture gas stream. As shown in Figure 4, the target bed (trap temperature) is an estimate of the maximum percentage of diborane in the mixture. Moreover, the amount (in parts per million) of B 4 H 10 is plotted against the well temperature on the right axis. Higher trap temperatures can result in both higher amounts of diborane and higher amounts of B 4 H 10 in the feed mixture. Therefore, at -110 ° C, a 5% diborane mixture will have an upper limit of 26 ppm of B 4 H 10 in the purified mixture. For a 2% diborane mixture, the trap temperature is -123 ° C, and the B 4 H 10 concentration can be as high as 4.4 ppm. In these examples, the total pressure is 6 bara.
本發明之第二實施例示意性顯示於圖5中。在此實施例中,採用過濾以幫助分離乙硼烷、高級硼烷及平衡氣體之混合物。在此示意圖40中,將30%乙硼烷於氫中之進料42進給至冷阱液體分離器C。亦可將超高純度氫之第二進料44 (可選)作為吹掃氣進給至冷阱液體分離器C中。將經凝結液體藉助C之下部部分進給至過濾單元C1,該過濾單元可為SS 315L燒結金屬過濾器或聚四氟乙烯(PTFE)膜過濾器。該等過濾器將去除高級硼烷固體粒子48,在D中產生純乙硼烷液體。A second embodiment of the present invention is shown schematically in FIG. 5. In this embodiment, filtration is used to help separate a mixture of diborane, higher borane, and equilibrium gas. In this schematic diagram 40, a feed 42 of 30% diborane in hydrogen is fed to the cold trap liquid separator C. The second feed 44 (optional) of ultra-high purity hydrogen can also be fed into the cold trap liquid separator C as a purge gas. The condensed liquid is fed to the filter unit C1 through the lower part of C, which can be a SS 315L sintered metal filter or a polytetrafluoroethylene (PTFE) membrane filter. These filters will remove the higher borane solid particles 48, producing a pure diborane liquid in D.
然後將純乙硼烷液體進給50至熱交換器E,在該熱交換器中將其加熱以形成經純化氣態乙硼烷氣體。循環氫氣可自冷阱液體分離器進給52,或另一選擇可將新鮮的超高純度氫氣或氬氣或氮氣進給54至熱交換器E,所有均與純氣態乙硼烷混合。此混合物可進給至氣體混合腔F,其可根據最終使用者之期望濃度藉助線62遞送明確純度(express purity)之乙硼烷。線56及58分別係超高純度平衡氣體54及循環氫氣線52之延續部分。對於較高純度操作,例如,循環氫氣由於可含有雜質而被丟棄。新鮮超高純度之平衡氣體係較佳的,例如用於熱交換及最終混合之新的UHP氫氣。Pure diborane liquid is then fed 50 to heat exchanger E, where it is heated to form a purified gaseous diborane gas. Circulating hydrogen can be fed 52 from the cold trap liquid separator, or another option can be to feed fresh ultrahigh purity hydrogen or argon or nitrogen 54 to heat exchanger E, all mixed with pure gaseous diborane. This mixture can be fed into a gas mixing chamber F, which can deliver diborane of express purity via line 62 according to the desired concentration of the end user. Lines 56 and 58 are the continuations of the ultra-high purity balanced gas 54 and the circulating hydrogen line 52, respectively. For higher purity operations, for example, recycled hydrogen is discarded because it can contain impurities. Fresh ultra-high purity equilibrium gas systems are preferred, such as new UHP hydrogen for heat exchange and final mixing.
實施再利用來自進料之循環氫氣的純化模擬。在-135℃及50 psig下,最關鍵之高級硼烷B4 H10 為約1 ppm或以下。若使用新的超高純度補充氣體用於混合,則雜質含量應比B4 H10 之估計值低至少10倍或為約0.1 ppm含量。A purification simulation was performed that reused recycled hydrogen from the feed. At -135 ° C and 50 psig, the most critical higher borane B 4 H 10 is about 1 ppm or less. If a new ultra-high purity make-up gas is used for mixing, the impurity content should be at least 10 times lower than the estimated value of B 4 H 10 or about 0.1 ppm.
