TW201933754A - Motor control system and roll-to-roll conveying system capable of maintaining synchronization of a plurality of motors during speed reduction - Google Patents

Motor control system and roll-to-roll conveying system capable of maintaining synchronization of a plurality of motors during speed reduction Download PDF

Info

Publication number
TW201933754A
TW201933754A TW107146039A TW107146039A TW201933754A TW 201933754 A TW201933754 A TW 201933754A TW 107146039 A TW107146039 A TW 107146039A TW 107146039 A TW107146039 A TW 107146039A TW 201933754 A TW201933754 A TW 201933754A
Authority
TW
Taiwan
Prior art keywords
speed command
motor control
control system
deceleration rate
controller
Prior art date
Application number
TW107146039A
Other languages
Chinese (zh)
Other versions
TWI678066B (en
Inventor
長谷川諭伴
Original Assignee
日商住友重機械工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商住友重機械工業股份有限公司 filed Critical 日商住友重機械工業股份有限公司
Publication of TW201933754A publication Critical patent/TW201933754A/en
Application granted granted Critical
Publication of TWI678066B publication Critical patent/TWI678066B/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F13/00Common details of rotary presses or machines
    • B41F13/0008Driving devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F33/00Indicating, counting, warning, control or safety devices
    • B41F33/04Tripping devices or stop-motions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H16/00Unwinding, paying-out webs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/46Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/68Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more dc dynamo-electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

The present invention provides a motor control system which may maintain the synchronization of a plurality of motors during speed reduction, wherein a controller (108) may generate the external speed instruction VEXT. The DC chain voltage VDC received and shared by a plurality of inverter devices (200A, 200B) may drive the corresponding one of the plurality of motors (102) respectively according to the external speed instruction VEXT. The network (106) connects the plurality of inverter devices (200A, 200B) with the controller (108). When the external speed instruction VEXT is decreased, if the DC chain voltage VDC has reached the reference voltage VREF, the speed reduction rate of the individual internal speed instruction VINT for the plurality of inverter devices (200A, 200B) will be substantially and equally reduced.

Description

馬達控制系統及卷對卷輸送系統Motor control system and roll-to-roll conveying system

本發明係關於一種馬達控制系統。The invention relates to a motor control system.

卷對卷輸送系統用於各種印刷系統,其中以凹版印刷機、塗佈機、層壓機為代表。卷對卷輸送系統係輸送紙/薄膜等長條物(卷狀物)者,並且具備一邊與卷狀物接觸一邊旋轉之旋轉體及驅動旋轉體之馬達或逆變器裝置。

(先前技術文獻)
(專利文獻)
專利文獻1:日本特開2013-132877號公報
Roll-to-roll conveying systems are used in various printing systems, including gravure printing machines, coaters, and laminators. The roll-to-roll conveying system is for conveying long objects (rolls) such as paper / film, and includes a rotating body that rotates while contacting the roll, and a motor or inverter device that drives the rotating body.

(Prior technical literature)
(Patent Literature)
Patent Document 1: Japanese Patent Application Publication No. 2013-132877

(本發明所欲解決之課題)
在具備複數個輥之輸送系統中,若複數個輥的圓周速度不一致,則有可能對輸送對象帶來褶皺或斷裂等不利影響。
本發明係在該等狀況下完成者,其中一個態樣的例示性目的之一在於提供一種減速時能夠維持複數個馬達的同步的馬達控制系統。

(用以解決課題之手段)
本發明的一個態樣係關於一種馬達控制系統。馬達控制系統具備:複數個馬達;控制器,生成外部速度指令;複數個逆變器裝置,接收共用的DC鏈電壓,各自依據外部速度指令來驅動與複數個馬達對應之一個;及網絡,連接複數個逆變器裝置及控制器。馬達控制系統構成為外部速度指令下降時,若DC鏈電壓到達基準電壓,則複數個逆變器裝置各自中的內部速度指令的減速率實質上相同地下降。
依據該態樣,減速時能夠維持複數個馬達的同步。
亦可以分別在複數個逆變器裝置設定基準電壓。各逆變器裝置中,若DC鏈電壓到達本身的基準電壓,則使本身的內部速度指令的減速率下降,並且亦可以對其他逆變器裝置給予內部速度指令的減速率的下降的觸發。
亦可以分別在複數個逆變器裝置設定基準電壓。各逆變器裝置中,若DC鏈電壓到達本身的基準電壓,則使本身的內部速度指令的減速率下降,並且亦可以對控制器給予外部速度指令的減速率的下降的觸發。
控制器監視DC鏈電壓,若DC鏈電壓到達基準電壓,則亦可以使外部速度指令的減速率下降。
本發明的另一態樣係關於一種卷對卷輸送系統。卷對卷輸送系統亦可以具備上述中的任一馬達控制系統。
另外,在方法、裝置、系統等之間相互替換以上的構成要件的任意組合或本發明的構成要件或表現者,亦作為本發明的態樣而有效。

(發明之效果)
依據本發明的一個態樣,減速時能夠維持複數個馬達的同步。
(Problems to be Solved by the Invention)
In a conveying system having a plurality of rollers, if the peripheral speeds of the plurality of rollers are not the same, there may be adverse effects such as wrinkles or breakage on the conveyed object.
The present invention is completed under these conditions, and one of the exemplary objects of one aspect is to provide a motor control system capable of maintaining synchronization of a plurality of motors during deceleration.

