JP3551623B2 - Inverter system - Google Patents

Inverter system Download PDF

Info

Publication number
JP3551623B2
JP3551623B2 JP15469696A JP15469696A JP3551623B2 JP 3551623 B2 JP3551623 B2 JP 3551623B2 JP 15469696 A JP15469696 A JP 15469696A JP 15469696 A JP15469696 A JP 15469696A JP 3551623 B2 JP3551623 B2 JP 3551623B2
Authority
JP
Japan
Prior art keywords
power supply
power failure
motor
voltage
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15469696A
Other languages
Japanese (ja)
Other versions
JPH1014288A (en
Inventor
勝之 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP15469696A priority Critical patent/JP3551623B2/en
Publication of JPH1014288A publication Critical patent/JPH1014288A/en
Application granted granted Critical
Publication of JP3551623B2 publication Critical patent/JP3551623B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Feedback Control In General (AREA)
  • Control Of Multiple Motors (AREA)
  • Inverter Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、共通の直流電源を持つ複数台の電圧形インバータで複数台のモータを運転するインバータシステムに係り、特に瞬時停電が発生したときの制御方式に関する。
【0002】
【従来の技術】
複数台のインバータによってそれぞれ1台又は複数台のモータを運転するにおいて、設備の効率化のために、1台の直流電源を各インバータの共通の直流電源とするシステム構成が採られることがある。
【0003】
このシステムの直流電源は、一般に交流電力を整流によって所期の電圧で所期の電流容量を持つ直流電力に変換する。
【0004】
システムの運転中において、直流電源の電源になる交流電源(例えば商用電源)に停電が発生した場合、従来の制御方式は、直流電源の出力電圧がインバータの動作が可能な最低レベルになるまではそれまでの運転状態を継続し、この間に復電しないで直流出力電圧が最低レベルよりも低くなった場合にはインバータの運転を中断し、モータをフリーラン状態として自然に減速・停止させている。
【0005】
【発明が解決しようとする課題】
従来の停電対策は、各インバータに接続されたモータ及びモータ負荷(機械系)の慣性モーメントや負荷トルク、回転角速度が同じになるシステムでは有効である。
【0006】
しかしながら、モータや機械負荷の大きさが運転状態によって異なり、モータのフリーラン状態での減速時間にバラツキを生じるため、各モータの協調した減速・停止が得られない。
【0007】
このため、例えば、生産ラインの工程に設けられる複数台のモータをそれぞれインバータで運転するシステムでは、各モータの減速・停止のバラツキが生産ライン上の製品の渋滞や破損を起こす恐れがある。
【0008】
本発明の目的は、停電発生時に各モータの減速・停止をバランスさせる制御方式を提供することにある。
【0009】
【課題を解決するための手段】
本発明は、停電発生時に各モータの回転数を同じ比率で減速させることにより慣性や回転角速度の大きなモータ及びその負荷から慣性エネルギーを電気エネルギーとして回収(電力回生)し、この回生で慣性や回転角速度の小さなモータへ直流電源を介して供給することで直流電源電圧を一定にしながら各モータをバランスさせた運転及び減速・停止を得るものであり、
共通の直流電源を持つ複数台の電圧形インバータで複数台のモータを運転し、前記直流電源に停電が発生したとき、前記各モータ及びその負荷の慣性エネルギーを前記各インバータを通した前記直流電源への回生によって該直流電源の電圧を一定にする制御状態で各モータの速度を同じ比率で減速させる停電制御手段を備えたインバータシステムにおいて、
前記停電制御手段は、停電発生時に制御周期毎の前記直流電源の電圧と設定電圧の偏差EV及び該偏差の変化量ΔEVに応じて前記各インバータの周波数指令の減速補正信号Δfをファジイ推論で求め、この補正信号Δfを積分した値K f を減速係数として該周波数指令を乗算補正することを特徴とする。
【0011】
また、前記停電制御手段は、前記偏差EV及び変化量ΔEVに応じた前記減速補正信号Δfを予めファジイ推論で求めて二次元テーブル化しておき、この二次元テーブルから前記偏差EV及び変化量ΔEVの状態に応じて前記減速補正信号Δfを求めることを特徴とする。
【0012】
【発明の実施の形態】
図1は、本発明の実施形態を示すシステム構成図である。N台のPWMインバータは、主回路1〜1とV/F一定制御の制御回路2〜2で構成され、共通の直流電源になる整流器3に得る直流電力をPWM波形の交流電力に変換してモータ(誘導機又は同期機)4〜4を駆動する。
【0013】
制御回路2〜2は、あらかじめV/Fパターンを設定しておき、システムコントローラ5からの周波数指令f〜fによってV/F一定のPWM波形信号を得る。
【0014】
システムコントローラ5は、制御回路2〜2への周波数指令f〜fを周波数指令発生部6により周波数指令f10〜fn0として発生する。また、システムコントローラ5は、停電発生時に各モータの周波数指令f10〜fn0をファジイ推論で補正する停電制御部7を設ける。
【0015】
停電制御部7は、整流器3の交流電源の停電を検出する停電検出器8からの停電検出信号で停電制御を開始し、ファジイ推論によって直流電源電圧を一定にしながら各モータをバランスさせた運転及び減速・停止を得るための周波数補正制御を行う。
【0016】
このため、停電制御部7は、制御周期毎に整流器3の直流電圧Vdetを取り込み、この電圧Vdetと直流電圧設定値Vsetとの偏差EVを比較部7で求め、この偏差EVと1制御周期前の偏差EVとの差分演算を行う比較部7で制御周期毎の変化量ΔEVを求める。
【0017】
そして、これら比較部7及び7からの偏差EV及び変化量ΔEVをファジイ推論演算部7に取り込み、ファジイ推論演算部7のファジイ推論によって直流電圧を一定に維持するために必要な周波数低減量になる減速補正信号Δfを制御周期毎に得る。
【0018】
ファジイ推論演算部7からの減速補正信号Δfは、積算部7によって制御周期毎に積算する。この積算部7に得る積分値Kを掛算部7によってそれぞれの周波数指令f10〜fn0に乗算して制御回路2〜2への周波数指令f〜fとする。
【0019】
これにより、停電制御部7は、停電発生時にモータや機械負荷の大きさにバラツキがある運転状態にあっても、慣性や回転角速度の大きなモータ及びその負荷から慣性エネルギーを電気エネルギーとして電力回生し、この回生で慣性や回転角速度の小さなモータへ直流電源を介して供給することで直流電圧を一定にするために必要な各モータの減速補正信号Δfをファジイ推論により得、その積分値Kにしたがって各インバータへの周波数指令を同じ比率で低減させ、各モータ4〜4の速度をバランスさせながら低下させ、最終的には速度をバランスさせた状態で停止させる。
【0020】
また、停電によるバランスさせた減速途中で復電した場合にはファジイ推論により直流電圧を一定にするために必要な各モータの減速補正信号Δfを得、同じ比率で周波数指令を上昇させ、各速度をバランスさせながら正規の速度になる運転状態に戻す。
【0021】
上記のファジイ推論演算部7によるファジイ推論は、予め設定されるメンバーシップ関数とファジイルールに基づいて制御周期毎の周波数補正信号Δfを荷重平均で求めるもので、この推論方法を以下に詳細に説明する。
【0022】
図2の(a)及び(b)は、2つの入力信号EV及びΔEVに対する前件部メンバーシップ関数を示し、NB,NS,ZR,PS,PBの5つのグレードへの評価の度合い(メンバーシップ値)として0.0〜1.0の三角形型で表現した関数である。なお、後に示すものを含めた7つのグレードNB,NM,NS,ZR,PS,PM,PBの意味は、以下の通りである。
【0023】
NB:負に大きい、negative big
NM:負に中くらい、negative medium
NS:負に小さい、negative small
ZR:ほぼ零、approximateiy zero
PS:正に小さい、positive small
PM:正に中くらい、positive medium
PB:正に大きい、positive big
また、各グレードへのメンバーシップ値は、以下の変数で表す。
【0024】
EVのメンバーシップ値:HNB,HNS,HZR,HPS,HPB
ΔEVのメンバーシップ値:QNB,QNS,QZR,QPS,QPB
下記表は、ファジイルールを示し、2つの入力信号EVとΔEVの状態に応じて周波数補正信号Δfをどのように変化させるかを決定する。
【0025】
【表1】