在此模擬中,將來自冷卻器之硼烷混合物及氫氣進給至冷阱液體分離器。將氫氣自液體分離器頂部去除並進給至加熱器。來自液體分離器之底部物係液體,將其進給至過濾單元,在其中將固體高級硼烷自過濾單元之底部去除。亦將氫氣自第二冷卻器進給至過濾單元。將純乙硼烷液體自過濾單元進給至加熱器以形成氣體。氫氣、或新鮮氫氣進料及乙硼烷可作為氣體進給至氣體混合器,在其中可產生預定濃度之乙硼烷並遞送。In this simulation, a borane mixture and hydrogen from a cooler were fed to a cold trap liquid separator. Hydrogen was removed from the top of the liquid separator and fed to the heater. The bottom liquid from the liquid separator is fed to a filtration unit where solid higher borane is removed from the bottom of the filtration unit. Hydrogen is also fed from the second cooler to the filter unit. Pure diborane liquid is fed from the filter unit to a heater to form a gas. Hydrogen, or fresh hydrogen feed and diborane can be fed as a gas to a gas mixer where diborane can be produced and delivered in a predetermined concentration.
或者,可採用金屬有機框架(MOF)作為過濾單元。MOF用於選擇性吸附乙硼烷分子,以便可達成更寬之操作溫度範圍。Alternatively, a metal organic frame (MOF) can be used as the filter unit. MOF is used to selectively adsorb diborane molecules so that a wider operating temperature range can be achieved.
圖6係顯示B4 H10 固體蒸氣壓力隨熔化潛熱及溫度而變之圖表。自此圖表可估計冷阱性能。舉例而言,當再利用循環氫氣時,在50 psig下,冷凍器在-135℃下之性能將具有大約1 ppm之B4 H10 上限。在某些實施例中,更純的混合物可需要氮氣而非氫氣。Figure 6 is a graph showing the B 4 H 10 solid vapor pressure as a function of latent heat of fusion and temperature. From this chart the cold trap performance can be estimated. For example, when recycling recycled hydrogen, at 50 psig, the performance of the freezer at -135 ° C will have a B 4 H 10 upper limit of about 1 ppm. In certain embodiments, a more pure mixture may require nitrogen instead of hydrogen.
圖7係顯示本發明第三實施例之示意圖。在此實施例中,採用氣/液相低溫蒸餾方法。藉由使用低溫蒸餾方法,可採用蒸氣/液相經良好界定之較高溫度。儘管蒸餾需要較複雜的設備,但高級硼烷之分離僅需要10個左右的理論塔板以在產物乙硼烷及氫混合物之蒸氣相中達成十億分率含量。由於乙硼烷濃度將因去除較高級硼烷雜質而略微降低,因此使用新的超高純度氫氣流來滿足不同的稀釋程度要求調整。FIG. 7 is a schematic diagram showing a third embodiment of the present invention. In this embodiment, a gas / liquid-phase low-temperature distillation method is used. By using a cryogenic distillation method, a well-defined higher temperature of the vapor / liquid phase can be used. Although distillation requires more complicated equipment, the separation of higher borane requires only about 10 theoretical plates to achieve a billion fraction content in the vapor phase of the product diborane and hydrogen mixture. Since the diborane concentration will be slightly reduced due to the removal of higher-level borane impurities, a new ultra-high-purity hydrogen stream is used to meet different dilution requirements.
乙硼烷至液體廢物之損失為進料中乙硼烷量之約1至10%,且通常在2至5%之範圍內。由於在輕質產物流中產生超高純度(即,十億分率含量之高級硼烷)乙硼烷氣體混合物,故其對於客戶現場純化而言適於作為超高純度經稀釋乙硼烷氣體混合物之進給原位摻和系統之子系統。The loss of diborane to liquid waste is about 1 to 10% of the amount of diborane in the feed, and is usually in the range of 2 to 5%. Suitable for ultra-high purity dilute diborane gas for customer on-site purification due to the ultra-high purity (ie, high borane content of higher borane) diborane gas mixture produced in the light product stream The feed of the mixture is the subsystem of the in situ blending system.
