TW201932989A - Semiconductor structure, semiconductor device, and method for using acoustic waves to detect overlay error - Google Patents

Semiconductor structure, semiconductor device, and method for using acoustic waves to detect overlay error Download PDF

Info

Publication number
TW201932989A
TW201932989A TW107142053A TW107142053A TW201932989A TW 201932989 A TW201932989 A TW 201932989A TW 107142053 A TW107142053 A TW 107142053A TW 107142053 A TW107142053 A TW 107142053A TW 201932989 A TW201932989 A TW 201932989A
Authority
TW
Taiwan
Prior art keywords
periodic structure
acoustic wave
wafer
mark
feature
Prior art date
Application number
TW107142053A
Other languages
Chinese (zh)
Other versions
TWI724346B (en
Inventor
李雨青
方玉標
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW201932989A publication Critical patent/TW201932989A/en
Application granted granted Critical
Publication of TWI724346B publication Critical patent/TWI724346B/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70641Focus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/68Analysis of geometric attributes of symmetry
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Quality & Reliability (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

An overlay mark structure includes a first periodic structure positioned on a chip, the first periodic structure comprising a material of a first layer disposed on the chip. The overlay mark structure further includes a second periodic structure positioned within the region of the chip adjacent the first periodic structure, the second periodic structure comprising a second material of a second layer disposed on the chip. The overlay mark structure further includes an acoustic wave transmitter device disposed on the chip and an acoustic wave receiver device disposed on the chip.

Description

疊對記號結構、半導體裝置以及使用聲波來偵測疊對誤差的方法Stack-to-symbol structure, semiconductor device, and method for detecting overlay error using sound waves

本揭露係關於一種疊對記號結構,特別是可以藉由使用聲波偵測疊對誤差的疊對記號結構。The present disclosure relates to a stacked pair mark structure, particularly a stacked pair mark structure that can detect overlap errors by using sound waves.

在半導體積體電路(IC)工業中,在積體電路材料及積體電路設計的技術進步產生多個積體電路世代,每一個積體電路世代比上一個積體電路世代有更小及更複雜的電路。在積體電路發展過程中,製程可作出之幾何尺寸(例如:最小部件(或線路))會下降,而功能密度(例如:每一晶片區域的相連元件數量)通常都會增加。此微縮過程藉由增加生產效率及降低相關成本提供了優勢。此微縮亦增加了積體電路製程及製造的複雜性。In the semiconductor integrated circuit (IC) industry, technological advances in integrated circuit materials and integrated circuit design have produced multiple integrated circuit generations, each integrated circuit generation has smaller and more generations than the previous integrated circuit generation. Complex circuit. As the integrated circuit evolves, the geometry (eg, the smallest component (or line)) that the process can make decreases, and the functional density (eg, the number of connected components per wafer area) typically increases. This miniaturization process offers advantages by increasing production efficiency and reducing associated costs. This miniaturization also increases the complexity of the integrated circuit process and manufacturing.

半導體製程的一個挑戰是對準。半導體製程涉及在彼此之上形成複數圖案化層。這些層中的每一層必須精確對準,否則最終裝置可能無法正確地運作。One of the challenges of semiconductor manufacturing is alignment. Semiconductor processes involve forming a plurality of patterned layers on top of each other. Each of these layers must be precisely aligned or the final device may not function properly.

對準技術通常涉及使用疊對記號(overlay mark)。舉例來說,將被圖案化在基板上的各種層可包括用於與其他所形成的層對準的疊對記號。匹配的疊對記號被形成在後續所形成的層的複數圖案內。這些匹配的疊對記號被設置在後續層的複數圖案內,使得當與下層的對應的複數疊對記號對準時,兩個層是對準的。然而,這種對準技術並不完美,並且希望有提供改善對準的對準技術。Alignment techniques typically involve the use of overlay marks. For example, the various layers to be patterned on the substrate can include overlapping pairs of marks for alignment with other formed layers. The matched overlay pairs are formed in a complex pattern of subsequently formed layers. These matched overlay pairs are placed within the complex pattern of subsequent layers such that when aligned with the corresponding complex overlay pairs of the lower layer, the two layers are aligned. However, this alignment technique is not perfect and it is desirable to have an alignment technique that provides improved alignment.

本揭露實施例提供一種疊對記號結構,包括:第一週期性結構,位於晶片上,第一週期性結構包括位於晶片上的第一層材料;第二週期性結構,位於鄰近於第一週期性結構的晶片的區域內,第二週期性結構包括設置在晶片上的第二層材料;聲波發射裝置,位於晶片上;以及聲波接收裝置,位於晶片上。Embodiments of the present disclosure provide a stacked pair mark structure including: a first periodic structure on a wafer, a first periodic structure including a first layer of material on a wafer; and a second periodic structure located adjacent to the first period In the region of the wafer of the structured structure, the second periodic structure includes a second layer of material disposed on the wafer; an acoustic wave emitting device on the wafer; and an acoustic wave receiving device on the wafer.

本揭露實施例提供一種半導體裝置,包括:聲波發射裝置,位於晶片上;聲波接收裝置,位於晶片上;第一週期性結構,位於晶片上,第一週期性結構包括第一材料;以及第二週期性結構,位於晶片上,第二週期性結構包括第二材料。The present disclosure provides a semiconductor device including: an acoustic wave emitting device on a wafer; an acoustic wave receiving device on the wafer; a first periodic structure on the wafer, the first periodic structure including the first material; and a second A periodic structure is located on the wafer and the second periodic structure includes a second material.

本揭露實施例提供一種使用聲波來偵測疊對誤差的方法,包括:在半導體晶圓上形成第一材料層,第一材料層包括在半導體晶圓的疊對記號區內的第一週期性結構;在半導體晶圓上形成第二材料層,第二材料層包括在疊對記號區中的第二週期性結構;使用設置在疊對記號區內的聲波發射裝置,發射聲波跨越第一週期性結構和第二週期性結構兩者;使用聲波接收裝置,偵測聲波;以及基於聲波接收裝置所偵測到的聲波,確定第一材料層與第二材料層之間的疊對誤差。Embodiments of the present disclosure provide a method of detecting an overlay error using sound waves, including: forming a first material layer on a semiconductor wafer, the first material layer including a first periodicity in a stacked pair of semiconductor wafer regions a second material layer is formed on the semiconductor wafer, the second material layer includes a second periodic structure in the overlap mark region; and the sound wave is transmitted across the first period using an acoustic wave emitting device disposed in the overlap mark region Both the sexual structure and the second periodic structure; detecting the sound wave using the acoustic wave receiving device; and determining the stacking error between the first material layer and the second material layer based on the sound wave detected by the sound wave receiving device.

本揭露提供許多不同的實施例或範例以實施本案的不同特徵。以下的揭露內容敘述各個構件及其排列方式的特定範例,以簡化說明。當然,這些特定的範例並非用以限定。舉例來說,若是本揭露書敘述了一第一特徵部件形成於一第二特徵部件之上或上方,即表示其可能包含上述第一特徵部件與上述第二特徵部件是直接接觸的實施例,亦可能包含了有附加特徵部件形成於上述第一特徵部件與上述第二特徵部件之間,而使上述第一特徵部件與第二特徵部件可能未直接接觸的實施例。另外,以下揭露書不同範例可能重複使用相同的參考符號及/或標記。這些重複係為了簡化與清晰的目的,並非用以限定所討論的不同實施例及/或結構之間有特定的關係。The disclosure provides many different embodiments or examples to implement various features of the present invention. The following disclosure sets forth specific examples of various components and their arrangement to simplify the description. Of course, these specific examples are not intended to be limiting. For example, if the present disclosure describes that a first feature is formed on or over a second feature, that is, it may include an embodiment in which the first feature is in direct contact with the second feature. It is also possible to include embodiments in which additional features are formed between the first feature and the second feature described above, such that the first feature and the second feature may not be in direct contact. In addition, different examples of the following disclosure may reuse the same reference symbols and/or labels. These repetitions are not intended to limit the specific relationship between the various embodiments and/or structures discussed.

此外,其與空間相關用詞。例如“在…下方”、“下方”、“較低的”、“上方”、“較高的”及類似的用詞,係為了便於描述圖示中一個元件或特徵部件與另一個(些)元件或特徵部件之間的關係。除了在圖式中繪示的方位外,這些空間相關用詞意欲包含使用中或操作中的裝置之不同方位。除此之外,設備可能被轉向不同方位(旋轉90度或其他方位),則在此使用的空間相關詞也可依此相同解釋。In addition, it is related to space. For example, "lower", "lower", "lower", "above", "higher" and similar terms are used to facilitate the description of one element or feature in the illustration and another. The relationship between components or features. These spatially relative terms are intended to encompass different orientations of the device in use or operation, in addition to the orientation depicted in the drawings. In addition to this, the device may be turned to a different orientation (rotated 90 degrees or other orientation), and the spatially related words used herein may be interpreted the same.

如上所述,對準技術通常涉及使用對準記號,其有時被稱為疊對記號。舉例來說,在基板上將被圖案化的各種層可包括用於與其他所形成的層對準的疊對記號。匹配的疊對記號被形成在後續所形成的多個層的複數圖案內。這些匹配的疊對記號被設置在後續層的複數圖案內,使得當與下層的對應的複數疊對記號對準時,兩個層是對準的。然而,這種對準技術並不完美,並且希望有提供改善對準的對準技術。As noted above, alignment techniques typically involve the use of alignment marks, which are sometimes referred to as overlay pairs. For example, the various layers to be patterned on the substrate can include overlapping pairs of marks for alignment with other formed layers. The matched stacked pair marks are formed in a complex pattern of a plurality of layers formed later. These matched overlay pairs are placed within the complex pattern of subsequent layers such that when aligned with the corresponding complex overlay pairs of the lower layer, the two layers are aligned. However, this alignment technique is not perfect and it is desirable to have an alignment technique that provides improved alignment.