Figure 0003551623
【0026】
ファジイ推論演算部7は、2つの入力信号EVとΔEVに対する25通りのファジイルールから7つのグレードへのメンバーシップ値ZNB,ZNM,ZNS,ZZR,ZPS,ZPM,ZPBを以下の演算から求める。
【0027】
【数1】
ZNB=QNB*(HNB+HNS)+QNS*HNB
ZNM=QNB*(HZR+HPS+HPB)+QNS*HNS+QZR*HNB
ZNS=QZR*HNS+QNS*(HZR+HPS+HPB)
ZZR=QZR*HZR
ZPS=QZR*HPS+QPS*(HZR+HNS+HNB)
ZPM=QPB*(HZR+HNS+HNB)+QPS*HPS+QZR*HPB
ZPB=QPB*(HPS+HPB)+QPS*HPB
さらに、ファジイ推論演算部7は、これらメンバーシップ値の荷重平均から周波数補正信号Δfを確定するため、図3の後件部メンバーシップ関数に従って以下の演算を行う。
【0028】
【数2】
Figure 0003551623
【0029】
以上までの実施形態において、ファジイ推論演算部7による制御周期毎の推論演算は、2つの入力EVとΔEVに対して出力すべき周波数補正信号Δfの値を二次元テーブルでファームウェア化しておき、推論演算のための演算処理を簡単にすることができる。なお、二次元テーブルは、前記のファジイ推論演算をオフラインで実施することでデータを収集する。
【0030】
また、図1の実施形態において、直流電源3にインバータ主回路1〜1以外の負荷(例えば、コンピュータ)9が接続され、この負荷9の消費エネルギーがモータ4〜4の慣性エネルギーより低いものであれば、停電発生時の減速制御で回生した電力を該負荷9の消費電力として利用することでその運転継続時間を延ばすことができる。この場合、負荷9がコンピュータなど、バックアップを行うことが要求される場合には、停電検出器8の検出信号を利用して運転継続時間中にそのバックアップを行い、信頼性の高いシステムを実現できる。
【0031】
【発明の効果】
以上のとおり、本発明によれば、停電発生時に各モータの回転数を同じ比率で減速させることにより慣性や回転角速度の大きなモータ及びその負荷から慣性エネルギーを電気エネルギーとして電力回生し、この回生で慣性や回転角速度の小さなモータへ直流電源を介して供給することで直流電源電圧を一定にしながら各モータをバランスさせた運転及び減速・停止制御を行うため、停電発生時に各モータの負荷状態のバラツキに対してもバランスさせた運転及び減速・停止ができる。
【0032】
また、インバータの直流電源にコンピュータなどの他の負荷が接続されるシステムでは、停電発生時の動作可能な時間を延ばすことができる。
【図面の簡単な説明】
【図1】本発明の実施形態を示すシステム構成図。
【図2】実施形態におけるファジイ推論のためのメンバーシップ関数。
【図3】実施形態におけるファジイ推論のためのメンバーシップ関数。
【符号の説明】
、1…インバータの主回路
、2…制御回路
3…直流電源
、4…モータ
5…システムコントローラ
6…周波数指令発生部
7…停電制御部
…ファジイ推論演算部
8…停電検出器
9…他の負荷[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an inverter system in which a plurality of motors are driven by a plurality of voltage-source inverters having a common DC power supply, and more particularly to a control method when an instantaneous power failure occurs.
[0002]
[Prior art]
When one or more motors are operated by a plurality of inverters, a system configuration may be adopted in which one DC power supply is used as a common DC power supply for each inverter in order to increase the efficiency of equipment.
[0003]
The DC power supply of this system generally converts AC power by rectification into DC power having a desired current capacity at a desired voltage.
[0004]
When a power failure occurs in an AC power supply (for example, a commercial power supply) serving as a DC power supply during the operation of the system, the conventional control method employs a method in which the output voltage of the DC power supply becomes a minimum level at which the inverter can operate. If the DC output voltage becomes lower than the minimum level without restoring power during this period, the inverter operation is suspended and the motor is naturally decelerated and stopped in the free-run state. .
[0005]
[Problems to be solved by the invention]
The conventional measures against power failure are effective in a system in which the motor connected to each inverter and the motor load (mechanical system) have the same inertia moment, load torque, and rotational angular velocity.
[0006]
However, the magnitudes of the motors and the mechanical loads differ depending on the operation state, and the deceleration time of the motors in the free-run state varies, so that the coordinated deceleration and stop of each motor cannot be obtained.
[0007]
Therefore, for example, in a system in which a plurality of motors provided in a process of a production line are operated by inverters, variations in deceleration / stop of each motor may cause traffic jams or breakage of products on the production line.
[0008]
An object of the present invention is to provide a control method for balancing deceleration and stop of each motor when a power failure occurs.
[0009]
[Means for Solving the Problems]
The present invention recovers inertia energy as electric energy (electric power regeneration) from a motor having a large inertia or rotational angular velocity and its load by decelerating the rotation speed of each motor at the same ratio when a power failure occurs. By supplying a motor with a small angular velocity via a DC power supply to achieve a balanced operation and deceleration / stop of each motor while keeping the DC power supply voltage constant,
A plurality of motors are operated by a plurality of voltage source inverters having a common DC power supply, and when a power failure occurs in the DC power supply, the inertial energy of each motor and its load is transferred to the DC power supply through each inverter. In the inverter system including a power failure control means for reducing the speed of each motor at the same rate in a control state in which the voltage of the DC power supply is kept constant by regeneration to