或者,將經液化超高純度乙硼烷收集於冷阱中,同時氫分離,然後可將其與氫氣、氬氣或氮氣混合以作為乙硼烷混合物收集。Alternatively, the liquefied ultra-high-purity diborane is collected in a cold trap while hydrogen is separated, and then it can be mixed with hydrogen, argon, or nitrogen to be collected as a diborane mixture.
在圖7之示意圖70中,將30%乙硼烷於氫氣中之進料進給72至具有大約10級之蒸餾塔。自蒸餾塔G之底部74收集高級硼烷之液體廢物並自其頂部76收集經純化乙硼烷及氫氣混合物。此經純化乙硼烷及氫氣混合物經收集用於最終使用或進給78至冷液體阱H,此產生純乙硼烷液體。純乙硼烷液體可在有或沒有超高純度氫氣、氬氣或氮氣82之情況下進給80至熱交換器及混合單元I,以產生乙硼烷氣體混合物或純乙硼烷氣體84,如由期望最終使用者所決定。In the schematic diagram 70 of FIG. 7, a feed of 30% diborane in hydrogen is fed 72 to a distillation column having approximately 10 stages. Liquid waste of higher borane is collected from bottom 74 of distillation column G and purified diborane and hydrogen mixture is collected from top 76 thereof. This purified diborane and hydrogen mixture is collected for end use or fed 78 to the cold liquid trap H, which produces a pure diborane liquid. Pure diborane liquid can be fed 80 to the heat exchanger and mixing unit I with or without ultra-high purity hydrogen, argon, or nitrogen 82 to produce a diborane gas mixture or pure diborane gas 84, As determined by the intended end user.
實施再利用來自進料之循環氫氣的純化模擬。在-90.4℃及30 psig下,最關鍵之高級硼烷B4 H10 在蒸氣純輸出氣體流中為約十億分之一。液體乙硼烷在與氫氣平衡氣體分離後可自液體罐收集。在此模擬中,蒸餾塔與用於自塔底部接收高級硼烷廢料以及將經純化乙硼烷及氫氣混合物引導至冷阱系統之單元流體連通,該冷阱系統將氫氣與純乙硼烷液體分離並回收氣態氫及液體乙硼烷。A purification simulation was performed that reused recycled hydrogen from the feed. At -90.4 ° C and 30 psig, the most critical higher borane B 4 H 10 is about one billionth of a billion in a pure vapor output gas stream. The liquid diborane can be collected from the liquid tank after being separated from the hydrogen equilibrium gas. In this simulation, the distillation column is in fluid communication with a unit for receiving advanced borane waste from the bottom of the column and directing a purified diborane and hydrogen mixture to a cold trap system, which combines hydrogen with pure diborane liquid Separate and recover gaseous hydrogen and liquid diborane.
儘管本發明已關於其特定實施例進行闡述,但很明顯,本發明之許多其他形式及修改對熟習此項技術者將顯而易見。本發明之隨附申請專利範圍通常應解釋為涵蓋在本發明之真正精神及範圍內之所有該等明顯形式及修改。Although the invention has been described with reference to specific embodiments thereof, it will be apparent that many other forms and modifications of the invention will be apparent to those skilled in the art. The accompanying patentable scope of the invention should generally be construed to cover all such obvious forms and modifications that fall within the true spirit and scope of the invention.