根據此處所描述的原理,來自兩個不同層的疊對記號被設計來傳輸或反射聲波。此疊對記號可被設置在半導體區域中,其中半導體區域設置有轉換器(transducer)。轉換器在聲波的形式中將電能轉換為機械能。聲波接著通過與第一層相關的第一疊對記號和與不同層相關的第二疊對記號。聲波(從疊對記號反射或通過疊對記號)可接著藉由聲波接收裝置來偵測。所檢測的聲波的性質將基於第一重疊標記與第二重疊標記之間的對準而改變。因此,藉由分析所檢測的聲波,對準誤差可以被確定。In accordance with the principles described herein, overlay pairs from two different layers are designed to transmit or reflect sound waves. The stack of marks can be disposed in a semiconductor region in which a semiconductor region is provided with a transducer. The converter converts electrical energy into mechanical energy in the form of sound waves. The sound waves then pass through a first overlay mark associated with the first layer and a second overlay mark associated with the different layers. Sound waves (reflected from the overlay marks or through the overlay marks) can then be detected by the acoustic wave receiving device. The nature of the detected sound waves will vary based on the alignment between the first overlap mark and the second overlap mark. Therefore, by analyzing the detected sound waves, the alignment error can be determined.

第1圖顯示了疊對記號結構100的示意圖。疊對記號結構100位於半導體晶片內的特定區域102內。疊對記號結構100可位於半導體晶圓的一或多個層內。舉例來說,疊對記號結構100可位於半導體基板上或任何後續所形成的層上(例如金屬層或介電層)。根據本揭露實施例,疊對記號結構100包括聲波發射裝置104、聲波接收裝置106以及週期性結構區112,而週期性結構區112具有第一週期性結構(periodic structure)108和第二週期性結構110。Figure 1 shows a schematic of a stacked pair of symbol structures 100. The stacked pair of mark structures 100 are located within a particular region 102 within the semiconductor wafer. The stacked pair of mark structures 100 can be located within one or more layers of a semiconductor wafer. For example, the overlay mark structure 100 can be on a semiconductor substrate or any subsequently formed layer (eg, a metal layer or a dielectric layer). According to an embodiment of the present disclosure, the overlay pair structure 100 includes an acoustic wave emitting device 104, an acoustic wave receiving device 106, and a periodic structure region 112, and the periodic structure region 112 has a first periodic structure 108 and a second periodicity. Structure 110.

其中設置有疊對記號的半導體晶圓可以是用於製造積體電路的圓形晶圓。在一些實施例中,疊對記號結構100可以位於半導體晶圓的切割線(scribe line)內。切割線是在半導體製程之後切割半導體晶圓的線。然而,在一些實施例中,疊對記號結構100可以位於切割線之間,並且因此是最終半導體晶片產品的一部分。The semiconductor wafer in which the stacked pairs are provided may be a circular wafer for manufacturing an integrated circuit. In some embodiments, the overlay mark structure 100 can be located within a scribe line of a semiconductor wafer. A dicing line is a line that scribes a semiconductor wafer after a semiconductor process. However, in some embodiments, the overlay mark structure 100 can be located between the dicing lines and is therefore part of the final semiconductor wafer product.

聲波發射裝置104可以為聲波發射器。換句話說,聲波發射裝置104被設計以沿著基板的表面發射聲波。在一個實施例中,聲波發射裝置104是交指狀轉換器(interdigital transducer)。聲波發射裝置104可被設計以將電訊號轉換為機械訊號。在一些實施例中,疊對記號結構100可位於壓電層(piezoelectric layer)上方。壓電材料在施加電流時可能經受機械應變或應力。因此,施加至聲波發射裝置104的AC電訊號可以使表面聲波訊號被發射而跨越週期性結構區112。The acoustic wave emitting device 104 can be an acoustic wave transmitter. In other words, the acoustic wave emitting device 104 is designed to emit sound waves along the surface of the substrate. In one embodiment, acoustic wave emitting device 104 is an interdigital transducer. The acoustic wave emitting device 104 can be designed to convert electrical signals into mechanical signals. In some embodiments, the overlay mark structure 100 can be located over a piezoelectric layer. Piezoelectric materials may experience mechanical strain or stress when current is applied. Therefore, the AC electrical signal applied to the acoustic wave transmitting device 104 can cause the surface acoustic wave signal to be emitted across the periodic structural region 112.

週期性結構區112包括第一週期性結構108和第二週期性結構110。在一個實施例中,第一週期性結構108沿著形成在半導體晶圓上的第一圖案化層形成。舉例來說,第一圖案化層可以是多晶矽閘極層。因此,第一週期性結構108可包括複數個多晶矽特徵部件。這些多晶矽特徵部件可以透過微影製程來形成。舉例來說,可沉積一多晶矽層。接著,可在多晶矽層上設置光阻材料。光阻材料可接著透過光罩被暴露於光源並被顯影。多晶矽層的暴露區可接著透過蝕刻製程被移除,以產生圖案化多晶矽層。如下面進一步的詳細說明,第一週期性結構108可包括複數特徵部件的二維陣列。這些特徵部件可被確定尺寸並且間隔開來,以產生發射通過第一週期性結構108或從第一週期性結構108反射的聲波所需要的頻率分佈。The periodic structure region 112 includes a first periodic structure 108 and a second periodic structure 110. In one embodiment, the first periodic structure 108 is formed along a first patterned layer formed on a semiconductor wafer. For example, the first patterned layer can be a polysilicon gate layer. Thus, the first periodic structure 108 can include a plurality of polysilicon features. These polysilicon features can be formed by a lithography process. For example, a polysilicon layer can be deposited. Next, a photoresist material may be disposed on the polysilicon layer. The photoresist material can then be exposed to the light source through the reticle and developed. The exposed regions of the polysilicon layer can then be removed through an etch process to produce a patterned polysilicon layer. As described in further detail below, the first periodic structure 108 can include a two-dimensional array of complex features. These features can be sized and spaced apart to produce the frequency distribution required to emit sound waves that are reflected by or reflected from the first periodic structure 108.

第二週期性結構110與第一週期性結構108相似。具體來說,第二週期性結構110可包括二維的實體特徵部件,其特徵部件的尺寸和形狀與第一週期性結構的那些特徵部件的尺寸和形狀相似。第二週期性結構110可以與形成在半導體晶圓上的第二材料層相關。第二週期性結構110位於整個圖案內,使得當第二材料層的圖案與第一材料層的圖案對準時,第二週期性結構110位於第一週期性結構108附近。第二週期性結構110位於第一週期性結構108附近,使得當正確地對準時,來自第一週期性結構108和第二週期性結構110兩者的特徵部件形成各處具有相似間距的單一二維陣列。The second periodic structure 110 is similar to the first periodic structure 108. In particular, the second periodic structure 110 can include two-dimensional solid features whose features are similar in size and shape to those of the first periodic structure. The second periodic structure 110 can be associated with a second layer of material formed on the semiconductor wafer. The second periodic structure 110 is located throughout the pattern such that when the pattern of the second material layer is aligned with the pattern of the first material layer, the second periodic structure 110 is located adjacent the first periodic structure 108. The second periodic structure 110 is located adjacent the first periodic structure 108 such that when properly aligned, features from both the first periodic structure 108 and the second periodic structure 110 form a single unit having similar spacing throughout Two-dimensional array.

在本揭露實施例中,聲波接收裝置106相對於聲波發射裝置104位在週期性結構區112的相反側。因此,聲波接收裝置106可以被設計以在聲波被發射通過第一週期性結構108和第二週期性結構110時來偵測聲波。聲波接收裝置106被設計以將機械能轉換成電能。換句話說,聲波接收裝置106偵測被發射通過第一週期性結構108和第二週期性結構110的表面聲波,並且將那些表面聲波轉換成代表表面聲波的電訊號。電訊號可被分析出指示第一週期性結構108與第二週期性結構110對準的波的特性。In the disclosed embodiment, the acoustic wave receiving device 106 is positioned on the opposite side of the periodic structural region 112 relative to the acoustic wave transmitting device 104. Accordingly, the acoustic wave receiving device 106 can be designed to detect sound waves as they are emitted through the first periodic structure 108 and the second periodic structure 110. The acoustic wave receiving device 106 is designed to convert mechanical energy into electrical energy. In other words, the acoustic wave receiving device 106 detects surface acoustic waves that are transmitted through the first periodic structure 108 and the second periodic structure 110, and converts those surface acoustic waves into electrical signals representing surface acoustic waves. The electrical signal can be analyzed to characterize the wave indicating that the first periodic structure 108 is aligned with the second periodic structure 110.

在一些實施例中,聲波接收裝置106和聲波發射裝置104可以位於週期性結構區112的同一側。在這種實施例中,聲波接收裝置106可以被配置以在表面聲波被第一週期性結構108和第二週期性結構110反射時偵測表面聲波。In some embodiments, acoustic wave receiving device 106 and acoustic wave transmitting device 104 may be located on the same side of periodic structural region 112. In such an embodiment, the acoustic wave receiving device 106 can be configured to detect surface acoustic waves as the surface acoustic waves are reflected by the first periodic structure 108 and the second periodic structure 110.

第2A圖、第2B圖以及第2C圖顯示了用於疊對記號的週期性結構的俯視圖。根據本揭露實施例,第2圖顯示了正確地對準的第一疊對記號202和第二疊對記號204。第一疊對記號202是週期性結構,例如上面所述的第一週期性結構108。第二疊對記號204也是週期性結構,例如上面所述的第二週期性結構110。2A, 2B, and 2C show top views of the periodic structure for the overlay marks. In accordance with an embodiment of the present disclosure, FIG. 2 shows the first overlay mark 202 and the second overlay mark 204 that are correctly aligned. The first stack of marks 202 is a periodic structure, such as the first periodic structure 108 described above. The second stack of marks 204 is also a periodic structure, such as the second periodic structure 110 described above.