(Means to solve problems)
One aspect of the present invention relates to a motor control system. The motor control system includes: a plurality of motors; a controller that generates an external speed command; a plurality of inverter devices that receive a common DC chain voltage and each drive one of the corresponding motors according to the external speed command; and a network, connection Plural inverter devices and controllers. The motor control system is configured such that when the DC link voltage reaches the reference voltage when the external speed command decreases, the deceleration rate of the internal speed command in each of the plurality of inverter devices decreases substantially the same.
According to this aspect, synchronization of a plurality of motors can be maintained during deceleration.
The reference voltage may be set in each of the plurality of inverter devices. In each inverter device, when the DC link voltage reaches its own reference voltage, the deceleration rate of its own internal speed command is reduced, and other inverter devices may also be given triggers of the reduction of the deceleration rate of the internal speed command.
The reference voltage may be set in each of the plurality of inverter devices. In each inverter device, when the DC link voltage reaches its own reference voltage, the deceleration rate of its own internal speed command is reduced, and a decrease in the deceleration rate of the external speed command given to the controller may be triggered.
The controller monitors the DC link voltage. If the DC link voltage reaches the reference voltage, the deceleration rate of the external speed command can also be reduced.
Another aspect of the present invention relates to a roll-to-roll transport system. The roll-to-roll conveyance system may be equipped with any of the motor control systems described above.
In addition, any combination of the above constituent elements, or constituent elements or performers of the present invention may be replaced with each other among methods, devices, systems, and the like, and are also effective as aspects of the present invention.

(Effect of the invention)
According to one aspect of the present invention, synchronization of a plurality of motors can be maintained during deceleration.