10‧‧‧示意圖10‧‧‧ Schematic
12‧‧‧進給線 12‧‧‧feed line
14‧‧‧線 14‧‧‧line
16‧‧‧線 16‧‧‧line
18‧‧‧線 18‧‧‧line
20‧‧‧線 20‧‧‧line
22‧‧‧線 22‧‧‧line
24‧‧‧線 24‧‧‧line
26‧‧‧線 26‧‧‧line
28‧‧‧線 28‧‧‧line
30‧‧‧線 30‧‧‧line
32‧‧‧線 32‧‧‧line
34‧‧‧線 34‧‧‧line
36‧‧‧線 36‧‧‧line
40‧‧‧示意圖 40‧‧‧ Schematic
42‧‧‧進料 42‧‧‧Feeding
44‧‧‧第二進料 44‧‧‧second feed
46‧‧‧管線(line) 46‧‧‧line
48‧‧‧高級硼烷固體粒子 48‧‧‧Advanced Borane Solid Particles
50‧‧‧進給 50‧‧‧Feed
52‧‧‧循環氫氣線/進給 52‧‧‧Circulating hydrogen line / feed
54‧‧‧超高純度平衡氣體/進給 54‧‧‧Ultra-high purity balanced gas / feed
56‧‧‧線 56‧‧‧line
58‧‧‧線 58‧‧‧line
62‧‧‧線 62‧‧‧line
70‧‧‧示意圖 70‧‧‧ Schematic
72‧‧‧進給 72‧‧‧Feed
74‧‧‧底部 74‧‧‧ bottom
76‧‧‧頂部 76‧‧‧Top
78‧‧‧進給 78‧‧‧Feed
80‧‧‧進給 80‧‧‧Feed
82‧‧‧超高純度氫氣、氬氣或氮氣 82‧‧‧Ultra high purity hydrogen, argon or nitrogen
84‧‧‧乙硼烷氣體混合物或純乙硼烷氣體 84‧‧‧Diborane gas mixture or pure diborane gas
A‧‧‧拋光冷阱床/床 A‧‧‧Polished cold trap bed / bed
B‧‧‧拋光冷阱床/床 B‧‧‧Polished cold trap bed / bed
C‧‧‧冷阱液體分離器/熱交換器 C‧‧‧cold trap liquid separator / heat exchanger
C1‧‧‧過濾單元 C1‧‧‧filtration unit
D‧‧‧容器 D‧‧‧container
E‧‧‧熱交換器 E‧‧‧Heat exchanger
F‧‧‧氣體混合腔 F‧‧‧Gas mixing chamber
G‧‧‧蒸餾塔 G‧‧‧ distillation tower
H‧‧‧冷液體阱 H‧‧‧ cold liquid trap
I‧‧‧熱交換器及混合單元 I‧‧‧Heat exchanger and mixing unit
V1‧‧‧閥V 1 ‧‧‧ Valve
V2‧‧‧閥V 2 ‧‧‧ Valve
V3‧‧‧閥V 3 ‧‧‧ Valve
V4‧‧‧閥V 4 ‧‧‧ Valve
V5‧‧‧閥V 5 ‧‧‧ Valve
V6‧‧‧閥V 6 ‧‧‧ Valve
圖1係顯示乙硼烷及高級硼烷(B4 H10 、B5 H9 、B10 H14 )之蒸氣壓力對溫度之圖表。Figure 1 is a graph showing the vapor pressure versus temperature of diborane and higher borane (B 4 H 10 , B 5 H 9 , B 10 H 14 ).
圖2係顯示高級硼烷B4 H10 及B5 H9 之估計昇華壓力曲線之圖表。FIG. 2 is a graph showing estimated sublimation pressure curves of higher boranes B 4 H 10 and B 5 H 9 .
圖3係在第一實施例中用以去除高級硼烷之拋光冷阱床的示意圖。FIG. 3 is a schematic diagram of a polished cold trap bed for removing advanced borane in the first embodiment.
圖4係比較第一實施例中進料混合物中乙硼烷之最大百分比對阱溫度之圖表。Figure 4 is a graph comparing the maximum percentage of diborane in the feed mixture to the well temperature in the first example.
圖5係在第二實施例中使用過濾以自含乙硼烷混合物去除高級硼烷之純化系統的示意圖。5 is a schematic diagram of a purification system using filtration to remove higher borane from a diborane-containing mixture in a second embodiment.
圖6係B4 H10 固體蒸氣壓力隨熔化潛熱及溫度而變之圖表。Figure 6 is a graph of B 4 H 10 solid vapor pressure as a function of latent heat of fusion and temperature.
圖7係根據本發明在第三實施例中氣/液相低溫蒸餾之示意圖。FIG. 7 is a schematic diagram of a gas / liquid-phase low-temperature distillation in a third embodiment according to the present invention.
