TW201932813A - Optical gas sensor and system and manufacturing method thereof including a transparent substrate and a sensing layer - Google Patents

Optical gas sensor and system and manufacturing method thereof including a transparent substrate and a sensing layer Download PDF

Info

Publication number
TW201932813A
TW201932813A TW107102627A TW107102627A TW201932813A TW 201932813 A TW201932813 A TW 201932813A TW 107102627 A TW107102627 A TW 107102627A TW 107102627 A TW107102627 A TW 107102627A TW 201932813 A TW201932813 A TW 201932813A
Authority
TW
Taiwan
Prior art keywords
optical gas
gas sensor
sensing layer
optical
light
Prior art date
Application number
TW107102627A
Other languages
Chinese (zh)
Other versions
TWI661186B (en
Inventor
吳明忠
詹順翔
林廷翰
陳世軒
高志廣
賴朝松
Original Assignee
長庚大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 長庚大學 filed Critical 長庚大學
Priority to TW107102627A priority Critical patent/TWI661186B/en
Application granted granted Critical
Publication of TWI661186B publication Critical patent/TWI661186B/en
Publication of TW201932813A publication Critical patent/TW201932813A/en

Links

Abstract

An optical gas sensor includes a transparent substrate and a sensing layer. The sensing layer is disposed on the substrate, and includes a plurality of polymer wires, and a plurality of nanorods respectively located in each of the polymer wires, arranged in the same direction, and capable of emitting light after being excited by light. The present invention further provides an optical gas sensing system having the optical gas sensor and a method for manufacturing the optical gas sensor.

Description

光學式氣體感測器與其系統及製作方法Optical gas sensor and system thereof and manufacturing method

本發明是有關於一種氣體感測器,特別是指一種光學式氣體感測器與其系統及製作方法。The invention relates to a gas sensor, in particular to an optical gas sensor and a system thereof and a manufacturing method thereof.

在常溫常壓下具有高揮發性、高蒸氣壓且沸點低於250℃的有機化學物,一般稱為揮發性有機化合物(volatile organic compounds,VOCs)。Organic chemicals with high volatility, high vapor pressure and boiling point below 250 ° C under normal temperature and pressure are generally called volatile organic compounds (VOCs).

由於揮發性有機化合物(VOCs)對人體具有刺激性和毒性,吸入過多會造成噁心、嘔吐、頭暈等身體不適的症狀,甚至會傷害人體的大腦、肝臟、腎臟和神經系統或引發癌症等,且當揮發性有機化合物(VOCs)到達一定濃度或含量時,更有爆炸發生的疑虞,因此,有效監控揮發性有機化合物(VOCs)含量是有必要的。目前市售用以監測揮發性有機化合物(VOCs)氣體的感測器多是使用分子游離、觸媒燃燒、紅外光感測以及半導體方法等等,但無論哪一種偵測方式,其售價及保養成本都相當昂貴,對需要大量監測的化工廠是一大負擔。Because volatile organic compounds (VOCs) are irritating and toxic to humans, excessive inhalation can cause symptoms such as nausea, vomiting, dizziness, and the like, and can even damage the brain, liver, kidneys, and nervous system or cause cancer. When volatile organic compounds (VOCs) reach a certain concentration or content, there are more doubts about the explosion, so it is necessary to effectively monitor the content of volatile organic compounds (VOCs). Currently, commercially available sensors for monitoring volatile organic compounds (VOCs) use molecular liberation, catalytic combustion, infrared light sensing, and semiconductor methods, etc., but regardless of the detection method, the price and Maintenance costs are quite expensive and a burden on chemical plants that require extensive monitoring.

一般來說,目前大多數的感測器為電阻式氣體感測器,多是使用半導體材料做為感測元件,主要是利用氣體吸附在半導體材料的電阻變化來偵測氣體,然而,電阻式感測器需在特定溫度(100~400℃)下操作,所以需使用加熱元件將感測元件進行加熱才能有效偵測氣體,而不斷的升溫與冷卻會縮短感測元件的壽命,且只能對特定的揮發性有機化合物進行偵測,使應用發展受限。In general, most of the current sensors are resistive gas sensors, and most of them use semiconductor materials as sensing elements, mainly by detecting the change of resistance of the semiconductor material by gas adsorption. However, resistive The sensor needs to be operated at a specific temperature (100~400 °C), so the heating element is used to heat the sensing element to effectively detect the gas, and the continuous heating and cooling will shorten the life of the sensing element, and only Detection of specific volatile organic compounds limits the development of applications.

另一種常見的氣體感測器則為光學式氣體感測器,此種感測器可於一般室溫下使用並可偵測多種氣體,但需要複雜的光學偵測系統使得價格相對昂貴體積也不易縮小,且容易受外界環境干擾,由此可知,現今氣體感測器的眾多限制,使其推廣困難重重。因此,如何提供一種高感應度、低成本、且可即時偵測和方便攜帶的揮發性有機化合物感測器,以減少揮發性有機化合物對人體的傷害與意外的產生,創造安全無虞的生活環境,是目前所屬技術領域所待解決的問題安全無虞的生活環境,是目前所屬技術領域所待解決的問題。Another common gas sensor is an optical gas sensor that can be used at room temperature and can detect multiple gases, but requires a complex optical detection system that makes the price relatively expensive. It is not easy to shrink, and is easily interfered by the external environment. It can be seen that the numerous limitations of today's gas sensors make it difficult to promote. Therefore, how to provide a high-sensitivity, low-cost, and instantly detectable and portable VOC sensor to reduce the damage and accident of volatile organic compounds to create a safe and sound life. The environment is a safe living environment for the problems to be solved in the current technical field, and is a problem to be solved in the current technical field.

因此,本發明的目的,即在提供一種高感應度、低成本、且可即時偵測和方便攜帶的光學式氣體感測器。Accordingly, it is an object of the present invention to provide an optical gas sensor that is highly sensitive, low cost, and instantly detectable and portable.

於是,本發明光學式氣體感測器包含一透明基板及一感測層。該感測層設置於該基板上,包括多條的高分子絲,及多個位於每一條高分子絲中並以相同方向性排列且受光激發後能發光的奈米桿。Thus, the optical gas sensor of the present invention comprises a transparent substrate and a sensing layer. The sensing layer is disposed on the substrate, and includes a plurality of polymer wires, and a plurality of nanorods located in each of the polymer wires and arranged in the same direction and excited by the light.

此外,本發明還提供一種光學式氣體感測器系統。In addition, the present invention also provides an optical gas sensor system.

該光學式氣體感測器系統包含一旋轉控制裝置、一如前述的光學式氣體感測器、一光源裝置,及一接收分析裝置。The optical gas sensor system includes a rotation control device, an optical gas sensor as described above, a light source device, and a receiving analysis device.

該光學式氣體感測器設置於該旋轉控制裝置上,該旋轉控制裝置能帶動該光學式氣體感測器旋轉。該光源裝置能發出一照射該光學式氣體感測器的該感測層的光源,以激發該等奈米桿而讓該等奈米桿發出激發光。該接收分析裝置設置於該等奈米桿發出的激發光的一光路徑上,以接收並分析該等奈米桿發出的激發光的強度。The optical gas sensor is disposed on the rotation control device, and the rotation control device can drive the optical gas sensor to rotate. The light source device is capable of emitting a light source that illuminates the sensing layer of the optical gas sensor to excite the nanorods to cause the nanorods to emit excitation light. The receiving and analyzing device is disposed on a light path of the excitation light emitted by the nano-rods to receive and analyze the intensity of the excitation light emitted by the nano-rods.

又,本發明還提供一種光學式氣體感測器的製作方法。Moreover, the present invention also provides a method of fabricating an optical gas sensor.

該光學式氣體感測器的製作方法包含一準備步驟、一溶液調配步驟,及一感測層形成步驟。The optical gas sensor manufacturing method comprises a preparation step, a solution preparation step, and a sensing layer forming step.