以下,依據較佳的實施形態並參閱圖式的同時對本發明進行說明。將各圖式中所示之相同或相等的構成要件、構件、處理設為賦予相同符號者,適當省略重複之說明。又,實施形態為例示,而非限定發明者,並且實施形態中所記述之所有特徵或其組合並非限定發明的本質者。
圖1是卷對卷輸送系統600R的方塊圖。輸送系統600R具備複數個輥602A、602B及馬達控制系統100R。馬達控制系統100R具備複數個馬達102A、102B、網絡106、控制器108及複數個逆變器裝置130A、130B。
輥602A、602B設置於輸送對象700的移動路徑。輥602A、602B中安裝有控制該些旋轉之馬達102A、102B。控制器108整體控制輸送系統600。控制器108經由網絡106與逆變器裝置130A、130B連接。控制器108同步控制2個逆變器裝置130A、130B。
逆變器裝置130A、130B中經由共用的DC鏈110供給直流電壓(DC鏈電壓)VDC 。DC鏈電壓VDC 藉由未圖示之整流器或轉換器來生成。
使馬達102A、102B減速時,藉由能量再生來上升DC鏈電壓VDC 。若能量再生量超過內置於逆變器裝置之基於未圖示之動態制動(DB)電阻之能量消耗量,則成為過電壓狀態。
逆變器裝置130A、130B中構裝有過電壓保護。具體而言,若DC鏈電壓VDC 超過分別設定之閾值VTH ,則成為過電壓故障,停止逆變器裝置130A、130B的動作。如此一來,馬達變成自由運行,有可能對輸送對象700帶來不利影響。
本發明人為了解決該問題,研究了在逆變器裝置130A、130B中構裝使減速率下降之功能(稱為減速率控制功能)。具體而言,各逆變器裝置130中,規定有低於過電壓故障的閾值VTH 的基準電壓VREF ,若DC鏈電壓VDC 超過基準電壓VREF ,則修正來自控制器的速度指令,以減速率變小的方式生成逆變器裝置130的內部速度指令。
本發明人對減速率控制功能進行研究之結果,認識到以下的課題。圖2是對減速率控制功能及與其相關聯而產生之問題進行說明之時序圖。
複數個逆變器裝置130A、130B中,難以與基準電壓VREF 完全對齊。圖2的例子中,逆變器裝置130A的基準電壓VREF A低於逆變器裝置130B的基準電壓VREF B。
時刻to 之前,來自控制器108的速度指令為恆定,2個馬達102A、102B以等速旋轉。由於DC鏈電壓VDC 低於基準電壓VREF A、VREF B,逆變器裝置130A、130B的本地內部速度指令VINT A、VINT B與來自控制器的速度指令VEXT 一致。
時刻to 以後,來自控制器108的速度指令VEXT 以一定斜率(減速率)下降。逆變器裝置130A、130B的內部速度指令VINT A、VINT B隨其以相同的減速率下降。藉由逆變器裝置130A、130B中的再生能量,DC鏈電壓VDC 開始上升。
時刻t1 時,若DC鏈電壓VDC 到達逆變器裝置130A側的基準電壓VREF A,則逆變器裝置130A中內部速度指令VINT A的減速率低於來自控制器108的速度指令VEXT 的減速率。另一方面,逆變器裝置130B中,內部速度指令VINT B的減速率一直與來自控制器108的速度指令VEXT 的減速率相同。輥602A與輥602B的圓周速度變得不一致,有可能對輸送對象700帶來褶皺或斷裂等不利影響。
另外,不應將該問題視為本技術領域人員的一般的認識。又,該問題並不限定於卷對卷輸送系統,亦可在控制圓周速度應一致的複數個旋轉體之馬達控制系統(Moto r-controlled System)或控制應同步旋轉的複數個馬達之馬達控制系統中生成。
圖3是具備第1實施形態之馬達控制系統100A之輸送系統600A的方塊圖。馬達控制系統100A的基本構成與圖1相同,具備複數個馬達102、網絡106、控制器108、DC鏈110及複數個逆變器裝置200。實施形態中,為了容易理解,僅表示與2個馬達102A、102B對應之2個系統,但是本發明中馬達的個數(系統的規模)並不限定於此,能夠擴張到3以上的任一數量。本說明書中,添加的A、B……表示系統的編號,通用為#或者*。
網絡106連接第1逆變器裝置200A及第2逆變器裝置200B。網絡106連接整體控制馬達控制系統100之控制器108。逆變器裝置200A、200B與共用的DC鏈110連接,並接收共用的DC鏈電壓VDC 。逆變器裝置200A、200B依據來自控制器108的外部速度指令VEXT 來驅動馬達102A、102B。
馬達控制系統100A構成為外部速度指令VEXT 下降時,若DC鏈電壓VDC 到達基準電壓VREF ,則複數個逆變器裝置200A、200B各自中的內部速度指令VINT A、VINT B的減速率實質上相同地下降(斜率變小)。
更具體而言,分別在複數個逆變器裝置200A、200B設定基準電壓VREF A、VREF B。複數個基準電壓VREF A、VREF B的設計值設計成相等,但是實際上由於該些具有誤差而不一定相等。
各逆變器裝置200#中,若DC鏈電壓VDC 到達本身的基準電壓VREF #,則使本身的內部速度指令VINT #的減速率下降,並且對其他逆變器裝置200*(*≠#)經由網絡106給予內部速度指令VINT *的減速率的下降的觸發(觸發訊號)TRIG。從其他逆變器裝置200#接收該觸發訊號TRIG之逆變器裝置200*中,即使DC鏈電壓VDC 未到達本身的基準電壓VREF *,亦使內部速度指令VINT *的減速率下降。觸發訊號TRIG經由控制器108亦可以在逆變器裝置200A、200B之間進行收發送。
對逆變器裝置200的構成例進行說明。圖4是表示逆變器裝置200的構成例之方塊圖。逆變器裝置200具備電壓比較單元202、204、接口206、減速率調節部208及驅動部210。
接口206從網絡106接收外部速度指令VEXT 。外部速度指令VEXT 係指示馬達102的轉速之訊號。減速率調節部208依據外部速度指令VEXT 來生成內部速度指令VINT 。驅動部210依據內部速度指令VINT 來驅動馬達102。
電壓比較單元202中,對DC鏈電壓VDC 與基準電壓VREF 進行比較,在外部速度指令VEXT 指示減速之期間,VDC 到達VREF ,則激活(例如高)控制訊號S1 。減速率調節部208響應於控制訊號S1 的激活,使內部速度指令VINT 的減速率低於外部速度指令VEXT 的減速率。
接口206響應於電壓比較單元202的輸出亦即控制訊號S1 的激活,將觸發訊號TRIG_OUT發送到其他逆變器裝置200。
又,若接口206經由網絡106從其他逆變器裝置200接收觸發訊號TRIG_IN,則激活(例如高)控制訊號S2 。減速率調節部208響應於控制訊號S2 的激活,使內部速度指令VINT 的減速率低於外部速度指令VEXT 的減速率。
電壓比較單元204中,對DC鏈電壓VDC 與閾值電壓VTH 進行比較,若VDC 到達VTH ,則激活(例如高)停止訊號S3 。響應於停止訊號S3 的激活,驅動部210停止馬達102的驅動。
電壓比較單元202、204可以由電壓比較器構成,亦可以由A/D轉換器與數字訊號處理部構成。
以上係逆變器裝置200的構成例。接著,對圖3的馬達控制系統100A的動作進行說明。圖5是圖3的馬達控制系統100A的動作波形圖。該例子中,逆變器裝置200A的基準電壓VREF A低於逆變器裝置200B的基準電壓VREF B。
時刻to 之前,來自控制器108的外部速度指令VEXT 為恆定,2個馬達102A、102B以等速旋轉。由於DC鏈電壓VDC 低於基準電壓VREF A、VREF B,逆變器裝置200A、200B的本地內部速度指令VINT A、VINT B依據來自控制器的外部速度指令VEXT 而產生變化。
時刻to 之後,來自控制器108的速度指令VEXT 以一定斜率(減速率)下降。逆變器裝置200A、200B的內部速度指令VINT A、VINT B隨著外部速度指令VEXT 以相同的減速率下降。
藉由逆變器裝置200A、200B中的再生能量,DC鏈電壓VDC 開始上升。
時刻t1 時,若DC鏈電壓VDC 到達逆變器裝置200A側的基準電壓VREF A,則逆變器裝置200A中內部速度指令VINT A的減速率低於來自控制器108的速度指令VEXT 的減速率。此時,觸發訊號TRIG_A從逆變器裝置200A發送到逆變器裝置200B。逆變器裝置200B響應於觸發訊號TRIG_A使內部速度指令VINT B的減速率下降。
藉此,能夠一邊對齊輥602A、602B的圓周速度,一邊使馬達102A與102B減速,並能夠防止對輸送對象700帶來不利影響。