The power failure control means obtains a deceleration correction signal Δf of a frequency command of each of the inverters by fuzzy inference according to a deviation EV between the voltage of the DC power supply and a set voltage and a variation ΔEV of the deviation at each control cycle when a power failure occurs. characterized in that the multiplying correcting the frequency command value K f obtained by integrating the compensation signal Δf as the deceleration factor.
[0011]
Further, the power failure control means obtains the deceleration correction signal Δf corresponding to the deviation EV and the variation ΔEV by fuzzy inference in advance and forms a two-dimensional table, and calculates the deviation EV and the variation ΔEV from the two-dimensional table. The deceleration correction signal Δf is obtained according to a state.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a system configuration diagram showing an embodiment of the present invention. N number of PWM inverter is composed of a main circuit 1 1 to 1 N and V / F constant control the control circuit 2 1 to 2 N, AC power of DC power PWM waveforms to obtain the rectifier 3 becomes a common DC power supply It is converted to a motor (induction motor or synchronous motor) for driving the 4 1 to 4 N.
[0013]
The control circuit 2 1 to 2 N is set in advance V / F pattern, obtaining a constant V / F of the PWM waveform signal by frequency command f 1 ~f n from the system controller 5.
[0014]
The system controller 5 generates a frequency instruction f 1 ~f n to the control circuit 2 1 to 2 N as the frequency instruction f 10 ~f n0 by the frequency instruction generator 6. The system controller 5 is provided with a power failure control section 7 for correcting the frequency instruction f 10 ~f n0 of each motor in fuzzy inference in the event of a power failure occurs.
[0015]
The power failure control unit 7 starts the power failure control with the power failure detection signal from the power failure detector 8 that detects the power failure of the AC power supply of the rectifier 3, and performs the operation of balancing each motor while keeping the DC power supply voltage constant by fuzzy inference. Performs frequency correction control to obtain deceleration / stop.
[0016]
Therefore, the power failure control section 7 takes in the DC voltage V det of the rectifier 3 for each control cycle, a deviation EV of the voltage V det and the DC voltage setting value V set in the comparison section 71, and the deviation EV 1 obtains the variation ΔEV in each control cycle by the comparator 7 2 for difference calculation between the control cycle prior to the deviation EV.
[0017]
Then, it captures the deviation EV and variation ΔEV from these comparator 7 1 and 7 2 fuzzy inference operation unit 7 3, the frequency required to maintain the DC voltage constant by fuzzy inference fuzzy inference operation unit 7 3 A deceleration correction signal Δf that becomes a reduction amount is obtained for each control cycle.
[0018]
Deceleration correction signal Δf from fuzzy inference operation unit 7 3 integrates each control cycle by the integrating portion 7 4. The integrating portion 7 by multiplying the integral value K f obtained in 4 by multiplication section 7 5 to each of the frequency instruction f 10 ~f n0 and frequency instruction f 1 ~f n to the control circuit 2 1 to 2 N.
[0019]
Thus, even when the power failure occurs, the power failure control unit 7 regenerates the inertia energy as electric energy from the motor having a large inertia and the rotational angular velocity and the load even in an operation state in which the magnitude of the motor or the mechanical load varies when the power failure occurs. the deceleration correction signal Δf of the motors needed to a constant DC voltage by supplying via a DC power supply to the small motor inertia and the rotational angular velocity regenerative obtained by fuzzy inference, on the integrated value K f Thus reducing the frequency command to the inverters at the same rate, the speed of the motors 4 1 to 4 N reduces while balancing and eventually stops in a state of balance the speed.
[0020]
If the power is restored during the deceleration that has been balanced due to the power failure, the deceleration correction signal Δf of each motor required to keep the DC voltage constant by fuzzy inference is obtained, and the frequency command is increased at the same ratio, Is returned to the operating state where the speed becomes the regular speed while balancing.
[0021]