Claims (29)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862622199P | 2018-01-26 | 2018-01-26 | |
US62/622,199 | 2018-01-26 | ||
??PCT/US19/14718 | 2019-01-23 | ||
PCT/US2019/014718 WO2019147648A1 (en) | 2018-01-26 | 2019-01-23 | Methods for the purification of diborane |
WOPCT/US19/14718 | 2019-01-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201934474A true TW201934474A (en) | 2019-09-01 |
TWI821241B TWI821241B (en) | 2023-11-11 |
Family
ID=67396232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108102962A TWI821241B (en) | 2018-01-26 | 2019-01-25 | Methods for the purification of diborane |
Country Status (2)
Country | Link |
---|---|
TW (1) | TWI821241B (en) |
WO (1) | WO2019147648A1 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3460905A (en) * | 1957-07-18 | 1969-08-12 | Mine Safety Appliances Co | Preparation of pentaborane(9) |
US6610264B1 (en) * | 1992-04-15 | 2003-08-26 | Exxonmobil Oil Corporation | Process and system for desulfurizing a gas stream |
NL1000109C2 (en) * | 1995-04-11 | 1996-04-16 | Hoek Mach Zuurstoff | A method of condensing a volatile substance from a gas stream and apparatus therefor. |
US6998097B1 (en) * | 2000-06-07 | 2006-02-14 | Tegal Corporation | High pressure chemical vapor trapping system |
CN101811668A (en) * | 2010-05-12 | 2010-08-25 | 天津市泰亨气体有限公司 | Technology for preparing high-purity diborane in rectification and adsorption combined purifying mode |
-
2019
- 2019-01-23 WO PCT/US2019/014718 patent/WO2019147648A1/en active Application Filing
- 2019-01-25 TW TW108102962A patent/TWI821241B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI821241B (en) | 2023-11-11 |
WO2019147648A1 (en) | 2019-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100587865B1 (en) | System and method for delivery of a vapor phase product to a point of use | |
RU2715636C1 (en) | Method for cryogenic separation of feed stream containing methane and air gases, device for producing biomethane by cleaning biogas obtained from safe waste (nhwsf) storages which enables to implement method | |
US6576138B2 (en) | Method for purifying semiconductor gases | |
CN1604811A (en) | Central carbon dioxide purifier | |
US11125499B2 (en) | Process for optimizing removal of condensable components from a fluid | |
US10130906B2 (en) | Purification of a gas stream | |
TW200916414A (en) | Method and apparatus for the production of high purity tungsten hexafluoride | |
US20110097253A1 (en) | Fluorine purification | |
TWI821241B (en) | Methods for the purification of diborane | |
TWI652257B (en) | Method for treating a product stream of a dimethyl ether reactor by a separation technique | |
JP6101958B2 (en) | Ammonia and hydrogen recovery and reuse methods | |
KR101363571B1 (en) | Method for generating high quality GeH₄and Apparatus for generating high quality GeH₄ | |
KR102444842B1 (en) | Apparatus for producing ultra high purity electronics grade carbondioxide | |
JP2016188154A (en) | Method for purifying ammonia | |
FR3052240A1 (en) | METHOD FOR LIQUEFACTING CARBON DIOXIDE FROM NATURAL GAS CURRENT | |
Keshavarz et al. | Cryogenic CO 2 capture | |
KR20200024582A (en) | Apparatus and method for purifying ammonia to UHP(Ultra High Purity) grade using distillation | |
JP5032040B2 (en) | Method for producing hydrogen selenide | |
WO2018181295A1 (en) | Rectification device | |
JP4430351B2 (en) | Fluorine compound gas separation and purification equipment | |
Bondarenko et al. | Analysis of Losses in High-Purity Neon Production Technology. Part 2.* Processing of a Ne–He Mixture to Obtain Pure Products | |
RU2348581C2 (en) | Method of silicon tetrafluoride extraction from gas mix and aggregate for implementation of method | |
CN103269979A (en) | Method for purifying ammonia and ammonia purification system | |
Joshi et al. | RPC gas recovery by open loop method | |
RU2275562C2 (en) | Method and device for gas separation |