(第2實施形態)
圖6是具備第2實施形態之馬達控制系統100B之輸送系統600B的方塊圖。馬達控制系統100B的基本構成與圖3相同,具備、複數個馬達102、網絡106、控制器108、DC鏈110及複數個逆變器裝置300A、300B。
馬達控制系統100B構成為與馬達控制系統100A相同地,外部速度指令VEXT 下降時,若DC鏈電壓VDC 到達基準電壓VREF ,則複數個逆變器裝置300A、300B各自中的內部速度指令VINT A、VINT B的減速率實質上相同地下降(斜率變小)。
對與第1實施形態共用之處省略說明,對不同之處進行說明。
各逆變器裝置300#中,若DC鏈電壓VDC 到達本身的基準電壓VREF #,則使本身的內部速度指令VINT #的減速率下降,並且對控制器108輸出觸發訊號TRIG。
接收觸發訊號TRIG之控制器108使外部速度指令VEXT 的減速率下降。逆變器裝置300B中的內部速度指令VINT B依據外部速度指令VEXT 下降。
圖7是圖6的馬達控制系統100B的動作波形圖。時刻to 之前,來自控制器108的外部速度指令VEXT 為恆定,2個馬達102A、102B以等速旋轉。由於DC鏈電壓VDC 低於基準電壓VREF A、VREF B,逆變器裝置300A、300B的本地內部速度指令VINT A、VINT B依據來自控制器的外部速度指令VEXT 而產生變化。
時刻to 之後,來自控制器108的外部速度指令VEXT 以一定斜率(減速率)下降。逆變器裝置300A、300B的內部速度指令VINT A、VINT B隨著外部速度指令VEXT 以相同的減速率下降。
藉由逆變器裝置300A、300B中的再生能量,DC鏈電壓VDC 開始上升。時刻t1 時,若DC鏈電壓VDC 到達逆變器裝置300A側的基準電壓VREF A,則逆變器裝置300A中內部速度指令VINT A的減速率低於來自控制器108的速度指令VEXT 的減速率。此時,觸發訊號TRIG_A從逆變器裝置200A發送到控制器108。控制器108響應於觸發訊號TRIG_A,使外部速度指令VEXT 的減速率下降,對齊逆變器裝置300A、300B的減速率。
依據第2實施形態,能夠一邊對齊輥602A、602B的圓周速度,一邊使馬達102A與102B減速,能防止對輸送對象700帶來不利影響。