第2B圖顯示了第一疊對記號202和第二疊對記號204未對準的實施例。具體來說,第二疊對記號204與第一覆蓋標記202的間隔比它應該的間隔要更遠。第2C圖顯示了第一疊對記號202和第二疊對記號204未對準的實施例。具體來說,第二疊對記號204與第一覆蓋標記202的間隔比它應該的間隔要更近。FIG. 2B shows an embodiment in which the first stack of marks 202 and the second stack of marks 204 are misaligned. In particular, the second overlay mark 204 is spaced further from the first overlay mark 202 than it should. Figure 2C shows an embodiment in which the first stack of marks 202 and the second stack of marks 204 are misaligned. In particular, the second overlay mark 204 is spaced closer to the first overlay mark 202 than it should be.

第3A圖、第3B圖以及第3C圖顯示了對應第2A圖、第2B圖以及第2C圖的週期性結構的配置的聲波訊號的曲線圖。具體來說,第3A圖顯示了對應第2A圖所示的第一疊對記號202和第二疊對記號204的位置的聲波訊號。第3B圖顯示了對應第2B圖所示的第一疊對記號202和第二疊對記號204的位置的聲波訊號。第3C圖顯示了對應第2C圖所示的第一疊對記號202和第二疊對記號204的位置的聲波訊號。3A, 3B, and 3C are graphs showing acoustic signals corresponding to the arrangement of the periodic structures of FIGS. 2A, 2B, and 2C. Specifically, FIG. 3A shows sound wave signals corresponding to the positions of the first stack of marks 202 and the second stack of marks 204 shown in FIG. 2A. Figure 3B shows the acoustic signals corresponding to the positions of the first overlay mark 202 and the second overlay mark 204 shown in Figure 2B. Figure 3C shows the acoustic signals corresponding to the positions of the first stack of marks 202 and the second stack of marks 204 shown in Figure 2C.

第3A圖顯示了具有代表振幅的垂直軸302和代表頻率的水平軸304的曲線圖。訊號308對應當疊對記號如第2A圖間隔開時所產生的聲波訊號。這種訊號的中心頻率306由虛線表示。第3B圖顯示了與第2B圖中所示的第一疊對記號202和第二疊對記號204相關的訊號310。換句話說,因為疊對記號比它們應該的間隔要更遠,訊號310的中心頻率偏移(小於)它應該的中心頻率306。相似地,第3C圖顯示了與第2C圖中所示的第一疊對記號202和第二疊對記號204相關的訊號312。換句話說,因為疊對記號比它們應該的間隔要更近,訊號312的中心頻率偏移(大於)它應該的中心頻率306。Figure 3A shows a graph with a vertical axis 302 representing the amplitude and a horizontal axis 304 representing the frequency. The signal 308 is a sound wave signal generated when the overlapping marks are spaced apart as shown in FIG. 2A. The center frequency 306 of such a signal is indicated by a dashed line. Figure 3B shows the signal 310 associated with the first overlay mark 202 and the second overlay mark 204 shown in Figure 2B. In other words, because the overlay pairs are farther apart than they should, the center frequency of signal 310 is offset (less than) its center frequency 306. Similarly, Figure 3C shows the signal 312 associated with the first overlay mark 202 and the second overlay mark 204 shown in Figure 2C. In other words, because the overlay pairs are closer than they should, the center frequency of signal 312 is offset (greater than) its center frequency 306.

根據此處所述的原理的一個示例,第4A圖、第4B圖以及第4C圖顯示了對應第2A圖、第2B圖以及第2C圖的週期性結構的配置的反射聲波訊號的曲線圖。具體來說,第4A圖顯示了對應第2A圖所示的第一疊對記號202和第二疊對記號204的位置的反射聲波訊號。第4B圖顯示了對應第2B圖所示的第一疊對記號202和第二疊對記號204的位置的反射聲波訊號。第4C圖顯示了對應第2C圖所示的第一疊對記號202和第二疊對記號204的位置的反射聲波訊號。According to an example of the principles described herein, FIGS. 4A, 4B, and 4C are graphs showing reflected acoustic wave signals corresponding to the arrangement of the periodic structures of FIGS. 2A, 2B, and 2C. Specifically, FIG. 4A shows the reflected acoustic wave signals corresponding to the positions of the first overlapping mark 202 and the second overlapping mark 204 shown in FIG. 2A. Fig. 4B shows the reflected acoustic wave signal corresponding to the positions of the first overlapping mark 202 and the second overlapping mark 204 shown in Fig. 2B. Fig. 4C shows the reflected acoustic wave signal corresponding to the positions of the first overlapping mark 202 and the second overlapping mark 204 shown in Fig. 2C.

第4A圖顯示了具有代表振幅的垂直軸302和代表頻率的水平軸304的曲線圖。當第一疊對記號202和第二疊對記號204如第2A圖間隔開時,訊號402對應從第一疊對記號202和第二疊對記號204反射的聲波訊號。這種訊號的中心頻率306由虛線表示。第4B圖顯示了從第2B圖所示的第一疊對記號202和第二疊對記號204反射的訊號404。換句話說,因為第一疊對記號202和第二疊對記號204比它們應該的間隔要更遠,訊號404偏移(小於)對準的訊號402的中心頻率306。相似地,第4C圖顯示了從第2C圖所示的第一疊對記號202和第二疊對記號204所反射的訊號406。換句話說,因為第一疊對記號202和第二疊對記號204比它們應該的間隔要更近,訊號406偏移(大於)對準的訊號402。Figure 4A shows a graph with a vertical axis 302 representing the amplitude and a horizontal axis 304 representing the frequency. When the first overlay symbol 202 and the second overlay symbol 204 are spaced apart as shown in FIG. 2A, the signal 402 corresponds to the acoustic signal reflected from the first overlay symbol 202 and the second overlay symbol 204. The center frequency 306 of such a signal is indicated by a dashed line. Figure 4B shows the signal 404 reflected from the first overlay mark 202 and the second overlay mark 204 shown in Figure 2B. In other words, because the first overlay pair 202 and the second overlay token 204 are further apart than they should, the signal 404 is offset (less than) the center frequency 306 of the aligned signal 402. Similarly, Figure 4C shows the signal 406 reflected from the first overlay symbol 202 and the second overlay symbol 204 shown in Figure 2C. In other words, because the first overlay pair 202 and the second overlay token 204 are closer together than they should, the signal 406 is offset (greater than) the aligned signal 402.

第5A圖、第5B圖以及第5C圖顯示了對應第2A圖、第2B圖以及第2C圖的週期性結構的配置的發射聲波訊號的曲線圖。具體來說,第5A圖顯示了對應第2A圖所示的第一疊對記號202和第二疊對記號204的位置的發射聲波訊號。第5B圖顯示了對應第2B圖所示的第一疊對記號202和第二疊對記號204的位置的發射聲波訊號。第5C圖顯示了對應第2C圖所示的第一疊對記號202和第二疊對記號204的位置的發射聲波訊號。FIGS. 5A, 5B, and 5C are graphs showing the transmitted acoustic wave signals corresponding to the configurations of the periodic structures of FIGS. 2A, 2B, and 2C. Specifically, FIG. 5A shows the transmitted acoustic wave signals corresponding to the positions of the first overlapping mark 202 and the second overlapping mark 204 shown in FIG. 2A. Figure 5B shows the transmitted acoustic wave signal corresponding to the positions of the first overlay mark 202 and the second overlay mark 204 shown in Figure 2B. Figure 5C shows the transmitted acoustic wave signal corresponding to the positions of the first overlay mark 202 and the second overlay mark 204 shown in Figure 2C.

第5A圖顯示了具有代表振幅的垂直軸302和代表頻率的水平軸304的曲線圖。當第一疊對記號202和第二疊對記號204如第2A圖間隔開時,訊號502對應被發射通過第一疊對記號202和第二疊對記號204後的聲波訊號。這種訊號的中心頻率306由虛線表示。第5B圖顯示了被發射通過第2B圖所示的第一疊對記號202和第二疊對記號204的訊號504。換句話說,因為第一疊對記號202和第二疊對記號204比它們應該的間隔要更遠,訊號504偏移(小於)對準的訊號502的中心頻率306。相似地,第5C圖顯示了被發射通過第2C圖所示的第一疊對記號202和第二疊對記號204的訊號506。換句話說,因為第一疊對記號202和第二疊對記號204比它們應該的間隔要更近,訊號506偏移(大於)對準的訊號502。Figure 5A shows a graph with a vertical axis 302 representing the amplitude and a horizontal axis 304 representing the frequency. When the first overlay symbol 202 and the second overlay symbol 204 are spaced apart as shown in FIG. 2A, the signal 502 corresponds to the acoustic signal transmitted through the first overlay symbol 202 and the second overlay symbol 204. The center frequency 306 of such a signal is indicated by a dashed line. Figure 5B shows the signal 504 being transmitted through the first overlay mark 202 and the second overlay mark 204 shown in Figure 2B. In other words, because the first overlay pair 202 and the second overlay token 204 are further apart than they should, the signal 504 is offset (less than) the center frequency 306 of the aligned signal 502. Similarly, Figure 5C shows a signal 506 that is transmitted through the first overlay mark 202 and the second overlay mark 204 shown in Figure 2C. In other words, because the first overlay pair 202 and the second overlay token 204 are closer together than they should, the signal 506 is offset (greater than) the aligned signal 502.

第6A圖和第6B圖顯示了用於疊對記號的特徵部件之形狀的示意圖。根據本揭露實施例,第6A圖顯示了與具有週期性結構的第二疊對記號604相鄰的具有週期性結構的第一疊對記號602。第一疊對記號602和第二疊對記號604兩者的特徵部件為大抵矩形的形狀。更具體來說,如圖所示,第一疊對記號602和第二疊對記號604具有正方形形狀。第6B圖顯示了與具有週期性結構的第二疊對記號614相鄰的具有週期性結構的第一疊對記號612。第一疊對記號612和第二疊對記號614兩者的特徵部件為大抵橢圓形的形狀。其他形狀亦可考慮。舉例來說,此處所述的疊對記號的特徵部件可具有圓形形狀。Figures 6A and 6B show schematic views of the shapes of the features used to overlap the marks. In accordance with an embodiment of the present disclosure, FIG. 6A shows a first overlay mark 602 having a periodic structure adjacent to a second overlay mark 604 having a periodic structure. The features of both the first stack of indicia 602 and the second stack of indicia 604 are generally rectangular in shape. More specifically, as shown, the first overlay mark 602 and the second overlay mark 604 have a square shape. Figure 6B shows a first overlay mark 612 having a periodic structure adjacent to a second overlay mark 614 having a periodic structure. The features of both the first stack of indicia 612 and the second stack of indicia 614 are generally elliptical in shape. Other shapes are also considered. For example, the features of the stacked pairs described herein can have a circular shape.