Fuzzy inference by the fuzzy inference operation unit 7 3 above, and requests the frequency correction signal Δf in each control cycle by the load average based on the membership functions and fuzzy rules are set in advance, in detail the reasoning method below explain.
[0022]
FIGS. 2A and 2B show the antecedent membership functions for the two input signals EV and ΔEV, and show the degree of evaluation (membership) for five grades of NB, NS, ZR, PS, and PB. Value) is a function expressed as a triangle of 0.0 to 1.0. The meanings of the seven grades NB, NM, NS, ZR, PS, PM, and PB, including those described below, are as follows.
[0023]
NB: Negative big, negative big
NM: Negative medium, negative medium
NS: negative small, negative small
ZR: almost zero, approximatey zero
PS: positive small, positive small
PM: Just medium, positive medium
PB: Positive big, positive big
The membership value for each grade is represented by the following variables.
[0024]
EV membership value: HNB, HNS, HZR, HPS, HPB
Membership value of ΔEV: QNB, QNS, QZR, QPS, QPB
The following table shows the fuzzy rule and determines how to change the frequency correction signal Δf according to the state of the two input signals EV and ΔEV.
[0025]
[Table 1]
Figure 0003551623
[0026]
Fuzzy inference operation unit 7 3, membership values from the fuzzy rule of 25 types for two input signals EV and ΔEV to seven grades ZNB, determined ZNM, ZNS, ZZR, ZPS, ZPM, the following operations a ZpB.
[0027]
(Equation 1)
ZNB = QNB * (HNB + HNS) + QNS * HNB
ZNM = QNB * (HZR + HPS + HPB) + QNS * HNS + QZR * HNB
ZNS = QZR * HNS + QNS * (HZR + HPS + HPB)
ZZR = QZR * HZR
ZPS = QZR * HPS + QPS * (HZR + HNS + HNB)
ZPM = QPB * (HZR + HNS + HNB) + QPS * HPS + QZR * HPB
ZPB = QPB * (HPS + HPB) + QPS * HPB
Additionally, fuzzy inference operation unit 7 3 in order to determine the frequency correction signal Δf from the load average of these membership values, performs the following operation in accordance with the consequent membership functions of FIG.
[0028]
(Equation 2)
Figure 0003551623
[0029]
In the embodiment described so far, inference operations in each control cycle by the fuzzy inference operation unit 7 3 leave the firmware of the value of the frequency correction signal Δf to be output to the two inputs EV and ΔEV in two-dimensional table, The arithmetic processing for the inference operation can be simplified. The two-dimensional table collects data by performing the fuzzy inference operation offline.
[0030]
Further, in the embodiment of FIG. 1, a DC power source 3 to the inverter main circuit 1 1 other than to 1 N load (e.g., a computer) 9 is connected, the inertia energy of the load 9 consumes energy motor 4 1 to 4 N of If it is lower, the operation continuation time can be extended by using the power regenerated by the deceleration control at the time of the occurrence of the power failure as the power consumption of the load 9. In this case, when the load 9 is required to perform backup such as a computer, the backup is performed during the operation continuation time by using the detection signal of the power failure detector 8, and a highly reliable system can be realized. .
[0031]
【The invention's effect】
As described above, according to the present invention, when a power failure occurs, the rotational speed of each motor is reduced at the same ratio, thereby regenerating electric power from the motor having a large inertia and rotational angular velocity and its load as electric energy by inertia energy. By supplying the motor with low inertia and rotational angular velocity via the DC power supply, the DC power supply voltage is kept constant, and the operation of each motor is balanced and the deceleration / stop control is performed. The operation, deceleration and stop can be performed in a balanced manner.
[0032]
Further, in a system in which another load such as a computer is connected to the DC power supply of the inverter, the operable time when a power failure occurs can be extended.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram showing an embodiment of the present invention.
FIG. 2 is a membership function for fuzzy inference in an embodiment.
FIG. 3 is a membership function for fuzzy inference in an embodiment.
[Explanation of symbols]
1 1, 1 N ... main circuit 2 first inverter, 2 N ... control circuit 3 ... DC power supply 4 1, 4 N ... motor 5 ... system controller 6 ... frequency command generating section 7 ... blackout controller 7 3 ... fuzzy inference operation Part 8: Power failure detector 9: Other loads