(第3實施形態)
圖8是具備第3實施形態之馬達控制系統100C之輸送系統600C的方塊圖。馬達控制系統100C的基本構成與圖3相同,具備複數個馬達102、網絡106、控制器108、DC鏈110及複數個逆變器裝置400A、400B。
馬達控制系統100C構成為與馬達控制系統100A相同地,外部速度指令VEXT 下降時,若DC鏈電壓VDC 到達基準電壓VREF ,則複數個逆變器裝置400A、400B各自中的內部速度指令VINT A、VINT B的減速率實質上相同地下降(斜率變小)。2個電壓VDC ,VREF 藉由外置於或內置於控制器108之電壓比較單元120來進行比較。
對與第1實施形態共用之處省略說明,對不同之處進行說明。
第3實施形態中,DC鏈電壓VDC 與基準電壓VREF 的比較功能設置於控制器108側。控制器108在使外部速度指令VEXT 下降之途中,若DC鏈電壓VDC 到達基準電壓VREF ,則使外部速度指令VEXT 的減速率下降。
圖9是圖8的馬達控制系統100C的動作波形圖。時刻to 之前,來自控制器108的外部速度指令VEXT 為恆定,2個馬達102A、102B以等速旋轉。由於DC鏈電壓VDC 低於基準電壓VREF ,逆變器裝置400A、400B的本地內部速度指令VINT A、VINT B依據來自控制器的外部速度指令VEXT 來產生變化。
時刻to 之後,來自控制器108的外部速度指令VEXT 以一定斜率(減速率)下降。逆變器裝置400A、400B的內部速度指令VINT A、VINT B隨著外部速度指令VEXT ,以相同的減速率下降。
藉由逆變器裝置400A、400B中的再生能量,DC鏈電壓VDC 開始上升。時刻t1 時,若DC鏈電壓VDC 到達控制器108的基準電壓VREF ,則外部速度指令VEXT 的減速率下降。
依據第3實施形態,能夠一邊對齊輥602A、602B的圓周速度,一邊使馬達102A與102B減速,能夠防止對輸送對象700帶來不利影響。
依據實施形態,利用具體的語句對本發明進行了說明,但是實施形態僅示出了本發明的原理、應用的一側面,實施形態在不脫離申請專利範圍中所規定之本發明的宗旨之範圍內,可允許改變許多變形例或配置。
馬達控制系統100的用途並不限定於輸送系統600,能夠廣泛用於具備應同步旋轉的複數個馬達之系統。
Hereinafter, the present invention will be described based on a preferred embodiment and referring to the drawings. The same or equivalent constituent elements, members, and processes shown in the drawings are assigned the same symbols, and repeated descriptions are appropriately omitted. In addition, the embodiment is an example and does not limit the inventor, and all the features or combinations described in the embodiment are not the ones that limit the essence of the invention.
FIG. 1 is a block diagram of a roll-to-roll transport system 600R. The transport system 600R includes a plurality of rollers 602A and 602B and a motor control system 100R. The motor control system 100R includes a plurality of motors 102A and 102B, a network 106, a controller 108, and a plurality of inverter devices 130A and 130B.
The rollers 602A and 602B are provided on a moving path of the conveyance target 700. The rollers 602A and 602B are provided with motors 102A and 102B which control these rotations. The controller 108 controls the conveying system 600 as a whole. The controller 108 is connected to the inverter devices 130A and 130B via a network 106. The controller 108 controls the two inverter devices 130A and 130B in synchronization.
The inverter devices 130A and 130B supply a DC voltage (DC link voltage) V DC via a common DC link 110. The DC link voltage V DC is generated by a rectifier or converter (not shown).
When the motors 102A and 102B are decelerated, the DC link voltage V DC is increased by energy regeneration. If the energy regeneration amount exceeds the energy consumption amount based on a dynamic braking (DB) resistor (not shown) built into the inverter device, it becomes an overvoltage state.
The inverter devices 130A and 130B are configured with overvoltage protection. Specifically, if the DC link voltage V DC exceeds the threshold V TH set separately, an over-voltage fault occurs and the operations of the inverter devices 130A and 130B are stopped. In this way, the motor becomes free-running, which may adversely affect the conveyed object 700.
In order to solve this problem, the present inventors have studied a function of reducing the deceleration rate (referred to as a deceleration rate control function) in the inverter devices 130A and 130B. Specifically, each inverter device 130 specifies a reference voltage V REF that is lower than the threshold V TH of the overvoltage fault. If the DC link voltage V DC exceeds the reference voltage V REF , the speed command from the controller is corrected. The internal speed command of the inverter device 130 is generated so that the deceleration rate becomes small.
As a result of studying the deceleration rate control function, the present inventors recognized the following problems. FIG. 2 is a timing diagram illustrating the deceleration rate control function and the problems associated with it.
In the plurality of inverter devices 130A and 130B, it is difficult to completely align with the reference voltage V REF . In the example of FIG. 2, the reference voltage V REF A of the inverter device 130A is lower than the reference voltage V REF B of the inverter device 130B.
Before time t o , the speed command from the controller 108 is constant, and the two motors 102A and 102B rotate at a constant speed. Since the DC link voltage V DC is lower than the reference voltages V REF A and V REF B, the local internal speed commands V INT A and V INT B of the inverter devices 130A and 130B are consistent with the speed command V EXT from the controller.
After time t o , the speed command V EXT from the controller 108 decreases with a certain slope (deceleration rate). The internal speed commands V INT A and V INT B of the inverter devices 130A and 130B decrease at the same deceleration rate. With the regenerative energy in the inverter devices 130A and 130B, the DC link voltage V DC starts to rise.
At time t 1 , if the DC link voltage V DC reaches the reference voltage V REF A on the inverter device 130A side, the deceleration rate of the internal speed command V INT A in the inverter device 130A is lower than the speed command from the controller 108 V EXT deceleration rate. On the other hand, in the inverter device 130B, the deceleration rate of the internal speed command V INT B is always the same as the deceleration rate of the speed command V EXT from the controller 108. The peripheral speeds of the rollers 602A and 602B become inconsistent, which may adversely affect wrinkles or breakage of the conveyed object 700.
In addition, this problem should not be regarded as a general understanding of those skilled in the art. And, this problem is not limited to the motor control system to delivery roll to roll system, the control may be the same peripheral speed a plurality of rotating body (Mot o r-controlled System) or control of a synchronous motor rotates a plurality of motors Generated in the control system.
FIG. 3 is a block diagram of a conveyance system 600A including the motor control system 100A of the first embodiment. The basic configuration of the motor control system 100A is the same as that of FIG. 1, and includes a plurality of motors 102, a network 106, a controller 108, a DC chain 110, and a plurality of inverter devices 200. In the embodiment, for easy understanding, only two systems corresponding to two motors 102A and 102B are shown. However, the number of motors (system size) in the present invention is not limited to this, and can be expanded to any of three or more Quantity. In this manual, A, B, etc. are used to indicate the number of the system, and are generally # or *.
The network 106 connects the first inverter device 200A and the second inverter device 200B. The network 106 is connected to the controller 108 of the overall control motor control system 100. The inverter devices 200A and 200B are connected to a common DC link 110 and receive a common DC link voltage V DC . The inverter devices 200A and 200B drive the motors 102A and 102B in accordance with an external speed command V EXT from the controller 108.
The motor control system 100A is configured such that when the external speed command V EXT drops, if the DC link voltage V DC reaches the reference voltage V REF , the internal speed commands V INT A and V INT B of each of the plurality of inverter devices 200A and 200B are The deceleration rate drops substantially the same (the slope becomes smaller).
More specifically, the reference voltages V REF A and V REF B are set in the plurality of inverter devices 200A and 200B, respectively. The design values of the plurality of reference voltages V REF A and V REF B are designed to be equal to each other, but actually they are not necessarily equal due to the errors.
In each inverter device 200 #, if the DC link voltage V DC reaches its own reference voltage V REF #, the deceleration rate of its own internal speed command V INT # is reduced, and the other inverter devices 200 * (* ≠ #) A trigger (trigger signal) TRIG for a decrease in the deceleration rate of the internal speed command V INT * is given via the network 106. In the inverter device 200 * receiving the trigger signal TRIG from other inverter device 200 #, even if the DC link voltage V DC does not reach its own reference voltage V REF *, the deceleration rate of the internal speed command V INT * is reduced. . The trigger signal TRIG can also be transmitted and received between the inverter devices 200A and 200B via the controller 108.
A configuration example of the inverter device 200 will be described. FIG. 4 is a block diagram showing a configuration example of the inverter device 200. The inverter device 200 includes voltage comparison units 202 and 204, an interface 206, a deceleration rate adjustment unit 208, and a drive unit 210.
The interface 206 receives an external speed command V EXT from the network 106. The external speed command V EXT is a signal indicating the rotation speed of the motor 102. The deceleration rate adjustment unit 208 generates an internal speed command V INT based on the external speed command V EXT . The driving unit 210 drives the motor 102 in accordance with the internal speed command V INT .
The voltage comparison unit 202 compares the DC link voltage V DC with the reference voltage V REF . During the deceleration period indicated by the external speed command V EXT , when V DC reaches V REF , the control signal S 1 is activated (for example, high). The deceleration rate adjusting section 208 makes the deceleration rate of the internal speed command V INT lower than the deceleration rate of the external speed command V EXT in response to the activation of the control signal S 1 .
Interface 206 in response to the activation voltage comparison unit 202 outputs the control signal S 1 i.e., the trigger signal will be sent to another TRIG_OUT inverter 200.
In addition, if the interface 206 receives a trigger signal TRIG_IN from another inverter device 200 via the network 106, the control signal S 2 is activated (for example, high). The deceleration rate adjusting section 208 makes the deceleration rate of the internal speed command V INT lower than the deceleration rate of the external speed command V EXT in response to the activation of the control signal S 2 .
The voltage comparison unit 204 compares the DC link voltage V DC with the threshold voltage V TH . If V DC reaches V TH , the (for example, high) stop signal S 3 is activated. In response to the activation of the stop signal S 3 , the driving unit 210 stops driving of the motor 102.
The voltage comparison units 202 and 204 may be constituted by a voltage comparator, or may be constituted by an A / D converter and a digital signal processing unit.
The above is a configuration example of the inverter device 200. Next, an operation of the motor control system 100A of FIG. 3 will be described. FIG. 5 is an operation waveform diagram of the motor control system 100A of FIG. 3. In this example, the reference voltage V REF A of the inverter device 200A is lower than the reference voltage V REF B of the inverter device 200B.
Before time t o , the external speed command V EXT from the controller 108 is constant, and the two motors 102A and 102B rotate at a constant speed. Since the DC link voltage V DC is lower than the reference voltages V REF A and V REF B, the local internal speed commands V INT A and V INT B of the inverter devices 200A and 200B change according to the external speed command V EXT from the controller. .
After time t o , the speed command V EXT from the controller 108 decreases with a certain slope (deceleration rate). The internal speed commands V INT A and V INT B of the inverter devices 200A and 200B decrease with the external speed command V EXT at the same deceleration rate.
With the regenerative energy in the inverter devices 200A and 200B, the DC link voltage V DC starts to rise.
At time t 1 , if the DC link voltage V DC reaches the reference voltage V REF A on the inverter device 200A side, the deceleration rate of the internal speed command V INT A in the inverter device 200A is lower than the speed command from the controller 108 V EXT deceleration rate. At this time, the trigger signal TRIG_A is sent from the inverter device 200A to the inverter device 200B. The inverter device 200B decreases the deceleration rate of the internal speed command V INT B in response to the trigger signal TRIG_A.
This can reduce the speed of the motors 102A and 102B while aligning the peripheral speeds of the rollers 602A and 602B, and can prevent adverse effects on the conveyed object 700.