第7A圖至第7G圖顯示了疊對記號的各種配置的示意圖。根據本揭露實施例,第7A圖顯示了具有一組特徵部件702的第一疊對記號,特徵部件702外接或圍繞第二疊對記號的特徵部件704。雖然只有一圈特徵部件702被顯示圍繞特徵部件704,但應理解一些示例可包括圍繞特徵部件704的特徵部件702的許多排。當特徵部件702與特徵部件704未對準時,被發射通過特徵部件702和704的聲波或從特徵部件702和704反射的聲波的特性將指示未對準的性質。Figures 7A through 7G show schematic diagrams of various configurations of stacked pairs of marks. In accordance with an embodiment of the present disclosure, FIG. 7A shows a first overlay mark having a set of features 702 that circumscribe or surround features 704 of the second overlay mark. While only one revolution feature 702 is shown surrounding feature 704, it should be understood that some examples may include many rows of feature components 702 surrounding feature 704. When feature 702 is not aligned with feature 704, the characteristics of the acoustic waves that are transmitted through or reflected from features 702 and 704 will indicate the nature of the misalignment.

第7B圖顯示了第一疊對記號與第二疊對記號交錯排列(intermingled)的示意圖。舉例來說,來自第一疊對記號的特徵部件702按排設置。相似地,來自第二疊對記號的特徵部件704按排設置。不同類型的特徵部件702和704的排在交替。當特徵部件702與特徵部件704未對準時,被發射通過特徵部件702和704的聲波或從特徵部件702和704反射的聲波的特性將指示未對準的性質。Figure 7B shows a schematic diagram of the interleaved pair of first and second pairs of marks. For example, features 702 from the first stack of tokens are arranged in rows. Similarly, features 704 from the second overlay pair are arranged in rows. The rows of different types of features 702 and 704 are alternated. When feature 702 is not aligned with feature 704, the characteristics of the acoustic waves that are transmitted through or reflected from features 702 and 704 will indicate the nature of the misalignment.

第7C圖顯示了第一疊對記號與第二疊對記號交錯排列(intermingled)的示意圖。舉例來說,來自第一疊對記號的特徵部件702聚集在左上方和右下方。來自第二疊對記號的特徵部件704聚集在右上方和左下方。這種配置亦可允許在多於一個方向中用來確定對準。舉例來說,對準可以在第一方向和與第一方向正交的第二方向上被確定。當特徵部件702與特徵部件704未對準時,被發射通過特徵部件702和704的聲波或從特徵部件702和704反射的聲波的特性將指示未對準的性質。Figure 7C shows a schematic diagram of the interleaved pair of first and second pairs of marks. For example, features 702 from the first overlay pair are gathered at the upper left and lower right. Features 704 from the second stack of marks are gathered in the upper right and lower left. This configuration may also allow for alignment to be determined in more than one direction. For example, the alignment can be determined in a first direction and a second direction orthogonal to the first direction. When feature 702 is not aligned with feature 704, the characteristics of the acoustic waves that are transmitted through or reflected from features 702 and 704 will indicate the nature of the misalignment.

第7D圖顯示了第一疊對記號在對角的方式中與第二疊對記號相鄰的示意圖。舉例來說,來自第一疊對記號的特徵部件702位於左下方。來自第二疊對記號的特徵部件704位於右上方。這種配置亦可允許在多於一個方向中用來確定對準。舉例來說,對準可以在第一方向和與第一方向正交的第二方向上被確定。當特徵部件702與特徵部件704未對準時,被發射通過特徵部件702和704的聲波或從特徵部件702和704反射的聲波的特性將指示未對準的性質。Figure 7D shows a schematic view of the first stack of marks adjacent to the second stack of marks in a diagonal manner. For example, feature 702 from the first overlay pair of symbols is located at the lower left. Features 704 from the second stack of marks are located on the upper right. This configuration may also allow for alignment to be determined in more than one direction. For example, the alignment can be determined in a first direction and a second direction orthogonal to the first direction. When feature 702 is not aligned with feature 704, the characteristics of the acoustic waves that are transmitted through or reflected from features 702 and 704 will indicate the nature of the misalignment.

第7E圖顯示了第一疊對記號與第二疊對記號交錯排列的示意圖。舉例來說,來自第一疊對記號的特徵部件702按排設置。相似地,來自第二疊對記號的特徵部件704按排設置。不同類型的特徵部件702和704的行在交替。然而,比起特徵部件702具有的排,特徵部件704具有更多的排。當特徵部件702與特徵部件704未對準時,被發射通過特徵部件702和704的聲波或從特徵部件702和704反射的聲波的特性將指示未對準的性質。Figure 7E shows a schematic diagram in which the first stack of marks and the second pair of marks are staggered. For example, features 702 from the first stack of tokens are arranged in rows. Similarly, features 704 from the second overlay pair are arranged in rows. The rows of different types of features 702 and 704 are alternating. However, feature 704 has more rows than the rows that feature 702 has. When feature 702 is not aligned with feature 704, the characteristics of the acoustic waves that are transmitted through or reflected from features 702 and 704 will indicate the nature of the misalignment.

第7F圖顯示了第一疊對記號與第二疊對記號交錯排列的示意圖。舉例來說,來自第一疊對記號的特徵部件702按排定位。相似地,來自第二疊對記號的特徵部件704按排定位。不同類型的特徵部件702和704的排在交替。然而,比起特徵部件702具有的排,特徵部件704具有更多的排。第7F圖與第7E圖相似,除了排在不同的方向上延伸。當特徵部件702與特徵部件704未對準時,被發射通過特徵部件702和704的聲波或從特徵部件702和704反射的聲波的特性將指示未對準的性質。Fig. 7F shows a schematic diagram in which the first stack of marks and the second pair of marks are staggered. For example, features 702 from the first stack of indicia are positioned in rows. Similarly, features 704 from the second overlay pair are positioned in rows. The rows of different types of features 702 and 704 are alternated. However, feature 704 has more rows than the rows that feature 702 has. Figure 7F is similar to Figure 7E except that it extends in different directions. When feature 702 is not aligned with feature 704, the characteristics of the acoustic waves that are transmitted through or reflected from features 702 and 704 will indicate the nature of the misalignment.

第7G圖顯示了第一疊對記號與第二疊對記號交錯排列的示意圖。舉例來說,來自第一疊對記號的特徵部件702和來自第二疊對記號的特徵部件704被設置在棋盤圖案中。這種配置亦可允許在多於一個方向中用來確定對準。舉例來說,對準可以在第一方向和與第一方向正交的第二方向上被確定。當特徵部件702與特徵部件704未對準時,被發射通過特徵部件702和704的聲波或從特徵部件702和704反射的聲波的特性將指示未對準的性質。Figure 7G shows a schematic diagram in which the first stack of marks and the second pair of marks are staggered. For example, feature 702 from the first overlay mark and feature 704 from the second overlay mark are disposed in the checkerboard pattern. This configuration may also allow for alignment to be determined in more than one direction. For example, the alignment can be determined in a first direction and a second direction orthogonal to the first direction. When feature 702 is not aligned with feature 704, the characteristics of the acoustic waves that are transmitted through or reflected from features 702 and 704 will indicate the nature of the misalignment.

第8圖顯示了各種週期性結構、聲波發射裝置以及聲波接收裝置的示意圖。根據本揭露實施例,四個不同的疊對記號802、804、806、808被設置在週期性結構區110內的正方型圖案中。在一些實施例中,每一個疊對記號可以與不同的材料層相關。在一些實施例中,兩個疊對記號可以與相同的材料相關,另外兩個疊對記號可以與不同的材料相關。疊對記號802、804、806、808可在週期圖案中各自包括具有複數特徵部件的週期性結構,例如上面第6A圖至第7G圖所示的圖案。Figure 8 shows a schematic diagram of various periodic structures, acoustic wave emitting devices, and acoustic wave receiving devices. In accordance with embodiments of the present disclosure, four different overlay pairs of symbols 802, 804, 806, 808 are disposed in a square pattern within the periodic structure region 110. In some embodiments, each of the stacked pairs of marks can be associated with a different layer of material. In some embodiments, two stacked pairs of marks may be associated with the same material, and the other two stacked pairs of marks may be associated with different materials. The overlay marks 802, 804, 806, 808 may each include a periodic structure having a plurality of features in the periodic pattern, such as the patterns shown in Figures 6A through 7G above.

在一個實施例中,裝置812是被配置來發射聲波跨越疊對記號802和804的聲波發射裝置。此聲波可以被裝置814接收。相似地,裝置816可以是被配置來發射聲波跨越疊對記號806和808的聲波發射裝置。此聲波可以被裝置818接收。此外,裝置820可以是被配置來發射聲波跨越疊對記號802和806的聲波發射裝置。此聲波可以被裝置824接收。相似地,裝置822可以是被配置來發射聲波跨越疊對記號804和808的聲波發射裝置。此聲波可以被裝置826接收。因此,在第8圖中所示的配置可被用來進行偵測。In one embodiment, device 812 is an acoustic wave emitting device configured to emit acoustic waves across stacking marks 802 and 804. This sound wave can be received by device 814. Similarly, device 816 can be an acoustic wave emitting device configured to emit acoustic waves across stacking marks 806 and 808. This sound wave can be received by device 818. Moreover, device 820 can be an acoustic wave emitting device configured to emit acoustic waves across stacking marks 802 and 806. This sound wave can be received by device 824. Similarly, device 822 can be an acoustic wave emitting device configured to emit acoustic waves across stacking marks 804 and 808. This sound wave can be received by device 826. Therefore, the configuration shown in Fig. 8 can be used for detection.

第9圖顯示了串聯多個疊對記號區的示意圖。根據本揭露實施例,複數疊對記號區900a、900b、900c以串聯排列。換句話說,它們沿著在被發射通過疊對記號區900a、900b、900c的聲波的方向上的線排列。每一個疊對記號區900a、900b、900c包括聲波發射裝置、聲波接收裝置以及包括週期性結構的至少兩個疊對記號。Figure 9 shows a schematic diagram of a plurality of stacked pairs of markers in series. In accordance with an embodiment of the present disclosure, the plurality of stacked pairs of symbol regions 900a, 900b, 900c are arranged in series. In other words, they are arranged along a line in the direction of the sound waves that are emitted through the overlap mark areas 900a, 900b, 900c. Each of the stacked pair of mark areas 900a, 900b, 900c includes an acoustic wave emitting device, an acoustic wave receiving device, and at least two overlapping pairs of symbols including a periodic structure.

第10圖顯示了並聯多個疊對記號區的示意圖。根據本揭露實施例,複數疊對記號區1000a、1000b、1000c以並聯排列。換句話說,它們沿著在被發射通過疊對記號區1000a、1000b、1000c的聲波的方向上正交的線排列。每一個疊對記號區1000a、1000b、1000c包括聲波發射裝置、聲波接收裝置以及包括週期性結構的至少兩個疊對記號。Figure 10 shows a schematic diagram of a plurality of stacked pairs of marks in parallel. In accordance with an embodiment of the present disclosure, the plurality of stacked pairs of mark regions 1000a, 1000b, 1000c are arranged in parallel. In other words, they are arranged along a line orthogonal in the direction of the sound waves emitted through the overlap mark areas 1000a, 1000b, 1000c. Each of the stacked pair of mark areas 1000a, 1000b, 1000c includes an acoustic wave emitting device, an acoustic wave receiving device, and at least two overlapping pairs of symbols including a periodic structure.

第11A圖至第11D圖顯示了疊對記號之形成的示意圖。根據本揭露實施例,第11A圖顯示了製程晶圓1102的兩個不同部分。第一部分是生產(production)部分1101,並且第二部分是測試部分1103。生產部分1101是晶圓的一部分,其上製造有積體電路。測試部分1103是晶圓的一部分,疊對記號可被形成在測試部分1103中,以測試在生產部分1101中形成的不同層之圖案的對準。為了討論的目的,測試部分1103可以對應隨同第1圖的所述內容中的週期性結構區112。Figures 11A through 11D show schematic views of the formation of stacked pairs of marks. In accordance with an embodiment of the present disclosure, FIG. 11A shows two different portions of process wafer 1102. The first part is the production part 1101, and the second part is the test part 1103. The production section 1101 is a part of a wafer on which an integrated circuit is fabricated. The test portion 1103 is a portion of the wafer, and the overlay marks can be formed in the test portion 1103 to test the alignment of the patterns of the different layers formed in the production portion 1101. For purposes of discussion, the test portion 1103 can correspond to the periodic structure region 112 in the content described with Figure 1.

根據本揭露實施例,測試部分1103包括電性元件(piece electrically) 1104、第一硬光罩層1108以及第二硬光罩層1106。如上面所述,疊對記號可位於壓電層上方。壓電材料在施加電流時可能經受機械應變或應力。因此,施加至聲波發射裝置的AC電訊號可以使表面聲波訊號被發射而跨越測試部分1103。In accordance with an embodiment of the present disclosure, test portion 1103 includes a piece electrical 1104, a first hard mask layer 1108, and a second hard mask layer 1106. As described above, the overlay mark can be located above the piezoelectric layer. Piezoelectric materials may experience mechanical strain or stress when current is applied. Therefore, the AC electrical signal applied to the acoustic wave transmitting device can cause the surface acoustic wave signal to be emitted across the test portion 1103.

同時,生產部分1101可具有將被圖案化的第一材料層1114。第一材料層1114可以是各種材料中的一種。舉例來說,第一材料層1114可以是用以形成閘極結構的多晶矽層,或者是用以形成內部互連的金屬層。在沉積第一材料層1114之後,沉積第一圖案化光阻層、透過光罩於光源下暴光並加以顯影。在顯影之後,光阻特徵部件1110保留在生產部分1101中,並且光阻特徵部件1112保留在測試部分1103中。光阻特徵部件1112可對應於包括複數週期性結構的第一疊對記號。At the same time, the production portion 1101 can have a first material layer 1114 to be patterned. The first material layer 1114 can be one of a variety of materials. For example, the first material layer 1114 can be a polysilicon layer to form a gate structure, or a metal layer to form an internal interconnect. After depositing the first material layer 1114, a first patterned photoresist layer is deposited, exposed to the light source through a mask, and developed. After development, the photoresist feature 1110 remains in the production portion 1101, and the photoresist feature 1112 remains in the test portion 1103. The photoresist feature 1112 can correspond to a first overlay symbol comprising a plurality of periodic structures.

第11B圖顯示了蝕刻製程1120,以圖案化在測試部分1103中的第二硬光罩層1106和在生產部分1101中的第一材料層1114。第二硬光罩層1106可被選擇以具有用於圖案化在生產部分1101中的第一材料層1114的在相同蝕刻製程中可移除的材料。在蝕刻製程之後,光阻特徵部件1110和1112可被移除。FIG. 11B shows an etch process 1120 to pattern the second hard mask layer 1106 in the test portion 1103 and the first material layer 1114 in the production portion 1101. The second hard mask layer 1106 can be selected to have a material that is removable in the same etch process for patterning the first material layer 1114 in the production portion 1101. After the etch process, the photoresist features 1110 and 1112 can be removed.

第11C圖顯示了額外的層。具體來說,第11C圖顯示了沉積在生產部分1101中的第一材料層特徵部件上的層間介電層1132。生產部分1101還包括沉積在層間介電層1132上的第二材料層1134。第二材料層1134可以是各種材料中的一種。舉例來說,第二材料層1134可以是用以形成金屬線或介層窗(via)的金屬材料。Figure 11C shows an additional layer. In particular, Figure 11C shows the interlayer dielectric layer 1132 deposited on the first material layer features in the production portion 1101. Production portion 1101 also includes a second material layer 1134 deposited on interlayer dielectric layer 1132. The second material layer 1134 can be one of a variety of materials. For example, the second material layer 1134 can be a metal material used to form metal lines or vias.

接著,沉積第二光阻層。第二光阻層(在被曝光和顯影之後)包括在生產部分1101中的第一光阻特徵部件1130和在測試部分1103中的第二光阻特徵部件1136。光阻特徵部件1136對應於包括複數週期特徵部件的第二疊對記號。第一光阻特徵部件1130和第二光阻特徵部件1136使用了相同的光罩來形成。此光罩被設計使得當第一光阻特徵部件1130與第一材料層1114的特徵部件對準時,第二光阻特徵部件1136被設置使得它們與第二硬光罩層1106的特徵部件形成單一的疊對記號(例如:如第2A圖所示)。換句話說,第二硬光罩層1106的特徵部件和第二光阻特徵部件1136的所有特徵部件將具有相似的間隔。這在通過特徵部件的所檢測的聲波中產生所需的(desired)頻率訊號。如果第一光阻特徵部件1130與第一材料層1114(例如:如第2B圖和第2C圖所示)未正確地對準,則第二光阻特徵部件1136相對於第二硬光罩層1106的特徵部件不會正確地間隔開來。Next, a second photoresist layer is deposited. The second photoresist layer (after being exposed and developed) includes a first photoresist feature 1130 in the production portion 1101 and a second photoresist feature 1136 in the test portion 1103. The photoresist feature 1136 corresponds to a second stack of indicia comprising a plurality of periodic features. The first photoresist feature 1130 and the second photoresist feature 1136 are formed using the same mask. The reticle is designed such that when the first photoresist feature 1130 is aligned with the features of the first material layer 1114, the second photoresist features 1136 are disposed such that they form a single feature with the features of the second hard mask layer 1106 Overlap marks (for example: as shown in Figure 2A). In other words, the features of the second hard mask layer 1106 and all of the features of the second photoresist feature 1136 will have similar spacing. This produces a desired frequency signal in the detected sound waves through the feature. If the first photoresist feature 1130 is not properly aligned with the first material layer 1114 (eg, as shown in Figures 2B and 2C), the second photoresist feature 1136 is opposite the second hard mask layer The features of 1106 are not properly spaced apart.

第11D圖顯示了蝕刻製程1140。在形成第一光阻特徵部件1130和第二光阻特徵部件1136後,可執行蝕刻製程以圖案化第二材料層1134和第一硬光罩層1108。第二硬光罩層1106的特徵部件和第二光阻特徵部件1136定義了將被轉移到第一硬光罩層1108的圖案。在一些實施例中,蝕刻製程1140可以與第一硬光罩層1108和第二材料層1134的材料一起被選擇,使得第一硬光罩層1108和第二材料層1134藉由相同的蝕刻製程被移除。Figure 11D shows an etch process 1140. After forming the first photoresist feature 1130 and the second photoresist feature 1136, an etch process can be performed to pattern the second material layer 1134 and the first hard mask layer 1108. The features of the second hard mask layer 1106 and the second photoresist feature 1136 define a pattern to be transferred to the first hard mask layer 1108. In some embodiments, the etch process 1140 can be selected along with the materials of the first hard mask layer 1108 and the second material layer 1134 such that the first hard mask layer 1108 and the second material layer 1134 are processed by the same etch process. Was removed.

第11D圖顯示了在蝕刻製程1140之後,以及第二光阻特徵部件1136和第二硬光罩層1106被移除之後的狀態。在這些特徵部件被移除後,保留了第一硬光罩層1108的剩餘的特徵部件1142和1144。特徵部件1142可對應於第一疊對記號(例如:第1圖的第一週期性結構108),並且特徵部件1144可對應第二疊對記號(例如:第1圖的第二週期性結構110)。在特徵部件1142和1144形成之後,聲波可被發射而跨越特徵部件1142和1144,以確定特徵部件1134與第一材料層1114的特徵部件是否正確地對準。FIG. 11D shows the state after the etching process 1140, and after the second photoresist feature 1136 and the second hard mask layer 1106 are removed. After these features are removed, the remaining features 1142 and 1144 of the first hard mask layer 1108 are retained. Feature component 1142 can correspond to a first overlay symbol (eg, first periodic structure 108 of FIG. 1), and feature component 1144 can correspond to a second overlay symbol (eg, second periodic structure 110 of FIG. 1) ). After the features 1142 and 1144 are formed, sound waves can be emitted across the features 1142 and 1144 to determine if the features 1134 and the features of the first material layer 1114 are properly aligned.

第12圖顯示了使用聲波來偵測疊對誤差的方法的流程圖。根據本揭露實施例,方法1200包括操作1202,在半導體晶圓上形成第一材料層,第一材料層包括在半導體晶圓的疊對記號區內的第一週期性結構。根據本揭露實施例,方法1200包括操作1204,在半導體晶圓上形成第二材料層,第二材料層包括在疊對記號區中的第二週期性結構。根據本揭露實施例,方法1200包括操作1206,使用設置在疊對記號區內的聲波發射裝置,發射聲波跨越第一週期性結構和第二週期性結構兩者。根據本揭露實施例,方法1200包括操作1208,使用聲波接收裝置偵測聲波。根據本揭露實施例,方法1200包括操作1210,基於聲波接收裝置所偵測到的聲波,確定第一材料層與第二材料層之間的疊對誤差。Figure 12 shows a flow chart of a method for detecting aliasing errors using sound waves. In accordance with an embodiment of the present disclosure, method 1200 includes an operation 1202 of forming a first material layer on a semiconductor wafer, the first material layer including a first periodic structure within a stacked pair of semiconductor wafer regions. In accordance with an embodiment of the present disclosure, method 1200 includes an operation 1204 of forming a second material layer on a semiconductor wafer, the second material layer including a second periodic structure in the stacked pair of mark regions. In accordance with an embodiment of the present disclosure, method 1200 includes an operation 1206 of transmitting acoustic waves across both the first periodic structure and the second periodic structure using acoustic wave emitting devices disposed within the stacked pair of markers. In accordance with an embodiment of the present disclosure, method 1200 includes an operation 1208 of detecting sound waves using a sound wave receiving device. According to an embodiment of the present disclosure, the method 1200 includes an operation 1210 of determining a stacking error between the first material layer and the second material layer based on the sound waves detected by the acoustic wave receiving device.

根據本揭露實施例,疊對記號結構包括位於晶片上的第一週期性結構,第一週期性結構包括位於晶片上的第一層材料。疊對記號結構更包括位於鄰近於第一週期性結構的晶片的區域內的第二週期性結構,第二週期性結構包括設置在晶片上的第二層材料。疊對記號結構更包括位於晶片上的聲波發射裝置和位於晶片上的聲波接收裝置。In accordance with an embodiment of the present disclosure, the stacked mark structure includes a first periodic structure on the wafer, the first periodic structure including a first layer of material on the wafer. The stack of mark structures further includes a second periodic structure located in a region adjacent to the wafer of the first periodic structure, the second periodic structure including a second layer of material disposed on the wafer. The stack-to-mark structure further includes an acoustic wave emitting device on the wafer and an acoustic wave receiving device on the wafer.

在一些實施例中,聲波接收裝置鄰近於聲波發射裝置。In some embodiments, the acoustic wave receiving device is adjacent to the acoustic wave emitting device.

在一些實施例中,第一週期性結構的特徵部件和第二週期性結構的特徵部件位於交替的複數列中。In some embodiments, the features of the first periodic structure and the features of the second periodic structure are located in alternating complex columns.

在一些實施例中,第一週期性結構的特徵部件和第二週期性結構的特徵部件以棋盤圖案的方式進行設置。In some embodiments, the features of the first periodic structure and the features of the second periodic structure are arranged in a checkerboard pattern.

在一些實施例中,疊對記號結構更包括在第一週期性結構和第二週期性結構的下方的壓電層。In some embodiments, the stacked pair of markers further includes a piezoelectric layer below the first periodic structure and the second periodic structure.

根據本揭露實施例,半導體裝置包括位於晶片上的聲波發射裝置、位於晶片上的聲波接收裝置以及位於晶片上的第一週期性結構,第一週期性結構包括第一材料。半導體裝置更包括位位於晶片上的第二週期性結構,第二週期性結構包括第二材料。In accordance with an embodiment of the present disclosure, a semiconductor device includes an acoustic wave emitting device on a wafer, an acoustic wave receiving device on the wafer, and a first periodic structure on the wafer, the first periodic structure including the first material. The semiconductor device further includes a second periodic structure positioned on the wafer, the second periodic structure including the second material.

在一些實施例中,聲波發射裝置包括交指狀轉換器。In some embodiments, the acoustic wave emitting device comprises an interdigital transducer.

在一些實施例中,聲波發射裝置包括聲波發射器。In some embodiments, the acoustic wave emitting device comprises an acoustic wave emitter.

根據本揭露實施例,使用聲波來偵測疊對誤差的方法包括在半導體晶圓上形成第一材料層,第一材料層包括在半導體晶圓的疊對記號區內的第一週期性結構。使用聲波來偵測疊對誤差的方法更包括在半導體晶圓上形成第二材料層,第二材料層包括在疊對記號區中的第二週期性結構。使用聲波來偵測疊對誤差的方法更包括使用設置在疊對記號區內的聲波發射裝置,發射聲波跨越第一週期性結構和第二週期性結構兩者。使用聲波來偵測疊對誤差的方法更包括使用聲波接收裝置,偵測聲波。使用聲波來偵測疊對誤差的方法更包括基於聲波接收裝置所偵測到的聲波,確定第一材料層與第二材料層之間的疊對誤差。In accordance with an embodiment of the present disclosure, a method of detecting an overlay error using sound waves includes forming a first material layer on a semiconductor wafer, the first material layer including a first periodic structure within a stacked pair of semiconductor wafer regions. The method of using sound waves to detect overlay errors further includes forming a second material layer on the semiconductor wafer, the second material layer including a second periodic structure in the stacked pair of marks. The method of using sound waves to detect the overlay error further includes using an acoustic wave transmitting device disposed in the overlap-pair mark region to emit sound waves across both the first periodic structure and the second periodic structure. The method of using sound waves to detect the overlay error further includes using a sound wave receiving device to detect sound waves. The method of using sound waves to detect the overlay error further includes determining a stacking error between the first material layer and the second material layer based on the sound waves detected by the sound wave receiving device.

在一些實施例中,使用聲波來偵測疊對誤差的方法更包括藉由分析所偵測的聲波來確定焦點曲線。In some embodiments, the method of using sound waves to detect the overlay error further comprises determining the focus curve by analyzing the detected sound waves.

前述內文概述了許多實施例的特徵,使本技術領域中具有通常知識者可以從各個方面更佳地了解本揭露。本技術領域中具有通常知識者應可理解,且可輕易地以本揭露為基礎來設計或修飾其他製程及結構,並以此達到相同的目的及/或達到與在此介紹的實施例等相同之優點。本技術領域中具有通常知識者也應了解這些相等的結構並未背離本揭露的發明精神與範圍。在不背離本揭露的發明精神與範圍之前提下,可對本揭露進行各種改變、置換或修改。The foregoing summary of the invention is inferred by the claims It will be understood by those of ordinary skill in the art, and other processes and structures may be readily designed or modified on the basis of the present disclosure, and thus achieve the same objectives and/or achieve the same embodiments as those described herein. The advantages. Those of ordinary skill in the art should also understand that such equivalent structures are not departing from the spirit and scope of the invention. Various changes, permutations, or alterations may be made in the present disclosure without departing from the spirit and scope of the invention.

100‧‧‧疊對記號結構100‧‧‧Stacked mark structure

102‧‧‧特定區域102‧‧‧Specific areas

104‧‧‧聲波發射裝置104‧‧‧Sonic launcher

106‧‧‧聲波接收裝置106‧‧‧Sonic receiver

108‧‧‧第一週期性結構108‧‧‧First periodic structure

110‧‧‧第二週期性結構110‧‧‧Second periodic structure

112‧‧‧週期性結構區112‧‧‧Periodic structural area

202‧‧‧第一疊對記號202‧‧‧First stack of marks

204‧‧‧第二疊對記號204‧‧‧Second stack of marks

302‧‧‧垂直軸302‧‧‧ vertical axis

304‧‧‧水平軸304‧‧‧ horizontal axis

306‧‧‧中心頻率306‧‧‧ center frequency

308、310、312‧‧‧訊號308, 310, 312‧‧‧ signals

402、404、406‧‧‧訊號402, 404, 406‧‧‧ signals

502、504、506‧‧‧訊號502, 504, 506‧‧‧ signals

602‧‧‧第一疊對記號602‧‧‧ first stack of marks

604‧‧‧第二疊對記號604‧‧‧Second stack of marks

612‧‧‧第一疊對記號612‧‧‧First stack of marks

614‧‧‧第二疊對記號614‧‧‧Second stack of marks

702、704‧‧‧特徵部件702, 704‧‧‧Feature parts

802、804、806、808‧‧‧疊對記號802, 804, 806, 808‧‧ ‧ pairs of marks

812、814、816、818、820、822、824、826‧‧‧裝置812, 814, 816, 818, 820, 822, 824, 826‧‧‧ devices

900a、900b、900c‧‧‧疊對記號區900a, 900b, 900c‧‧‧ stacking mark area

1000a、1000b、1000c‧‧‧疊對記號區1000a, 1000b, 1000c‧‧‧ stacking mark area

1101‧‧‧生產部分1101‧‧‧Production section

1102‧‧‧製程晶圓1102‧‧‧Process wafer

1103‧‧‧測試部分1103‧‧‧Test section

1104‧‧‧電性元件1104‧‧‧Electrical components

1106‧‧‧第二硬光罩層1106‧‧‧Second hard mask layer

1108‧‧‧第一硬光罩層1108‧‧‧First hard mask layer

1110‧‧‧光阻特徵部件1110‧‧‧Light-resistance features

1112‧‧‧光阻特徵部件1112‧‧‧Photoresist features

1114‧‧‧第一材料層1114‧‧‧First material layer

1120‧‧‧蝕刻製程1120‧‧‧ etching process

1130‧‧‧第一光阻特徵部件1130‧‧‧First photoresist feature

1132‧‧‧層間介電層1132‧‧‧Interlayer dielectric layer

1134‧‧‧第二材料層1134‧‧‧Second material layer

1136‧‧‧第二光阻特徵部件1136‧‧‧Second photoresist features

1140‧‧‧蝕刻製程1140‧‧‧ etching process

1142‧‧‧特徵部件1142‧‧‧Feature parts

1144‧‧‧特徵部件1144‧‧‧Feature parts

1200‧‧‧方法1200‧‧‧ method

1202-1210‧‧‧操作1202-1210‧‧‧ operation

本揭露之觀點從後續實施例以及附圖可以更佳理解。須知示意圖係為範例,並且不同特徵部件並無示意於此。不同特徵部件之尺寸可能任意增加或減少以清楚論述。 第1圖係為根據本揭露實施例之疊對記號結構的示意圖。 第2A圖、第2B圖以及第2C圖係為根據本揭露實施例之用於疊對記號的週期性結構的俯視圖。 第3A圖、第3B圖以及第3C圖係為根據本揭露實施例之對應第2A圖、第2B圖以及第2C圖的週期性結構的配置的聲波訊號的曲線圖。 第4A圖、第4B圖以及第4C圖係為根據本揭露實施例之顯示了對應第2A圖、第2B圖以及第2C圖的週期性結構的配置的反射聲波訊號的曲線圖。 第5A圖、第5B圖以及第5C圖係為根據本揭露實施例之對應第2A圖、第2B圖以及第2C圖的週期性結構的配置的發射聲波訊號的曲線圖。 第6A圖和第6B圖係為根據本揭露實施例之用於疊對記號的特徵部件形狀的示意圖。 第7A圖至第7G圖係為根據本揭露實施例之疊對記號的各種配置的示意圖。 第8圖係為根據本揭露實施例之各種週期性結構、聲波發射裝置以及聲波接收裝置的示意圖。 第9圖係為根據本揭露實施例之串聯多個疊對記號區的示意圖。 第10圖係為根據本揭露實施例之並聯多個疊對記號區的示意圖。 第11A圖至第11D圖係為根據本揭露實施例之疊對記號的形成的示意圖。 第12圖係為根據本揭露實施例之使用聲波來偵測疊對誤差的方法的流程圖。The opinions of the present disclosure can be better understood from the following embodiments and the accompanying drawings. The schematic diagrams are exemplary and different features are not illustrated herein. The dimensions of the different features may be arbitrarily increased or decreased for clarity of discussion. Figure 1 is a schematic illustration of a stacked pair of markers in accordance with an embodiment of the present disclosure. 2A, 2B, and 2C are top views of periodic structures for stacked pairs in accordance with an embodiment of the present disclosure. 3A, 3B, and 3C are graphs of acoustic signals corresponding to the arrangement of the periodic structures of Figs. 2A, 2B, and 2C according to the disclosed embodiment. 4A, 4B, and 4C are graphs showing reflected acoustic wave signals corresponding to the arrangement of the periodic structures of FIGS. 2A, 2B, and 2C in accordance with an embodiment of the present disclosure. 5A, 5B, and 5C are graphs of emitted acoustic wave signals corresponding to the configurations of the periodic structures of FIGS. 2A, 2B, and 2C according to the disclosed embodiment. 6A and 6B are schematic views of the shape of a feature for overlapping marks according to an embodiment of the present disclosure. 7A through 7G are schematic views of various configurations of stacked pairs of marks in accordance with an embodiment of the present disclosure. Figure 8 is a schematic diagram of various periodic structures, acoustic wave emitting devices, and acoustic wave receiving devices in accordance with embodiments of the present disclosure. Figure 9 is a schematic illustration of a plurality of stacked pairs of mark regions in series in accordance with an embodiment of the present disclosure. Figure 10 is a schematic illustration of a plurality of stacked pairs of mark regions in parallel in accordance with an embodiment of the present disclosure. 11A through 11D are schematic views showing the formation of stacked pairs of marks according to an embodiment of the present disclosure. Figure 12 is a flow chart of a method for detecting overlay errors using sound waves in accordance with an embodiment of the present disclosure.

Claims (20)

一種疊對記號結構,包括: 一第一週期性結構,位於一晶片上,上述第一週期性結構包括位於上述晶片上的一第一層材料; 一第二週期性結構,位於鄰近於上述第一週期性結構的上述晶片的區域內,上述第二週期性結構包括設置在上述晶片上的一第二層材料; 一聲波發射裝置,位於上述晶片上;以及 一聲波接收裝置,位於上述晶片上。A stacked pair mark structure comprising: a first periodic structure on a wafer, the first periodic structure comprising a first layer of material on the wafer; a second periodic structure located adjacent to the first In a region of the periodic structure of the wafer, the second periodic structure includes a second layer of material disposed on the wafer; an acoustic wave emitting device on the wafer; and an acoustic wave receiving device on the wafer . 如申請專利範圍第1項所述之疊對記號結構,其中上述第一週期性結構和上述第二週期性結構位於上述聲波發射裝置與上述聲波接收裝置之間。The stacked mark structure according to claim 1, wherein the first periodic structure and the second periodic structure are located between the acoustic wave transmitting device and the acoustic wave receiving device. 如申請專利範圍第1項所述之疊對記號結構,其中上述聲波接收裝置鄰近於上述聲波發射裝置。The stacking mark structure of claim 1, wherein the sound wave receiving device is adjacent to the sound wave emitting device. 如申請專利範圍第1項所述之疊對記號結構,其中上述第一週期性結構包括複數特徵部件的一二維陣列。The stacked-to-mark structure of claim 1, wherein the first periodic structure comprises a two-dimensional array of complex features. 如申請專利範圍第4項所述之疊對記號結構,其中在上述二維陣列內的上述特徵部件具有以下一者:一矩形、一橢圓形或一正方形。The overlay structure according to claim 4, wherein the feature in the two-dimensional array has one of the following: a rectangle, an ellipse or a square. 如申請專利範圍第1項所述之疊對記號結構,其中上述第一週期性結構的特徵部件與上述第二週期性結構的特徵部件交錯排列。The stacked mark structure of claim 1, wherein the features of the first periodic structure and the features of the second periodic structure are staggered. 如申請專利範圍第6項所述之疊對記號結構,其中上述第一週期性結構的特徵部件和上述第二週期性結構的特徵部件位於交替的複數列中。The stacked mark structure of claim 6, wherein the feature of the first periodic structure and the feature of the second periodic structure are located in alternating plural columns. 如申請專利範圍第6項所述之疊對記號結構,其中上述第一週期性結構的特徵部件和上述第二週期性結構的特徵部件以一棋盤圖案的方式進行設置。The stacked mark structure according to claim 6, wherein the feature of the first periodic structure and the feature of the second periodic structure are arranged in a checkerboard pattern. 如申請專利範圍第1項所述之疊對記號結構,其中上述第一週期性結構的特徵部件圍繞上述第二週期性結構的特徵部件。The stacked mark structure of claim 1, wherein the feature of the first periodic structure surrounds the feature of the second periodic structure. 如申請專利範圍第1項所述之疊對記號結構,更包括,在上述第一週期性結構和上述第二週期性結構的下方的一壓電層。The stacked mark structure of claim 1, further comprising a piezoelectric layer below the first periodic structure and the second periodic structure. 如申請專利範圍第1項所述之疊對記號結構,更包括,上述晶片的複數區域,上述區域之每一者包括複數額外的週期性結構、一額外聲波接收裝置以及一額外聲波發射裝置,上述區域以串聯排列。The stacked mark structure of claim 1, further comprising a plurality of regions of the wafer, each of the regions comprising a plurality of additional periodic structures, an additional acoustic wave receiving device, and an additional acoustic wave emitting device. The above regions are arranged in series. 如申請專利範圍第1項所述之疊對記號結構,更包括,上述晶片的複數區域,上述區域之每一者包括複數額外週期性結構、一額外聲波接收裝置以及一額外聲波發射裝置,上述區域以並聯排列。The stacked mark structure of claim 1, further comprising a plurality of regions of the wafer, each of the regions comprising a plurality of additional periodic structures, an additional acoustic wave receiving device, and an additional acoustic wave emitting device, The areas are arranged in parallel. 一種半導體裝置,包括: 一聲波發射裝置,位於一晶片上; 一聲波接收裝置,位於上述晶片上; 一第一週期性結構,位於上述晶片上,上述第一週期性結構包括一第一材料;以及 一第二週期性結構,位於上述晶片上,上述第二週期性結構包括一第二材料。A semiconductor device comprising: an acoustic wave emitting device on a wafer; an acoustic wave receiving device on the wafer; a first periodic structure on the wafer, the first periodic structure comprising a first material; And a second periodic structure on the wafer, the second periodic structure comprising a second material. 如申請專利範圍第13項所述之半導體裝置,其中上述聲波發射裝置包括一交指狀轉換器。The semiconductor device of claim 13, wherein the acoustic wave emitting device comprises an interdigital transducer. 如申請專利範圍第13項所述之半導體裝置,其中上述聲波發射裝置包括一聲波發射器。The semiconductor device of claim 13, wherein the acoustic wave emitting device comprises an acoustic wave transmitter. 一種使用聲波來偵測疊對誤差的方法,包括: 在一半導體晶圓上形成一第一材料層,上述第一材料層包括在上述半導體晶圓的一疊對記號區內的一第一週期性結構; 在上述半導體晶圓上形成一第二材料層,上述第二材料層包括在上述疊對記號區中的一第二週期性結構; 使用設置在上述疊對記號區內的一聲波發射裝置,發射一聲波跨越上述第一週期性結構和上述第二週期性結構兩者; 使用一聲波接收裝置,偵測上述聲波;以及 基於上述聲波接收裝置所偵測到的上述聲波,確定上述第一材料層與上述第二材料層之間的一疊對誤差。A method for detecting an overlay error using sound waves, comprising: forming a first material layer on a semiconductor wafer, the first material layer including a first period in a stack of mark regions of the semiconductor wafer a second material layer is formed on the semiconductor wafer, the second material layer includes a second periodic structure in the overlap mark region; and an acoustic wave emission disposed in the overlap mark region is used And transmitting, by the apparatus, a sound wave spanning both the first periodic structure and the second periodic structure; detecting the sound wave by using an acoustic wave receiving device; and determining the first sound based on the sound wave detected by the sound wave receiving device A stack of errors between a layer of material and the second layer of material described above. 如申請專利範圍第16項所述之使用聲波來偵測疊對誤差的方法,其中上述聲波接收裝置所偵測到的上述聲波為傳輸通過上述第一週期性結構和上述第二週期性結構的聲波,或由上述第一週期性結構和上述第二週期性結構反射的聲波。A method for detecting a stacking error using sound waves as described in claim 16 wherein said sound wave detected by said sound wave receiving means is transmitted through said first periodic structure and said second periodic structure Acoustic waves, or sound waves reflected by the first periodic structure and the second periodic structure described above. 如申請專利範圍第16項所述之使用聲波來偵測疊對誤差的方法,其中確定上述疊對誤差的步驟包括使用一散射頻率數、一散射角度、一半高寬與一中心頻率中之一者分析所偵測的上述聲波。The method for detecting an overlay error using sound waves as described in claim 16 wherein the step of determining the overlap error comprises using one of a scattering frequency number, a scattering angle, a half height width, and a center frequency. The above sound waves detected are analyzed. 如申請專利範圍第16項所述之使用聲波來偵測疊對誤差的方法,其中確定上述疊對誤差的步驟包括確定在一第一方向和與上述第一方向正交的一第二方向中的誤差。A method for detecting a stacking error using sound waves as described in claim 16, wherein the step of determining the stacking error comprises determining a first direction and a second direction orthogonal to the first direction Error. 如申請專利範圍第16項所述之使用聲波來偵測疊對誤差的方法,更包括藉由分析所偵測的上述聲波來確定一焦點曲線。The method for detecting a pairwise error using sound waves as described in claim 16 of the patent application, further comprising determining a focus curve by analyzing the detected sound waves.
TW107142053A 2017-11-29 2018-11-26 Semiconductor structure, semiconductor device, and method for using acoustic waves to detect overlay error TWI724346B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762592241P 2017-11-29 2017-11-29
US62/592,241 2017-11-29
US15/962,518 US10962888B2 (en) 2017-11-29 2018-04-25 Structures for acoustic wave overlay error determination using periodic structures
US15/962,518 2018-04-25

Publications (2)

Publication Number Publication Date
TW201932989A true TW201932989A (en) 2019-08-16
TWI724346B TWI724346B (en) 2021-04-11

Family

ID=66632261

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107142053A TWI724346B (en) 2017-11-29 2018-11-26 Semiconductor structure, semiconductor device, and method for using acoustic waves to detect overlay error

Country Status (3)

Country Link
US (2) US10962888B2 (en)
CN (1) CN109841596B (en)
TW (1) TWI724346B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7288144B2 (en) * 2019-09-16 2023-06-06 ケーエルエー コーポレイション Periodic semiconductor device misalignment metrology system and method
CN114167687B (en) * 2020-09-10 2024-04-16 中国科学院微电子研究所 Dynamic sampling measurement method and device for overlay error
US11703767B2 (en) * 2021-06-28 2023-07-18 Kla Corporation Overlay mark design for electron beam overlay

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW444313B (en) 1999-08-04 2001-07-01 Taiwan Semiconductor Mfg Electrical overlay structure for monitoring multilayer alignment in a semiconductor wafer
US6323097B1 (en) 2000-06-09 2001-11-27 Taiwan Semiconductor Manufacturing Company Electrical overlay/spacing monitor method using a ladder resistor
CN1203524C (en) 2001-11-30 2005-05-25 联华电子股份有限公司 Superposed mark and its usage
DE102005046973B4 (en) 2005-09-30 2014-01-30 Globalfoundries Inc. A structure and method for simultaneously determining overlay accuracy and pattern placement error
WO2011088393A2 (en) * 2010-01-15 2011-07-21 University Of Utah Research Foundation Ultrasonic temperature measurement device
FR2955654B1 (en) 2010-01-25 2012-03-30 Soitec Silicon Insulator Technologies SYSTEM AND METHOD FOR EVALUATING INHOMOGENOUS DEFORMATIONS IN MULTILAYER PLATES
US9252202B2 (en) 2011-08-23 2016-02-02 Wafertech, Llc Test structure and method for determining overlay accuracy in semiconductor devices using resistance measurement
US8736084B2 (en) 2011-12-08 2014-05-27 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for E-beam in-chip overlay mark
GB2498213B (en) * 2012-01-09 2018-11-21 Bae Systems Plc Transducer arrangement
US8837810B2 (en) 2012-03-27 2014-09-16 Taiwan Semiconductor Manufacturing Company, Ltd. System and method for alignment in semiconductor device fabrication
US9404743B2 (en) 2012-11-01 2016-08-02 Taiwan Semiconductor Manufacturing Company, Ltd. Method for validating measurement data
US9093530B2 (en) 2012-12-28 2015-07-28 Taiwan Semiconductor Manufacturing Company, Ltd. Fin structure of FinFET
US9304403B2 (en) 2013-01-02 2016-04-05 Taiwan Semiconductor Manufacturing Company, Ltd. System and method for lithography alignment
US8796666B1 (en) 2013-04-26 2014-08-05 Taiwan Semiconductor Manufacturing Company, Ltd. MOS devices with strain buffer layer and methods of forming the same
DE112014005091T5 (en) 2013-11-08 2016-11-24 Niigata University A method of evaluating atomic vacancies in a surface layer of a silicon wafer and apparatus for evaluating the same
US9134633B2 (en) 2013-12-23 2015-09-15 Taiwan Semiconductor Manufacturing Company, Ltd. System and method for dark field inspection
CN104795383B (en) 2014-01-20 2017-11-03 中芯国际集成电路制造(上海)有限公司 Alignment mark, the detection method of alignment mark and alignment mark detection device
US9548303B2 (en) 2014-03-13 2017-01-17 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET devices with unique fin shape and the fabrication thereof
US10352876B2 (en) 2014-05-09 2019-07-16 KLA—Tencor Corporation Signal response metrology for scatterometry based overlay measurements
US9784690B2 (en) 2014-05-12 2017-10-10 Kla-Tencor Corporation Apparatus, techniques, and target designs for measuring semiconductor parameters
WO2016005167A1 (en) 2014-07-09 2016-01-14 Asml Netherlands B.V. Inspection apparatus, inspection method and device manufacturing method
WO2016078862A1 (en) 2014-11-21 2016-05-26 Asml Netherlands B.V. Metrology method and apparatus
US9823585B2 (en) 2015-03-31 2017-11-21 Taiwan Semiconductor Manufacturing Company, Ltd. EUV focus monitoring systems and methods
US9841687B2 (en) 2015-07-14 2017-12-12 Taiwan Semiconductor Manufacturing Co., Ltd. Synchronized integrated metrology for overlay-shift reduction
US10546790B2 (en) 2016-03-01 2020-01-28 Asml Netherlands B.V. Method and apparatus to determine a patterning process parameter
US10451412B2 (en) 2016-04-22 2019-10-22 Kla-Tencor Corporation Apparatus and methods for detecting overlay errors using scatterometry
US11402950B2 (en) * 2016-07-29 2022-08-02 Apple Inc. Methodology and application of acoustic touch detection

Also Published As

Publication number Publication date
TWI724346B (en) 2021-04-11
CN109841596A (en) 2019-06-04
US20190163076A1 (en) 2019-05-30
CN109841596B (en) 2021-06-15
US20210216022A1 (en) 2021-07-15
US10962888B2 (en) 2021-03-30

Similar Documents

Publication Publication Date Title
TWI724346B (en) Semiconductor structure, semiconductor device, and method for using acoustic waves to detect overlay error
KR20010112104A (en) Semiconductor device and method of manufacturing the same
JP2016072661A5 (en)
KR100399597B1 (en) Overlay Key and Method for Fabricating the Same and Method for measuring Overlay using the Same in process
US7732105B2 (en) Photomask with overlay mark and method of fabricating semiconductor device
JP2005196132A (en) Alignment method for fabrication of integrated ultrasonic transducer array
JPH09102457A (en) Semiconductor integrated circuit and its manufacture
TWI742148B (en) Alignment mark and measurement method thereof
US9123729B2 (en) Alignment mark design for semiconductor device
JP2008300740A (en) Process of manufacturing semiconductor device
US20220317578A1 (en) Method for manufacturing semiconductor structure
CN104299960A (en) Semiconductor device and method of manufacturing semiconductor device
US20060205111A1 (en) Method for producing chip stacks and chip stacks formed by integrated devices
US8502355B2 (en) Overlay vernier mask pattern, formation method thereof, semiconductor device including overlay vernier pattern, and formation method thereof
JP6044260B2 (en) Manufacturing method of semiconductor wafer and semiconductor device
JP2015095631A (en) Semiconductor device
TWI814909B (en) Multi-layer alignment mark and a method for appliyinf the same
US20230164912A1 (en) Package device and manufacturing method thereof
JP2007049067A (en) Semiconductor wafer and reticle
JP2007049066A (en) Semiconductor wafer as well as semiconductor chip, and method of manufacturing same
KR101067860B1 (en) Multi overlay mark and method for forming the same
TW201926089A (en) Overlay error calibration method
JP2004022631A (en) Semiconductor device and pattern arrangement method
US8029949B2 (en) Photomask for forming contact hole in semiconductor device
TWI847478B (en) Overlay measurement structure and manufacturing method thereof