Claims (2)

共通の直流電源を持つ複数台の電圧形インバータで複数台のモータを運転し、前記直流電源に停電が発生したとき、前記各モータ及びその負荷の慣性エネルギーを前記各インバータを通した前記直流電源への回生によって該直流電源の電圧を一定にする制御状態で各モータの速度を同じ比率で減速させる停電制御手段を備えたインバータシステムにおいて、
前記停電制御手段は、停電発生時に制御周期毎の前記直流電源の電圧と設定電圧の偏差EV及び該偏差の変化量ΔEVに応じて前記各インバータの周波数指令の減速補正信号Δfをファジイ推論で求め、この補正信号Δfを積分した値K f を減速係数として該周波数指令を乗算補正することを特徴とするインバータシステム。
A plurality of motors are operated by a plurality of voltage source inverters having a common DC power supply, and when a power failure occurs in the DC power supply, the inertial energy of each motor and its load is transferred to the DC power supply through each inverter. In the inverter system including a power failure control means for reducing the speed of each motor at the same rate in a control state in which the voltage of the DC power supply is kept constant by regeneration to
The power failure control means obtains a deceleration correction signal Δf of a frequency command of each of the inverters by fuzzy inference according to a deviation EV between the voltage of the DC power supply and a set voltage and a variation ΔEV of the deviation at each control cycle when a power failure occurs. , inverter system, characterized by multiplying correcting the frequency command value K f obtained by integrating the compensation signal Δf as the deceleration factor.
前記停電制御手段は、前記偏差EV及び変化量ΔEVに応じた前記減速補正信号Δfを予めファジイ推論で求めて二次元テーブル化しておき、この二次元テーブルから前記偏差EV及び変化量ΔEVの状態に応じて前記減速補正信号Δfを求めることを特徴とする請求項1に記載のインバータシステム。The power failure control means obtains the deceleration correction signal Δf corresponding to the deviation EV and the change amount ΔEV in advance by fuzzy inference and forms a two-dimensional table, and changes the two-dimensional table to the state of the deviation EV and the change amount ΔEV. The inverter system according to claim 1, wherein the deceleration correction signal Δf is obtained in response to the request .
JP15469696A 1996-06-17 1996-06-17 Inverter system Expired - Fee Related JP3551623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15469696A JP3551623B2 (en) 1996-06-17 1996-06-17 Inverter system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15469696A JP3551623B2 (en) 1996-06-17 1996-06-17 Inverter system