(Second Embodiment)
FIG. 6 is a block diagram of a conveyance system 600B including a motor control system 100B according to the second embodiment. The basic configuration of the motor control system 100B is the same as that of FIG. 3, and includes a plurality of motors 102, a network 106, a controller 108, a DC chain 110, and a plurality of inverter devices 300A and 300B.
The motor control system 100B is configured in the same way as the motor control system 100A. When the external speed command V EXT drops, if the DC link voltage V DC reaches the reference voltage V REF , the internal speed commands in each of the plurality of inverter devices 300A and 300B. The deceleration rates of V INT A and V INT B decrease substantially the same (the slope becomes smaller).
Descriptions of the points common to the first embodiment will be omitted, and differences will be described.
In each inverter device 300 #, when the DC link voltage V DC reaches its own reference voltage V REF #, the deceleration rate of its own internal speed command V INT # is reduced, and a trigger signal TRIG is output to the controller 108.
The controller 108 receiving the trigger signal TRIG decreases the deceleration rate of the external speed command V EXT . The internal speed command V INT B in the inverter device 300B decreases in accordance with the external speed command V EXT .
FIG. 7 is an operation waveform diagram of the motor control system 100B of FIG. 6. Before time t o , the external speed command V EXT from the controller 108 is constant, and the two motors 102A and 102B rotate at a constant speed. Because the DC link voltage V DC is lower than the reference voltages V REF A and V REF B, the local internal speed commands V INT A and V INT B of the inverter devices 300A and 300B change according to the external speed command V EXT from the controller. .
After time t o , the external speed command V EXT from the controller 108 decreases with a certain slope (deceleration rate). The internal speed commands V INT A and V INT B of the inverter devices 300A and 300B decrease with the external speed command V EXT at the same deceleration rate.
With the regenerative energy in the inverter devices 300A and 300B, the DC link voltage V DC starts to rise. At time t 1 , if the DC link voltage V DC reaches the reference voltage V REF A on the inverter device 300A side, the deceleration rate of the internal speed command V INT A in the inverter device 300A is lower than the speed command from the controller 108 V EXT deceleration rate. At this time, the trigger signal TRIG_A is sent from the inverter device 200A to the controller 108. The controller 108 reduces the deceleration rate of the external speed command V EXT in response to the trigger signal TRIG_A, and aligns the deceleration rates of the inverter devices 300A and 300B.
According to the second embodiment, it is possible to decelerate the motors 102A and 102B while aligning the peripheral speeds of the rollers 602A and 602B, and to prevent adverse effects on the conveyance target 700.

(Third Embodiment)
FIG. 8 is a block diagram of a conveyance system 600C including a motor control system 100C according to the third embodiment. The basic configuration of the motor control system 100C is the same as that of FIG. 3, and includes a plurality of motors 102, a network 106, a controller 108, a DC chain 110, and a plurality of inverter devices 400A and 400B.
The motor control system 100C is configured similarly to the motor control system 100A, and when the external speed command V EXT drops, if the DC link voltage V DC reaches the reference voltage V REF , the internal speed commands in each of the plurality of inverter devices 400A and 400B The deceleration rates of V INT A and V INT B decrease substantially the same (the slope becomes smaller). The two voltages V DC and V REF are compared by a voltage comparison unit 120 which is external or built in the controller 108.
Descriptions of the points common to the first embodiment will be omitted, and differences will be described.
In the third embodiment, a comparison function between the DC link voltage V DC and the reference voltage V REF is provided on the controller 108 side. When the controller 108 decreases the external speed command V EXT , if the DC link voltage V DC reaches the reference voltage V REF , the controller 108 decreases the deceleration rate of the external speed command V EXT .
FIG. 9 is an operation waveform diagram of the motor control system 100C of FIG. 8. Before time t o , the external speed command V EXT from the controller 108 is constant, and the two motors 102A and 102B rotate at a constant speed. Since the DC link voltage V DC is lower than the reference voltage V REF , the local internal speed commands V INT A and V INT B of the inverter devices 400A and 400B change according to the external speed command V EXT from the controller.
After time t o , the external speed command V EXT from the controller 108 decreases with a certain slope (deceleration rate). The internal speed commands V INT A and V INT B of the inverter devices 400A and 400B decrease with the external speed command V EXT at the same deceleration rate.
With the regenerative energy in the inverter devices 400A and 400B, the DC link voltage V DC starts to rise. At time t 1 , when the DC link voltage V DC reaches the reference voltage V REF of the controller 108, the deceleration rate of the external speed command V EXT decreases.
According to the third embodiment, it is possible to decelerate the motors 102A and 102B while aligning the peripheral speeds of the rollers 602A and 602B, and it is possible to prevent adverse effects on the conveyed object 700.
According to the embodiment, the present invention has been described using specific sentences, but the embodiment shows only one side of the principle and application of the present invention, and the embodiment is within the scope not departing from the spirit of the present invention specified in the scope of patent application. Can allow many variations or configurations to be changed.
The use of the motor control system 100 is not limited to the conveyance system 600, and it can be widely used in a system including a plurality of motors that should rotate synchronously.

100‧‧‧馬達控制系統100‧‧‧Motor control system

102‧‧‧馬達 102‧‧‧Motor

106‧‧‧網絡 106‧‧‧ Network

108‧‧‧控制器 108‧‧‧controller

200、300、400‧‧‧逆變器裝置 200, 300, 400‧‧‧ inverter devices

202、204‧‧‧電壓比較單元 202, 204‧‧‧ voltage comparison unit

206‧‧‧接口 206‧‧‧Interface

208‧‧‧減速率調節部 208‧‧‧Deceleration rate adjustment section

210‧‧‧驅動部 210‧‧‧Driver

600‧‧‧輸送系統 600‧‧‧ Conveying System

602‧‧‧輥 602‧‧‧roller

圖1是卷對卷輸送系統的方塊圖。FIG. 1 is a block diagram of a roll-to-roll transport system.

圖2是對減速率控制功能及與其相關聯而產生之問題進行說明之時序圖。 FIG. 2 is a timing diagram illustrating the deceleration rate control function and the problems associated with it.

圖3是具備第1實施形態之馬達控制系統之輸送系統的方塊圖。 Fig. 3 is a block diagram of a transport system including a motor control system according to the first embodiment.

圖4是表示逆變器裝置的構成例之方塊圖。 FIG. 4 is a block diagram showing a configuration example of an inverter device.

圖5是圖3的馬達控制系統的動作波形圖。 FIG. 5 is an operation waveform diagram of the motor control system of FIG. 3.

圖6是具備第2實施形態之馬達控制系統之輸送系統的方塊圖。 Fig. 6 is a block diagram of a transport system including a motor control system according to a second embodiment.

圖7是圖6的馬達控制系統的動作波形圖。 FIG. 7 is an operation waveform diagram of the motor control system of FIG. 6.

圖8是具備第3實施形態之馬達控制系統之輸送系統的方塊圖。 Fig. 8 is a block diagram of a transport system including a motor control system according to a third embodiment.

圖9是圖8的馬達控制系統的動作波形圖。 FIG. 9 is an operation waveform diagram of the motor control system of FIG. 8.

Claims (5)

一種馬達控制系統,其特徵為,具備: 複數個馬達; 控制器,生成外部速度指令; 複數個逆變器裝置,接收共用的DC鏈電壓,各自依據前述外部速度指令來驅動與前述複數個馬達對應之一個;及 網絡,連接前述複數個逆變器裝置與前述控制器, 構成為前述外部速度指令下降時,若前述DC鏈電壓到達基準電壓,則前述複數個逆變器裝置各自中的內部速度指令的減速率實質上相同地下降。A motor control system, comprising: a plurality of motors; a controller that generates an external speed command; a plurality of inverter devices that receive a common DC chain voltage, and each of which drives the plurality of motors according to the external speed command A corresponding one; and a network that connects the plurality of inverter devices and the controller, and is configured such that, when the external speed command decreases, if the DC link voltage reaches a reference voltage, each of the plurality of inverter devices is internal The deceleration rate of the speed command decreases substantially the same. 如申請專利範圍第1項所述之馬達控制系統,其中, 分別對前述複數個逆變器裝置設定基準電壓, 各逆變器裝置中,若前述DC鏈電壓到達本身的基準電壓,則使本身的內部速度指令的減速率下降,並且對其他逆變器裝置給予內部速度指令的減速率的下降的觸發。The motor control system according to item 1 of the scope of the patent application, wherein the reference voltages are respectively set for the plurality of inverter devices, and in each inverter device, if the DC link voltage reaches its own reference voltage, The deceleration rate of the internal speed command decreases, and other inverter devices are given triggers of the reduction of the deceleration rate of the internal speed command. 如申請專利範圍第1項所述之馬達控制系統,其中, 分別對前述複數個逆變器裝置設定基準電壓, 各逆變器裝置中,若前述DC鏈電壓到達本身的基準電壓,則使本身的內部速度指令的減速率下降,並且對前述控制器給予前述外部速度指令的減速率的下降的觸發。The motor control system according to item 1 of the scope of the patent application, wherein the reference voltages are respectively set for the plurality of inverter devices, and in each inverter device, if the DC link voltage reaches its own reference voltage, The deceleration rate of the internal speed command is reduced, and a decrease in the deceleration rate of the external speed command is given to the controller. 如申請專利範圍第1項所述之馬達控制系統,其中, 前述控制器監視前述DC鏈電壓,若前述DC鏈電壓到達基準電壓,則使前述外部速度指令的減速率下降。The motor control system according to item 1 of the scope of patent application, wherein the controller monitors the DC link voltage, and if the DC link voltage reaches a reference voltage, the deceleration rate of the external speed command is reduced. 一種卷對卷輸送系統,其特徵為,具備申請專利範圍第1至4中任一項所述之馬達控制系統。A roll-to-roll conveying system is characterized in that it includes a motor control system according to any one of claims 1 to 4.
TW107146039A 2018-01-30 2018-12-20 Motor control system and roll-to-roll conveying system TWI678066B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-013534 2018-01-30
JP2018013534A JP2019134545A (en) 2018-01-30 2018-01-30 Motor control system and roll-to-roll transportation system

Publications (2)

Publication Number Publication Date
TW201933754A true TW201933754A (en) 2019-08-16
TWI678066B TWI678066B (en) 2019-11-21

Family

ID=67443721

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107146039A TWI678066B (en) 2018-01-30 2018-12-20 Motor control system and roll-to-roll conveying system

Country Status (4)

Country Link
JP (1) JP2019134545A (en)
KR (1) KR20190092252A (en)
CN (1) CN110098767B (en)
TW (1) TWI678066B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11431268B2 (en) 2020-08-31 2022-08-30 Delta Electronics, Inc. Motor driving system and motor driving method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0537344A4 (en) * 1989-06-09 1993-05-12 Hitachi, Ltd. Motor controller
JP3551623B2 (en) * 1996-06-17 2004-08-11 株式会社明電舎 Inverter system
AU4690899A (en) * 1998-06-18 2000-01-05 Kline & Walker Llc Automated devices to control equipment and machines with remote control and accountability worldwide
US6717281B1 (en) * 2000-10-26 2004-04-06 Dennis Brandon Electric generator and motor drive system
JP3542032B2 (en) * 2000-12-11 2004-07-14 株式会社ダイヘン Servo control method and apparatus for DC motor
FI113309B (en) * 2001-06-29 2004-03-31 Abb Oy Verkkokatkoshidastus
JP6032522B2 (en) * 2011-12-27 2016-11-30 大日本印刷株式会社 Gravure printing machine and control method thereof
JP5917365B2 (en) * 2011-12-28 2016-05-11 住友重機械工業株式会社 Injection molding machine
JP5612058B2 (en) * 2012-11-09 2014-10-22 ファナック株式会社 Machine tool control apparatus having a feed shaft motor and a spindle motor
JP5954313B2 (en) * 2013-12-26 2016-07-20 株式会社安川電機 Motor control system, control device, and control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11431268B2 (en) 2020-08-31 2022-08-30 Delta Electronics, Inc. Motor driving system and motor driving method

Also Published As

Publication number Publication date
TWI678066B (en) 2019-11-21
CN110098767B (en) 2023-04-21
JP2019134545A (en) 2019-08-08
CN110098767A (en) 2019-08-06
KR20190092252A (en) 2019-08-07

Similar Documents

Publication Publication Date Title
US9527679B2 (en) Gapping systems and methods
DE102013112161B4 (en) Control device of a machine tool with feed spindle motor and main spindle motor
JP2024059776A (en) Conveyor Controller
US5757147A (en) Method and apparatus for controlling multiple motor drive of printing machine
TWI678066B (en) Motor control system and roll-to-roll conveying system
JP6377985B2 (en) Motor control device with torque command limiting function during power failure
US20180166727A1 (en) Extruder feed system
JP6506016B2 (en) Paper feeder
JP3368563B2 (en) Conveyor equipment
US8840328B2 (en) Printing apparatus and method for conveying printing medium
JPH0389895A (en) Motor controller
US9844959B2 (en) Recording device
JP2016019397A (en) Drive control device for multi-axis synchronous facility, and method thereof
KR102131335B1 (en) Notching system for improving machining precision
CN109689369B (en) Printing system and printing method
JP2008148376A (en) Variable speed drive controller of motor
JP2009113271A (en) Driving control device for printer
EP2495196A1 (en) Method of rotary cutting of web material
JP2019072666A (en) Multilayer coating device
JP2005021834A (en) Coater
JP2023131290A (en) Conveyance control device, conveyance control method, conveyance control program
JP2016000659A (en) Intermittent transport device for film and intermittent transportation method for film
US10836156B2 (en) Fluid ejection device capping
KR20210136866A (en) Curl removing apparatus for multi-layer film
JP2016210549A (en) Weight sorter