該準備步驟是準備一透明基板、一有機高分子、多個奈米桿發光材料,及一第一有機溶劑。該溶液調配步驟是將該有機高分子與該奈米桿發光材料摻混於該第一有機溶劑中,以形成一第一溶液。該感測層形成步驟是使用靜電紡絲技術將該第一溶液沉積於該透明基板上,以在該透明基板上形成一感測層,該感測層包括多條的高分子絲,及多個位於每一條高分子絲中並以相同方向性排列且受光激發後能發光的奈米桿。The preparation step is to prepare a transparent substrate, an organic polymer, a plurality of nanorod luminescent materials, and a first organic solvent. The solution preparation step is to mix the organic polymer with the nanorod luminescent material in the first organic solvent to form a first solution. The sensing layer forming step is to deposit the first solution on the transparent substrate by using an electrospinning technique to form a sensing layer on the transparent substrate, the sensing layer includes a plurality of polymer wires, and more A nanorod located in each of the polymer filaments and arranged in the same direction and excited by light.

本發明的功效在於,藉由摻混該有機高分子與該等奈米桿,並以靜電紡絲技術在該透明基板上,形成包括多條包覆具同方向性的該等奈米桿的高分子絲所構成的該感測層,而構成光學式氣體感測器,在進行氣體感測時,旋轉此感測器,使該等高分子絲與該等奈米桿相對於偵測光源為旋轉成不同角度,而能讓光源照射此感測器時,產生顯著的偏光變化,具高感應度而能偵測低濃度的揮發性有機化合物。The utility model has the advantages that the organic polymer and the nano rods are blended, and the nano-rods comprising a plurality of coatings having the same directionality are formed on the transparent substrate by an electrospinning technique. The sensing layer formed by the polymer filament constitutes an optical gas sensor, and when the gas sensing is performed, the sensor is rotated to make the polymer filament and the nanorod relative to the detecting light source In order to rotate the lens into different angles, the light source can be illuminated by the sensor, which produces a significant polarization change and is highly sensitive to detect low concentrations of volatile organic compounds.

在本發明被詳細描述之前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。Before the present invention is described in detail, it should be noted that in the following description, similar elements are denoted by the same reference numerals.

參閱圖1與圖2,本發明光學式氣體感測器2的一第一實施例,包含一透明基板21及一形成與該透明基板21上的感測層22。Referring to FIG. 1 and FIG. 2, a first embodiment of the optical gas sensor 2 of the present invention comprises a transparent substrate 21 and a sensing layer 22 formed on the transparent substrate 21.

具體地說,圖2是圖1該感測層22的局部放大圖,由圖2可知,該感測層22包括多條的高分子絲211,及多個位於每一條高分子絲211中並以相同方向性排列且受光激發後能發光的奈米桿212。Specifically, FIG. 2 is a partial enlarged view of the sensing layer 22 of FIG. 1. As can be seen from FIG. 2, the sensing layer 22 includes a plurality of polymer wires 211, and a plurality of the plurality of polymer wires 211 are disposed. The nanorods 212 are arranged in the same directionality and are excited by light to emit light.

適用於該第一實施例的該透明基板21只要為透明即可,而可選自氧化銦錫基板、氟氧化錫基板、玻璃基板、有機高分子基板,或陶瓷基板;該等高分子絲211則可選自聚甲基丙烯酸甲酯(PMMA)、聚苯乙烯(PS)、聚乳酸(PLA)或幾丁聚醣(chitosan),於該第一實施例中,該透明基板21是選用玻璃基板,該等高分子絲211是以聚甲基丙烯酸甲酯(PMMA)為例做說明,該等奈米桿212則是選用硒化鎘/硫化鎘(CdSe/CdS)。The transparent substrate 21 suitable for the first embodiment may be selected from the group consisting of an indium tin oxide substrate, a tin fluoride substrate, a glass substrate, an organic polymer substrate, or a ceramic substrate; and the polymer wires 211 Then, it may be selected from polymethyl methacrylate (PMMA), polystyrene (PS), polylactic acid (PLA) or chitosan. In the first embodiment, the transparent substrate 21 is made of glass. The substrate, the polymer filaments 211 are exemplified by polymethyl methacrylate (PMMA), and the nanorods 212 are selected from cadmium selenide/cadmium sulfide (CdSe/CdS).

由該第一實施例所使用的材料可知,該光學式氣體感測器2主要是用來偵測例如丙酮、汽油,或四氫呋喃等揮發性有機化合物。其偵測方式主要是透過揮發性有機化合物吸附在該感測層22的該等高分子絲211上會有溶融狀態,而改變該感測層22的光學特性,從而能讓該光學式氣體感測器2以光學方式偵測揮發性有機化合物。As can be seen from the materials used in the first embodiment, the optical gas sensor 2 is mainly used to detect volatile organic compounds such as acetone, gasoline, or tetrahydrofuran. The detection mode is mainly that the organic polymer filaments 211 adsorbed on the sensing layer 22 by the volatile organic compound have a molten state, and the optical characteristics of the sensing layer 22 are changed, thereby enabling the optical gas sense. The detector 2 optically detects volatile organic compounds.

較佳地,形成於該透明基板21上的該感測層22的的厚度介於50nm~50μm,且該等高分子絲211能以隨機方式排列、相互交錯的方式排列,或具有方向性的方式排列,於該第一實施例中,該等高分子絲211是以相同方向排列為例作說明,透過在該透明基板21上形成以相同方向排列的該等高分子絲211,並加入該等奈米桿212所構成的該光學式氣體感測器2能讓其具有更佳的偏光效果。Preferably, the thickness of the sensing layer 22 formed on the transparent substrate 21 is between 50 nm and 50 μm, and the polymer wires 211 can be arranged in a random manner, interlaced, or directional. In the first embodiment, the polymer wires 211 are arranged in the same direction as an example, and the polymer wires 211 arranged in the same direction are formed on the transparent substrate 21 and added. The optical gas sensor 2 composed of the nanorod 212 allows it to have a better polarizing effect.

更佳地,進一步以乾式蝕刻方式改變該感測層22的粗糙度,使該感測層22的表面呈不規則的凹陷,並搭配靜電紡絲技術形成相同方向排列的該等高分子絲211,以使該感測層22成為具有高比表面積的三維結構的複合材料,以利吸附氣體增益光學行為,提升感測靈敏度。More preferably, the roughness of the sensing layer 22 is further changed by dry etching, the surface of the sensing layer 22 is irregularly recessed, and the polymer wires 211 arranged in the same direction are formed by an electrospinning technique. In order to make the sensing layer 22 a composite material having a three-dimensional structure with a high specific surface area, in order to adsorb the gas gain optical behavior and improve the sensing sensitivity.

參閱圖3,本發明光學式氣體感測器2的一第二實施例的結構大致與該第一實施例的結構相同,不同處在於,該感測層22含包含多個位於該每一條高分子絲211中的金屬奈米粒213。該等金屬奈米粒213可選自金、銀,或銅,較佳地,該等金屬奈米粒213的粒徑介於5nm~100nm。透過加入該等金屬奈米粒213與該等奈米桿212搭配,能利用表面電漿共振增益該等高分子絲211的光學行為,用以感測在低濃度揮發性有機化合物的光學變化。Referring to FIG. 3, the structure of a second embodiment of the optical gas sensor 2 of the present invention is substantially the same as that of the first embodiment, except that the sensing layer 22 includes a plurality of Metal nanoparticles 213 in the molecular filament 211. The metal nanoparticles 213 may be selected from gold, silver, or copper. Preferably, the metal nanoparticles 213 have a particle diameter of 5 nm to 100 nm. By incorporating such metal nanoparticles 213 with the nanorods 212, the optical behavior of the polymeric filaments 211 can be enhanced by surface plasmon resonance to sense optical changes in low concentration volatile organic compounds.

本發明光學式氣體感測器2的一第三實施例大致與該第一實施例的結構相同,不同處在於,該感測層22還包含摻混於該每一條高分子絲中的有機染料。該有機染料的構成材料能選自甲基橙、甲基紅、煌綠、羅丹明B、剛果紅、瑞香草酚藍,或溴甲酚氯。以摻混有機染料搭配該等奈米桿212,也能進一步增加該感測層22的光學特性增進感測效果。A third embodiment of the optical gas sensor 2 of the present invention is substantially the same as the structure of the first embodiment, except that the sensing layer 22 further comprises an organic dye blended in each of the polymer filaments. . The constituent material of the organic dye can be selected from the group consisting of methyl orange, methyl red, brilliant green, rhodamine B, Congo red, thymol blue, or bromocresol chlorine. The optical characteristic enhancing sensing effect of the sensing layer 22 can be further increased by blending the organic dyes with the nanorods 212.

為了更清楚瞭解前述光學式氣體感測器2,茲將該光學式氣體感測器2的製作方法說明如下。In order to more clearly understand the optical gas sensor 2 described above, the method of manufacturing the optical gas sensor 2 will be described below.

參閱圖4配合參閱圖2,本發明光學式氣體感測器的製作方法於製作前述該第一實施例的該光學式氣體感測器2的步驟包含一準備步驟401、一溶液調配步驟402、一感測層形成步驟403,及一蝕刻步驟404。Referring to FIG. 4 and FIG. 2, the method for fabricating the optical gas sensor of the present invention comprises the following steps: preparing a step 401, a solution blending step 402, and the step of fabricating the optical gas sensor 2 of the first embodiment. A sensing layer forming step 403, and an etching step 404.

該準備步驟401是準備一透明基板2、一有機高分子、多個奈米桿發光材料,及一第一有機溶劑。具體地說,是準備玻璃基板作為該透明基板,準備聚甲基丙烯酸甲酯(PMMA)作為該有機高分子,而該奈米桿發光材料則是選用硒化鎘/硫化鎘(CdSe/CdS)。其中,該第一有機溶劑可選自苯、甲苯、氯苯或丙酮,於製作該第一實施例的該光學式氣體感測器2所選用的第一有機溶劑是選自氯苯。The preparation step 401 is to prepare a transparent substrate 2, an organic polymer, a plurality of nano-rod luminescent materials, and a first organic solvent. Specifically, a glass substrate is prepared as the transparent substrate, and polymethyl methacrylate (PMMA) is prepared as the organic polymer, and the nano-rod luminescent material is selected from cadmium selenide/cadmium sulfide (CdSe/CdS). . Wherein, the first organic solvent may be selected from benzene, toluene, chlorobenzene or acetone, and the first organic solvent selected for the optical gas sensor 2 of the first embodiment is selected from the group consisting of chlorobenzene.

該溶液調配步驟402則是將聚甲基丙烯酸甲酯(PMMA)的有機高分子與硒化鎘/硫化鎘(CdSe/CdS)的奈米桿發光材料摻混於氯苯的該第一有機溶劑中,以形成一第一溶液。The solution preparation step 402 is a first organic solvent in which a polymethyl methacrylate (PMMA) organic polymer and a cadmium selenide/cadmium sulfide (CdSe/CdS) nanorod luminescent material are blended with chlorobenzene. Medium to form a first solution.

該感測層形成步驟403是使用靜電紡絲技術將該第一溶液沉積於該透明基板2上,以在該透明基板2上形成該感測層22,而該感測層包括該等高分子絲211,及多個位於每一條高分子絲211中並以相同方向性排列且受光激發後能發光的奈米桿212。The sensing layer forming step 403 is to deposit the first solution on the transparent substrate 2 by using an electrospinning technique to form the sensing layer 22 on the transparent substrate 2, and the sensing layer includes the polymer The wire 211, and a plurality of nanorods 212 located in each of the polymer wires 211 and arranged in the same direction and excited by light, can emit light.

具體地說,使用靜電紡絲技術形成該感測層22時,可藉由控制其操作電壓、流速,及與該透明基板2之間的距離來掌控該等高分子絲211的型態。Specifically, when the sensing layer 22 is formed by an electrospinning technique, the shape of the polymer wires 211 can be controlled by controlling the operating voltage, the flow rate, and the distance from the transparent substrate 2.

藉由控制該靜電紡絲技術的一操作電壓等參數,用以控制該等高分子絲211的直徑,其中,該操作電壓可介於5kV~40kV,較佳地,介於10~25kV。此外,還可進一步控制流速介於0.1~1ml/hr的速率進行噴塗該等高分子絲211,及優化與該透明基板21之間的距離於10公分。The diameter of the polymer filaments 211 is controlled by controlling parameters such as an operating voltage of the electrospinning technique, wherein the operating voltage may be between 5 kV and 40 kV, preferably between 10 and 25 kV. Further, it is also possible to further control the flow rate of the polymer filaments 211 at a rate of 0.1 to 1 ml/hr, and optimize the distance from the transparent substrate 21 to 10 cm.

參閱圖5,顯示以不同操作電壓(10kV、15kV、20 kV、25kV)製作出該等高分子絲211所量測得到的直徑,由圖5可知,當以操作電壓為20kV形成該等高分子絲211時,其每一根高分子絲211的直徑誤差與所構成的該感測層22的表面型態均為最佳。Referring to Fig. 5, the diameters of the polymer wires 211 are measured at different operating voltages (10 kV, 15 kV, 20 kV, 25 kV). As can be seen from Fig. 5, when the polymer is formed at an operating voltage of 20 kV. In the case of the wire 211, the diameter error of each of the polymer wires 211 and the surface state of the sensing layer 22 formed are optimal.

該蝕刻步驟404是對該感測層22進行乾式蝕刻,使該感測層22的表面受到電漿的離子轟擊,使表面呈現凹陷而提升其表面粗糙度。要說明的是,其乾式蝕刻可以使用如紫外光表面處理(UV/O-zone)等電漿製程的蝕刻方式,且可在空氣、氬氣、氧氣、氮氣、氨氣、甲烷、氫氣、四氟化碳或二氟化氙的氣氛中進行,且蝕刻時間介於1分鐘~120分鐘。藉由在特定時間特定氣氛下進行乾式蝕刻時,在該感測層22的表面進行不同元素的微量摻雜,以產生特定官能基,使該感測層22具有高選擇性,提升特定揮發性有機化合物的靈敏度。於製作該第一實施例的該光學式氣體感測器2是在空氣中進行60分鐘的蝕刻The etching step 404 is to dry-etch the sensing layer 22 such that the surface of the sensing layer 22 is bombarded with ions of the plasma to cause the surface to be recessed to enhance the surface roughness. It should be noted that the dry etching can be performed by a plasma process such as ultraviolet surface treatment (UV/O-zone), and can be used in air, argon, oxygen, nitrogen, ammonia, methane, hydrogen, and four. The carbon fluoride or the antimony difluoride is carried out in an atmosphere, and the etching time is from 1 minute to 120 minutes. When the dry etching is performed under a specific atmosphere at a specific time, a slight doping of different elements is performed on the surface of the sensing layer 22 to generate a specific functional group, so that the sensing layer 22 has high selectivity and enhances specific volatility. Sensitivity of organic compounds. The optical gas sensor 2 for fabricating the first embodiment is etched in air for 60 minutes.

本發明光學式氣體感測器的製作方法於製作前述該第二實施例的該光學式氣體感測器2的步驟與製作該第一實施例的該光學式氣體感測器2的製作步驟大致相同,不同之處在於,該準備步驟401與該溶液調配步驟402。The manufacturing method of the optical gas sensor of the present invention is the same as the step of fabricating the optical gas sensor 2 of the second embodiment and the manufacturing steps of the optical gas sensor 2 of the first embodiment. The same, except that the preparation step 401 and the solution are formulated in step 402.

具體地說,該準備步驟401還準備多個金屬奈米粒及一第二有機溶劑,其中,該等金屬奈米粒可選自金、銀或銅奈米粒,而該第二有機溶劑則可選自甲苯、氯苯、丙酮,或二甲基甲醯胺,於製作該第二實施例的該光學式氣體感測器2時,該等金屬奈米粒是選用銀奈米粒子,該第二有機溶劑則是選用氯苯。該溶液調配步驟402是將銀奈米粒子摻混於氯苯該第二有機溶劑中,以形成一第二溶液,再混合該第一溶液與該第二溶液,以形成一前驅溶液,該感測層形成步驟403以靜電紡絲技術將該前驅溶液沉積於該透明基板2上,使該等高分子絲211中同時具有該等奈米桿212及該等金屬奈米粒。換句話說,製作該第二實施例的該光學式氣體感測器2的製作方式是先分別調配該第一溶液與該第二溶液後,再將此兩溶液混摻再一起而製成該前驅溶液。Specifically, the preparation step 401 further prepares a plurality of metal nanoparticles and a second organic solvent, wherein the metal nanoparticles are selected from gold, silver or copper nanoparticles, and the second organic solvent is selected from Toluene, chlorobenzene, acetone, or dimethylformamide, when the optical gas sensor 2 of the second embodiment is produced, the metal nanoparticles are selected from silver nanoparticles, and the second organic solvent Then chlorobenzene is used. The solution preparation step 402 is to mix silver nanoparticles into the second organic solvent of chlorobenzene to form a second solution, and then mix the first solution and the second solution to form a precursor solution. The layer forming step 403 deposits the precursor solution on the transparent substrate 2 by an electrospinning technique, and the polymer rods 211 have the nanorods 212 and the metal nanoparticles. In other words, the optical gas sensor 2 of the second embodiment is prepared by separately mixing the first solution and the second solution, and then mixing the two solutions together to make the Precursor solution.

本發明光學式氣體感測器的製作方法於製作前述該第三實施例的該光學式氣體感測器2的步驟與製作該第一實施例的該光學式氣體感測器2的製作步驟大致相同,不同之處在於,該準備步驟401與該溶液調配步驟402。具體地說,該準備步驟401還準備一有機染料,其中,該有機染料構成材料選自甲基橙、甲基紅、煌綠、羅丹明B、剛果紅、瑞香草酚藍,或溴甲酚氯,於製作該第三實施例的該光學式氣體感測器2的有機染料是選用甲基橙,該溶液調配步驟402是再將甲基橙摻混於該第一有機溶劑中。The manufacturing method of the optical gas sensor of the present invention is the same as the step of fabricating the optical gas sensor 2 of the third embodiment and the manufacturing steps of the optical gas sensor 2 of the first embodiment. The same, except that the preparation step 401 and the solution are formulated in step 402. Specifically, the preparation step 401 further prepares an organic dye, wherein the organic dye constituent material is selected from the group consisting of methyl orange, methyl red, brilliant green, rhodamine B, Congo red, thymol blue, or bromocresol Chlorine, in the organic dye of the optical gas sensor 2 of the third embodiment, methyl orange is selected, and the solution blending step 402 is further blending methyl orange into the first organic solvent.

配合圖1並參閱圖6,本發明光學式氣體感測系統的一實施例包含如前所述的光學式氣體感測器2、一與該光學式氣體感測器2連接的旋轉控制裝置3、一光源裝置4、一接收分析裝置5,及一與該接收分析裝置5相連接的警報裝置6。於本實施例中,該光學式氣體感測系統在偵測氣體時,是將該光學式氣體感測器2、該旋轉控制裝置3及該光源裝置4設置在一具有一進氣口101及一出氣口102的氣體感測腔100內為例作說明。1 and an embodiment of the optical gas sensing system of the present invention includes an optical gas sensor 2 as described above, and a rotation control device 3 connected to the optical gas sensor 2. A light source device 4, a receiving and analyzing device 5, and an alarm device 6 connected to the receiving and analyzing device 5. In the embodiment, the optical gas sensing system is configured to: when the gas is detected, the optical gas sensor 2, the rotation control device 3, and the light source device 4 are disposed on an air inlet 101 and The gas sensing chamber 100 of an air outlet 102 is exemplified.

具體地說,該光學式氣體感測器2設置在該旋轉控制裝置3上,且該旋轉控制裝置3能帶動該光學式氣體感測器2旋轉,該光源裝置4與該光學式氣體感測器2的該感應層22相對設置,使該光源裝置4發出的光源λ能照射至該感應層22,並激發該等奈米桿212而讓該等奈米桿212發出一激發光。適用於本實施例的該光源裝置4所發出的光源λ可為可見光、紫外光、紅外光,或雷射光,較佳地,該光源λ可選自對應該等奈米桿212的吸收波長的單波長光。Specifically, the optical gas sensor 2 is disposed on the rotation control device 3, and the rotation control device 3 can drive the optical gas sensor 2 to rotate, and the light source device 4 and the optical gas sensing device The sensing layer 22 of the device 2 is oppositely disposed such that the light source λ emitted by the light source device 4 can illuminate the sensing layer 22 and excite the nano-rods 212 to cause the nano-rods 212 to emit an excitation light. The light source λ emitted by the light source device 4 suitable for the embodiment may be visible light, ultraviolet light, infrared light, or laser light. Preferably, the light source λ may be selected from the absorption wavelength of the nanorod 212. Single wavelength light.

於本實施例中,該光源裝置4與該光學式氣體感測器2之間的設置關係,是讓該感測層22的一法線與該光源裝置4發出的光源λ的光軸平行,也就是讓光源λ垂直照射該感測層22,且讓該光源裝置4與該光學式氣體感測器2的該感測層22之間的距離介於0.5公分~10公分。由此可知,該旋轉控制裝置3帶動該光學式氣體感測器2旋轉的方式,是讓該光學式氣體感測器2在一垂直光源λ的光軸的二維平面(也就是平行該感測層22的平面)上旋轉,且該旋轉控制裝置3能帶動該光學式氣體感測器2在1~60秒旋轉5~180度。In this embodiment, the arrangement relationship between the light source device 4 and the optical gas sensor 2 is such that a normal line of the sensing layer 22 is parallel to the optical axis of the light source λ emitted by the light source device 4. That is, the light source λ is vertically irradiated to the sensing layer 22, and the distance between the light source device 4 and the sensing layer 22 of the optical gas sensor 2 is between 0.5 cm and 10 cm. It can be seen that the rotation control device 3 drives the optical gas sensor 2 to rotate in such a manner that the optical gas sensor 2 is in a two-dimensional plane of the optical axis of the vertical light source λ (that is, parallel to the sense). The plane of the layer 22 is rotated, and the rotation control device 3 can drive the optical gas sensor 2 to rotate 5 to 180 degrees in 1 to 60 seconds.

此處要說明的是,由於該等高分子絲211是以特定方向排列設置在該透明基板上21,因此,此處所述的旋轉角度是以該等高分子絲211於一開始照光時的角度為0度進行說明,舉例來說,當該等高分子絲211於一開始呈平行X軸方向排列時,定義此時該等高分子絲211的角度為0度,透過該旋轉控制裝置3旋轉該光學式氣體感測器2後,該等高分子絲211與X軸所夾的角度即為旋轉角度。It is to be noted that, since the polymer wires 211 are arranged on the transparent substrate 21 in a specific direction, the rotation angle described herein is when the polymer wires 211 are initially illuminated. The angle is 0 degrees. For example, when the polymer wires 211 are arranged in the parallel X-axis direction at the beginning, the angle of the polymer wires 211 is defined as 0 degrees, and the rotation control device 3 is transmitted through the rotation control device 3. After the optical gas sensor 2 is rotated, the angle between the polymer wires 211 and the X-axis is the rotation angle.

由於設置在該透明基板21上的該等高分子絲211及該等奈米桿212均具有相同方向性,且以不同角度的光源λ照射該等奈米桿212時會具有不同的偏光性,而在特定角度還能具有更強的光吸收度,因此,本實施例的光學式氣體感測系統即是利用該等奈米桿212的特性,藉由固定該光源裝置4,並透過該旋轉控制裝置3旋轉光學式氣體感測器2,以達成並偵測該等奈米桿212在不同角度照光所產生的光學變化。此處要說明的是,光源λ照射該感測層22並不以該實施例的設置方式為限,只要能讓該感測層22受光照射並因旋轉不同角度而產生不同光學變化即可。Since the polymer wires 211 and the nanorods 212 disposed on the transparent substrate 21 have the same directivity, and the light sources λ at different angles illuminate the nanorods 212, they have different polarization properties. In addition, the optical gas sensing system of the present embodiment utilizes the characteristics of the nanorods 212 by fixing the light source device 4 and transmitting the rotation. The control device 3 rotates the optical gas sensor 2 to achieve and detect optical changes produced by the nanorods 212 at different angles of illumination. It should be noted that the illumination of the sensing layer 22 by the light source λ is not limited to the manner of the embodiment, as long as the sensing layer 22 can be irradiated with light and different optical changes can be generated by rotating different angles.

詳細地說,當將待偵測的氣體由該進氣口101輸入至該氣體感測腔100內而被該光學式氣體感測器2的該感測層22所吸附後,藉由該光源裝置4發出的光源λ照射該感測層22,並同時以垂直光源λ的光軸的二維平面旋轉該光學式氣體感測器2,讓以相同方向性排列的該等高分子絲211與該等奈米桿212相對光源λ具有不同角度,並藉由該接收分析裝置5接收並分析該等奈米桿212在各角度產生激發光的光強度。In detail, when the gas to be detected is input into the gas sensing cavity 100 from the air inlet 101 and adsorbed by the sensing layer 22 of the optical gas sensor 2, the light source is utilized. The light source λ emitted from the device 4 illuminates the sensing layer 22, and simultaneously rotates the optical gas sensor 2 in a two-dimensional plane of the optical axis of the vertical light source λ, so that the polymer wires 211 are arranged in the same directionality. The nanorods 212 have different angles with respect to the light source λ, and the light intensity of the excitation light generated by the nanorods 212 at each angle is received and analyzed by the receiving and analyzing device 5.

詳細地說,該接收分析裝置5包含一光接收器51及一與該光接收器51及該警報裝置6相連接的光分析器52,該光接收器51反向該光學式氣體感測器2的該感測層22設置,也就是說,讓該感測層22的該等奈米桿212受光源λ照射產生的激發光直接穿透該透明基板21而由該光接收器51接收,接著,該光接收器51將接收到的光訊號傳至該光分析器52分析其光強度並進行判別氣體濃度,若氣體濃度高於設定值,會再將訊號傳至該警報裝置6進行警示。其中,光接收器51的設置位置也沒有特別限制,只要能接收到該等奈米桿212產生的激發光即可,於本實施例中,該光接收器51是以光敏電阻偵測光源變化為例做說明。In detail, the receiving and analyzing device 5 includes an optical receiver 51 and an optical analyzer 52 connected to the optical receiver 51 and the alarm device 6. The optical receiver 51 is opposite to the optical gas sensor. The sensing layer 22 of the sensing layer 22 is disposed, that is, the excitation light generated by the light beam λ of the sensing layer 22 is directly transmitted through the transparent substrate 21 and received by the optical receiver 51. Then, the optical receiver 51 transmits the received optical signal to the optical analyzer 52 to analyze the light intensity and determine the gas concentration. If the gas concentration is higher than the set value, the signal is transmitted to the alarm device 6 for warning. . The position of the light receiver 51 is not particularly limited as long as the excitation light generated by the nano-rods 212 can be received. In the embodiment, the light receiver 51 detects the light source by using a photoresistor. Take an example for explanation.

此處要補充說明的是,由於該等奈米桿212與該等高分子絲211均為具有方向性的排列,所以光源λ照射該感測層22時,該感測層22會具有偏光的特性,因此,本發明主要的量測方式是,當揮發性有機化合物吸附於該感測層22上後,先以光源λ照射該感測層22並量測其光強度後,再以前述方式旋轉該感測層22讓光源λ照射第二次再次量測其光強度,最後讀取兩次光強度的差值,判別氣體感測濃度。更詳細地說,由於該感測層22具有偏光特性,因此旋轉到不同的特定角度時,該感測層22產生的激發光會具相對強與相對弱的光強度,也就是透過量測此兩次的光強度差異進行判別氣體感測濃度,於本發明中,是以消光光譜與消光變化表示量測得到數據。It should be noted that, since the nanorods 212 and the polymer wires 211 are both arranged in a directional manner, when the light source λ illuminates the sensing layer 22, the sensing layer 22 may have a polarized light. Characteristics, therefore, the main measurement method of the present invention is that after the volatile organic compound is adsorbed on the sensing layer 22, the sensing layer 22 is irradiated with the light source λ and the light intensity is measured, and then in the foregoing manner. Rotating the sensing layer 22 causes the light source λ to illuminate the light intensity again for the second time, and finally reads the difference between the two light intensities to determine the gas sensing concentration. In more detail, since the sensing layer 22 has a polarization characteristic, when the rotation is to a different specific angle, the excitation light generated by the sensing layer 22 has a relatively strong and relatively weak light intensity, that is, a transmission measurement. The difference in light intensity between the two is used to discriminate the gas sensing concentration. In the present invention, the data is measured by the extinction spectrum and the extinction change.

為了更詳細說明,茲將以本發明光學式氣體感測系統量測揮發性有機化合物的相關量測結果說明如下。For a more detailed description, the relevant measurement results of the measurement of volatile organic compounds by the optical gas sensing system of the present invention will be described below.

參閱圖7與圖8(a),對經過不同時間蝕刻的該感測層22量測其蝕刻前後的光學變化,由圖7與圖8(a)可知,該感測層22在經過10分鐘、30分鐘與60分鐘蝕刻後,其消光光譜的強度上升,主要是因為蝕刻後,該感測層22的表面粗糙度增加,使得光源散射造成消光強度上升,而當該感測層22蝕刻至90分鐘時(圖7(e))則漸漸的破壞了該感測層22。Referring to FIG. 7 and FIG. 8( a ), the sensing layer 22 etched at different times is measured for optical changes before and after etching. As can be seen from FIG. 7 and FIG. 8( a ), the sensing layer 22 is passed for 10 minutes. After 30 minutes and 60 minutes of etching, the intensity of the extinction spectrum increases, mainly because the surface roughness of the sensing layer 22 increases after etching, so that the light source scattering causes the extinction intensity to rise, and when the sensing layer 22 is etched to At 90 minutes (Fig. 7(e)), the sensing layer 22 is gradually destroyed.

參閱圖8(b)~圖8(f),圖8(b)~圖8(f)顯示以本發明該第一實施例的該光學式氣體感測器2經不同蝕刻時間蝕刻該感測層2後,所量測氯苯的消光光譜,由實驗結果可知,觀察波長(約590 nm)之消光強度變化,其相減後差值越大代表其效果越好,由此可知,當該感測層2蝕刻30分鐘(圖8(d))與60分鐘(圖8(e))的效果相對較佳。Referring to FIG. 8(b) to FIG. 8(f), FIG. 8(b) to FIG. 8(f) show that the optical gas sensor 2 of the first embodiment of the present invention etches the sensing through different etching times. After layer 2, the extinction spectrum of chlorobenzene was measured. It is known from the experimental results that the extinction intensity of the observation wavelength (about 590 nm) changes, and the larger the difference after subtraction, the better the effect, which means that when The effect of the sensing layer 2 being etched for 30 minutes (Fig. 8(d)) and 60 minutes (Fig. 8(e)) is relatively preferable.

參閱圖9,圖9顯示在氯苯環境下,旋轉該第一實施例的該光學式氣體感測器2於120分鐘內分別旋轉360度所量測得的對應不同旋轉角度的消光變化,由圖9(a)~圖9(h)的量測結果可知,該光學式氣體感測器2在角度為60度及240度時具有較明顯的消光變化量(即進行感測氣體與未進行感測氣體之間的消光強度變化),藉由量測消光變化的波峰與波谷之間的差異值,進而推算得知偵測的氣體濃度。例如:暴露時間為一分鐘時(圖9(a)),感測器在角度60度時,其消光變化量為0.04,而在90度時,其消光變化量為0.005,藉由60度轉到90度時的消光變化量的差值(0.04-0.005=0.035)來偵測氣體濃度。Referring to FIG. 9, FIG. 9 shows the extinction change corresponding to different rotation angles measured by rotating the optical gas sensor 2 of the first embodiment by 360 degrees in 120 minutes in a chlorobenzene environment. 9(a) to 9(h), the optical gas sensor 2 has a significant amount of extinction change at an angle of 60 degrees and 240 degrees (ie, sensing gas is not performed). The intensity of the extinction between the sensing gases is measured, and the detected gas concentration is estimated by measuring the difference between the peak and the valley of the extinction change. For example, when the exposure time is one minute (Fig. 9(a)), the amount of extinction change of the sensor at an angle of 60 degrees is 0.04, and at 90 degrees, the amount of extinction change is 0.005, which is rotated by 60 degrees. The gas concentration was detected by the difference in the amount of extinction change at 90 degrees (0.04-0.005 = 0.035).

參閱圖10與圖11,圖10與圖11分別顯示以該第一實施例的該光學式氣體感測器2量測不同揮發性有機化合物的消光變化與感測度變化,由圖10與圖11可知以氯苯及丁醇的感測感測度為最佳,因此,以下分別以氯苯及丁醇再進一步量測其不同濃度的消光變化。Referring to FIG. 10 and FIG. 11 , FIG. 10 and FIG. 11 respectively show the extinction change and the sensitivity change of different volatile organic compounds measured by the optical gas sensor 2 of the first embodiment, which are shown in FIG. 10 and FIG. 11 . It is known that the sensing sensitivity of chlorobenzene and butanol is optimal. Therefore, the extinction changes of different concentrations are further measured by chlorobenzene and butanol, respectively.

參閱圖12與圖13,圖12與圖13分別顯示以該第一實施例的該光學式氣體感測器2量測不同濃度的氯苯及丁醇的消光變化,由圖12與圖13可知,該光學式氣體感測器2確實能量測低濃度(100ppm)的揮發性有機化合物。Referring to FIG. 12 and FIG. 13 , FIG. 12 and FIG. 13 respectively show the extinction changes of different concentrations of chlorobenzene and butanol measured by the optical gas sensor 2 of the first embodiment, as can be seen from FIG. 12 and FIG. The optical gas sensor 2 does measure the low concentration (100 ppm) of volatile organic compounds.

綜上所述,本發明該光學式氣體感測器2以靜電紡絲技術在該透明基板21上,形成包括多條包覆具同方向性的該等奈米桿212的高分子絲211所構成的該感測層22,以具有更佳的偏光效果,且進一步對該感測層22蝕刻,還能提高該感測層22的粗糙度,以利吸附氣體增益光學行為,提升感測靈敏度,在進行氣體感測時,透過旋轉該光學式氣體感測器2,使該等高分子絲211與該等奈米桿212在一垂直光源λ的光軸的二維平面(也就是平行該感測層22的平面)上旋轉,而能讓光源照射該感測層22時,在特定角度具有明顯的消光變化,再透過量測消光變化的波峰與波谷之間的差異值來得知揮發性有機化合物的濃度,故確實能達成本發明的目的。In summary, the optical gas sensor 2 of the present invention forms a plurality of polymer wires 211 including the plurality of nano-bars 212 having the same orientation on the transparent substrate 21 by an electrospinning technique. The sensing layer 22 is configured to have a better polarizing effect, and further etch the sensing layer 22, and the roughness of the sensing layer 22 can be improved to enhance the optical behavior of the gas gain and improve the sensing sensitivity. When performing gas sensing, by rotating the optical gas sensor 2, the polymer wires 211 and the nanorods 212 are in a two-dimensional plane of the optical axis of the vertical light source λ (that is, parallel) The plane of the sensing layer 22 is rotated, and when the light source is irradiated to the sensing layer 22, the extinction change is observed at a specific angle, and the difference between the peak and the trough of the extinction change is measured to obtain the volatility. The concentration of the organic compound makes it possible to achieve the object of the present invention.

惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。However, the above is only the embodiment of the present invention, and the scope of the invention is not limited thereto, and all the simple equivalent changes and modifications according to the scope of the patent application and the patent specification of the present invention are still Within the scope of the invention patent.

2‧‧‧光學式氣體感測器 2‧‧‧Optical gas sensor

52‧‧‧光分析器 52‧‧‧ optical analyzer

21‧‧‧透明基板 21‧‧‧Transparent substrate

6‧‧‧警報裝置 6‧‧‧Alarm device

22‧‧‧感測層 22‧‧‧Sensor layer

100‧‧‧氣體感測腔 100‧‧‧ gas sensing chamber

211‧‧‧高分子絲 211‧‧‧Polymer wire

101‧‧‧進氣口 101‧‧‧air inlet

212‧‧‧奈米桿 212‧‧‧Nano rod

102‧‧‧出氣口 102‧‧‧ outlet

213‧‧‧金屬奈米粒 213‧‧‧Metal Nanoparticles

401‧‧‧準備步驟 401‧‧‧Preparation steps

3‧‧‧旋轉控制裝置 3‧‧‧Rotary control unit

402‧‧‧溶液調配步驟 402‧‧‧Solution preparation steps

4‧‧‧光源裝置 4‧‧‧Light source device

403‧‧‧感測層形成步驟 403‧‧‧Sensor layer formation steps

5‧‧‧接收分析裝置 5‧‧‧ Receiving analysis device

404‧‧‧蝕刻步驟 404‧‧‧ etching step

51‧‧‧光接收器 51‧‧‧Optical Receiver

λ‧‧‧光源 Λ‧‧‧ light source

本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一俯視示意圖,說明本發明光學式氣體感測器的一第一實施例; 圖2是一俯視示意圖,輔助說明該第一實施例的該感測層結構; 圖3是一俯視示意圖,說明本發明光學式氣體感測器的一第二實施例; 圖4是一流程示意圖,說明本發明光學式氣體感測器的製作方法的製作流程; 圖5是一圖直徑對電壓關係圖,說明以不同電壓實施靜電紡絲所製作的高分子絲的直徑; 圖6是一示意圖,說明本發明光學式氣體感測系統的一實施例; 圖7是一光學顯微鏡(optical microscope,OM)影像圖,說明以不同時間蝕刻該感測層的表面型態; 圖8是一消光光譜圖,說明以不同時間蝕刻該感測層在氯苯(Chlorobenzene)環境下的消光光譜; 圖9是一消光變化對角度的關係圖,說明該光學式氣體感測器在氯苯環境下旋轉不同角度的消光變化; 圖10是一消光變化對時間關係圖,說明該光學式氣體感測器在不同揮發性有機化合物的消光變化; 圖11是一感測度對時間關係圖,說明該光學式氣體感測器在不同揮發性有機化合物的感測度變化; 圖12是一消光變化對時間關係圖,說明該光學式氣體感測器在不同濃度的氯苯環境的消光變化;及 圖13是一消光變化對時間關係圖,說明該光學式氣體感測器在不同濃度的丁醇環境的消光變化;Other features and advantages of the present invention will be apparent from the embodiments of the present invention, wherein: Figure 1 is a top plan view showing a first embodiment of the optical gas sensor of the present invention; FIG. 3 is a top plan view showing a second embodiment of the optical gas sensor of the present invention; FIG. 4 is a schematic flow chart illustrating the present embodiment; FIG. 5 is a diagram showing a diameter versus voltage relationship illustrating a diameter of a polymer filament produced by electrospinning at different voltages; FIG. 6 is a schematic view showing the present invention An embodiment of the optical gas sensing system of the invention; FIG. 7 is an optical microscope (OM) image showing the surface morphology of the sensing layer etched at different times; FIG. 8 is an extinction spectrum diagram illustrating The extinction spectrum of the sensing layer in a Chlorobenzene environment is etched at different times; FIG. 9 is a relationship diagram of the extinction change versus angle, indicating that the optical gas sensor is in the chlorobenzene ring. The extinction change of different angles is rotated under the environment; FIG. 10 is a time diagram of the extinction change versus time, illustrating the extinction change of the different volatile organic compounds in the optical gas sensor; FIG. 11 is a diagram of the sensitivity versus time, illustrating The optical gas sensor changes the sensitivity of different volatile organic compounds; FIG. 12 is a graph of the extinction change versus time, illustrating the extinction change of the optical gas sensor in different concentrations of chlorobenzene; 13 is a graph of extinction change versus time, illustrating the extinction change of the optical gas sensor in different concentrations of butanol environment;

Claims (21)

一種光學式氣體感測器,包含: 一透明基板;及 一感測層,設置於該基板上,包括多條的高分子絲,及多個位於每一條高分子絲中並以相同方向性排列且受光激發後能發光的奈米桿。An optical gas sensor comprising: a transparent substrate; and a sensing layer disposed on the substrate, comprising a plurality of polymer wires, and a plurality of each of the polymer wires arranged in the same direction And a nano-rod that emits light after being excited by light. 如請求項1所述的光學式氣體感測器,其中,該等高分子絲選自聚甲基丙烯酸甲酯、聚苯乙烯、聚乳酸或幾丁聚醣。The optical gas sensor according to claim 1, wherein the polymer filaments are selected from the group consisting of polymethyl methacrylate, polystyrene, polylactic acid or chitosan. 如請求項1所述的光學式氣體感測器,其中,該等奈米桿為硒化鎘/硫化鎘。The optical gas sensor of claim 1, wherein the nanorods are cadmium selenide/cadmium sulfide. 如請求項1所述的光學式氣體感測器,其中,該感測層還包含多個位於該每一條高分子絲中的金屬奈米粒。The optical gas sensor of claim 1, wherein the sensing layer further comprises a plurality of metal nanoparticles located in each of the polymer filaments. 如請求項4所述的光學式氣體感測器,其中,該等金屬奈米粒的構成材料選自金、銀,或銅,且該等金屬奈米粒的粒徑介於5 nm ~100nm。The optical gas sensor according to claim 4, wherein the constituent material of the metal nanoparticles is selected from the group consisting of gold, silver, or copper, and the metal nanoparticles have a particle diameter of 5 nm to 100 nm. 如請求項1所述的光學式氣體感測器,其中,該感測層還包括摻混於該每一條高分子絲中的有機染料。The optical gas sensor of claim 1, wherein the sensing layer further comprises an organic dye blended in each of the polymer filaments. 如請求項6所述的光學式氣體感測器,其中,該有機染料的構成材料能選自甲基橙、甲基紅、煌綠、羅丹明B、剛果紅、瑞香草酚藍,或溴甲酚氯。The optical gas sensor according to claim 6, wherein the constituent material of the organic dye can be selected from the group consisting of methyl orange, methyl red, brilliant green, rhodamine B, Congo red, thymol blue, or bromine. Cresol chlorine. 如請求項1所述的光學式氣體感測器,其中,該透明基板可選自氧化銦錫基板、氟氧化錫基板、玻璃基板、有機高分子基板,或陶瓷基板。The optical gas sensor according to claim 1, wherein the transparent substrate is selected from the group consisting of an indium tin oxide substrate, a tin fluoride substrate, a glass substrate, an organic polymer substrate, or a ceramic substrate. 如請求項1所述的光學式氣體感測器,其中,該等高分子絲能具有方向性的排列、隨機排列,或交錯排列,且該感測層的厚度介於50nm~50μm。The optical gas sensor according to claim 1, wherein the polymer filaments have a directional arrangement, a random arrangement, or a staggered arrangement, and the thickness of the sensing layer is between 50 nm and 50 μm. 一種光學式氣體感測系統,包含: 一旋轉控制裝置; 一如請求項1至9所述的光學式氣體感測器,設置於該旋轉控制裝置上,該旋轉控制裝置能帶動該光學式氣體感測器旋轉; 一光源裝置,能發出一照射該光學式氣體感測器的該感測層的光源,以激發該等奈米桿而讓該等奈米桿發出激發光;及 一接收分析裝置,設置於該等奈米桿發出的激發光的一光路徑上,以接收並分析該等奈米桿發出的激發光的強度。An optical gas sensing system comprising: a rotation control device; an optical gas sensor according to any one of claims 1 to 9, disposed on the rotation control device, the rotation control device capable of driving the optical gas a sensor device that emits a light source that illuminates the sensing layer of the optical gas sensor to excite the nano-rods to cause the nano-rods to emit excitation light; and a receiving analysis The device is disposed on a light path of the excitation light emitted by the nanorods to receive and analyze the intensity of the excitation light emitted by the nanorods. 如請求項10所述的光學式氣體感測系統,其中,該光源裝置與該光學式氣體感測器的該感測層之間的距離介於0.5公分~10公分。The optical gas sensing system of claim 10, wherein a distance between the light source device and the sensing layer of the optical gas sensor is between 0.5 cm and 10 cm. 如請求項10所述的光學式氣體感測系統,其中,該光源裝置發出的光源可為可見光、紫外光、紅外光,或雷射光。The optical gas sensing system of claim 10, wherein the light source emitted by the light source device is visible light, ultraviolet light, infrared light, or laser light. 如請求項10所述的光學式氣體感測系統,其中,該旋轉控制裝置是讓該光學式氣體感測器在一垂直光源的光軸的二維平面上旋轉。The optical gas sensing system of claim 10, wherein the rotation control device rotates the optical gas sensor in a two-dimensional plane of an optical axis of the vertical light source. 如請求項10所述的光學式氣體感測系統,還包含一連接該接收分析裝置的警報裝置。The optical gas sensing system of claim 10, further comprising an alarm device coupled to the receiving analysis device. 一種光學式氣體感測器的製作方法,包含: 一準備步驟,準備一透明基板、一有機高分子、多個奈米桿發光材料,及一第一有機溶劑; 一溶液調配步驟,將該有機高分子與該奈米桿發光材料摻混於該第一有機溶劑中,以形成一第一溶液;及 一感測層形成步驟,使用靜電紡絲技術將該第一溶液沉積於該透明基板上,以在該透明基板上形成一感測層,該感測層包括多條的高分子絲,及多個位於每一條高分子絲中並以相同方向性排列且受光激發後能發光的奈米桿。A method for fabricating an optical gas sensor, comprising: a preparation step of preparing a transparent substrate, an organic polymer, a plurality of nano-rod luminescent materials, and a first organic solvent; and a solution preparation step to organically a polymer and the nanorod luminescent material are blended in the first organic solvent to form a first solution; and a sensing layer forming step of depositing the first solution on the transparent substrate using an electrospinning technique Forming a sensing layer on the transparent substrate, the sensing layer comprising a plurality of polymer filaments, and a plurality of nanometers located in each of the polymer filaments and arranged in the same direction and excited by light to emit light Rod. 如請求項15所述的光學式氣體感測器的製作方法,還包含一實施於該感測層形成步驟之後的蝕刻步驟,在空氣、氬氣、氧氣、氮氣、氨氣、甲烷、氫氣、四氟化碳或二氟化氙的氣氛中對該感測層進行乾式蝕刻,蝕刻時間介於1分鐘~120分鐘。The method for fabricating an optical gas sensor according to claim 15, further comprising an etching step performed after the sensing layer forming step, in air, argon, oxygen, nitrogen, ammonia, methane, hydrogen, The sensing layer is dry etched in an atmosphere of carbon tetrafluoride or xenon difluoride, and the etching time is from 1 minute to 120 minutes. 如請求項15所述的光學式氣體感測器的製作方法,其中,該準備步驟中還準備多個金屬奈米粒及一第二有機溶劑,該溶液調配步驟將該等金屬奈米粒摻混於該第二有機溶劑中,以形成一第二溶液,再混合該第一溶液與該第二溶液,以形成一前驅溶液,該感測層形成步驟以靜電紡絲技術將該前驅溶液沉積於該透明基板上。The method for fabricating an optical gas sensor according to claim 15, wherein a plurality of metal nanoparticles and a second organic solvent are further prepared in the preparing step, and the solution mixing step is to mix the metal nanoparticles. In the second organic solvent, a second solution is formed, and the first solution and the second solution are mixed to form a precursor solution, and the sensing layer forming step deposits the precursor solution in the electrospinning technique. On a transparent substrate. 如請求項17所述的光學式氣體感測器的製作方法,其中,該有機高分子選自聚甲基丙烯酸甲酯、聚苯乙烯、聚乳酸,或幾丁聚醣,該等金屬奈米粒選自金、銀,或銅奈米粒,該第一有機溶劑選自苯、甲苯、氯苯或丙酮,該第二有機溶劑選自甲苯、氯苯、丙酮,或二甲基甲醯胺。The method for fabricating an optical gas sensor according to claim 17, wherein the organic polymer is selected from the group consisting of polymethyl methacrylate, polystyrene, polylactic acid, or chitosan, and the metal nanoparticles. From the group consisting of gold, silver, or copper nanoparticles, the first organic solvent is selected from the group consisting of benzene, toluene, chlorobenzene or acetone, and the second organic solvent is selected from the group consisting of toluene, chlorobenzene, acetone, or dimethylformamide. 如請求項15所述的光學式氣體感測器的製作方法,其中,該準備步驟還準備一有機染料,該溶液調配步驟再將該有基染料摻混於該第一有機溶劑中。The method of fabricating an optical gas sensor according to claim 15, wherein the preparing step further prepares an organic dye, and the solution blending step further blends the base dye into the first organic solvent. 如請求項19所述的光學式氣體感測器的製作方法,其中,該有機染料構成材料選自甲基橙、甲基紅、煌綠、羅丹明B、剛果紅、瑞香草酚藍,或溴甲酚氯。The method of fabricating an optical gas sensor according to claim 19, wherein the organic dye constituting material is selected from the group consisting of methyl orange, methyl red, brilliant green, rhodamine B, Congo red, and thymol blue, or Bromocresol chlorine. 如請求項1所述的光學式氣體感測器的製作方法,其中,該感測層形成步驟,控制該靜電紡絲技術的一操作電壓介於5kV~40kV,及一流速介於0.1~1ml/hr。The method for fabricating an optical gas sensor according to claim 1, wherein the sensing layer forming step controls an operating voltage of the electrospinning technology to be between 5 kV and 40 kV, and a flow rate between 0.1 and 1 ml. /hr.
TW107102627A 2018-01-25 2018-01-25 Optical gas sensor, system and manufacturing method thereof TWI661186B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107102627A TWI661186B (en) 2018-01-25 2018-01-25 Optical gas sensor, system and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107102627A TWI661186B (en) 2018-01-25 2018-01-25 Optical gas sensor, system and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TWI661186B TWI661186B (en) 2019-06-01
TW201932813A true TW201932813A (en) 2019-08-16

Family

ID=67764283

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107102627A TWI661186B (en) 2018-01-25 2018-01-25 Optical gas sensor, system and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI661186B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI806421B (en) * 2022-02-11 2023-06-21 淡江大學學校財團法人淡江大學 Ammonia gas detection system and ammonia gas detection method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7586094B2 (en) * 2007-01-30 2009-09-08 Spectrasensors, Inc. Background compensation by multiple-peak measurements for absorption spectroscopy-based gas sensing
JP7072160B2 (en) * 2015-10-30 2022-05-20 学校法人早稲田大学 Ultra-thin film photoluminescence sensor
CN107340321B (en) * 2017-07-29 2019-01-25 中山市澳多电子科技有限公司 A kind of vehicle-mounted gas detection device

Also Published As

Publication number Publication date
TWI661186B (en) 2019-06-01

Similar Documents

Publication Publication Date Title
Wang et al. Facile one-step synthesis of highly luminescent N-doped carbon dots as an efficient fluorescent probe for chromium (vi) detection based on the inner filter effect
Fusco et al. Nanostructured dielectric fractals on resonant plasmonic metasurfaces for selective and sensitive optical sensing of volatile compounds
US8898811B2 (en) Metal nanopillars for surface-enhanced Raman spectroscopy (SERS) substrate and method for preparing same
Li et al. Ag nanowire/nanoparticle-decorated MoS 2 monolayers for surface-enhanced Raman scattering applications
Wang et al. Flexible, transparent and highly sensitive SERS substrates with cross-nanoporous structures for fast on-site detection
US20110176130A1 (en) Liquid core photonic crystal fiber biosensors using surface enhanced raman scattering and methods for their use
KR101387198B1 (en) An apparatus and associated methods
US10067064B2 (en) Optical fiber containing graphene oxide and reduced graphene oxide and a gas sensor containing the same
Zhang et al. Carbon nanotube/gold nanoparticle composite-coated membrane as a facile plasmon-enhanced interface for sensitive SERS sensing
Yang et al. Metastable state nanoparticle-enhanced Raman spectroscopy for highly sensitive detection
Han et al. Synergistic integration of chemo‐resistive and SERS sensing for label‐free multiplex gas detection
KR101475291B1 (en) chromatography substrate with surface enhanced Raman scattering nano-structure and fabricating method thereof
KR102031480B1 (en) Zinc oxide quantumdot based gas detecting sensor and method for manufacturing the same and gas detecting system comprising the same
US8591828B2 (en) Hydrogen gas detecting membrane
Shukla et al. Exploring fiber optic approach to sense humid environment over nano-crystalline zinc oxide film
Kim et al. Detection of nerve agent stimulants based on photoluminescent porous silicon interferometer
US20170089832A1 (en) Gas detection method and gas detection device
TW201932813A (en) Optical gas sensor and system and manufacturing method thereof including a transparent substrate and a sensing layer
Jones et al. Dense Arrays of Nanohelices: Raman Scattering from Achiral Molecules Reveals the Near‐Field Enhancements at Chiral Metasurfaces
Cho et al. Nanowatt‐Level Photoactivated Gas Sensor Based on Fully‐Integrated Visible MicroLED and Plasmonic Nanomaterials
JP4639344B2 (en) Hydrogen detection material and manufacturing method thereof
Shen et al. Butterfly wing inspired high performance infrared detection with spectral selectivity
Xing et al. High‐Performance Methanal Sensor Based on Metal‐Organic Framework Based One‐Dimensional Photonic Crystal
Aroutiounian Porous silicon gas sensors
Nishijima et al. Plasmonic sensor: towards parts-per-billion level sensitivity