Publications (2)

Publication Number Publication Date
JPH1014288A JPH1014288A (en) 1998-01-16
JP3551623B2 true JP3551623B2 (en) 2004-08-11

Family

ID=15589954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15469696A Expired - Fee Related JP3551623B2 (en) 1996-06-17 1996-06-17 Inverter system

Country Status (1)

Country Link
JP (1) JP3551623B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019134545A (en) * 2018-01-30 2019-08-08 住友重機械工業株式会社 Motor control system and roll-to-roll transportation system

Also Published As

Publication number Publication date
JPH1014288A (en) 1998-01-16

Similar Documents

Publication Publication Date Title
JPH0697875B2 (en) Inverter for driving elevator
US5898281A (en) Method and device for the common regulation of several electric motors driving the driving wheels of a motor vehicle
AU681559B2 (en) Control system for electric vehicle
JPH11299290A (en) Ac motor drive system
EP0537344A1 (en) Motor controller
JPS6223387A (en) Controller of elevator
CN113346820B (en) Motor control method, motor control device, motor system, and storage medium
JPH092753A (en) Elevator control device
JP3551623B2 (en) Inverter system
JP2906636B2 (en) Inverter control device for induction motor
JP3891080B2 (en) Regenerative control method for motor-driven power converter
JPH067754B2 (en) Induction motor controller
JP2522251B2 (en) AC elevator control device
JPS59123403A (en) Brake device for electric motor car
JP3576401B2 (en) Motor control device
JPH1169898A (en) Controller for induction motor
JPS6315698A (en) Operation of inverter
JPH0591602A (en) Controller for electric vehicle
JPS6139896A (en) Drive device of motor group
JPH10341592A (en) Regenerative control equipment
JPH0773435B2 (en) Control method when the induction motor restarts after a momentary power failure
JPS58130795A (en) Power source for driving ac motor
JPH09308006A (en) Controller and control method for electric vehicle
JP2569047B2 (en) Induction machine control device
JPH05336757A (en) Monitor for power converter

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees