TW201929534A - Digital pixel image sensor - Google Patents

Digital pixel image sensor Download PDF

Info

Publication number
TW201929534A
TW201929534A TW107124385A TW107124385A TW201929534A TW 201929534 A TW201929534 A TW 201929534A TW 107124385 A TW107124385 A TW 107124385A TW 107124385 A TW107124385 A TW 107124385A TW 201929534 A TW201929534 A TW 201929534A
Authority
TW
Taiwan
Prior art keywords
signal
pixel
comparator
digital
storage device
Prior art date
Application number
TW107124385A
Other languages
Chinese (zh)
Other versions
TWI772462B (en
Inventor
新橋 劉
Original Assignee
美商菲絲博克公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/847,517 external-priority patent/US10419701B2/en
Application filed by 美商菲絲博克公司 filed Critical 美商菲絲博克公司
Publication of TW201929534A publication Critical patent/TW201929534A/en
Application granted granted Critical
Publication of TWI772462B publication Critical patent/TWI772462B/en

Links

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

Disclosed herein are techniques for digital imaging. A digital pixel image sensor includes a digitizer in each pixel of a plurality of pixels, where the digitizer digitizes analog output signals from a photodiode of the pixel using a comparator, a global reference ramp signal, and a clock counter. In some embodiments, the comparator includes a pre-charging circuit, rather than a constant biasing circuit, to reduce the power consumption of each pixel. In some embodiments, each pixel includes a digital or analog correlated double sampling (CDS) circuit to reduce noise and provide a higher dynamic range.

Description

數位像素影像感測器Digital pixel image sensor

本發明係關於一種數位像素影像感測器,特別係關於所具有的每個像素中皆具有數化器的數位像素影像感測器。The present invention relates to a digital pixel image sensor, and more particularly to a digital pixel image sensor having a digitizer in each pixel.

影像感測器被使用於許多不同的應用中。舉例來說,在數位成像裝置(例如數位相機、智慧型手機等)中可以發現影像感測器,用於擷取數位影像。以另個例子來說,於人造實境系統中,像是虛擬實境(virtual reality,VR)系統、擴增實境(augmented reality,AR)系統以及混合實境(mixed reality,MR)系統,影像感測器可以用於擷取使用者所在的實體環境的影像,且所擷取的影像可以接著用於控制或影響人造實境系統的運作,像是控制或影響人造實境系統的顯示內容。對於許多所述應用(包含人造實境系統)而言,可能需要具有高速、高靈敏度、高動態範圍、低雜訊、高密度、高解析度以及低功耗的影像感測器。Image sensors are used in many different applications. For example, an image sensor can be found in a digital imaging device (eg, a digital camera, a smart phone, etc.) for capturing digital images. In another example, in a virtual reality system, such as a virtual reality (VR) system, an augmented reality (AR) system, and a mixed reality (MR) system, The image sensor can be used to capture an image of the physical environment in which the user is located, and the captured image can then be used to control or influence the operation of the artificial reality system, such as controlling or affecting the display content of the artificial reality system. . For many of these applications, including artificial reality systems, image sensors with high speed, high sensitivity, high dynamic range, low noise, high density, high resolution, and low power consumption may be required.

本發明關係於數位像素影像感測器。更具體來說,本文所揭示的技術關係於所具有的每個像素中皆具有數化器(例如ADC)的數位像素影像感測器,其中數化器利用比較器、參考斜坡訊號以及計數器,來將來自像素的光二極體的類比輸出進行數位化。於一些實施例中,每個像素可以包含數位或類比相關性雙重取樣(CDS)電路以降低雜訊並提供更高的動態範圍。於一些實施例中,比較器可以包含預充電電路而非恆定偏壓電路,藉此降低每個數位像素的功耗。The invention relates to a digital pixel image sensor. More specifically, the techniques disclosed herein relate to a digital pixel image sensor having a digitizer (eg, an ADC) in each pixel, wherein the digitizer utilizes a comparator, a reference ramp signal, and a counter. To digitize the analog output of the photodiode from the pixel. In some embodiments, each pixel may contain a digital or analog correlation double sampling (CDS) circuit to reduce noise and provide a higher dynamic range. In some embodiments, the comparator can include a pre-charge circuit instead of a constant bias circuit, thereby reducing the power consumption of each digital pixel.

於某些實施例中,數位像素影像感測器可以包含多個像素。每個像素包含用於產生電荷以回應光訊號的光二極體,以及用於儲存光二極體所產生的電荷的電荷儲存裝置,其中所儲存的電荷可以在電荷儲存裝置上產生電壓訊號。每個像素亦可以包含像素記憶體及數化器。數化器可以包含用於接收斜坡訊號及電壓訊號的比較器,其中斜坡訊號的電壓位準在時脈訊號的每個週期之後會增加或減少。比較器更可以用於在斜坡訊號的電壓位準達到電壓訊號的電壓位準之後,改變比較器的輸出狀態。數化器亦可以包含數位輸出產生電路,用於在比較器的輸出狀態改變時,接收一第一數量,其對應於斜坡訊號開始的時間點與比較器的輸出狀態改變的時間點之間的時脈訊號的週期總數量,並且數位輸出產生電路用於儲存所述第一數量至像素記憶體,其中第一數量對應於將電壓訊號的電壓位準進行數位化而產生的數位值。In some embodiments, the digital pixel image sensor can include a plurality of pixels. Each pixel includes a photodiode for generating a charge in response to the optical signal, and a charge storage device for storing the charge generated by the photodiode, wherein the stored charge can generate a voltage signal on the charge storage device. Each pixel can also include a pixel memory and a digitizer. The digitizer can include a comparator for receiving the ramp signal and the voltage signal, wherein the voltage level of the ramp signal is increased or decreased after each cycle of the clock signal. The comparator can be further used to change the output state of the comparator after the voltage level of the ramp signal reaches the voltage level of the voltage signal. The digitizer may further include a digital output generating circuit for receiving a first quantity when the output state of the comparator changes, which corresponds to a time point when the ramp signal starts and a time point when the output state of the comparator changes. The total number of cycles of the clock signal, and the digital output generating circuit is configured to store the first quantity to the pixel memory, wherein the first quantity corresponds to a digital value generated by digitizing the voltage level of the voltage signal.

於某些實施例中,影像感測器的數位像素可以包含用於產生電荷以回應光訊號的光二極體,以及用於儲存光二極體所產生的電荷的電荷儲存裝置,其中所儲存的電荷可以在電荷儲存裝置上產生電壓訊號。每個像素亦可以包含像素記憶體及數化器。數化器可以包含用於接收斜坡訊號及電壓訊號的比較器,其中斜坡訊號的電壓位準在時脈訊號的每個週期之後會增加或減少。比較器更可以用於在斜坡訊號的電壓位準達到電壓訊號的電壓位準之後,改變比較器的輸出狀態。數化器亦可以包含數位輸出產生電路,用於在比較器的輸出狀態改變時,接收一第一數量,其對應於斜坡訊號開始的時間點與比較器的輸出狀態改變的時間點之間的時脈訊號的週期總數量,並且數位輸出產生電路用於儲存所述第一數量至像素記憶體,其中第一數量對應於基於電壓訊號的電壓位準的數位化的數位值。In some embodiments, the digital pixels of the image sensor may include a photodiode for generating a charge in response to the optical signal, and a charge storage device for storing the charge generated by the photodiode, wherein the stored charge A voltage signal can be generated on the charge storage device. Each pixel can also include a pixel memory and a digitizer. The digitizer can include a comparator for receiving the ramp signal and the voltage signal, wherein the voltage level of the ramp signal is increased or decreased after each cycle of the clock signal. The comparator can be further used to change the output state of the comparator after the voltage level of the ramp signal reaches the voltage level of the voltage signal. The digitizer may further include a digital output generating circuit for receiving a first quantity when the output state of the comparator changes, which corresponds to a time point when the ramp signal starts and a time point when the output state of the comparator changes. The total number of cycles of the clock signal, and the digital output generating circuit is configured to store the first number to the pixel memory, wherein the first number corresponds to the digitized digit value of the voltage level based on the voltage signal.

於某些實施例中,揭示了數位成像的方法。此方法可以包含在曝光期期間,藉由影像感測器中的像素的光二極體來接收光訊號,並藉由像素將光訊號轉換為在像素的電荷儲存裝置上的電壓訊號。此方法更可以包含啟動時脈計數器來計算時脈訊號的時脈週期數量,且藉由像素的比較器來比較電壓訊號及斜坡訊號,其中斜坡訊號的電壓位準會隨著時脈週期數量線性地增加或減少。所述方法亦可以包含藉由比較器以在斜坡訊號的電壓位準達到電壓訊號的電壓位準時改變比較器的輸出狀態,以及在比較器的輸出狀態改變時,儲存對應於此時時脈週期數量的第一數量至像素的像素記憶體,以作為電壓訊號的第一數位值。In some embodiments, a method of digital imaging is disclosed. The method can include receiving, by the photodiode of the pixel in the image sensor, the optical signal during the exposure period, and converting the optical signal into a voltage signal on the charge storage device of the pixel by the pixel. The method may further include starting a clock counter to calculate the number of clock cycles of the clock signal, and comparing the voltage signal and the ramp signal by a comparator of the pixel, wherein the voltage level of the ramp signal is linear with the number of clock cycles Increase or decrease. The method may also include changing, by the comparator, the output state of the comparator when the voltage level of the ramp signal reaches the voltage level of the voltage signal, and storing the clock period corresponding to the current pulse when the output state of the comparator changes. The first number of quantities to the pixel memory of the pixel is used as the first digit value of the voltage signal.

本發明內容既不旨在標識所要求保護的標的之關鍵或必要特徵,也不旨在單獨使用以確定所要求保護的標的之範圍。應透過參考本揭示整個說明書、任何或所有附圖及每個權利要求的適當部分以理解所述標的。以下將於說明書、權利要求及附圖中更詳細地描述前述內容以及其他特徵與示例。The Summary is not intended to identify key or essential features of the claimed subject matter, and is not intended to be used alone to determine the scope of the claimed subject matter. The subject matter should be understood by reference to the entire specification, any or all of the accompanying drawings and the appended claims. The foregoing, as well as other features and examples, are described in more detail in the description, claims, and drawings.

本文揭示了高速、高解析度、高動態範圍、高靈敏度及低功耗的影像感測器。於多種實施例中,每個像素包含一數化器的數位像素影像感測器可以用於達成所期望的性能。於一些實施例中,數位像素影像感測器中的每個數位像素可以包含光二極體、轉移閘、類比儲存裝置(例如顯式或寄生電容)、數化器(例如ADC)以及數位記憶體。光二極體可以將光訊號轉換為電訊號。轉移閘可以用於將電訊號(例如累積的電荷)從光二極體轉移至類比儲存裝置,且數化器可以將在類比儲存裝置的電訊號轉換為數位位元。數位記憶體可以在數位位元被讀取之前,儲存數位位元。於一例子中,每個數位像素中的數化器可以包含比較器。所述比較器可以將在類比儲存裝置的電訊號與參考斜坡訊號作比較。所述參考斜坡訊號可以係例如由DAC所產生的全域訊號(global signal)。時脈計數器(例如全域時脈計數器)可以在每個影像訊框中持續地計算時脈週期的數量。當參考斜坡訊號達到在類比儲存裝置的電訊號的位準時,數位像素中的比較器的輸出狀態可以改變(例如翻轉、切換或斜線上升/下降)。在數位像素中的比較器的輸出改變狀態的時間點時的計數值可以接著藉由比較器的輸出的切換以被鎖存於數位像素的記憶體中。This article reveals image sensors with high speed, high resolution, high dynamic range, high sensitivity and low power consumption. In various embodiments, a digital pixel image sensor that includes a digitizer per pixel can be used to achieve the desired performance. In some embodiments, each digital pixel in the digital pixel image sensor can include a photodiode, a transfer gate, an analog storage device (eg, an explicit or parasitic capacitance), a digitizer (eg, an ADC), and a digital memory. . The light diode converts the optical signal into a signal. The transfer gate can be used to transfer an electrical signal (eg, accumulated charge) from the photodiode to an analog storage device, and the digitizer can convert the electrical signal at the analog storage device into a digital bit. The digital memory can store the digits before the digits are read. In an example, the digitizer in each digital pixel can include a comparator. The comparator can compare the electrical signal of the analog storage device with the reference ramp signal. The reference ramp signal can be, for example, a global signal generated by a DAC. A clock counter (such as a global clock counter) can continuously calculate the number of clock cycles in each video frame. When the reference ramp signal reaches the level of the electrical signal at the analog storage device, the output state of the comparator in the digital pixel can be changed (eg, flipped, toggled, or ramped up/down). The count value at the time point when the output of the comparator in the digital pixel changes state can then be latched in the memory of the digital pixel by switching the output of the comparator.

於一些實施例中,數位像素可以包含相關性雙重取樣(correlated double sampling,CDS)電路(例如數位CDS電路)以降低隨機雜訊(例如電容上的1/f雜訊、熱kT/C雜訊)以及固定圖像雜訊(fixed pattern noise,FPN)(例如由像素間的比較器閾值的不匹配所造成)。CDS電路可以數位化在類比儲存裝置的重置位準(例如至m位元)以及從光二極體轉移來的在類比儲存裝置的電訊號的位準(例如至n位元)。所述二被數位化的數值可以被儲存於(n+m)位元的像素記憶體中。所述二被數位值之間的差值可以用以作為一影像訊框的數位像素的數位輸出。In some embodiments, the digital pixel may include a correlated double sampling (CDS) circuit (eg, a digital CDS circuit) to reduce random noise (eg, 1/f noise, thermal kT/C noise on the capacitor) And fixed pattern noise (FPN) (eg caused by a mismatch in comparator thresholds between pixels). The CDS circuit can be digitized at the reset level of the analog storage device (eg, to m bits) and the level of the electrical signal (eg, to n bits) of the analog storage device transferred from the photodiode. The two digitized values can be stored in the pixel memory of (n+m) bits. The difference between the two digitized values can be used as a digital output of a digital pixel of an image frame.

於一實施方式中,對每個影像訊框來說,光二極體可以先曝光於光訊號並啟動以集成(積分)被轉換的電訊號。在曝光期(或積分期)結束或接近結束(例如約100微秒前)時,類比儲存裝置可以重置。重置位準可以藉由數化器來數位化。在曝光期之後,被集成的電訊號可以被從光二極體轉移到類比儲存裝置,且被數化器來數位化。因此,在訊框週期(例如33毫秒)的大部分時間(例如95%、99%或更多),數位像素可以在低功率模式(例如積分模式)下工作。In one embodiment, for each image frame, the photodiode can be exposed to the optical signal and activated to integrate (integrate) the converted electrical signal. The analog storage device can be reset at the end of the exposure period (or integration period) or near the end (eg, about 100 microseconds ago). The reset level can be digitized by a digitizer. After the exposure period, the integrated electrical signal can be transferred from the photodiode to the analog storage device and digitized by the digitizer. Thus, for most of the frame period (eg, 33 milliseconds) (eg, 95%, 99%, or more), the digital pixels can operate in a low power mode (eg, an integration mode).

於一些實施例中,數化器的比較器可以包含能夠最小化靜態(直流)功耗的電路。舉例來說,預充電電路可以用於在執行數位化前,將比較器的內部節點預充電至例如一低位準,而不是使用直流偏壓電路來將比較器設定至工作狀態。所述預充電可以維持一小段時間,例如幾微秒。在訊框週期的剩餘時間期間,比較器可以具有很少的靜態功耗或是沒有靜態功耗。因此,可以顯著地降低比較器的總功耗。In some embodiments, the comparator of the digitizer can include circuitry capable of minimizing static (direct current) power consumption. For example, the precharge circuit can be used to precharge the internal node of the comparator to, for example, a low level before performing the digitization, instead of using a DC bias circuit to set the comparator to an active state. The pre-charging can be maintained for a short period of time, such as a few microseconds. During the remainder of the frame period, the comparator can have little or no static power. Therefore, the total power consumption of the comparator can be significantly reduced.

於以下敘述中,出於解釋的目的,闡述了具體細節以便提供對本揭示的示例的深入理解。然而,顯而易見的是,各種示例可以在沒有這些具體細節的情況下實施。舉例來說,裝置、系統、結構、組件、方法及其他元件可以用方塊的形式來呈現,以避免因不必要的細節而模糊示例。於其他例子中,眾所周知的裝置、過程、系統、結構及技術的必要細節未呈現出來,以避免模糊示例。附圖及敘述之旨不在於限制本揭示。已經在本揭示中使用的術語及表達方式係作為描述的術語而非為限制,且並無意圖使用這些術語和表達方式來排除任何與所示及所述特徵的等同物或其部分。In the following description, for the purposes of illustration However, it will be apparent that various examples may be practiced without these specific details. For example, the devices, systems, structures, components, methods, and other elements may be presented in the form of blocks to avoid obscuring the examples in unnecessary detail. In other instances, well-known details of well-known devices, procedures, systems, structures, and techniques are not presented to avoid obscuring the examples. The drawings and the description are not intended to limit the disclosure. The use of the terms and expressions in the present disclosure are to be construed as a description of the terms of the invention, and are not intended to be limiting.

影像感測器可以包含一陣列的光感測器。每個光感測器可以係光二極體,其可以藉由利用一些光電材料的光電效應來將光子轉換為電荷(例如電子或電洞)以感測入射光。光感測器也可以包含類比儲存裝置,像是電容裝置(例如寄生電容),以在曝光期期間收集(例如累積或積分)光二極體所產生的電荷。所收集的電荷可以在電容裝置造成電壓變化。反應了在曝光期內儲存在電容裝置的電荷數量的電壓變化可能與入射光的強度相關。電容裝置的電壓位準可以被緩衝且饋送至類比數位轉換器(ADC)或其他數化器,其可以將電壓位準轉換成表示入射光強度的數位值。影像訊框可以依據一陣列的光感測器所提供的強度資料而產生,其中每個光感測器形成影像感測器的像素,其對應於影像訊框的像素。影像感測器的像素陣列可以排列為多列及多行,其中每個像素產生表示在影像中的特定位置像素的強度的電壓。所述陣列中所包含的多個像素可以決定所產生的影像訊框的解析度。The image sensor can include an array of light sensors. Each photosensor can be a photodiode that can convert photons into electrical charges (eg, electrons or holes) to sense incident light by utilizing the photoelectric effect of some optoelectronic materials. The light sensor can also include an analog storage device, such as a capacitive device (eg, parasitic capacitance), to collect (eg, accumulate or integrate) the charge generated by the photodiode during the exposure period. The collected charge can cause a voltage change in the capacitive device. The change in voltage that reflects the amount of charge stored in the capacitive device during the exposure period may be related to the intensity of the incident light. The voltage level of the capacitive device can be buffered and fed to an analog digital converter (ADC) or other digitizer that can convert the voltage level to a digital value representative of the intensity of the incident light. The image frame can be generated according to the intensity data provided by an array of light sensors, wherein each of the light sensors forms a pixel of the image sensor, which corresponds to a pixel of the image frame. The pixel array of the image sensor can be arranged in a plurality of columns and rows, wherein each pixel produces a voltage representative of the intensity of the pixel at a particular location in the image. The plurality of pixels included in the array can determine the resolution of the generated image frame.

於此所揭示的影像感測器的實施例可以人造實境系統,或與其一起實施。人造實境係一種在呈現給使用者之前已經以某種方式進行調整的實境的形式,可以包含例如虛擬實境(virtual reality,VR)、擴增實境(augmented reality,AR)、混合實境(mixed reality,MR)或它們的一些組合及/或衍生物。人造實境內容可以包含僅有電腦生成的內容或是電腦生成的內容結合於擷取的內容(例如真實世界的物體的影像)。人造實境內容可以包含錄像、音頻、觸覺反饋或它們的一些組合,且其中任一者可以在單通道或多通道中呈現(例如產生三維效果的立體錄像給觀眾)。此外,於一些實施例中,人造實境可以連結於應用程式、產品、配件、服務或它們的一些組合,其例如用於在人造實境中創建內容且/或於人造實境中以其他方式使用(例如執行其中的活動)。提供人造實境內容的人造實境系統可以在各種平台上實行,包含連接至主電腦系統的頭戴式顯示器(head-mounted display,HMD)、獨立式HMD、移位式裝置或電腦系統,或任何其他可以提供人造實境內容給一或多個觀眾的硬體平台。Embodiments of the image sensor disclosed herein may be implemented in or with an artificial reality system. Artificial reality is a form of reality that has been adjusted in some way before being presented to the user, and may include, for example, virtual reality (VR), augmented reality (AR), mixed reality. Mixed reality (MR) or some combination and/or derivative thereof. Artificial reality content can contain only computer-generated content or computer-generated content combined with captured content (such as images of real-world objects). The artificial reality content may include video, audio, tactile feedback, or some combination thereof, and any of them may be presented in a single channel or in multiple channels (eg, a stereoscopic video that produces a three-dimensional effect to the viewer). Moreover, in some embodiments, the artificial reality may be linked to an application, product, accessory, service, or some combination thereof, such as for creating content in a human reality and/or otherwise in an artificial reality. Use (for example, perform activities in it). Artificial reality systems that provide artificial reality content can be implemented on a variety of platforms, including head-mounted displays (HMDs), stand-alone HMDs, shifting devices or computer systems connected to the host computer system, or Any other hardware platform that can provide artificial reality content to one or more viewers.

圖1A係依據某些實施例所繪示的包含多種感測器的簡化示例的近眼顯示器100的透視圖。圖1B係依據某些實施例所繪示的包含多種感測器100的簡化示例的近眼顯示器的剖面圖。由近眼顯示器100所呈現的媒體的例子包含一或多個影像、錄像、音頻,或它們的一些組合。於一些實施例,音頻係透過外部裝置來呈現(例如喇叭及/或耳機),其自近眼顯示器100、控制台(console)或所述兩者,且依據音頻資訊來呈現音頻資料。近眼顯示器100可以用於作為虛擬實境(VR)顯示器來操作。於一些實施例中,近眼顯示器100可以用於作為擴充實境(AR)顯示器及/或混合實境(MR)顯示器來操作。1A is a perspective view of a near-eye display 100 including a simplified example of multiple sensors, in accordance with certain embodiments. 1B is a cross-sectional view of a near-eye display including a simplified example of a plurality of sensors 100, in accordance with some embodiments. Examples of media presented by near-eye display 100 include one or more images, video, audio, or some combination thereof. In some embodiments, the audio is presented via an external device (eg, a speaker and/or earphone) from the near-eye display 100, console, or both, and the audio material is rendered in accordance with audio information. The near-eye display 100 can be used to operate as a virtual reality (VR) display. In some embodiments, the near-eye display 100 can be used to operate as an augmented reality (AR) display and/or a hybrid reality (MR) display.

近眼顯示器100可以包含框架105及顯示器110。一或多個光學元件可以被耦合或嵌入框架105中。顯示器110可以用於供使用者觀看近眼顯示器100所呈現的內容。顯示器110可以包含電子顯示器及/或光學顯示器。舉例來說,於一些實施方案中,顯示器110可以包含波導顯示組件以將來自一或多個生成的或真實的影像的光引導至使用者的眼睛。The near-eye display 100 can include a frame 105 and a display 110. One or more optical elements can be coupled or embedded in the frame 105. The display 110 can be used for a user to view the content presented by the near-eye display 100. Display 110 can include an electronic display and/or an optical display. For example, in some implementations, display 110 can include a waveguide display assembly to direct light from one or more generated or real images to the user's eyes.

近眼顯示器100可以包含一或多個影像感測器120a、120b、120c及120d。每個影像感測器120a、120b、120c及120d可以包含一像素陣列用於產生表示在不同方向上的不同視場的影像資料。舉例來說,影像感測器120a及120b可以用於提供表示沿著Z軸的方向A上的兩個視場的影像資料,而影像感測器120c可以用於提供表示沿著X軸的方向B上的視場的影像資料,且影像感測器120d可以用於表示沿著X軸的方向C上的視場的影像資料。The near-eye display 100 can include one or more image sensors 120a, 120b, 120c, and 120d. Each image sensor 120a, 120b, 120c, and 120d can include a pixel array for generating image data representing different fields of view in different directions. For example, image sensors 120a and 120b can be used to provide image data representing two fields of view along direction A along the Z-axis, and image sensor 120c can be used to provide directions along the X-axis. The image data of the field of view on B, and the image sensor 120d can be used to represent image data of the field of view in the direction C along the X axis.

於一些實施例中,影像感測器120a~120d可以配置為輸入裝置以控制或影響近眼顯示器100的顯示內容,以提供互動式VR/AR/MR體驗給近眼顯示器100的使用者。舉例來說,影像感測器120a~120d可以產生使用者所在的實體環境的實體影像資料。實體影像資料可以被提供至區位追蹤系統以追蹤實體環境中的使用者的位置及/或移動路徑。系統可以接著依據像是使用者的位置或是走向來更新提供至顯示器110的影像資料,以提供互動式體驗。於一些實施例中,區位追蹤系統可以執行同步定位與地圖建構(simultaneous localization and mapping,SLAM)演算法,以在使用者於實體環境內移動時追蹤實體環境中以及使用者的視場內的一組物體。區位追蹤系統可以依據上述的該組物體建構且更新實體環境的地圖,並追蹤地圖內使用者的位置。藉由提供對應於多種視場的影像資料,影像感測器120a~120d可以提供更全面的實體環境給區位追蹤系統,其可以使得地圖的構建及更新中包含更多物體。利用這種布置,可以提升追蹤實體環境裡使用者的位置的準確性及有效性。In some embodiments, image sensors 120a-120d may be configured as input devices to control or influence the display content of near-eye display 100 to provide an interactive VR/AR/MR experience to a user of near-eye display 100. For example, the image sensors 120a-120d can generate physical image data of the physical environment in which the user is located. The physical image data can be provided to a location tracking system to track the location and/or movement path of the user in the physical environment. The system can then update the image data provided to display 110 based on the location or orientation of the user, to provide an interactive experience. In some embodiments, the location tracking system can perform a simultaneous localization and mapping (SLAM) algorithm to track a physical environment and a user's field of view as the user moves within the physical environment. Group of objects. The location tracking system can construct and update a map of the physical environment based on the set of objects described above, and track the location of the users within the map. By providing image data corresponding to a plurality of fields of view, image sensors 120a-120d can provide a more comprehensive physical environment to the location tracking system that can include more objects in the construction and update of the map. With this arrangement, the accuracy and effectiveness of tracking the location of the user in the physical environment can be improved.

近眼顯示器100可以進一步包含一或多個照明器130以投射光至實體環境。所投射的光可以關連於不同頻譜(例如可見光、紅外光、紫外光等),且可以提供多種用途。舉例來說,照明器130可以在黑暗環境中(或於低強度的紅外光、紫外光等環境中)投射光以輔助影像感測器120a~120d擷取黑暗環境中不同物體的影像,進而例如能夠執行使用者的區位追蹤。照明器130可以投射某些標誌(例如結構光圖案)至環境內的物體上,以輔助區位追蹤系統進行用於地圖建構或更新的物體辨識。The near-eye display 100 can further include one or more illuminators 130 to project light to a physical environment. The projected light can be related to different spectra (eg, visible light, infrared light, ultraviolet light, etc.) and can serve a variety of purposes. For example, the illuminator 130 can project light in a dark environment (or in a low-intensity infrared, ultraviolet, etc. environment) to assist the image sensors 120a-120d in capturing images of different objects in a dark environment, such as Ability to perform location tracking by the user. Illuminator 130 may project certain indicia (eg, structured light patterns) onto objects within the environment to assist the location tracking system in performing object recognition for map construction or updating.

於一些實施例中,照明器130也可以執行立體成像。舉例來說,一或多個影像感測器120a及120b可以包含用於可見光感測的第一像素陣列以及用於紅外(IR)光感測的第二像素陣列。第一像素陣列可以由彩色濾光片(例如拜爾濾色鏡)覆蓋,其中第一像素陣列的每個像素用於量測關連於一特定顏色(例如紅、綠或藍色)的光強度。第二像素陣列(用於IR光感測)亦可以由濾光片覆蓋以僅供IR光穿過,其中第二像素陣列的每個像素用於量測IR光的強度。像素陣列可以產生物體的RGB影像及IR影像,其中IR影像的每個像素會映射到RGB影像的每個像素。照明器130可以將一組IR標誌投射至物體上,其圖像可以由IR像素陣列來擷取。依據影像中所示的物體的IR標誌的分布,系統可以估計物體的不同部分與IR像素陣列之間的距離,並依據所述距離產生物體的三維(3D)影像。依據物體的3D影像,系統可以判斷例如物體與使用者的相對方位,且可以依據所述相對方位更新提供至近眼顯示器100的影像資料以提供互動式體驗。In some embodiments, illuminator 130 can also perform stereoscopic imaging. For example, one or more of image sensors 120a and 120b can include a first array of pixels for visible light sensing and a second array of pixels for infrared (IR) light sensing. The first pixel array can be covered by a color filter (eg, a Bayer filter), wherein each pixel of the first pixel array is used to measure the light intensity associated with a particular color (eg, red, green, or blue). The second pixel array (for IR light sensing) may also be covered by a filter for IR light to pass through, wherein each pixel of the second pixel array is used to measure the intensity of the IR light. The pixel array can generate RGB images and IR images of the object, where each pixel of the IR image is mapped to each pixel of the RGB image. The illuminator 130 can project a set of IR markers onto the object, the image of which can be captured by the IR pixel array. Depending on the distribution of the IR markers of the object shown in the image, the system can estimate the distance between different portions of the object and the IR pixel array and generate a three-dimensional (3D) image of the object based on the distance. Based on the 3D image of the object, the system can determine, for example, the relative orientation of the object to the user, and can update the image data provided to the near-eye display 100 based on the relative orientation to provide an interactive experience.

如上所述,近眼顯示器100可以操作於關連於相當寬廣範圍的光強度的環境。舉例來說,近眼顯示器100可以操作於室內環境或戶外環境中,且/或一天中的不同時間。近眼顯示器100也可以開啟或不開啟照明器130的情況下操作。如此一來,影像感測器120a~120d可能需要具有寬廣的動態範圍、高靈敏度及低雜訊水平以能夠在與不同的近眼顯示器100操作環境相關的寬廣範圍中的各種光強度下正常操作(例如產生與入射光的強度相關的輸出)。As noted above, the near-eye display 100 can operate in an environment that is associated with a relatively wide range of light intensities. For example, near-eye display 100 can operate in an indoor or outdoor environment, and/or at different times of the day. The near-eye display 100 can also operate with or without the illuminator 130 turned on. As such, the image sensors 120a-120d may need to have a wide dynamic range, high sensitivity, and low noise levels to be able to operate normally at various light intensities in a wide range associated with different near-eye display 100 operating environments ( For example, an output related to the intensity of incident light is generated).

此外,影像感測器120a~120d可能需要能夠以高速產生輸出以追蹤眼球的運動。舉例來說,使用者的眼球可以非常快速的運動(例如跳視運動),可以從一個眼球方位快速跳躍至另個眼球方位。為了追蹤使用者眼球的快速運動,影像感測器120a~120d可能需要高速地產生眼球的影像。舉例來說,影像感測器產生影像訊框的速率(訊框速率)需要至少符合眼球的運動速度。高訊框速率需要參與生成影像訊框的所有影像感測器像素的總曝光時間短,亦需要高速度以將感測器輸出值轉換為用於影像生成的數位值。此外,影像感測器也可能需要能夠以低功耗操作。In addition, image sensors 120a-120d may need to be able to produce an output at high speed to track the movement of the eyeball. For example, the user's eyeball can move very fast (such as a saccade movement), and can quickly jump from one eyeball orientation to another. In order to track the rapid movement of the user's eyeballs, the image sensors 120a-120d may need to produce an image of the eyeball at high speed. For example, the rate at which the image sensor generates the image frame (frame rate) needs to match at least the speed of movement of the eyeball. The frame rate requires that the total exposure time of all image sensor pixels participating in the generation of the image frame is short, and high speed is also required to convert the sensor output value to a digital value for image generation. In addition, image sensors may also need to be able to operate with low power consumption.

圖2A係依據某些實施例所繪示的包含多種感測器的簡化示例的近眼顯示器200的前視圖。圖2B係依據某些實施例所繪示的包含多種感測器的簡化示例的近眼顯示器200的剖面圖。近眼顯示器200可以近似於近眼顯示器100,且可以包含框架205及顯示器210。一或多個影像感測器250a及250b可以耦接至或埋設於框架205中。圖2A繪示近眼顯示器200的一側,其面向近眼顯示器200的使用者的眼球235。如圖2A及2B所示,近眼顯示器200可以包含多個照明器240a、240b、240c、240d、240e及240f。近眼顯示器200可以更包含多個影像感測器250a及250b。照明器240a、240b及240c可以在方向D(與圖1A及1B的方向A相反)上發出特定頻率範圍(例如NIR)中的光。所發出的光可以關連於特定圖案,且可以被使用者的左眼球所反射。影像感測器250a可以包含像素陣列以接收被反射的光且產生被反射的圖案的影像。類似地,照明器240d、240e及240f可以發出帶有特定圖案的NIR光。所述NIR光可以被使用者的右眼球反射,且由影像感測器250b接收。影像感測器250b也可以包含像素陣列以產生被反射的圖案的影像。依據來自影像感測器250a及250b的被反射圖案的影像,系統可以決定使用者的視覺停留點,並依據所決定的視覺停留點來更新提供至近眼顯示器200的影像資料,以提供互動式體驗給使用者。2A is a front elevational view of a near-eye display 200 including a simplified example of multiple sensors, in accordance with certain embodiments. 2B is a cross-sectional view of a near-eye display 200 including a simplified example of multiple sensors, in accordance with certain embodiments. The near-eye display 200 can approximate the near-eye display 100 and can include a frame 205 and a display 210. One or more image sensors 250a and 250b can be coupled to or embedded in the frame 205. 2A depicts one side of a near-eye display 200 that faces the eyeball 235 of a user of the near-eye display 200. As shown in Figures 2A and 2B, the near-eye display 200 can include a plurality of illuminators 240a, 240b, 240c, 240d, 240e, and 240f. The near-eye display 200 can further include a plurality of image sensors 250a and 250b. Illuminators 240a, 240b, and 240c can emit light in a particular frequency range (eg, NIR) in direction D (opposite direction A of FIGS. 1A and 1B). The emitted light can be associated with a particular pattern and can be reflected by the user's left eyeball. Image sensor 250a may include an array of pixels to receive the reflected light and produce an image of the reflected pattern. Similarly, illuminators 240d, 240e, and 240f can emit NIR light with a particular pattern. The NIR light can be reflected by the user's right eye and received by image sensor 250b. Image sensor 250b may also include an array of pixels to produce an image of the reflected pattern. Based on the images of the reflected patterns from image sensors 250a and 250b, the system can determine the visual dwell point of the user and update the image data provided to the near-eye display 200 based on the determined visual dwell point to provide an interactive experience. To the user.

為了避免傷害到使用者的眼球,照明器240a、240b、240c、240d、240e及240f通常用於以非常低的強度來發光。在影像感測器250a及250b包含相同的感測裝置像是影像感測器120a~120d的情況下,影像感測器250a及250b可能需要能夠在入射光的強度非常弱時產生與入射光強度相關的輸出,其可能進一步地增加影像感測器的動態範圍要求。In order to avoid harm to the user's eyeballs, the illuminators 240a, 240b, 240c, 240d, 240e, and 240f are typically used to illuminate at very low intensity. In the case where the image sensors 250a and 250b include the same sensing devices as the image sensors 120a-120d, the image sensors 250a and 250b may need to be capable of generating incident light intensity when the intensity of the incident light is very weak. A related output, which may further increase the dynamic range requirements of the image sensor.

圖3係具有類比像素的示例的影像感測器300的簡化方塊圖。於一些實施方案中,影像感測器300可以係主動像素感測器(APS)。影像感測器300可以包含像素陣列310、ADC介面320、數位類比轉換(DAC)與支持電路330,以及控制電路340。像素陣列310可以包含多個AOS像素。像素陣列310中的每個像素可以包含光感測器,例如光偵測器或光二極體,其可以產生與照射像素的光訊號的強度對應的電壓或電流訊號。舉例來說,每個像素可以將像素上的光訊號轉換為電流。像素陣列310中的每個像素也可以包含類比儲存裝置,像是電容裝置可以集成電流以產生並儲存電壓訊號,其可以被稱為表示像素的灰度/顏色資訊的類比偵測訊號。3 is a simplified block diagram of an image sensor 300 with an example of analog pixels. In some embodiments, image sensor 300 can be an active pixel sensor (APS). The image sensor 300 can include a pixel array 310, an ADC interface 320, a digital analog conversion (DAC) and support circuit 330, and a control circuit 340. Pixel array 310 can include multiple AOS pixels. Each pixel in pixel array 310 can include a light sensor, such as a photodetector or photodiode, that can generate a voltage or current signal that corresponds to the intensity of the optical signal that illuminates the pixel. For example, each pixel can convert the optical signal on the pixel into a current. Each pixel in pixel array 310 can also include an analog storage device, such as a capacitive device that can integrate current to generate and store a voltage signal, which can be referred to as an analog detection signal that represents grayscale/color information for the pixel.

控制電路340可以包含在像素陣列310的邊緣的列解碼器與驅動電路及/或行解碼器與驅動電路,用於選擇性地致能一或多個像素(例如一列像素)以發送所述類比偵測訊號至ADC介面320。Control circuitry 340 can include column decoder and driver circuitry and/or row decoder and driver circuitry at the edge of pixel array 310 for selectively enabling one or more pixels (eg, a column of pixels) to transmit the analogy The detection signal is sent to the ADC interface 320.

ADC介面320可以包含多個ADC裝置。於一些實施方案中,ADC裝置可以個別對應於一行像素,且可以用於一次一列地將來自像素的類比偵測訊號轉換成數位影像資料。每個ADC裝置可以包含兩個輸入端,一個給參考訊號且另一個給類比偵測訊號。所述參考訊號可以由例如數位類比轉換(DAC)與支持電路330來產生。ADC裝置可以依據所述參考訊號將來自每個像素的類比偵測訊號轉換為數位資料。來自每列像素的數位資料可以被儲存為數位影像資料檔案以形成影像訊框。The ADC interface 320 can include multiple ADC devices. In some embodiments, the ADC devices can individually correspond to a row of pixels and can be used to convert the analog detection signals from the pixels into digital image data one column at a time. Each ADC device can contain two inputs, one for the reference signal and the other for the analog detection signal. The reference signal can be generated by, for example, a digital analog conversion (DAC) and support circuit 330. The ADC device can convert the analog detection signal from each pixel into digital data according to the reference signal. The digital data from each column of pixels can be stored as a digital image data file to form an image frame.

於一些實施例中,每個ADC可以包含內部偏移校正電路以及相關性雙重取樣(correlated double sampling,CDS)電路用於降低噪音,像是像素與像素之間的參數差異所造成的定型雜訊(fixed pattern noise,FPN)。CDS電路可以係ADC介面320之外的獨立單元。舉例來說,CDS操作可以藉由採樣並保持參考或重置訊號;採樣並保持類比偵測訊號;以及從類比偵測訊號減去所述參考訊號以產生相關類比偵測訊號來完成。ADC可以接著將所述相關類比偵測訊號轉換成數位影像資料。In some embodiments, each ADC may include an internal offset correction circuit and a correlated double sampling (CDS) circuit for reducing noise, such as shaped noise caused by pixel-to-pixel parameter differences. (fixed pattern noise, FPN). The CDS circuit can be a separate unit other than the ADC interface 320. For example, the CDS operation can be performed by sampling and maintaining a reference or reset signal; sampling and maintaining the analog detection signal; and subtracting the reference signal from the analog detection signal to generate a correlation analog detection signal. The ADC can then convert the associated analog detection signal into digital image data.

於一些實施例中,像素陣列310中的每個像素可以包含例如四電晶體(4T)APS像素或三電晶體(3T)APS像素。舉例來說,像素陣列中的每個3T像素可以包含光偵測器(例如固定式光二極體)、重置閘、選擇閘、源極隨耦放大電晶體以及電容裝置(例如位於所述源極隨耦放大電晶體的閘極的寄生電容)。重置閘可以被導通以清除儲存於電容裝置上的電荷。在曝光期間,光偵測器所產生的電荷可以被儲存於電容裝置上以產生類比偵測訊號(例如電壓訊號)。當藉由使用例如列選擇訊號來啟動對應的選擇閘以選擇像素時,在電容裝置的類比偵測訊號會由源極隨耦放大電晶體放大,且被傳送至讀取匯流排(readout bus)例如行線路(column line),以藉由ADC轉換成數位影像資料給對應的行。於一些實施方案中,多個像素可以共享一些閘極以降低影像感測器所使用的閘極總數量。In some embodiments, each pixel in pixel array 310 can comprise, for example, a four-transistor (4T) APS pixel or a three-transistor (3T) APS pixel. For example, each 3T pixel in the pixel array can include a photodetector (eg, a fixed photodiode), a reset gate, a select gate, a source-coupled amplifying transistor, and a capacitive device (eg, located at the source) The parasitic capacitance of the gate of the pole-coupled amplifying transistor). The reset gate can be turned on to remove the charge stored on the capacitor device. During exposure, the charge generated by the photodetector can be stored on the capacitive device to produce an analog detection signal (eg, a voltage signal). When a corresponding selection gate is activated by using, for example, a column select signal to select a pixel, the analog detection signal at the capacitive device is amplified by the source-supplied amplifier transistor and transmitted to the read bus (readout bus). For example, a column line is converted into digital image data by the ADC to the corresponding line. In some embodiments, multiple pixels may share some gates to reduce the total number of gates used by the image sensor.

圖4繪示CMOS主動像素感測器(active pixel sensor,APS)中的示例性的四電晶體(4T)主動像素400。4T主動像素400可以包含光偵測器(例如固定式光二極體(PD)410)、轉移閘420、電容儲存裝置(例如浮動擴散(FD)電容430)、重置閘440、源極隨耦放大電晶體450以及選擇閘460。固定式光二極體410可以將光訊號轉換為電訊號並將所述電訊號儲存為電荷於電容裝置,例如位在固定式光二極體410的寄生電容412。儲存的電荷可以透過轉移閘420轉移至FD電容430。重置閘440可以用於重置FD電容430至已知的電壓位準。選擇閘460的閘極可以受控於選擇訊號,像是列選擇訊號,以選擇性地將FD電容430透過可以放大在FD電容430的電壓訊號的源極隨耦放大電晶體450耦接至讀取匯流排(例如行線路480)。4 illustrates an exemplary four-electrode (4T) active pixel 400 in a CMOS active pixel sensor (APS). The 4T active pixel 400 can include a photodetector (eg, a fixed photodiode ( PD) 410), transfer gate 420, capacitor storage device (eg, floating diffusion (FD) capacitor 430), reset gate 440, source follower amplifying transistor 450, and select gate 460. The fixed photodiode 410 can convert the optical signal into an electrical signal and store the electrical signal as a charge to the capacitive device, such as the parasitic capacitance 412 of the fixed photodiode 410. The stored charge can be transferred to the FD capacitor 430 through the transfer gate 420. The reset gate 440 can be used to reset the FD capacitor 430 to a known voltage level. The gate of the select gate 460 can be controlled by a select signal, such as a column select signal, to selectively couple the FD capacitor 430 through the source follower amplifying transistor 450 that can amplify the voltage signal at the FD capacitor 430 to read Take the bus (for example, line 480).

在主動像素400操作的期間,在每條像素曝光前,可以使用例如快門訊號來清除或放出儲存於寄生電容412的電荷,且重置閘440可以被關斷以清除儲存於FD電容430上的電荷。選擇性地,重置之後的FD電容430上的電壓位準(即重置位準)可以被讀取出來。在曝光期間,光偵測器所產生的電荷可以被儲存於位在光二極體410的寄生電容412上。在曝光結束時,所述電荷可以被透過轉移閘420轉移至FD電容430。固定式光二極體410可以具有低暗電流(暗電流)以及良好的藍色響應,且當耦接於轉移閘時,可以允許從固定式光二極體410到FD電容430的完全電荷轉移。所述電荷可以造成FD電容430的電壓變化。當像素藉由致能對應的選擇閘460而被選擇時,位在FD電容430的電壓訊號(即類比偵測訊號)可以被源極隨耦放大電晶體450給放大,並被傳送至行線路480。連接至行線路480的ADC可以接著將被放大的電壓訊號轉換成數位影像資料。於一些實施方案中,使用從光偵測器轉移至浮動擴散電容的像素內電荷可以藉由致能相關性雙重取樣(correlated double sampling,CDS)來降低噪音。During operation of the active pixel 400, for example, a shutter signal can be used to clear or discharge the charge stored in the parasitic capacitance 412 before each pixel is exposed, and the reset gate 440 can be turned off to clear the FD capacitor 430. Charge. Alternatively, the voltage level (ie, reset level) on the FD capacitor 430 after reset can be read. During the exposure, the charge generated by the photodetector can be stored on the parasitic capacitance 412 of the photodiode 410. At the end of the exposure, the charge can be transferred to the FD capacitor 430 through the transfer gate 420. The fixed photodiode 410 can have a low dark current (dark current) and a good blue response, and can be fully transferred from the fixed photodiode 410 to the FD capacitor 430 when coupled to the transfer gate. The charge can cause a voltage change of the FD capacitor 430. When the pixel is selected by enabling the corresponding selection gate 460, the voltage signal (ie, the analog detection signal) located in the FD capacitor 430 can be amplified by the source-supplied amplifier transistor 450 and transmitted to the line circuit. 480. The ADC connected to line 480 can then convert the amplified voltage signal into digital image data. In some embodiments, the use of charge in the pixel from the photodetector to the floating diffusion capacitor can reduce noise by enabling correlated double sampling (CDS).

於許多影像感測器中,由於影像感測器中的ADC的數量因如晶片尺寸及/或功率的限制而有限,影像感測器中的像素需輪流訪問(acess)ADC以產生數位影像資料,例如一次一列像素。通常而言,一組ADC(例如每行像素一個)可以用於同時將一列中的像素所產生的電壓訊號轉換為數位影像資料。但是鄰近列的像素單元可能需要輪流訪問該組ADC。於一例子中,滾動電子快門可以被使用於CMOS影像感測器上,其中像素列依序地暴露於入射光以產生電荷,且一次可以選擇並讀取影像感測器中的一列像素,使得影像感測器的像素可以逐列地被選擇及讀取以產生影像訊框。於一實施方案中,影像感測器的每列像素可以個別被暴露於入射光一曝光期的時間。在曝光期期間,列中的像素可以各依據光二極體產生的電荷產生一電壓訊號,並將所述電壓訊號傳送至對應的行的ADC。所有行的ADC可以產生表示那行像素所接收的入射光強度的一組數位影像資料。在接下來的曝光期中,下一列的像素可以暴露於入射光以產生另一組數位影像資料,直到所有列的像素皆已暴露於入射光且已輸出一影像訊框的數位影像資料。於另一例子中,鄰近像素列的曝光時間可以有一些重疊,但每列的像素仍可能需要輪流將光電荷所產生的電壓訊號轉換成數位影像資料。影像訊框可以依據影像感測器中的各列像素的數位影像資料來產生。In many image sensors, since the number of ADCs in the image sensor is limited due to limitations such as wafer size and/or power, pixels in the image sensor need to alternately access the ADC to generate digital image data. , for example, one column of pixels at a time. In general, a set of ADCs (eg, one pixel per line) can be used to simultaneously convert the voltage signals generated by the pixels in a column into digital image data. However, pixel cells in adjacent columns may need to access the set of ADCs in turn. In one example, a rolling electronic shutter can be used on a CMOS image sensor, wherein the pixel columns are sequentially exposed to the incident light to generate a charge, and one column of pixels in the image sensor can be selected and read at a time, such that The pixels of the image sensor can be selected and read column by column to produce an image frame. In one embodiment, each column of pixels of the image sensor can be individually exposed to incident light for an exposure period. During the exposure period, the pixels in the column can each generate a voltage signal according to the charge generated by the photodiode, and transmit the voltage signal to the ADC of the corresponding row. All rows of ADCs can produce a set of digital image data representing the intensity of the incident light received by that row of pixels. During the next exposure period, the next column of pixels can be exposed to incident light to produce another set of digital image data until all columns of pixels have been exposed to incident light and a digital image of an image frame has been output. In another example, the exposure times of adjacent pixel columns may have some overlap, but the pixels of each column may still need to convert the voltage signals generated by the photo charges into digital image data in turn. The image frame can be generated according to the digital image data of each column of pixels in the image sensor.

圖5A繪示在第一時間瞬間使用滾動快門的影像感測器510中的不同列的像素的示例狀態。在第一時間瞬間,影像感測器510的列520上的像素可以被重置,單個或多個列530上的像素可以被暴露於光訊號以在每個像素上累積電荷,且來自列540上的像素的電壓訊號可以由一組ADC讀出且轉換成數位訊號。影像感測器510中的像素的重置可以在第一時間的瞬間停用,且不會消耗任何電能。包含被重置的像素列(例如列520)、被暴露於VLC光訊號的像素單列或多列(例如列530)以及被讀取的像素列(例如列540)的窗口可以一次向下移動一列以產生影像訊框。FIG. 5A illustrates an example state of pixels of different columns in image sensor 510 using a rolling shutter at a first time instant. At a first instant in time, pixels on column 520 of image sensor 510 can be reset, and pixels on single or multiple columns 530 can be exposed to optical signals to accumulate charge on each pixel, and from column 540. The voltage signal of the upper pixel can be read by a group of ADCs and converted into a digital signal. The resetting of the pixels in image sensor 510 can be disabled at the instant of the first time without consuming any electrical energy. A window containing a reset pixel column (eg, column 520), a single column or columns of pixels exposed to the VLC optical signal (eg, column 530), and a read pixel column (eg, column 540) may be moved down one column at a time To generate an image frame.

圖5B繪示在第二時間瞬間使用滾動快門的影像感測器510中的不同列的像素的示例狀態。第二時間瞬間晚於第一時間瞬間。於圖5B中,相較於圖5A所示的第一時間瞬間的位置,被重置的像素列(例如列520)、被暴露於光訊號的像素單列或多列(例如列530)以及被讀取的像素列(例如列540)可以向下移動。FIG. 5B illustrates an example state of pixels of different columns in image sensor 510 using a rolling shutter at a second time instant. The second moment is later than the first moment. In FIG. 5B, the reset pixel column (eg, column 520), the single or multiple columns of pixels exposed to the optical signal (eg, column 530), and the compared to the location of the first time instant shown in FIG. 5A The read pixel column (eg, column 540) can be moved down.

如上所述,具有高速(例如高訊框速率)、高靈敏度、高動態範圍、高解析度且低耗能的影像感測器係諸如虛擬實境或擴增實境裝置的應用所期望的。然而,由於不同列上的像素所共享的ADC的數量有限,且給每列像素的曝光期有限,因此上述使用滾動快門的影像感測器的速度及靈敏度可能有限。As noted above, image sensors with high speed (e.g., high frame rate), high sensitivity, high dynamic range, high resolution, and low power consumption are desirable for applications such as virtual reality or augmented reality devices. However, the speed and sensitivity of the image sensor using the rolling shutter described above may be limited due to the limited number of ADCs shared by pixels on different columns and the limited exposure period for each column of pixels.

於一些實施例中,可以使用具有給各個像素的數化器的數位像素影像感測器來達到高訊框速率。數位像素影像感測器中的每個數位像素可以包含光偵測器(例如光二極體)、轉移閘、類比儲存裝置(例如顯式或寄生電容)、數化器(例如ADC)以及數位記憶體。光二極體可以將光訊號轉換為電訊號(例如電荷或電流)及/或將電訊號積分。轉移閘可以用於將(積分的)電訊號從光二極體轉移至類比儲存裝置,且數化器可以將在類比儲存裝置的電訊號轉換為數位位元。數位記憶體可以在數位位元被從各個像素讀取出來之前,儲存數位位元。由於數位像素影像感測器中的每個像素具有自己的ADC,數位像素影像感測器的所有像素可以在影像訊框的相同曝光時間內暴露於光訊號,且來自數位像素影像感測器的所有像素的電壓訊號可以同時被轉換成數位影像資料。因此,全域快門可以用於控制影像感測器中的所有像素的曝光,且影像感測器的訊框速率相較於前述之滾動快門影像感測器可以顯著地提升。In some embodiments, a digital pixel image sensor having a digitizer for each pixel can be used to achieve a high frame rate. Each digital pixel in a digital pixel image sensor can include a photodetector (eg, a photodiode), a transfer gate, an analog storage device (eg, an explicit or parasitic capacitor), a digitizer (eg, an ADC), and a digital memory. body. The photodiode can convert the optical signal into a telecommunication signal (such as a charge or current) and/or integrate the electrical signal. The transfer gate can be used to transfer the (integrated) electrical signal from the optical diode to the analog storage device, and the digitizer can convert the electrical signal in the analog storage device into a digital bit. The digital memory can store the digits before the digits are read from each pixel. Since each pixel in the digital pixel image sensor has its own ADC, all pixels of the digital pixel image sensor can be exposed to the optical signal during the same exposure time of the image frame, and from the digital pixel image sensor. The voltage signals of all pixels can be converted into digital image data at the same time. Therefore, the global shutter can be used to control the exposure of all pixels in the image sensor, and the frame rate of the image sensor can be significantly improved compared to the aforementioned rolling shutter image sensor.

圖6係依據某些實施例所繪示的示例的全域快門數位像素影像感測器600的簡化方塊圖。數位像素影像感測器600可以包含數位像素陣列610及其他支持電路,像是列驅動與全域訊號驅動電路620、全域計數器630、一或多個計數緩衝器640以及斜坡產生與緩衝電路650。數位像素影像感測器600可以包含感測放大器660、感測放大偏壓電路670以及線存儲器680,用於自每列數位像素讀取出數位資料以形成數位影像。數位像素影像感測器600亦可以包含其他電路,像是數位區塊690、功率調節電路695及/或行動產業處理器接口(mobile industry processor interface,MIPI)電路698。6 is a simplified block diagram of an example global shutter digital pixel image sensor 600 in accordance with some embodiments. The digital pixel image sensor 600 can include a digital pixel array 610 and other support circuits, such as a column drive and global signal drive circuit 620, a global counter 630, one or more count buffers 640, and a ramp generation and buffer circuit 650. The digital pixel image sensor 600 can include a sense amplifier 660, a sense amplification bias circuit 670, and a line memory 680 for reading digital data from each column of digital pixels to form a digital image. The digital pixel image sensor 600 can also include other circuitry, such as a digital block 690, a power conditioning circuit 695, and/or a mobile industry processor interface (MIPI) circuit 698.

數位像素陣列610可以包含像素的二維陣列。每個像素可以包含光偵測器(例如光二極體)及數化器。藉由光二極體聚集電荷而產生以回應入射光訊號的類比電壓訊號可以由數化器於各像素的內部進行轉換。藉此,每個像素可以輸出數位資料而非類比電壓訊號,其對應於入射光的強度及/或顏色。此外,數位像素陣列610的所有像素上的類比電壓訊號可以同時地被轉換,允許全域快門操作,而無需使用像素中額外的屏蔽類比儲存節點來儲存類比電壓訊號。列驅動與全域訊號驅動電路620可以控制像素的操作,包含電荷積分、比較器操作、數位寫入、數位輸出等。The digital pixel array 610 can include a two-dimensional array of pixels. Each pixel can include a photodetector (eg, a photodiode) and a digitizer. The analog voltage signal generated by the photodiode collecting charges in response to the incident light signal can be converted by the digitizer inside each pixel. Thereby, each pixel can output digital data instead of analog voltage signals, which correspond to the intensity and/or color of the incident light. In addition, the analog voltage signals on all of the pixels of the digital pixel array 610 can be simultaneously converted, allowing global shutter operation without the use of additional masking analog storage nodes in the pixels to store analog voltage signals. The column drive and global signal drive circuit 620 can control the operation of the pixel, including charge integration, comparator operation, digital write, digital output, and the like.

全域計數器630可以用於提供全域計數值至數位像素陣列610的所有像素。一或多個計數緩衝器640可以傳送來自全域計數器630的全域計數值至每個像素。斜坡產生與緩衝電路650可以產生全域參考訊號給所有像素,像是斜坡訊號(向上或向下傾斜)或三角訊號。各像素中的數化器可以利用全域計數值及全域參考訊號來判斷對應於像素所產生的類比電壓訊號的數位資料。The global counter 630 can be used to provide a global count value to all pixels of the digital pixel array 610. One or more count buffers 640 can transmit the global count value from the global counter 630 to each pixel. The ramp generation and buffer circuit 650 can generate a global reference signal to all pixels, such as a ramp signal (tilt up or down) or a triangle signal. The digitizer in each pixel can use the global count value and the global reference signal to determine the digital data corresponding to the analog voltage signal generated by the pixel.

於一些實施方案中,表示像素內數位位元的電壓可以不用軌對軌(rail-to-rail)地擺動,因此感測放大器可以用於重新產生數位值(像素內數位位元)。感測放大器660可以將由類比轉數位轉換所產生的像素中的數位值(表示像素內數位位元的電壓)讀取出來。感測放大器660可以一次將一列像素中的數位值(電壓)讀取出來。每個感測放大器660可以連接於像素數位輸出線以將一列中的每個像素中的數位資料讀取出來。感測放大偏壓電路670可以用於提供偏壓電壓及電流至感測放大器660。線存儲器680可以暫時持有從一列像素讀取出來的數位資料。In some embodiments, the voltage representing the digital bit within the pixel can be oscillated without rail-to-rail, so the sense amplifier can be used to regenerate the digital value (in-pixel digital bit). Sense amplifier 660 can read the digital value (the voltage representing the digital bit within the pixel) in the pixel resulting from the analog to digital conversion. The sense amplifier 660 can read the digital value (voltage) in a column of pixels at a time. Each sense amplifier 660 can be coupled to a pixel digital output line to read digital data in each pixel of a column. The sense amplification bias circuit 670 can be used to provide a bias voltage and current to the sense amplifier 660. Line memory 680 can temporarily hold digital data read from a column of pixels.

數位區塊690可以包含邏輯電路控制影像感測器的操作,包含影像感測器的擇時。功率調節電路695可以產生不同級(例如3.3伏特、1.8伏特及1.2伏特)的類比功率及電壓源給影像感測器,且管理影像感測器的電源,包含啟動或關閉各模塊的電源。MIPI電路698可以用於傳送MIPI輸出格式的數位資料至記憶體。The digital block 690 can include logic to control the operation of the image sensor, including the timing of the image sensor. The power conditioning circuit 695 can generate analog power and voltage sources of different levels (eg, 3.3 volts, 1.8 volts, and 1.2 volts) to the image sensor and manage the power of the image sensor, including power to turn each module on or off. The MIPI circuit 698 can be used to transfer digital data in the MIPI output format to the memory.

藉由提供每個像素中的數化器(例如ADC),像素陣列的多個像素可以被暴露於入射光且同時產生所述多個像素分別所接收到的入射光的強度的數位表示,以提供全域快門操作。對於高速運動擷取來說,全域快門係有利的,因為其可以避免運動失真的問題,其中運動失真問題關連於多列的像素在不同時間擷取移動中的物體的不同部分的影像所造成的滾動快門操作。進一步來說, 於多列的像素輪流被曝光以產生表示光強度的影像資料的方法,可以減少使用像素來產生影像訊框的整體時間。因此,本揭示之技術可以增加影像感測器的操作速度。此外,由於所有像素同時被曝光,比起使用滾動快門,本揭示之每個像素的平均曝光時間可以增加。藉此,影像感測器的靈敏度亦可有所提升。By providing a digitizer (eg, an ADC) in each pixel, a plurality of pixels of the pixel array can be exposed to incident light and simultaneously produce a digital representation of the intensity of the incident light received by the plurality of pixels, respectively, to Provides full shutter operation. For high-speed motion capture, a global shutter is advantageous because it avoids the problem of motion distortion, which is caused by images of multiple columns of pixels capturing different images of moving objects at different times. Rolling shutter operation. Further, the method in which the pixels of the plurality of columns are alternately exposed to generate image data indicating the light intensity can reduce the overall time for using the pixels to generate the image frame. Thus, the techniques of the present disclosure can increase the operating speed of an image sensor. Furthermore, since all pixels are simultaneously exposed, the average exposure time of each pixel of the present disclosure can be increased compared to using a rolling shutter. Thereby, the sensitivity of the image sensor can also be improved.

圖7係依據某些實施例所繪示的示例的全域快門數位像素影像感測器的示例數位像素700的簡化方塊圖。數位像素700可以係數位像素影像感測器中的部分數位像素陣列,像係數位像素影像感測器600中的數位像素陣列610。數位像素700可以產生數位影像資料,對應於影像訊框中的一像素的強度。如圖7所示,數位像素700可以包含光二極體702、積分電容703、轉移閘704、重置開關718、量測電容706、光學緩衝器710以及像素數化器750。於一些實施例中,數位像素700可以包含受全域快門訊號所控的快門開關726。7 is a simplified block diagram of an example digital pixel 700 of an exemplary global shutter digital pixel image sensor in accordance with some embodiments. The digital pixel 700 can be a partial digital pixel array in a coefficient pixel image sensor, like the digital pixel array 610 in the coefficient bit pixel image sensor 600. The digital pixel 700 can generate digital image data corresponding to the intensity of a pixel in the image frame. As shown in FIG. 7, the digital pixel 700 can include an optical diode 702, an integrating capacitor 703, a transfer gate 704, a reset switch 718, a measurement capacitor 706, an optical buffer 710, and a pixel quantizer 750. In some embodiments, the digital pixel 700 can include a shutter switch 726 that is controlled by a global shutter signal.

於一些實施例中,光二極體702可以包含PN二極體或PIN二極體。快門開關726、轉移閘704及重置開關718中的每一個可以包含有電晶體。舉例來說,所述電晶體可以包含金氧半場效電晶體(metal-oxide-semiconductor field-effect transistor,MOSFET)、雙極性電晶體(bipolar junction transistor,BJT)等。快門開關726可以作為電子快門以控制數位像素700的曝光期。在曝光期之前,快門開關726可以被致能(被導通)以重置積分電容703。在曝光期期間,可以用曝光致能訊號724使快門開關726失去能力(被關斷),其可以使得光二極體702所產生的電荷移動至積分電容703及/或量測電容706。重置開關718可以因重置訊號720而失去能力(被關斷),其可以使得量測電容706儲存光二極體702所產生的電荷並形成關係於所儲存電荷量的電壓訊號。量測電容706的電壓訊號可以接著被轉換成數位資料。在電壓訊號於量測電容的轉換完成時,重置開關718可以被致能以清空儲存於量測電容706的電荷至電荷槽722,以使量測電容706可用於下次的量測。In some embodiments, the photodiode 702 can comprise a PN diode or a PIN diode. Each of the shutter switch 726, the transfer gate 704, and the reset switch 718 may include a transistor. For example, the transistor may include a metal-oxide-semiconductor field-effect transistor (MOSFET), a bipolar junction transistor (BJT), or the like. The shutter switch 726 can function as an electronic shutter to control the exposure period of the digital pixel 700. The shutter switch 726 can be enabled (conducted) to reset the integrating capacitor 703 prior to the exposure period. During the exposure period, the shutter enable signal 724 can be disabled (turned off) by the exposure enable signal 724, which can cause the charge generated by the photodiode 702 to move to the integrating capacitor 703 and/or the measurement capacitor 706. The reset switch 718 can be disabled (turned off) by resetting the signal 720, which can cause the measurement capacitor 706 to store the charge generated by the photodiode 702 and form a voltage signal that is related to the amount of stored charge. The voltage signal of the measurement capacitor 706 can then be converted to digital data. Upon completion of the conversion of the voltage signal to the measurement capacitor, the reset switch 718 can be enabled to clear the charge stored in the measurement capacitor 706 to the charge slot 722 so that the measurement capacitor 706 can be used for the next measurement.

積分電容703可以係光二極體702的寄生電容及連接於光二極體702的其他電路,且可以儲存光二極體702所產生的電荷。舉例來說,積分電容703可以包含位於P-N二極體接合界面的接合電容,或連接於光二極體702的其他寄生電容。由於積分電容703鄰近於光二極體702,光二極體702所產生的電荷可以累積在積分電容703。量測電容706可以係位於浮動擴散節點的寄生電容(例如轉移閘704的浮動端)、金屬電容、MOS電容,或其任何組合。量測電容706可以用於儲存電荷量,其可以由像素數化器750來量測以提供表示入射光強度的數位輸出。儲存於量測電容706的電荷可以係從積分電容703透過轉移閘704傳送而來的電荷。轉移閘704可以受量測控制訊號708控制以控制電荷從積分電容703傳送至量測電容706。累積於積分電容703及/或量測電容706的電荷總量可以反應光二極體702在曝光期期間所產生的總電荷,其反應在曝光期期間入射於光二極體702上的光的強度。The integrating capacitor 703 can be a parasitic capacitance of the photodiode 702 and other circuits connected to the photodiode 702, and can store the charge generated by the photodiode 702. For example, the integrating capacitor 703 can include a bonding capacitance at the P-N diode bonding interface or other parasitic capacitance connected to the photodiode 702. Since the integrating capacitor 703 is adjacent to the photodiode 702, the charge generated by the photodiode 702 can be accumulated in the integrating capacitor 703. The measurement capacitance 706 can be at a parasitic capacitance of the floating diffusion node (eg, the floating end of the transfer gate 704), a metal capacitance, a MOS capacitance, or any combination thereof. Measurement capacitance 706 can be used to store the amount of charge, which can be measured by pixel quantizer 750 to provide a digital output indicative of the intensity of the incident light. The charge stored in the measurement capacitor 706 may be the charge transferred from the integration capacitor 703 through the transfer gate 704. The transfer gate 704 can be controlled by the measurement control signal 708 to control the transfer of charge from the integration capacitor 703 to the measurement capacitance 706. The total amount of charge accumulated in the integrating capacitor 703 and/or the measuring capacitor 706 may reflect the total charge generated by the photodiode 702 during the exposure period, which reflects the intensity of light incident on the photodiode 702 during the exposure period.

儲存於量測電容706的電荷可以由選擇感測放大器或光學緩衝器710來感測,以在類比輸出節點712產生類比電壓訊號的拷貝(但具有較大的驅動強度)。在類比輸出節點712產生的類比電壓訊號可以被像素數化器750轉換成一組數位資料(例如包含邏輯1及0)。在曝光期之後,可以對形成於量測電容706的類比電壓訊號可以進行取樣,並可以產生數位輸出。The charge stored in the measurement capacitor 706 can be sensed by a selection sense amplifier or optical buffer 710 to produce a copy of the analog voltage signal at analog output node 712 (but with greater drive strength). The analog voltage signal generated at analog output node 712 can be converted by pixel quantizer 750 into a set of digital data (eg, including logic 1 and 0). After the exposure period, the analog voltage signal formed on the measurement capacitor 706 can be sampled and a digital output can be generated.

像素數化器750可以包含比較器754以及數位輸出產生器760,數位輸出產生器760可以包含像素記憶體764。像素數化器750可以使用時脈計數器762所產生的計數值,其中時脈計數器762可以係數位像素影像感測器中用於所有像素的全域時脈計數器。時脈計數器762可以基於時脈訊號780產生一組計數值。於一些實施方案中,時脈計數器762亦可以用於藉由參考訊號產生器770產生全域參考訊號,其中參考訊號產生器770可以包含能夠產生任意參考訊號的數位類比轉換器(digital-to-analog converter,DAC),或是包含使用計數值的斜坡或三角波形產生器。舉例來說,在數位化開始之後,DAC772可以被編程以產生對應於來自時脈計數器762的計數輸出766的斜坡參考訊號752,其可以依據實施狀態而向上傾斜或向下傾斜。比較器754可以將來自緩衝器710的類比電壓訊號與來自於參考訊號產生器770的參考訊號752進行比較。當來自緩衝器710的類比電壓訊號與參考訊號752彼此交叉時,比較器754的輸出可以改變狀態。數位輸出產生器760可以使用比較器754的輸出以將計數輸出766的當前值從時脈計數器762鎖存至像素記憶體764。當前的計數輸出766可以對應於用於數位化類比電壓訊號的量化階的總數量,其量化誤差小於表示量化階(quantization step)的電壓位準(亦稱為最低有效位元(least significant bit,LSB))。因此,計數輸出766係在儲存於量測電容706的電荷量的數位表示以及入射光強度的數位表示。像素記憶體764中的數位資料可以透過一組像素輸出匯流排790讀取至例如線存儲器680或外部記憶體,以儲存數位影像訊框。The pixel digitizer 750 can include a comparator 754 and a digital output generator 760, which can include pixel memory 764. The pixel quantizer 750 can use the count value generated by the clock counter 762, which can be a global clock counter for all pixels in the coefficient pixel image sensor. The clock counter 762 can generate a set of count values based on the clock signal 780. In some embodiments, the clock counter 762 can also be used to generate a global reference signal by the reference signal generator 770. The reference signal generator 770 can include a digital analog converter (digital-to-analog) capable of generating an arbitrary reference signal. Converter, DAC), or a ramp or triangle waveform generator that uses the count value. For example, after the start of digitization, the DAC 772 can be programmed to generate a ramp reference signal 752 corresponding to the count output 766 from the clock counter 762, which can be tilted up or down depending on the implementation state. Comparator 754 can compare the analog voltage signal from buffer 710 with reference signal 752 from reference signal generator 770. When the analog voltage signal from buffer 710 and reference signal 752 cross each other, the output of comparator 754 can change state. Digital output generator 760 can use the output of comparator 754 to latch the current value of count output 766 from clock counter 762 to pixel memory 764. The current count output 766 can correspond to the total number of quantization steps used to digitize the analog voltage signal, the quantization error being less than the voltage level representing the quantization step (also known as the least significant bit (least significant bit). LSB)). Thus, the count output 766 is represented by a digital representation of the amount of charge stored in the measurement capacitor 706 and a digital representation of the incident light intensity. The digital data in the pixel memory 764 can be read through a set of pixel output bus bars 790 to, for example, the line memory 680 or external memory to store the digital video frame.

數位像素700亦可以包含或連接於其他控制電路系統(未繪示於圖7)以控制曝光致能訊號724、量測控制訊號708及重置訊號720的時序及強度,以控制積分電容703及量測電容706中的電荷累積操作,用於光強度的測定。應理解的是,這些控制電路系統可以係外接於數位像素700且可以例如是圖6的列驅動與全域訊號驅動電路620及/或數位區塊690的一部分。The digital pixel 700 can also include or be connected to other control circuitry (not shown in FIG. 7) to control the timing and intensity of the exposure enable signal 724, the measurement control signal 708, and the reset signal 720 to control the integration capacitor 703 and The charge accumulation operation in the capacitance 706 is measured for the measurement of the light intensity. It should be understood that these control circuitry may be externally coupled to digital pixel 700 and may be, for example, part of column drive and global signal driver circuit 620 and/or digital block 690 of FIG.

圖8依據某些實施例繪示示例的全域快門數位像素影像感測器的示例數位像素(例如數位像素700)的示例操作。於圖8所示的例子中,量化過程可以利用一致的量化階來執行,其中參考訊號(例如圖7的參考訊號752)對於時脈訊號(例如時脈訊號780)的每個時脈週期會上升(或下降)相同的量。參考訊號上升(或下降)的量可以對應於量化階(即LSB)。如上所述,參考訊號752連接至比較器的一個輸入端,而欲量化的類比電壓訊號會連接至比較器的另個輸入端。當時脈週期的數量增加時,參考訊號可以增加並達到類比電壓訊號的一量化階內,此時比較器的輸出可以改變狀態,例如從低位準翻轉到高位準。比較器輸出的翻轉可以將當前計數值鎖存至像素記憶體作為數位資料,其表示在像素的類比電壓訊號。8 illustrates example operations of an example digital pixel (eg, digital pixel 700) of an exemplary global shutter digital pixel image sensor, in accordance with certain embodiments. In the example shown in FIG. 8, the quantization process can be performed using a uniform quantization step, wherein the reference signal (eg, reference signal 752 of FIG. 7) will be applied to each clock cycle of the clock signal (eg, clock signal 780). Raise (or drop) the same amount. The amount of reference signal rise (or fall) may correspond to the quantization step (ie, LSB). As described above, the reference signal 752 is coupled to one input of the comparator, and the analog voltage signal to be quantized is coupled to the other input of the comparator. As the number of clock cycles increases, the reference signal can be increased and reached a quantization step of the analog voltage signal, at which point the output of the comparator can change state, for example, from a low level to a high level. The flipping of the comparator output can latch the current count value to the pixel memory as a digital data representing the analog voltage signal at the pixel.

圖8顯示在兩個像素的類比電壓訊號,即在像素1的類比電壓訊號810與在像素2的類比電壓訊號820。圖8亦顯示時脈訊號860及時脈計數器的時脈計數值870,所述時脈計數器計算時脈訊號860的週期數量。在時間點t0時(當數位化開始時),時脈計數器可以開始計算時脈訊號860的週期數量。舉例來說,時脈計數值870可以在時脈訊號860的每個週期後增加1。如上所述,時脈計數器可以係多個像素所共享的全域時脈計數器,藉此可以縮小每個像素的尺寸。當時脈計數值增加時,參考訊號830的電壓位準可以增加。舉例來說,參考訊號830可以由DAC基於時脈計數值870來產生。由於參考訊號830低於在像素1的類比電壓訊號810以及在像素2的類比電壓訊號820,像素1中的比較器的輸出840以及像素2中的比較器的輸出850可以處於一低(或高)位準。Figure 8 shows an analog voltage signal at two pixels, an analog voltage signal 810 at pixel 1 and an analog voltage signal 820 at pixel 2. FIG. 8 also shows the clock count value 870 of the clock signal 860 and the pulse counter, which calculates the number of cycles of the clock signal 860. At time t0 (when the digitization starts), the clock counter can begin to calculate the number of cycles of the clock signal 860. For example, the clock count value 870 can be incremented by one after each cycle of the clock signal 860. As described above, the clock counter can be a global clock counter shared by a plurality of pixels, whereby the size of each pixel can be reduced. When the pulse count value increases, the voltage level of the reference signal 830 can be increased. For example, reference signal 830 can be generated by the DAC based on clock count value 870. Since the reference signal 830 is lower than the analog voltage signal 810 at the pixel 1 and the analog voltage signal 820 at the pixel 2, the output 840 of the comparator in the pixel 1 and the output 850 of the comparator in the pixel 2 can be at a low (or high) ) Level.

在時間點t1時,參考訊號830可以達到在像素1的類比電壓訊號810(例如於其一個LSB內),且像素1中的比較器的輸出840可以從低位準翻轉到高位準。像素1中的比較器的輸出840的翻轉可以在時間點t1時形成具有數位值D1的時脈計數值870以儲存至像素1的像素記憶體。時脈計數器可以繼續計算時脈訊號860的週期數量,且參考訊號830的電壓位準可以繼續增加。於時間點t2時,參考訊號830可以達到在像素2的類比電壓訊號820(例如於其一個LSB內),藉此像素2中的比較器的輸出850可以從低位準翻轉到高位準。像素2中的比較器的輸出850的翻轉可以在時間點t2時形成具有數位值D2的時脈計數值870以儲存至像素2的像素記憶體。At time t1, the reference signal 830 can reach the analog voltage signal 810 at pixel 1 (eg, within one of its LSBs), and the output 840 of the comparator in pixel 1 can be flipped from a low level to a high level. The inversion of the output 840 of the comparator in pixel 1 may form a clock count value 870 having a digital value D1 at time point t1 for storage to the pixel memory of pixel 1. The clock counter can continue to calculate the number of cycles of the clock signal 860, and the voltage level of the reference signal 830 can continue to increase. At time t2, the reference signal 830 can reach the analog voltage signal 820 at pixel 2 (eg, within one of its LSBs), whereby the output 850 of the comparator in pixel 2 can be flipped from a low level to a high level. The flipping of the output 850 of the comparator in pixel 2 may form a clock count value 870 having a digital value D2 at time point t2 for storage to the pixel memory of pixel 2.

以此方式,在不同像素像素的類比電壓訊號可以藉由每個像素中的比較器使用全域時脈計數值以及全域參考訊號830(例如斜坡訊號)同時轉換成數位值,其表示位於不同像素的光強度,而不是藉由每個像素或每行像素中的複雜ADC。因此,可以顯著地下降數位像素的尺寸以及數位像素的耗能,其使得影像感測器可以具有更高的解析度、更高的密度、更小的尺寸以及低功耗。In this way, analog voltage signals at different pixel pixels can be simultaneously converted to digital values by using a global clock count value and a global reference signal 830 (eg, a ramp signal) by a comparator in each pixel, which is represented by different pixels. Light intensity, not by complex ADCs in each pixel or in each row of pixels. Therefore, the size of the digital pixels and the power consumption of the digital pixels can be significantly reduced, which enables the image sensor to have higher resolution, higher density, smaller size, and lower power consumption.

各種雜訊或誤差可能影響影像感測器之可測量的光強度下限(通常被稱為最小可解析訊號位準)。舉例來說,在浮動節點所收集的電荷可能包含與光強度無關的雜訊電荷。雜訊電荷的其中一來源係暗電流,其可以係由於例如晶體缺陷(crystallographic defects)而於連接一電容的光二極體的PN接面及其他半導體裝置(例如電晶體)的PN界面產生的漏電流。所述暗電流可能流進所述電容而造成與入射光強度無關的電壓變化。在光二極體產生的暗電流通常小於在其他半導體裝置產生的暗電流。有些雜訊電荷可能係由與其他電路系統的電容耦合所造成。舉例來說,當數化器執行讀取操作以判定儲存於浮動節點中的電荷量時,數化器可能透過電容耦合而將雜訊電荷引入浮動節點中。Various noises or errors may affect the measurable lower limit of the light intensity of the image sensor (often referred to as the minimum resolvable signal level). For example, the charge collected at the floating node may contain noise charges that are independent of light intensity. One source of the noise charge is a dark current, which may be caused by, for example, crystallographic defects in the PN junction of a photodiode connected to a capacitor and the PN interface of other semiconductor devices (eg, transistors). Current. The dark current may flow into the capacitor causing a voltage change that is independent of the intensity of the incident light. The dark current generated in the photodiode is typically smaller than the dark current generated in other semiconductor devices. Some of the noise charge may be caused by capacitive coupling with other circuitry. For example, when the digitizer performs a read operation to determine the amount of charge stored in the floating node, the digitizer may introduce a noise charge into the floating node through capacitive coupling.

除了雜訊電荷,數化器亦可能在判定電荷量時引起量測誤差。所述量測誤差可能會降低數位數出與入射光強度之間的相關程度。量測誤差的其中一來源係量化誤差。在量化過程中,可以使用一組離散的位準來表示一組連續的電壓訊號,其中每個位準各表示一個電壓訊號位準的預定範圍。因此,當由量化位準所表示的電壓位準與近似於量化位準的輸入類比電壓之間有所差異時,就可能會產生量化誤差。圖7所示的數化器的量化誤差可以藉由使用較小的量化階大小(例如在每階或每個時脈週期中的參考訊號830的增加或減少)及/或快速的時脈訊號來降低。量測誤差的其他來源包含例如隨機雜訊(例如電容上的熱kT/C雜訊)、裝置雜訊(例如ADC電路系統的裝置雜訊)以及比較器偏移,其在儲存於電容中的電荷量的量測上添加了不確定性。In addition to the noise charge, the digitizer may also cause measurement errors when determining the amount of charge. The measurement error may reduce the correlation between the number of digits and the intensity of the incident light. One source of measurement error is the quantization error. In the quantization process, a set of discrete levels can be used to represent a set of consecutive voltage signals, each of which represents a predetermined range of voltage signal levels. Therefore, when there is a difference between the voltage level indicated by the quantization level and the input analog voltage approximate to the quantization level, quantization error may occur. The quantization error of the digitizer shown in FIG. 7 can be achieved by using a smaller quantization step size (eg, an increase or decrease of the reference signal 830 in each order or each clock cycle) and/or a fast clock signal. Come down. Other sources of measurement error include, for example, random noise (such as thermal kT/C noise on a capacitor), device noise (such as device noise for ADC circuitry), and comparator offset, which is stored in a capacitor. Uncertainty is added to the measurement of the amount of charge.

所述雜訊電荷及數化器量測誤差可以決定影像感測器之可測量的光強度下限(靈敏度)。影像感測器之可測量的光強度上限則可以由會造成光二極體於單位時間內所產生的電荷(即光電流)達到飽和的光強度所決定。上限及下限之間的比例通常可以稱為動態範圍,其可以決定影像感測器的操作光強度的範圍。The noise charge and the digitizer measurement error can determine the measurable lower limit (sensitivity) of the image sensor. The upper limit of the measurable light intensity of the image sensor can be determined by the intensity of the light that causes the charge (ie, photocurrent) generated by the photodiode to be saturated per unit time. The ratio between the upper and lower limits can generally be referred to as the dynamic range, which can determine the range of operational light intensities of the image sensor.

於一些情況中,比較器中非預期的偏移以及數位像素的其他元件或參數的變化可能會造成定型雜訊(fixed pattern noise,FPN)。於一些實施例中,數位像素影像感測器中的數位像素可以包含相關性雙重取樣(correlated double sampling,CDS)電路以減少偏移誤差,從而減少FPN。CDS電路可以量測在類比儲存裝置(例如量測電容806)的重置位準以及於曝光之後在類比儲存裝置的類比電壓訊號的訊號位準,並利用所測得的訊號位準及重置位準之間的差值來決定像素的實際訊號值。由於所測得的訊號位準包含重置位準分量(其係由影像感測器的像素之中的其他參數或裝置的不同差異或變化所造成),所測得的訊號位準與重置位準之間的差值可以更準確地表示因像素的光照射而產生的電荷所引起的實際電壓變化。In some cases, unintended offsets in the comparator and changes in other components or parameters of the digital pixels may cause fixed pattern noise (FPN). In some embodiments, the digital pixels in the digital pixel image sensor may include correlated double sampling (CDS) circuitry to reduce offset errors, thereby reducing FPN. The CDS circuit can measure the reset level of the analog storage device (eg, measurement capacitance 806) and the signal level of the analog voltage signal of the analog storage device after exposure, and utilize the measured signal level and reset. The difference between the levels determines the actual signal value of the pixel. Since the measured signal level includes a reset level component (which is caused by different differences or changes in other parameters or devices among the pixels of the image sensor), the measured signal level and reset The difference between the levels can more accurately represent the actual voltage change caused by the charge generated by the light illumination of the pixel.

圖9係依據某些實施例所繪示的包含類比相關性雙重取樣(correlated double sampling,CDS)電路的示例數位像素900的簡化方塊圖。數位像素900可以包含固定式光二極體910、受控於控制訊號TX的轉移閘920、浮動擴散節點930、受控於控制訊號RST的重置閘940、受控於控制訊號SEL的選擇閘950、包含電晶體942及952的像素內源極隨耦緩衝級,以及選擇閘950,以確保高像素轉換增益。數位像素900可以包含比較器970及像素記憶體980。這些電路的操作可以相同於上述之主動像素400或數位像素700的操作。9 is a simplified block diagram of an example digital pixel 900 including an analog correlation double sampling (CDS) circuit, in accordance with some embodiments. The digital pixel 900 can include a fixed photodiode 910, a transfer gate 920 controlled by the control signal TX, a floating diffusion node 930, a reset gate 940 controlled by the control signal RST, and a selection gate 950 controlled by the control signal SEL. The in-pixel source-carrying buffer stage including transistors 942 and 952, and the gate 950 are selected to ensure high pixel conversion gain. The digital pixel 900 can include a comparator 970 and a pixel memory 980. The operation of these circuits can be the same as the operation of active pixel 400 or digital pixel 700 described above.

如圖9所示,數位像素900可以更包含類比CDS電路960。於一些實施方案中,類比CDS電路960可以包含二個CDS電容、二個閘以及差動放大器。在量測電容(即FD節點930)經重置後的類比電壓位準(即重置位準)可以透過一閘來儲存於一CDS電容,且在量測電容經電荷轉移之後的類比電壓位準(即訊號位準)可以透過另一個閘儲存於另一個CDS電容。所述二類比電壓位準之間的差異可以使用差動放大器來產生,且可以接著由比較器970數位化。類比CDS的一些其他實施方案亦可利用。舉例來說,於一些實施方案中,類比CDS電路960的一些電路簡化可以應用於減少電晶體的總數量。然而,為了使電容的熱雜訊(kT/C雜訊)符合影像感測器的需求,類比CDS可能要使用相對大的區域給一或多個像素內建CDS電容。此外,使用源極隨耦緩衝級來驅動所述一或多個類比CDS電容以及CDS電容的區域可能會限制縮小數位像素的能力且亦可能增加數位像素的功耗。As shown in FIG. 9, the digital pixel 900 can further include an analog CDS circuit 960. In some embodiments, the analog CDS circuit 960 can include two CDS capacitors, two gates, and a differential amplifier. The analog voltage level (ie, the reset level) after the reset of the measurement capacitor (ie, FD node 930) can be stored in a CDS capacitor through a gate, and the analog voltage level after the charge transfer is measured. The quasi (ie signal level) can be stored in another CDS capacitor through another gate. The difference between the two analog voltage levels can be generated using a differential amplifier and can then be digitized by comparator 970. Some other implementations of analog CDS can also be utilized. For example, in some embodiments, some circuit simplifications of the analog CDS circuit 960 can be applied to reduce the total number of transistors. However, in order to make the thermal noise (kT/C noise) of the capacitor meet the requirements of the image sensor, the analog CDS may use a relatively large area to build a CDS capacitor for one or more pixels. Moreover, using the source follower buffer stage to drive the one or more analog CDS capacitors and the area of the CDS capacitor may limit the ability to scale down the pixels and may also increase the power consumption of the pixels.

圖10係依據某些實施例所繪示的包含數位CDS電路的示例數位像素1000的簡化方塊圖。數位像素1000可以包含如上所述的3T或4T光感測器、比較器1050以及像素記憶區塊。光感測器可以包含固定式光二極體1010、轉移閘1020、重置閘1040以及浮動擴散電容1030。10 is a simplified block diagram of an exemplary digital pixel 1000 including a digital CDS circuit, in accordance with some embodiments. The digital pixel 1000 can include a 3T or 4T light sensor, a comparator 1050, and a pixel memory block as described above. The photo sensor may include a fixed photodiode 1010, a transfer gate 1020, a reset gate 1040, and a floating diffusion capacitor 1030.

在數位像素1000曝光期間或之前,浮動擴散電容1030可以藉由利用重置訊號RST來導通重置閘1040以重置至重置位準(例如0伏特或其他直流位準)。在浮動擴散電容1030的電壓位準可以被數位化並儲存至像素記憶體的m位元記憶體塊1060。由於重置位準通常是低的,上述使用數化器執行的數位化的時間可以短,且重置位準可以數位化成可由少數量的位元來表示的小數值。During or prior to exposure of the digital pixel 1000, the floating diffusion capacitor 1030 can be reset to a reset level (eg, 0 volts or other DC level) by turning on the reset gate 1040 with the reset signal RST. The voltage level at the floating diffusion capacitor 1030 can be digitized and stored to the m-bit memory block 1060 of the pixel memory. Since the reset level is typically low, the time of digitization performed using the digitizer described above can be short, and the reset level can be digitized into a fractional value that can be represented by a small number of bits.

在數位像素1000曝光之後,固定式光二極體1010所產生以及累積於光二極體1010的電荷可以藉由利用轉移控制訊號TX導通轉移閘1020以轉移至浮動擴散電容1030。在浮動擴散電容1030的電壓位準可以被數位化並儲存至像素記憶體的n位元記憶體塊1070,其中n可以大於m。由於在浮動擴散電容1030經電荷轉移後的電壓位準可以高於重置位準,上述使用數化器執行的數位化的時間可能較長,且電壓位準可以數位化成可由較大數量的位元來表示的較大數值。After the digital pixel 1000 is exposed, the charge generated by the fixed photodiode 1010 and accumulated in the photodiode 1010 can be transferred to the floating diffusion capacitor 1030 by turning on the transfer gate 1020 by using the transfer control signal TX. The voltage level at floating diffusion capacitor 1030 can be digitized and stored into n-bit memory block 1070 of pixel memory, where n can be greater than m. Since the voltage level after the charge transfer of the floating diffusion capacitor 1030 can be higher than the reset level, the above-mentioned digitization performed by the digitizer may be longer, and the voltage level may be digitized into a larger number of bits. The larger value represented by the yuan.

表示重置位準的m位元資料以及表示訊號位準的n位元資料可以被讀取出來,且n位元資料與m位元資料之間的差異可以表示偵測到的由光電流或電荷所產生的電壓訊號,藉此表示在像素所偵測到的光強度。以此方法,可以減少數位影像資料中因像素的裝置或參數的不匹配或變化所引起的誤差或雜訊(例如偏差誤差、比較器閾值不匹配、電容不匹配等)。於一些實施方案中,在讀取出像素的輸出之前,可以在像素位準執行n位元資料與m位元資料的減法,因此像素讀取到的數位位元的總數量可以很小。The m-bit data indicating the reset level and the n-bit data indicating the signal level can be read, and the difference between the n-bit data and the m-bit data can represent the detected photocurrent or The voltage signal generated by the charge, thereby indicating the intensity of the light detected at the pixel. In this way, errors or noises caused by mismatches or changes in the device or parameters of the pixels in the digital image data (eg, deviation error, comparator threshold mismatch, capacitance mismatch, etc.) can be reduced. In some embodiments, the subtraction of n-bit data and m-bit data can be performed at the pixel level before the output of the pixel is read, so the total number of digits read by the pixel can be small.

由於在數位CDS中不會使用額外的CDS電容或差動放大器,包含數位CDS電路的數位像素可以比利用類比CDS電路的數位像素使用明顯較少的矽面積及功率。Since no additional CDS capacitors or differential amplifiers are used in digital CDS, digital pixels containing digital CDS circuits can use significantly less germanium area and power than digital pixels using analog CDS circuits.

圖11依據某些實施例繪示包含數位CDS電路的示例數位像素1100。數位像素1100可以係數位像素1000的一示例的實施方案。數位像素1100可以包含光感測器1105,其包含固定式光二極體1110、轉移閘1120、重置閘1140及浮動擴散電容1130。數位像素1100亦可以包含比較器1150,像是比較器754,以執行類比電壓位準數位化。11 illustrates an example digital pixel 1100 that includes a digital CDS circuit in accordance with some embodiments. Digital pixel 1100 can be an exemplary implementation of coefficient bit pixel 1000. The digital pixel 1100 can include a photo sensor 1105 that includes a fixed photodiode 1110, a transfer gate 1120, a reset gate 1140, and a floating diffusion capacitor 1130. The digital pixel 1100 can also include a comparator 1150, such as a comparator 754, to perform analog voltage level digitization.

數位像素1100可以更包含寫入邏輯閘,其可以包含及閘(或反及閘)1160。及閘(或反及閘)1160的輸入端可以連接於比較器1150的輸出端以及重置致能訊號ENABLE_RST(例如用於導通重置閘1140的重置訊號或與重置訊號同步的訊號)。及閘(或反及閘)1160的輸出端可以連接至m位元格1180(例如D型正反器)的寫入致能輸入端WR。當重置位準數位化時,重置致能訊號ENABLE_RST可以被設立(asserted)(例如設定至高位準)。當比較器1150的輸出改變狀態時,像是在參考訊號(例如斜坡訊號)達到重置位準時從「0」變「1」的時候,及閘(或反及閘)1160會從「0」翻轉成「1」,其可以使得例如來自全域時脈計數器的當前計數值被鎖定至m位元格1180,其在之後可以被讀取出來。The digital pixel 1100 can further include a write logic gate, which can include a gate (or inverse gate) 1160. The input of the gate (or reverse gate) 1160 can be connected to the output of the comparator 1150 and the reset enable signal ENABLE_RST (for example, a reset signal for turning on the reset gate 1140 or a signal synchronized with the reset signal) . The output of the gate (or reverse gate) 1160 can be coupled to the write enable input WR of the m-bit cell 1180 (eg, a D-type flip-flop). When the reset level is digitized, the reset enable signal ENABLE_RST can be asserted (eg, set to a high level). When the output of the comparator 1150 changes state, such as when the reference signal (for example, the ramp signal) reaches the reset level and changes from "0" to "1", the gate (or reverse gate) 1160 will be from "0". Flips to "1" which can cause, for example, the current count value from the global clock counter to be locked to m-bit 1180, which can be read later.

數位像素1100的寫入邏輯閘可以更包含及閘(或反及閘)1170。及閘(或反及閘)1170的輸入端可以連接於比較器1150的輸出端以及重置致能訊號ENABLE_RST(例如用於選擇像素的選擇訊號)。及閘(或反及閘)1170的輸出端可以連接至n位元格1190(例如D型正反器)的寫入致能輸入端WR。當像素訊號位準數位化時,讀取致能訊號ENABLE_SIG可以被設立(asserted)(例如設定至高位準)。當參考訊號(例如斜坡訊號RAMP)達到像素訊號位準時,比較器1150的輸出可能會翻轉,像是從「0」變「1」,因此及閘(或反及閘)1170的輸出可能會從「0」翻轉成「1」,其可以使得來自全域時脈計數器的當前計數值被鎖定至n位元格1190,其在之後可以被讀取出來。The write logic gate of the digital pixel 1100 can further include a gate (or reverse gate) 1170. The input of the gate (or reverse gate) 1170 can be coupled to the output of the comparator 1150 and to the reset enable signal ENABLE_RST (eg, a select signal for selecting a pixel). The output of the gate (or reverse gate) 1170 can be coupled to the write enable input WR of the n-bit cell 1190 (eg, a D-type flip-flop). When the pixel signal level is digitized, the read enable signal ENABLE_SIG can be asserted (eg, set to a high level). When the reference signal (such as the ramp signal RAMP) reaches the pixel signal level, the output of the comparator 1150 may be reversed, such as changing from "0" to "1", so the output of the gate (or reverse gate) 1170 may be "0" flips to "1", which causes the current count value from the global clock counter to be locked to n-bit 1190, which can be read later.

藉此方式,可以減少數位影像資料中因像素的裝置及參數中的不匹配以及變化所引起的誤差或雜訊(例如偏差誤差、比較器閾值不匹配、電容不匹配等)。相較於可能不包含數位CDS電路的數位像素,數位像素1100可以使用m個額外的位元格,例如D型正反器,其為數位電路且可以使用較小的面積。如上所數,藉由使用數位像素,影像感測器可以操作全域快門以提高訊框速率以及靈敏度(例如由於每個像素的曝光時間較長)。在影像訊框的時間週期期間,數位像素的重置位準可以在不同時間被數位化。In this way, errors or noises caused by mismatches and changes in the device and parameters of the pixel in the digital image data (eg, deviation error, comparator threshold mismatch, capacitance mismatch, etc.) can be reduced. The digital pixel 1100 can use m additional bit cells, such as a D-type flip-flop, which is a digital circuit and can use a smaller area than a digital pixel that may not include a digital CDS circuit. As noted above, by using digital pixels, the image sensor can operate the global shutter to increase frame rate and sensitivity (eg, due to longer exposure times per pixel). During the time period of the image frame, the reset level of the digital pixels can be digitized at different times.

圖12A依據某些實施例繪示全域快門數位像素感測器的操作期間的示例時序週期,所述全域快門數位像素感測器的每個像素具有數位CDS電路。數位像素感測器中的所有像素可以同時以相同的方式操作。對於數位像素而言,用於輸出一訊框影像的一組輸出資料的時間週期1200可以包含快門時期1210、積分時期1212、重置時期1214、重置位準轉換時期1216、電荷轉移時期1218、訊號位準轉換時期1220以及資料輸出時期1222。12A illustrates an example timing cycle during operation of a global shutter digital pixel sensor having a digital CDS circuit during operation of a global shutter digital pixel sensor, in accordance with some embodiments. All of the pixels in the digital pixel sensor can operate in the same manner at the same time. For a digital pixel, a time period 1200 for outputting a set of output data of a frame image may include a shutter period 1210, an integration period 1212, a reset period 1214, a reset level transition period 1216, a charge transfer period 1218, The signal level conversion period 1220 and the data output period 1222.

對於數位像素而言,用於產生一影像訊框的一組輸出資料的時間週期可以起始於快門時期1210,於其期間可以重置光二極體的電壓位準且可以設定用於像素積分的時間週期。在快門時期1210結束時,每個數位像素可以開始在積分時期1212中執行訊號積分(例如電荷累積),在積分時期1212期間,數位像素的光二極體的寄生電容(例如積分電容703,其可以包含光二極體702的寄生電容及其他連接於光二極體702的電路)可以收集電荷(例如光電子),其係由光二極體產生以回應在數位像素的入射光。在積分時期1212結束前的一短暫的時段(例如小於100微秒),每個像素的量測電容(例如量測電容706或浮動擴散電容1130)可以在重置時期(RST)1214中被重置,接著在重置位準轉換時期1216期間,對重置電壓位準(V_RST)執行類比至數位的轉換(AtoD)。數位化的像素重置位準可以儲存於像素記憶體中,像是m位元格1180中。在轉換像素重置位準之後,在電荷轉移時期(TG)1218期間,在每個像素的光二極體的積分電容中所累積的電荷可以被轉移至量測電容(例如重新分配於光二極體的積分電容以及量測電容之間),接著在訊號位準轉換時期1220期間,對像素訊號位準(V_SIG)(即在電荷轉移之後量測電容上的電壓位準)執行類比至數位的轉換(AtoD)。每個像素的數位化像素訊號位準可以儲存於像素記憶體中,像是n位元格1190中。在將數位化像素重置位準及訊號位準儲存於像素記憶體中後,可以開始資料輸出時期1222,且每個像素的像素重置位準及訊號位準的數位值可以自像素陣列被一列列地讀取出來。這些數位值比起類比電壓可以更加快速地被讀取出來。For a digital pixel, the time period for generating a set of output data for an image frame may start at a shutter period 1210 during which the voltage level of the photodiode may be reset and may be set for pixel integration. Time period. At the end of the shutter period 1210, each digital pixel can begin to perform signal integration (eg, charge accumulation) in the integration period 1212, during the integration period 1212, the parasitic capacitance of the photodiode of the digital pixel (eg, the integration capacitance 703, which can The parasitic capacitance including the photodiode 702 and other circuitry connected to the photodiode 702 can collect charge (eg, photoelectrons) that is generated by the photodiode in response to incident light at the digital pixel. At a short period of time before the end of the integration period 1212 (eg, less than 100 microseconds), the measurement capacitance of each pixel (eg, measurement capacitance 706 or floating diffusion capacitance 1130) may be weighted during the reset period (RST) 1214. The analog-to-digital conversion (AtoD) is then performed on the reset voltage level (V_RST) during the reset level transition period 1216. The digitized pixel reset level can be stored in the pixel memory, such as in the m-bit cell 1180. After the pixel reset level is converted, during the charge transfer period (TG) 1218, the charge accumulated in the integrated capacitance of the photodiode of each pixel can be transferred to the measurement capacitance (eg, redistributed to the photodiode) Performing an analog-to-digital conversion of the pixel signal level (V_SIG) (ie, the voltage level on the measured capacitance after charge transfer) during the signal level transition period 1220) (AtoD). The digitized pixel signal level of each pixel can be stored in the pixel memory, such as in n-bit cell 1190. After the digital pixel reset level and the signal level are stored in the pixel memory, the data output period 1222 can be started, and the pixel reset level and the signal level digit value of each pixel can be from the pixel array. Read it out in a column. These digital values can be read more quickly than the analog voltage.

由於在先前所累積的電荷被轉移至量測電容之後,數位像素可以開始累積下個影像訊框的電荷,數位影像感測器的訊框影像週期T_Frame可以等於快門時期1210(T_Shutter)、積分時期1212(T_Int)、重置時期1214(RST)與重置位準轉換時期1216(合稱為T_Rst)以及電荷轉移時期1218(TG)的總和。如上所數,重置位準通常係低位準,因此用於將重置位準數位化的時間可以較短。相較於積分時期,電荷轉移時期1218、訊號位準轉換時期1220以及資料輸出時期1222也可以較短。因此,在訊框時間週期內的訊框積分經常性開支(非積分時間)可以較小。於一例子中,訊框時間週期可以約為33毫秒(即訊框速率為每秒30幀),且訊框積分經常性開支(可以包含重置時期1214、重置位準轉換時期1216、電荷轉移時期1218,且於一些實施方案中,可以更包含訊號位準轉換時期1220以及資料輸出時期1222)可以約為100微秒。因此,在訊框時間週期中大部分(例如約95%、99%或更多)的時間期間,數位像素可以於低功耗模式(例如積分模式)運作。由於在快門時期1210及積分時期1212期間,數位像素可以在低功率模式下消耗極低的功率,快門時期1210及積分時期1212期間又佔據了大部分的訊框時間週期,因此數位像素的整體功耗可以非常地低。Since the previously accumulated charge is transferred to the measurement capacitor, the digital pixel can start accumulating the charge of the next image frame, and the frame image period T_Frame of the digital image sensor can be equal to the shutter period 1210 (T_Shutter), the integration period. 1212 (T_Int), reset period 1214 (RST) and reset level conversion period 1216 (collectively referred to as T_Rst) and charge transfer period 1218 (TG). As mentioned above, the reset level is usually a low level, so the time for digitizing the reset level can be shorter. The charge transfer period 1218, the signal level transition period 1220, and the data output period 1222 may also be shorter than the integration period. Therefore, the frame recurring expenditure (non-integration time) in the frame time period can be small. In an example, the frame time period can be about 33 milliseconds (ie, the frame rate is 30 frames per second), and frame integration recurring expenses (which can include a reset period 1214, a reset level transition period 1216, and a charge). The transition period 1218, and in some embodiments, may further include a signal level transition period 1220 and a data output period 1222) may be approximately 100 microseconds. Thus, during most (eg, about 95%, 99%, or more) of the time period of the frame, the digital pixels can operate in a low power mode (eg, an integration mode). Since during the shutter period 1210 and the integration period 1212, the digital pixels can consume extremely low power in the low power mode, and the shutter period 1210 and the integration period 1212 occupy most of the frame time period, so the overall work of the digital pixels The consumption can be very low.

圖12B係依據某些實施例所繪示的在全域快門數位像素影像感測器中具有數位CDS電路的數位像素的操作的時序圖。於圖12B中,重置訊號1250的第一重置脈衝1252以及轉移控制訊號1260的第一轉移控制脈衝1262可以同時產生(例如在快門時期像是快門時期1210結束時),因此可以將積分電容及量測電容重置或放電。在第一重置脈衝1252及第一轉移控制脈衝1262之後,可以開始像素的積分。在積分時期結束時,第二重置脈衝1254可以將量測電容(例如浮動擴散電容)重置至重置位準,像是0伏特或其他直流位準。量測電容的重置位準可以利用比較器、時脈計數器及斜坡訊號1270來數位化。如上所述,在重置位準位的數位化期間,斜坡訊號1270可以逐漸地增加或減少,如斜坡1272所示。時脈計數器可以計算時脈週期的數量。當斜坡訊號1270到達重置位準時的時脈計數值1280可以在像素記憶體(例如m位元重置位準記憶體)中儲存為重置計數值1282。接著,第二轉移控制脈衝1264可以被設立(asserted)以將電荷從光二極體的積分電容轉移至量測電容。量測電容上的電壓位準(稱作訊號位準)可以如上所述地利用比較器、斜坡訊號1270以及時脈計數器來數位化。在訊號位準數位化的期間,斜坡訊號1270可以逐漸地增加或減少,如斜坡1274所示。當斜坡訊號1270到達重置位準時的時脈計數值1280可以在像素記憶體(例如n位元訊號位準記憶體)中儲存為訊號計數值1284。重置計數值1282與訊號計數值1284可以被從數位像素記憶體讀取出來,並在MIPI介面1290上作為MIPI格式的輸出資料1292發送出去。由於量測電容的重置數值通常較小,因此代表重置位準的重置計數值可以佔用比代表訊號位準的訊號計數值還少的位元。12B is a timing diagram of the operation of a digital pixel having a digital CDS circuit in a global shutter digital pixel image sensor, in accordance with some embodiments. In FIG. 12B, the first reset pulse 1252 of the reset signal 1250 and the first transfer control pulse 1262 of the transfer control signal 1260 can be simultaneously generated (for example, at the end of the shutter period like the shutter period 1210), so the integration capacitor can be And measure the capacitor reset or discharge. After the first reset pulse 1252 and the first transfer control pulse 1262, integration of the pixels can begin. At the end of the integration period, the second reset pulse 1254 can reset the measurement capacitance (eg, floating diffusion capacitance) to a reset level, such as 0 volts or other DC level. The reset level of the measurement capacitor can be digitized using the comparator, clock counter, and ramp signal 1270. As described above, during the digitization of the reset level, the ramp signal 1270 can be gradually increased or decreased as indicated by ramp 1272. The clock counter can count the number of clock cycles. The clock count value 1280 when the ramp signal 1270 reaches the reset level can be stored as a reset count value 1282 in the pixel memory (eg, m-bit reset level memory). Next, the second transfer control pulse 1264 can be asserted to transfer charge from the integrated capacitance of the photodiode to the measurement capacitance. The voltage level on the measurement capacitor (referred to as the signal level) can be digitized using the comparator, ramp signal 1270, and clock counter as described above. During the digitization of the signal level, the ramp signal 1270 can be gradually increased or decreased as indicated by ramp 1274. The clock count value 1280 when the ramp signal 1270 reaches the reset level can be stored as a signal count value 1284 in the pixel memory (eg, n-bit signal level memory). The reset count value 1282 and the signal count value 1284 can be read from the digital pixel memory and sent out as output data 1292 in the MIPI format on the MIPI interface 1290. Since the reset value of the measurement capacitor is usually small, the reset count value representing the reset level can occupy less bits than the signal count value representing the signal level.

圖12A及12B顯示重置位準係在積分時期結束時所量測。於一些實施方案中,可以在其他時間量測重置位準。舉例來說,由於量測電容與積分電容可以藉由轉移閘來隔離,因此可以在快門時期期間、積分時期的開始或積分時期的中間時段來量測並數位化重置位準。圖12A及12B所示的例子相較於其他種的數位像素的操作及時序組成,在降低數位像素的雜訊(像是暗電流所致的雜訊及1/f雜訊)方面可以具有較好的表現。Figures 12A and 12B show the reset level measured at the end of the integration period. In some embodiments, the reset level can be measured at other times. For example, since the measurement capacitance and the integration capacitance can be isolated by the transfer gate, the reset level can be measured and digitized during the shutter period, at the beginning of the integration period, or during the intermediate period of the integration period. The examples shown in FIGS. 12A and 12B can be compared with the operation and timing components of other kinds of digital pixels, and can reduce the noise of digital pixels (such as noise caused by dark current and 1/f noise). good performance.

舉例來說,如圖12A及12B所示,由於量測電容就在電荷轉移及訊號位準數位化之前重置,暗電流在訊號位準數位化前於量測電容上聚集電荷的時間會滿短的,因此暗電流所造成的雜訊或誤差會較小。相較之下,若量測電容係在積分時期的一開始或是在快門時期期間重置的話,暗電流於量測電容上聚集電荷的時間會持續整個或大部分的積分時期,因此暗電流所造成的雜訊或誤差便會較大。For example, as shown in FIGS. 12A and 12B, since the measurement capacitance is reset before the charge transfer and signal level digitization, the dark current will be accumulated on the measurement capacitor before the signal level is digitized. Short, so the noise or error caused by dark current will be smaller. In contrast, if the measurement capacitance is reset at the beginning of the integration period or during the shutter period, the dark current will accumulate charge on the measurement capacitor for the entire or most of the integration period, so the dark current The noise or error caused will be larger.

此外,由於量測電容就在電荷轉移及訊號位準數位化之前重置,CDS電路會因為量測電容的重置與電荷轉移之間的時間短而可以在高頻中執行有效的切換。因此,數位像素的1/f雜訊(即閃變雜訊或粉紅雜訊)能夠因較高的操作頻率而降低。相反地,若量測電容例如係在積分時期一開始時重置,則由於量測電容的重置與電荷轉移之間的時間較長,CDS電路在低頻中才能夠有效地切換。因此,在這樣的資料轉換過程中,1/f雜訊所造成的雜訊或誤差較大。In addition, since the measurement capacitance is reset before the charge transfer and signal level digitization, the CDS circuit can perform effective switching at high frequencies because of the short time between the reset of the measurement capacitance and the charge transfer. Therefore, the 1/f noise of the digital pixels (ie, flicker noise or pink noise) can be reduced due to the higher operating frequency. Conversely, if the measurement capacitance is reset, for example, at the beginning of the integration period, the CDS circuit can be effectively switched at low frequencies due to the long time between the reset of the measurement capacitance and the charge transfer. Therefore, in such a data conversion process, the noise or error caused by the 1/f noise is large.

如上所述,由於每個數位像素皆包含數化器,當所有像素並行地運作時,數位像素影像感測器的整體功耗會很高。舉例來說,若每個數化器會消耗1微瓦,則具有一百萬個數位像素的影像感測器便會消耗至少1瓦,這可能不適合於行動裝置或像是HMD的穿戴式裝置。因此,會有降低數位像素中的數化器、緩衝器及其他電路的功耗的需求。於上述之一些例子例如關於圖7的例子中,數化器可以利用比較器來比較訊號位準與一參考位準,並將時脈計數值鎖存至像素記憶體。由於鎖存及像素記憶體可以消耗較少的功率,降低比較器的功耗可以更有效地降低數化器及數位像素的功耗。As described above, since each digital pixel includes a digitizer, the overall power consumption of the digital pixel image sensor is high when all the pixels operate in parallel. For example, if each digitizer consumes 1 microwatt, an image sensor with one million digit pixels consumes at least 1 watt, which may not be suitable for mobile devices or wearable devices like HMDs. . Therefore, there is a need to reduce the power consumption of digitizers, buffers, and other circuits in digital pixels. In some of the above examples, such as the example of FIG. 7, the digitizer can use a comparator to compare the signal level with a reference level and latch the clock count value to the pixel memory. Since the latch and pixel memory can consume less power, reducing the power consumption of the comparator can more effectively reduce the power consumption of the digitizer and the digital pixel.

圖13繪示了包含直流偏壓電路的示例比較器1300。比較器1300可以包含差動放大器,差動放大器可以包含P通道電晶體1310及1320、N通道電晶體1330、1340及1350。來自量測電容的類比電壓訊號VFD可以連接至電晶體1330與電晶體1340中的一者的閘極,同時來自參考訊號產生器(例如參考訊號產生器770)的斜坡訊號VRAMP可以連接至電晶體1330與電晶體1340中的另一者的閘極。斜坡訊號VRAMP與來自量測電容的類比電壓訊號VFD之間的差可以使得通過電晶體1310、1320、1330及1340的電流有所不同。因此,在節點1325的電壓位準會取決於斜坡訊號VRAMP與來自量測電容的類比電壓訊號VFD之間的差。連接於節點1325的反向器1360可以將在節點1325的電壓位準轉換為「高」或「低」訊號。FIG. 13 depicts an example comparator 1300 that includes a DC bias circuit. The comparator 1300 can include a differential amplifier that can include P-channel transistors 1310 and 1320, N-channel transistors 1330, 1340, and 1350. The analog voltage signal VFD from the measurement capacitor can be connected to the gate of one of the transistor 1330 and the transistor 1340, and the ramp signal VRAMP from the reference signal generator (eg, the reference signal generator 770) can be connected to the transistor. The gate of the other of 1330 and transistor 1340. The difference between the ramp signal VRAMP and the analog voltage signal VFD from the measurement capacitor may cause the current through the transistors 1310, 1320, 1330, and 1340 to be different. Therefore, the voltage level at node 1325 will depend on the difference between the ramp signal VRAMP and the analog voltage signal VFD from the measurement capacitor. The inverter 1360 connected to the node 1325 can convert the voltage level at the node 1325 to a "high" or "low" signal.

於比較器1300中,電晶體1350可以施加偏壓於差動放大器的電晶體以至電晶體適於DC操作的位準。在比較器的操作期間,通過電晶體1330的電流的下降可以對應於通過電晶體1340的電流的增加,且通過電晶體1350的DC偏壓電流可以維持定值。因此,比較器1300的差動放大器可以消耗DC功率以施加偏壓於電晶體。如上所述,若用於施加偏壓的DC功率為每像素1微瓦,則具有一百萬個數位像素的影像感測器將消耗至少1瓦。In comparator 1300, transistor 1350 can apply a bias voltage to the transistor of the differential amplifier to a level at which the transistor is suitable for DC operation. During operation of the comparator, the drop in current through transistor 1330 may correspond to an increase in current through transistor 1340, and the DC bias current through transistor 1350 may maintain a constant value. Thus, the differential amplifier of comparator 1300 can consume DC power to apply a bias voltage to the transistor. As noted above, if the DC power used to apply the bias is 1 microwatt per pixel, an image sensor with one million digit pixels will consume at least 1 watt.

圖14依據某些實施例繪示包含預充電電路的示例比較器1400。於比較器1400中,來自量測電容的類比電壓訊號VFD可以連接至電晶體1410的閘極,同時參考訊號VRAMP可以連接至電晶體1410的源極或(汲極)。於一些實施方案中,電晶體1410可以係p通道金屬-氧化物-半導體(PMOS)電晶體,且不用使用直流偏壓電路來對電晶體1410施加偏壓。反而,會使用包含預充電電晶體1420的預充電電路以在類比電壓訊號VFD的數位化開始之前對比較器的輸出節點COMP進行預先充電。在數位化期間,可以將預充電電晶體1420關斷而不會有電流流經預充電電晶體1420。藉此,可以降低或最小化DC偏壓電流以及靜態功耗。FIG. 14 illustrates an example comparator 1400 including a pre-charge circuit in accordance with some embodiments. In the comparator 1400, the analog voltage signal VFD from the measuring capacitor can be connected to the gate of the transistor 1410, while the reference signal VRAMP can be connected to the source or (drain) of the transistor 1410. In some embodiments, the transistor 1410 can be a p-channel metal-oxide-semiconductor (PMOS) transistor without biasing the transistor 1410 using a DC bias circuit. Instead, a precharge circuit including precharged transistor 1420 is used to precharge the output node COMP of the comparator before the digitization of the analog voltage signal VFD begins. During digitization, pre-charged transistor 1420 can be turned off without current flowing through pre-charged transistor 1420. Thereby, the DC bias current as well as the static power consumption can be reduced or minimized.

比較器1400也可以包含一或多個反向器。舉例來說,如圖14所示,第一反向器可以包含電晶體1430及1440以產生寫入訊號Write,且第二反向器可以包含電晶體1450及1460以產生寫入b訊號Writeb。寫入訊號Write以及寫入b訊號Writeb可以用於將時脈計數值鎖存至像素記憶體中。於一些實施方案中,電晶體1410及1420可以具有厚閘極氧化物且操作於3.3伏特,而上述二反向器中的一或二者可以包含具有薄閘極氧化物且操作於較低電壓(例如1.8伏特或1.2伏特)的電晶體,使得寫入訊號Write及/或寫入b訊號Writeb的切換邊界可以是鋒利的,且寫入訊號Write及/或寫入b訊號Writeb的位準可以更符合包含邏輯閘組合(例如及閘1160與1170)以及記憶體裝置的數位電路的操作電壓。使用薄氧化物電晶體的動機之一在於,相較於厚氧化物電晶體,薄氧化物電晶體在像素中所佔用的面積可以較小,且亦具有較低的功耗。Comparator 1400 can also include one or more inverters. For example, as shown in FIG. 14, the first inverter may include transistors 1430 and 1440 to generate a write signal Write, and the second inverter may include transistors 1450 and 1460 to generate a write b signal Writeb. The write signal Write and the write b signal Writeb can be used to latch the clock count value into the pixel memory. In some embodiments, transistors 1410 and 1420 can have a thick gate oxide and operate at 3.3 volts, while one or both of the two inverters can include a thin gate oxide and operate at a lower voltage. The transistor (for example, 1.8 volts or 1.2 volts) can make the switching boundary of the write signal Write and/or the write B signal Writeb sharp, and the level of the write signal Write and/or the write B signal Writeb can be More consistent with the operating voltage of a digital circuit comprising a logic gate combination (eg, gates 1160 and 1170) and a memory device. One of the motivations for using thin oxide transistors is that thin oxide transistors can occupy less area in the pixel and have lower power consumption than thick oxide transistors.

圖15係依據某些實施例所繪示的圖14的示例比較器(例如圖14中所示的比較器1400)的操作的時序圖1500。圖15呈現用於控制預充電電晶體1420的預充電訊號1510、用於連接至p通道電晶體1410的源極的斜坡訊號1520、可以驅動電晶體1410的閘極的電壓訊號1530、電晶體1410的汲極的電壓訊號(即節點COMP的電壓訊號)1540、在比較器1400的第一反向器的輸出端的寫入訊號1550以及在比較器1400的第二反向器的輸出端的寫入b訊號1560。如圖15所示,在數位化操作開始前,會施加高位準的脈衝至預充電電晶體1420的閘極以導通預充電電晶體1420,藉此可以將節點COMP預先充電至一低位準(例如Vss)。在預充電操作之後,可以將預充電訊號1510設定為低位準以使預充電電晶體1420關斷,且可以開始類比至數位之轉換。在類比至數位之轉換期間,斜坡訊號1520可以逐漸增加。當斜坡訊號1520小於電壓訊號1530與電晶體1410的閾值電壓Vtp的總和時,電晶體1410可能會關斷且節點COMP的電壓訊號1540可能會處於低位準。因此,在第一反向器的輸出端的寫入訊號1550可能會處於高位準,且在第二反向器的輸出端的寫入b訊號1560可能會處於低位準。在時間t1時,斜坡訊號1520變得大於電壓訊號1530與電晶體1410的閾值電壓Vtp的總和,此時電晶體1410可能會導通以對節點COMP充電,因此節點COMP的電壓訊號1540可能會增加至高位準而可以引發第一反向器翻轉。如此一來,在一閘極延遲(gate delay)後,在第一反向器的輸出端的寫入訊號1550可能會變成低位準,且在第二反向器的輸出端的寫入b訊號1560可能會變成高位準。15 is a timing diagram 1500 of the operation of the example comparator of FIG. 14, such as comparator 1400 shown in FIG. 14, in accordance with some embodiments. 15 shows a precharge signal 1510 for controlling the precharge transistor 1420, a ramp signal 1520 for connecting to the source of the p-channel transistor 1410, a voltage signal 1530 that can drive the gate of the transistor 1410, and a transistor 1410. The voltage signal of the drain (ie, the voltage signal of the node COMP) 1540, the write signal 1550 at the output of the first inverter of the comparator 1400, and the write of the output of the second inverter of the comparator 1400 b Signal 1560. As shown in FIG. 15, before the start of the digitizing operation, a high level pulse is applied to the gate of the precharge transistor 1420 to turn on the precharge transistor 1420, whereby the node COMP can be precharged to a low level (eg, Vss). After the precharge operation, the precharge signal 1510 can be set to a low level to turn off the precharge transistor 1420 and analog to digital conversion can begin. During the analog to digital conversion, the ramp signal 1520 can be gradually increased. When the ramp signal 1520 is less than the sum of the voltage signal 1530 and the threshold voltage Vtp of the transistor 1410, the transistor 1410 may be turned off and the voltage signal 1540 of the node COMP may be at a low level. Therefore, the write signal 1550 at the output of the first inverter may be at a high level, and the write b signal 1560 at the output of the second inverter may be at a low level. At time t1, the ramp signal 1520 becomes greater than the sum of the voltage signal 1530 and the threshold voltage Vtp of the transistor 1410. At this time, the transistor 1410 may be turned on to charge the node COMP, so the voltage signal 1540 of the node COMP may increase to a high level. The level can cause the first inverter to flip. As a result, after a gate delay, the write signal 1550 at the output of the first inverter may become a low level, and the write b signal 1560 at the output of the second inverter may Will become a high standard.

如圖15所示,在量測電容的類比電壓訊號的數位化之前,預充電電晶體僅會導通一小段時間(例如約1微秒)。在訊框時間週期的其餘時間內,比較器所消耗的靜態功率可以極少甚至是沒有。因此,比較器所產生的靜態(DC)功耗可以被降低或最小化。如此一來,數位像素影像感測器的整體功耗可以被降低或最小化。As shown in Figure 15, the precharged transistor will only be turned on for a short period of time (e.g., about 1 microsecond) before the digitization of the analog voltage signal of the capacitor is measured. The comparator consumes very little or no static power during the rest of the frame time period. Therefore, the static (DC) power consumption generated by the comparator can be reduced or minimized. As a result, the overall power consumption of the digital pixel image sensor can be reduced or minimized.

因此,於此所揭示的技術可以藉由使用全域快門及每個像素的數化器,以及讀取數位值而非每個像素的類比訊號,以提升訊框速率。於此所揭示的技術亦可以使用CDS電路來減少隨機及固定的雜訊(例如偏移誤差、暗電流以及1/f雜訊),藉此提升影像感測器的靈敏度、訊雜比(SNR)、動態範圍等。於此所揭示的技術亦可以藉由使用比較器(而非複雜ADC)以及數位CDS以降低每個數位像素的尺寸,藉此可以增加數位像素影像感測器的密度以及解析度。於此所揭示的技術亦可以藉由減少數位像素操作於高功率模式的時間週期,並藉由降低數位像素的數化器中的比較器所產生的靜態(DC)功耗以降低數位像素的功耗。Thus, the techniques disclosed herein can increase the frame rate by using a global shutter and a digitizer for each pixel, as well as reading digital values instead of analog signals for each pixel. The techniques disclosed herein can also use CDS circuits to reduce random and fixed noise (eg, offset error, dark current, and 1/f noise), thereby increasing image sensor sensitivity, signal-to-noise ratio (SNR). ), dynamic range, etc. The techniques disclosed herein can also reduce the size of each digital pixel by using a comparator (rather than a complex ADC) and a digital CDS, thereby increasing the density and resolution of the digital pixel image sensor. The techniques disclosed herein can also reduce the number of pixels by reducing the time period in which the digital pixels operate in the high power mode and by reducing the static (DC) power consumption produced by the comparators in the digitizer of the digital pixels. Power consumption.

圖16係依據某些實施例所繪示的示例的數位成像方法的流程圖。舉例來說,此方法可以由數位像素影像感測器600及/或數位像素700、900、1000或1100來執行。此方法可以用於以高訊框速率來擷取數位影像訊框,且具有高靈敏度、低雜訊程度以及低功耗。數位像素影像感測器中的所有數位像素可以並行地執行所述方法。16 is a flow chart of an exemplary digital imaging method in accordance with some embodiments. For example, the method can be performed by digital pixel image sensor 600 and/or digital pixels 700, 900, 1000, or 1100. This method can be used to capture digital video frames at a high frame rate with high sensitivity, low noise level, and low power consumption. All of the digital pixels in the digital pixel image sensor can perform the method in parallel.

於方塊1610中,影像感測器中的像素的光二極體可以在曝光期期間接收光訊號。於一些實施方案中,在接收到光訊號時或之前,可以藉由例如電子快門訊號來重置像素的光二極體,電子快門訊號會控制影像感測器中的所有像素的重置。因此,影像感測器中的所有像素的光二極體可以同時由同樣的電子快門訊號(即全域電子快門)來重置。光二極體可以被重置至一直流電壓位準(例如0伏特),以將光二極體所連帶的寄生電容上的所有電荷排出。於一些實施方案中,也可以重置像是外在或寄生電容(例如浮動擴散節點)的電荷儲存裝置(即量測電容)。於一些實施方案中,可以透過重置開關(例如重置開關718或重置閘1040)以及轉移閘(例如轉移閘704或1020),以重置訊號(例如圖10中的重置訊號720或RST訊號)以及轉移閘控制訊號(例如圖10中的量測控制訊號708或TX訊號)來重置像素的光二極體。In block 1610, the photodiodes of the pixels in the image sensor can receive optical signals during the exposure period. In some embodiments, the photodiode of the pixel can be reset by, for example, an electronic shutter signal when the optical signal is received, or the electronic shutter signal controls the reset of all pixels in the image sensor. Therefore, the photodiodes of all the pixels in the image sensor can be simultaneously reset by the same electronic shutter signal (ie, the global electronic shutter). The photodiode can be reset to a DC voltage level (eg, 0 volts) to vent all of the charge on the parasitic capacitance associated with the photodiode. In some embodiments, a charge storage device (ie, a measurement capacitor) such as an external or parasitic capacitance (eg, a floating diffusion node) can also be reset. In some embodiments, the reset signal (eg, reset switch 718 or reset gate 1040) and the transfer gate (eg, transfer gate 704 or 1020) may be used to reset the signal (eg, reset signal 720 in FIG. 10 or The RST signal) and the transfer gate control signal (such as the measurement control signal 708 or the TX signal in FIG. 10) are used to reset the photodiode of the pixel.

於方塊1620中,像素可以將光訊號於電荷儲存裝置(例如FD節點)上轉換為電壓位準。在曝光期期間,光二極體可以例如藉由關斷轉移閘以從電荷儲存裝置斷開連接。光二極體可以產生電荷(例如光電子或電洞)或光電流以回應光訊號的接收。舉例來說,對於較亮的光訊號來說,光二極體可以產生較大的光電流,從而產生較多的電荷。光二極體在曝光期期間所產生的電荷可以在積分電容上聚集,或由積分電容來集成(積分)。於一些實施方案中,積分電容可以係光二極體所連帶的寄生電容及/或連接至光二極體的電路光二極體。在曝光期之後,電荷儲存裝置可以例如藉由導通轉移閘以連接至光二極體,從而將至少一部分或全部的累積電荷從積分電容轉移至電荷儲存裝置。於一些實施方案中,可以在曝光期結束之前將電荷儲存裝置重置,像是在曝光期結束前100微秒時。被轉移的電荷可以使電荷儲存裝置(例如量測電容706或FD電容1030)上的電壓訊號(或電壓位準電荷)有所成長。電壓訊號位準可與儲存在電荷儲存裝置上的電荷量有關,因此也可與光訊號的亮度或強度有關。電壓訊號位準亦可取決於電荷儲存裝置的電容值。在電荷轉移之後,電荷儲存裝置可以例如藉由關斷轉移閘以從光二極體斷開連接。In block 1620, the pixels can convert the optical signals to voltage levels on a charge storage device (eg, an FD node). During the exposure period, the photodiode can be disconnected from the charge storage device, for example by turning off the transfer gate. The photodiode can generate a charge (such as a photoelectron or a hole) or a photocurrent in response to the reception of the optical signal. For example, for a brighter optical signal, the photodiode can generate a larger photocurrent, resulting in more charge. The charge generated by the photodiode during the exposure period can be concentrated on the integrating capacitor or integrated (integrated) by the integrating capacitor. In some embodiments, the integrating capacitor can be a parasitic capacitance associated with the photodiode and/or a circuit photodiode connected to the photodiode. After the exposure period, the charge storage device can be coupled to the photodiode, for example by turning on a transfer gate, thereby transferring at least a portion or all of the accumulated charge from the integrating capacitance to the charge storage device. In some embodiments, the charge storage device can be reset before the end of the exposure period, such as 100 microseconds before the end of the exposure period. The transferred charge can cause the voltage signal (or voltage level charge) on the charge storage device (eg, measurement capacitor 706 or FD capacitor 1030) to grow. The voltage signal level can be related to the amount of charge stored on the charge storage device, and thus can also be related to the brightness or intensity of the optical signal. The voltage signal level can also depend on the capacitance value of the charge storage device. After charge transfer, the charge storage device can be disconnected from the photodiode, for example by turning off the transfer gate.

於方塊1630中,像素(詳細來說為像素的數化器中的比較器)可以從時脈計數器接收一計數值,時脈計數器會計算時脈訊號的時脈週期的數量。時脈計數器可以係全域時脈計數器,其提供多個計數值給影像感測器的多個或全部的像素。時脈計數器可以在數位化時期開始時開始進行時脈週期的計數,且可以在數位化時期開始前或是在數位化時期結束後重置至一預設值(例如0或大於0的數值)。In block 1630, the pixel (specifically, the comparator in the digitizer of the pixel) can receive a count value from the clock counter, which calculates the number of clock cycles of the clock signal. The clock counter can be a global clock counter that provides a plurality of count values to a plurality or all of the pixels of the image sensor. The clock counter can start counting the clock cycle at the beginning of the digitizing period, and can be reset to a preset value (for example, a value of 0 or greater than 0) before the start of the digitizing period or after the end of the digitizing period. .

於方塊1640中,像素的比較器可以將電荷儲存裝置上的電壓位準與斜坡訊號進行比對。隨著時脈週期的數量增加,斜坡訊號的電壓位準可以線性地上升(即向上傾斜)或下降(即向下傾斜)。於一些實施例中,斜坡訊號可以係由全域參考訊號產生器所產生。舉例來說,於一些實施方案中,DAC可以使用時脈計數器的計數值(所計算的時脈週期數量)作為輸入以產生斜坡訊號,且影像感測器的多個或全部像素的比較器可以使用此斜坡訊號作為參考訊號。在電荷儲存裝置上的電壓位準被傳送至比較器之前,可以例如使用選擇訊號來感測此電壓位準,並例如藉由前述之源極隨耦放大器或緩衝器來將此電壓位準放大。當斜坡訊號低於(或對於下坡訊號來說係高於)從電荷儲存裝置所感測到(及放大)的電壓位準時,比較器的輸出會處於低位準(或在一些實施方案中係高位準)。隨著時脈週期的數量增加,斜坡訊號可以逐漸地上升(或對於向下坡訊號來說係下降)。In block 1640, the comparator of the pixel can compare the voltage level on the charge storage device to the ramp signal. As the number of clock cycles increases, the voltage level of the ramp signal can rise linearly (ie, tilt up) or fall (ie, tilt down). In some embodiments, the ramp signal can be generated by a global reference signal generator. For example, in some embodiments, the DAC can use the count value of the clock counter (the calculated number of clock cycles) as an input to generate a ramp signal, and the comparator of multiple or all pixels of the image sensor can Use this ramp signal as a reference signal. Before the voltage level on the charge storage device is transferred to the comparator, the voltage level can be sensed, for example, using a selection signal, and the voltage level is amplified, for example, by the aforementioned source-coupled amplifier or buffer. . When the ramp signal is below (or is higher for a downhill signal) the voltage level sensed (and amplified) from the charge storage device, the output of the comparator will be at a low level (or in some embodiments high) quasi). As the number of clock cycles increases, the ramp signal can gradually rise (or decrease for down-slope signals).

於方塊1650中,當斜坡訊號達到等於或大於(或對於向下坡訊號來說係低於)從電荷儲存裝置所感測到的電壓位準(例如相差一個電晶體的閾值電壓)時,比較器的輸出可能會改變狀態,像是從低位準翻轉或切換至高位準。In block 1650, the comparator is when the ramp signal reaches a voltage level that is equal to or greater than (or is lower for the downslope signal) from the charge storage device (eg, a threshold voltage that differs by one transistor) The output may change state, such as flipping from a low level or switching to a high level.

於方塊1660中,在比較器的輸出狀態改變(例如翻轉或切換)的時間點時的時脈計數器的計數值可以被儲存為第一數位值,例如存於像素記憶體中的n位元區塊之中。第一數位值可以對應於在像素的光訊號的強度。影像感測器的每個像素的第一數位值可以逐行地讀取出來以形成數位影像訊框。In block 1660, the count value of the clock counter at the point in time when the output state of the comparator changes (eg, flips or switches) may be stored as a first digit value, such as an n-bit region stored in pixel memory. Among the blocks. The first digit value may correspond to the intensity of the optical signal at the pixel. The first digit value of each pixel of the image sensor can be read line by line to form a digital image frame.

於一些實施方案中,在電荷儲存裝置於曝光期結束前的時間點重置之後,可以利用比較器、時脈計數器以及參考訊號產生器所產生的第二斜坡訊號,以類似於將與光訊號關連的電壓位準數位化的方式,來將電荷儲存裝置的電壓位準數位化至第二數位值。第一數位值與第二數位值之間的差值可以更準確地表示在像素處的光訊號的強度。In some embodiments, after the charge storage device is reset at a time point before the end of the exposure period, the second ramp signal generated by the comparator, the clock counter, and the reference signal generator can be utilized to be similar to the optical signal. The associated voltage level is digitized to digitize the voltage level of the charge storage device to a second digit value. The difference between the first digit value and the second digit value can more accurately represent the intensity of the optical signal at the pixel.

本發明的多個實施例可以包含人造實境系統或與其一起實施。係一種在呈現給使用者之前已經以某種方式進行調整的實境的形式,可以包含例如虛擬實境(VR)、擴增實境(AR)、混合實境(MR或hybrid reality)或它們的一些組合及/或衍生物。人造實境內容可以包含完全被生成的內容或是被生成的內容結合於所擷取的內容(例如從真實世界擷取)。人造實境內容可以包含錄像、音頻、觸覺反饋或它們的一些組合,且其中任一者可以在單通道或多通道中呈現(例如產生三維效果的立體錄像給觀眾)。此外,於一些實施例中,人造實境可以連結於應用程式、產品、配件、服務或它們的一些組合,其例如用於在人造實境中創建內容且/或於人造實境中以其他方式使用(例如執行其中的活動)。提供人造實境內容的人造實境系統可以實行於各種平台上,包含連接至主機系統的頭戴式顯示器(HMD)、獨立式HMD、行動裝置或計算系統,或是其他任何能夠提供人造實境內容給一或多個觀看者的硬體平台。Various embodiments of the invention may comprise or be implemented with an artificial reality system. A form of reality that has been adjusted in some way before being presented to the user, and may include, for example, virtual reality (VR), augmented reality (AR), mixed reality (MR or hybrid reality), or Some combinations and/or derivatives. Artificial reality content can contain fully generated content or generated content combined with the captured content (eg, retrieved from the real world). The artificial reality content may include video, audio, tactile feedback, or some combination thereof, and any of them may be presented in a single channel or in multiple channels (eg, a stereoscopic video that produces a three-dimensional effect to the viewer). Moreover, in some embodiments, the artificial reality may be linked to an application, product, accessory, service, or some combination thereof, such as for creating content in a human reality and/or otherwise in an artificial reality. Use (for example, perform activities in it). Artificial reality systems that provide artificial reality content can be implemented on a variety of platforms, including head-mounted displays (HMDs) connected to host systems, stand-alone HMDs, mobile devices or computing systems, or any other capable of providing artificial reality. Content to a hardware platform for one or more viewers.

圖17係依據某些實施例所繪示的包含近眼顯示器1720的示例人造實境系統環境1700的簡化方塊圖。圖17中所示的人造實境系統環境1700可以包含近眼顯示器1720、外部成像裝置1750以及輸入輸出介面1740,其中上述元件各耦接至控制台1710。儘管圖17所顯示的示例人造實境系統環境1700包含一個近眼顯示器1720、一個外部成像裝置1750及一個輸入輸出介面1740,人造實境系統環境1700可以包含任何數量的上述元件,或者可以省略任何的上述元件。舉例來說,與控制台1710通訊的一或多個外部成像裝置1750可以監控多個近眼顯示器1720。於替代的配置方案中,人造實境系統環境1700中可以包含與上述不同或額外的元件。17 is a simplified block diagram of an example artificial reality system environment 1700 including a near-eye display 1720, in accordance with some embodiments. The artificial reality system environment 1700 shown in FIG. 17 can include a near-eye display 1720, an external imaging device 1750, and an input-output interface 1740, each of which is coupled to a console 1710. Although the example artificial reality system environment 1700 shown in FIG. 17 includes a near-eye display 1720, an external imaging device 1750, and an input-output interface 1740, the artificial reality system environment 1700 can include any number of the above-described elements, or can omit any The above components. For example, one or more external imaging devices 1750 in communication with console 1710 can monitor a plurality of near-eye displays 1720. In an alternative configuration, the artificial reality system environment 1700 can include different or additional components than those described above.

近眼顯示器1720可以係頭戴式顯示器(head-mounted display,HMD)呈現內容給使用者。由近眼顯示器1720所呈現的媒體的例子包含影像、錄像、音頻中的一或多個,或它們的一些組合。於一些實施例中,音頻可以透過外部裝置來呈現(例如喇叭及/或耳機),其自近眼顯示器1720、控制台(console)1710或所述兩者接收音頻資訊,且依據音頻資訊來呈現音頻資料。近眼顯示器1720可以包含一或多個剛體,可以剛性地或非剛性地耦接於彼此。多個剛體間的剛性耦接可以使得這些耦接的剛體作為一個單一的剛性實體。多個剛體間的非剛性耦接可以使得這些剛體能夠彼此相對移動。於各種實施例中,近眼顯示器1720可以由任何合適的形式來實施,包括一副眼鏡的形式。近眼顯示器1720的某些實施例將於後佐圖2及3以進一步說明。此外,於各種實施例中,於此所述的功能性可以使用於耳機中,其光學地或電子地結合近眼顯示器1720外部的環境影像與從控制台1710或者從其他任何產生並提供內容至使用者的控制台所接收到的內容。因此,近眼顯示器1720可以用所產生的內容(例如影像、錄像、聲音等)來擴增近眼顯示器1720外部的實體、真實世界環境的影像,以呈現擴增實境給使用者。The near-eye display 1720 can be a head-mounted display (HMD) to present content to the user. Examples of media presented by near-eye display 1720 include one or more of images, video, audio, or some combination thereof. In some embodiments, the audio may be presented via an external device (eg, a speaker and/or earphone) that receives audio information from the near-eye display 1720, console 1710, or both, and presents the audio based on the audio information. data. The near-eye display 1720 can include one or more rigid bodies that can be coupled to each other rigidly or non-rigidly. The rigid coupling between the plurality of rigid bodies can make these coupled rigid bodies act as a single rigid body. The non-rigid coupling between the plurality of rigid bodies can enable the rigid bodies to move relative to each other. In various embodiments, the near-eye display 1720 can be implemented in any suitable form, including in the form of a pair of glasses. Some embodiments of the near-eye display 1720 will be further illustrated in Figures 2 and 3 below. Moreover, in various embodiments, the functionality described herein can be used in an earphone that optically or electronically combines environmental images external to the near-eye display 1720 with and from the console 1710 or from any other source to use. The content received by the console. Therefore, the near-eye display 1720 can augment the image of the entity, real-world environment outside the near-eye display 1720 with the generated content (eg, image, video, sound, etc.) to present the augmented reality to the user.

於各種實施例中,近眼顯示器1720可以包含顯示電子元件1722、顯示光學元件1724、一或多個定位物1726、一或多個位置感測器1728、眼動追蹤單元1730以及慣性量測單元(inertial measurement unit,IMU)1732之中的一或多者。於各種實施例中,近眼顯示器1720可以省略任何這些元件,或包含額外的元件。此外,於一些實施例中,近眼顯示器1720可以包含組合圖17所示的各種元件的功能的元件。In various embodiments, the near-eye display 1720 can include display electronics 1722, display optics 1724, one or more locators 1726, one or more position sensors 1728, an eye tracking unit 1730, and an inertial measurement unit ( One or more of the inertial measurement unit (IMU) 1732. In various embodiments, the near-eye display 1720 can omit any of these elements or include additional elements. Moreover, in some embodiments, the near-eye display 1720 can include elements that combine the functions of the various elements shown in FIG.

顯示電子元件1722可以依據從控制台1710接收到的資料來顯示影像給使用者。於各種實施例中,顯示電子元件1722可以包含用於產生虛擬或真實物體的影像的電路,及/或用於驅動顯示光學元件1724的某些元件(像是詳述如後的電子控向鏡(electrically steerable mirror))的電路。於一些實施例中,顯示電子元件1722可以包含一或多個顯示面板,像是液晶顯示器(LCD)、液晶覆矽(LCOS)顯示器、有機發光二極體(OLED)顯示器、微發光二極體(mLED)顯示器、主動矩陣有機發光二極體顯示器(AMOLED)、穿透式有機發光二極體顯示器(TOLED)、數位微型反射鏡裝置(DMD)或一些其他的顯示器。於近眼顯示器1720的一實施方案中,顯示電子元件1722可以包含TOLED面板,其可以包含子像素以發出主色光,例如紅、綠、藍、白或黃。於一些實施方案中,顯示電子元件1722可以透過二維面板產生的立體效應來顯示3D影像,以創建影像深度的主觀認知(subjective perception)。舉例來說,顯示電子元件1722可以包含分別位於使用者的左眼及右眼前方的左顯示器及右顯示器。所述左顯示器及右顯示器可以呈現彼此相對平移的影像複本,以產生立體效果。Display electronics 1722 can display images to the user based on the information received from console 1710. In various embodiments, display electronics 1722 can include circuitry for generating an image of a virtual or real object, and/or certain components for driving display optics 1724 (such as an electronic steering mirror as detailed below) (electrically steerable mirror)) circuit. In some embodiments, display electronic component 1722 can include one or more display panels, such as a liquid crystal display (LCD), a liquid crystal overlay (LCOS) display, an organic light emitting diode (OLED) display, a micro LED. (mLED) display, active matrix organic light emitting diode display (AMOLED), transmissive organic light emitting diode display (TOLED), digital micro mirror device (DMD) or some other display. In an embodiment of the near-eye display 1720, the display electronics 1722 can comprise a TOLED panel that can include sub-pixels to emit primary color light, such as red, green, blue, white, or yellow. In some embodiments, display electronics 1722 can display 3D images through the steric effects produced by the two-dimensional panel to create subjective perception of image depth. For example, display electronics 1722 can include left and right displays that are respectively located in front of the user's left and right eyes. The left display and the right display may present image copies that are translated relative to each other to produce a stereoscopic effect.

於某種實施例中,顯示光學元件1724可以光學地顯示影像內容(例如利用光波導器與耦合器),或是將從顯示電子元件1722接收到的影像光放大,校正與影像光相關的光學誤差,結合來自顯示電子元件1722的影像光與環境,並將校正且結合過的影像光呈現給近眼顯示器1720的使用者。於各種實施例中,顯示光學元件1724可以包含一或多個光學元件。光學元件的例子可以包含基板、光波導器(optical waveguide)、光圈(aperture)、菲涅耳透鏡(Fresenel len)、凸透鏡、凹透鏡、濾光器、繞射光學元件,或會影響來自顯示電子元件1722以及環境的影像光的任何其他適合的光學元件。顯示光學元件1724可以包含不同光學元件的組合以及機械耦合,以保持組合中的光學元件的相對間隔及指向。顯示光學元件1724中的一或多個光學元件可以具有光學塗層,像是抗反射塗層、反射塗層、濾波塗層或是不同光學塗層的組合。In some embodiments, display optical component 1724 can optically display image content (eg, using an optical waveguide and coupler), or amplify image light received from display electronic component 1722 to correct optical associated with the image light. The error, combined with the image light from the display electronics 1722 and the environment, presents the corrected and combined image light to the user of the near-eye display 1720. In various embodiments, display optical element 1724 can include one or more optical elements. Examples of optical components may include substrates, optical waveguides, apertures, Fresnel lenses, convex lenses, concave lenses, filters, diffractive optical elements, or may affect from display electronic components. 1722 and any other suitable optical component of the ambient image light. Display optics 1724 can include a combination of different optical elements as well as mechanical coupling to maintain the relative spacing and orientation of the optical elements in the combination. One or more optical elements in display optics 1724 can have an optical coating such as an anti-reflective coating, a reflective coating, a filter coating, or a combination of different optical coatings.

顯示光學元件1724所執行的影像光的放大可以使得顯示電子元件1722相較於大型顯示器來說具有更小的體積、更輕的重量以及更少的功耗。此外,放大處理可以提升顯示內容的視場。於一些實施例中,顯示光學元件1724的有效焦距可以大於顯示光學元件1724與顯示電子元件1722之間的間隔,以將顯示電子元件1722所投射的影像光放大。藉由從顯示光學元件1724增加或移除光學元件,可以調整顯示光學元件1724對影像光的放大程度。The amplification of the image light performed by display optics 1724 can result in display electronics 1722 having a smaller volume, lighter weight, and less power consumption than larger displays. In addition, the enlargement process can enhance the field of view of the displayed content. In some embodiments, the effective focal length of display optical element 1724 can be greater than the spacing between display optical element 1724 and display electronic component 1722 to amplify the image light projected by display electronic component 1722. The degree of magnification of the image light by display optical element 1724 can be adjusted by adding or removing optical elements from display optical element 1724.

顯示光學元件1724可以被設計以校正一或多個光學誤差,像是二維光學誤差、三維光學誤差或其組合。二維誤差可以包含發生於二維度中的光學像差。二維誤差的示例類型可以包含桶型失真(barrel distortion)、針墊失真(pincushion distortion)、縱向色像差(longitudinal chromatic aberration)以及橫向色相差(transverse chromatic aberration)。三維誤差可以包含發生於三維度中的光學像差。三維誤差的示例類型可以包含球形像差(spherical aberration)、彗形像差(comatic aberration)、視場彎曲像差(field curvature)以及散光(astigmatism)。於一些實施例中,提供至顯示電子元件1722以顯示的內容可能會預先有所失真,而顯示光學元件1724可以在從顯示電子元件1722接收到依據預先失真的內容所產生的影像光時,對失真的部分進行校正。Display optics 1724 can be designed to correct for one or more optical errors, such as two-dimensional optical errors, three-dimensional optical errors, or a combination thereof. The two-dimensional error can include optical aberrations that occur in two dimensions. Example types of two-dimensional errors may include barrel distortion, pincushion distortion, longitudinal chromatic aberration, and transverse chromatic aberration. The three-dimensional error can include optical aberrations that occur in three dimensions. Example types of three-dimensional errors may include spherical aberration, comatic aberration, field curvature, and astigmatism. In some embodiments, the content provided to the display electronic component 1722 for display may be pre-distorted, and the display optical component 1724 may receive image light generated from the pre-distorted content from the display electronic component 1722, The distortion is corrected.

多個定位物1726可以係彼此相對並相對於近眼顯示器1720上的參考點地設置於近眼顯示器1720上多個特定位置的物體。控制台1710可以辨識由外部成像裝置1750所擷取的影像中的定位物1726,以判斷人造實境的耳機位置、指向或所述二者。定位物1726可以係發光二極體(LED)、直角反射器(corner cube reflector)、反射標誌、與近眼顯示器1720運作的環境形成對比的光源,或某些這些元件的組合。於定位物1726為主動式元件(例如LED或其他類型的發光裝置)的實施例中,定位物1726所發出的光可以在可視光波段(例如約380奈米至750奈米)、紅外(IR)光波段(例如約750奈米至17奈米)、紫外光波段(例如約170奈米至約380奈米)、電磁波譜的其他部分波段或是電磁波譜的多個部分波段的任何組合中。The plurality of locators 1726 can be disposed at a plurality of specific locations on the near-eye display 1720 relative to each other and relative to a reference point on the near-eye display 1720. The console 1710 can identify the location 1726 in the image captured by the external imaging device 1750 to determine the location, pointing, or both of the artificial reality. The locator 1726 can be a light emitting diode (LED), a corner cube reflector, a reflective marker, a light source that contrasts with the environment in which the near-eye display 1720 operates, or a combination of some of these components. In embodiments where the locator 1726 is an active component (eg, an LED or other type of illuminating device), the light emitted by the locator 1726 can be in the visible light band (eg, about 380 nm to 750 nm), infrared (IR). ) in any combination of optical bands (eg, about 750 nm to 17 nm), ultraviolet bands (eg, about 170 nm to about 380 nm), other portions of the electromagnetic spectrum, or multiple partial bands of the electromagnetic spectrum .

外部成像裝置1750可以基於從控制台1710所接收的校正參數來產生慢校正資料。慢校正資料可以包含一或多個影像,顯示可以藉由外部成像裝置1750來偵測的定位物1726的被觀測位置。外部成像裝置1750可以包含一或多個照相機、一或多個攝相機、任何其他能夠擷取包含一或多個定位物1726的影像的裝置,或上述元件的某些組合。此外,外部成像裝置1750可以包含一或多個濾波器(例如用於提高訊雜比)。外部成像裝置1750可以用於偵測在外部成像裝置1750的視場中定位物1726所發出或反射的光。於定位物1726包含被動式元件像是回反射器(retroreflector)的實施例中,外部成像裝置1750可以包含照射一些或所有定位物1726的光源,定位物1726可以將光回反射至外部成像裝置1750中的光源。慢校正資料可以從外部成像裝置1750傳送至控制台1710,且外部成像裝置1750可以從控制台1710接收一或多個校正參數以調整一或多個成像參數(例如焦距、焦點、訊框速率、感測器溫度、快門速度、光圈等)。The external imaging device 1750 can generate slow correction data based on the correction parameters received from the console 1710. The slow correction data can include one or more images showing the observed position of the location 1726 that can be detected by the external imaging device 1750. External imaging device 1750 can include one or more cameras, one or more cameras, any other device capable of capturing images containing one or more locators 1726, or some combination of the above. Additionally, external imaging device 1750 can include one or more filters (eg, for increasing the signal to noise ratio). External imaging device 1750 can be used to detect light emitted or reflected by position 1726 in the field of view of external imaging device 1750. In embodiments where the locator 1726 includes a passive element such as a retroreflector, the external imaging device 1750 can include a light source that illuminates some or all of the locators 1726, which can reflect light back into the external imaging device 1750. Light source. The slow correction data can be transmitted from the external imaging device 1750 to the console 1710, and the external imaging device 1750 can receive one or more calibration parameters from the console 1710 to adjust one or more imaging parameters (eg, focal length, focus, frame rate, Sensor temperature, shutter speed, aperture, etc.).

位置感測器1728可以產生一或多個量測訊號以回應近眼顯示器1720的動作。位置感測器1728的例子可以包含加速器、陀螺儀、磁力計、其他動作偵測或誤差校正感測器,或上述元件的某些組合。舉例來說,於一些實施例中,位置感測器1728可以包含多個加速器以量測平移動作(例如向前/向後/向上/向下/向左/向右)以及多個陀螺儀以量測旋轉動作(例如俯仰、偏航或滾動)。於一些實施例中,各種位置感測器可以彼此正交定向。Position sensor 1728 can generate one or more measurement signals in response to the action of near-eye display 1720. Examples of position sensor 1728 may include an accelerator, a gyroscope, a magnetometer, other motion detection or error correction sensors, or some combination of the above. For example, in some embodiments, position sensor 1728 can include multiple accelerators to measure translational motion (eg, forward/backward/upward/downward/leftward/rightward) and multiple gyroscopes in volume Rotate motion (such as pitch, yaw, or scroll). In some embodiments, the various position sensors can be oriented orthogonal to one another.

IMU1732可以係基於從一或多個位置感測器1728接收到的量測訊號來產生快校正資料的電子裝置。位置感測器1728可以設置於IMU1732外、IMU1732內,或其某組合。基於來自一或多個位置感測器1728的一或多個量測訊號,IMU1732可以產生快校正資料,快校正資料表示近眼顯示器1720相對於其初始位置的估計位置。舉例來說,IMU1732可以將從加速器接收到的量測訊號隨時間積分以估計速率向量,且可以將速率向量隨時間積分以決定近眼顯示器1720上的參考點的估計位置。此外,IMU1732可以將採樣的量測訊號提供至控制台1710,控制台1710可以決定快校正資料。雖然通常可以將參考點定義為空間中的一點,於各種實施例中,也可以將參考點定義為近眼顯示器1720內的一點(例如IMU1732的中心)。The IMU 1732 can be an electronic device that generates fast correction data based on measurement signals received from one or more position sensors 1728. The position sensor 1728 can be disposed outside of the IMU 1732, within the IMU 1732, or some combination thereof. Based on one or more measurement signals from one or more position sensors 1728, the IMU 1732 can generate fast correction data that represents the estimated position of the near-eye display 1720 relative to its initial position. For example, the IMU 1732 can integrate the measurement signal received from the accelerator over time to estimate the rate vector, and can integrate the rate vector over time to determine an estimated position of the reference point on the near-eye display 1720. In addition, the IMU 1732 can provide sampled measurement signals to the console 1710, which can determine the fast calibration data. While a reference point can generally be defined as a point in space, in various embodiments, the reference point can also be defined as a point within the near-eye display 1720 (eg, the center of the IMU 1732).

眼動追蹤單元1730可以包含一或多個眼動追蹤系統。眼動追蹤系統可以包含成像系統以形成一或多個眼睛的影像,且可以選擇性地包含發光器,發光器可以產生指向眼睛的光,使得由眼睛反射的光可以被成像系統擷取。舉例來說,眼動追蹤單元1730可以包含所發射的光係在可見光譜或紅外光譜中的同調光源(例如雷射二極體)以及會擷取使用者的眼睛所反射的光的鏡頭。以另一例子來說,眼動追蹤單元1730可以擷取經反射的無線電波,其中無線電波係由微型雷達單元所發出。眼動追蹤單元1730可以使用低功率發光器,以不會傷害眼睛或造成身體不適的頻率極強度來發光。眼動追蹤單元1730可以被設置以增加由眼動追蹤單元1730所擷取的眼睛影像中的對比度,同時減少眼動追蹤單元1730所消耗的總功率(例如降低眼動追蹤單元1730中包含的發光器及成像系統所消耗的功率)。舉例來說,於一些實施方案中,眼動追蹤單元1730可以消耗少於1700毫瓦的功率。The eye tracking unit 1730 can include one or more eye tracking systems. The eye tracking system can include an imaging system to form an image of one or more eyes, and can optionally include an illuminator that can generate light directed at the eye such that light reflected by the eye can be captured by the imaging system. For example, the eye tracking unit 1730 can include a coherent light source (eg, a laser diode) of the emitted light system in the visible or infrared spectrum and a lens that can capture light reflected by the user's eyes. In another example, the eye tracking unit 1730 can capture reflected radio waves, where the radio waves are emitted by the micro radar unit. The eye tracking unit 1730 can use a low power illuminator to illuminate at a very high frequency that does not harm the eye or cause physical discomfort. The eye tracking unit 1730 can be configured to increase the contrast in the eye image captured by the eye tracking unit 1730 while reducing the total power consumed by the eye tracking unit 1730 (eg, reducing the illumination included in the eye tracking unit 1730). And the power consumed by the imaging system). For example, in some embodiments, the eye tracking unit 1730 can consume less than 1700 milliwatts of power.

眼動追蹤單元1730可以用於估計使用者眼睛的指向。眼睛的指向可以對應於使用者在近眼顯示器1720內的注視方向。使用者眼睛的指向可以定義為中央窩軸(foveal axis)的方向,中央窩軸為在中央窩(fovea,在眼睛的視網膜上具有最高濃度的感光體的區域)以及眼睛瞳孔中心之間的軸。一般而言,當使用者的眼睛固視於一點時,使用者的兩隻眼睛的中央窩軸會與此點相交。眼睛的瞳孔軸(pupillary axis)可以定義為通過瞳孔中心且垂直於角膜平面的軸。一般而言,即使瞳孔軸與中央窩軸相交於瞳孔的中心,瞳孔軸也可能不會直接與中央窩軸對齊。於某些眼動追蹤的實施例中,由於中央窩軸係依據位於眼睛後部的中央窩而定義,可能難以或不可能直接量測中央窩軸。因此,於一些實施例中,瞳孔軸的指向可以偵測得到,而中央窩軸則可能要基於偵測到的瞳孔軸來估量。Eye tracking unit 1730 can be used to estimate the orientation of the user's eyes. The pointing of the eye may correspond to the direction of gaze of the user within the near-eye display 1720. The orientation of the user's eye can be defined as the direction of the foveal axis, which is the axis between the fovea (the area with the highest concentration of photoreceptors on the retina of the eye) and the center of the pupil of the eye. . In general, when the user's eyes are fixed at one point, the central fovea of the user's two eyes will intersect this point. The pupil axis of the eye can be defined as the axis that passes through the center of the pupil and is perpendicular to the plane of the cornea. In general, even if the pupil axis intersects the central socket axis at the center of the pupil, the pupil axis may not be directly aligned with the central socket axis. In some eye tracking embodiments, since the foveal axis is defined by the fovea located at the back of the eye, it may be difficult or impossible to directly measure the fovea. Thus, in some embodiments, the orientation of the pupil axis can be detected, and the central socket axis may be estimated based on the detected pupil axis.

舉例來說,近眼顯示器1720可以利用眼睛的指向以判斷使用者的瞳距(inter-pupillary distance,IPD);判斷注視方向;引入深度線索(例如將使用者主要視線之外的影像模糊化);收集人造實境媒介中的使用者互動上的啟發式演算法(heuristics)(例如花費在作為暴露刺激物的功能的任何特定的主體、客體或訊框上的時間)、部分基於使用者的至少一隻眼睛的指向的一些其他功能,或它們的某組合。由於眼動追蹤單元1730可以判斷使用者的兩隻眼睛的指向,因此其能夠判斷使用者看向何處。舉例來說,使用者的注視方向的判斷可以包含基於已判定的使用者的左眼及右眼的指向來判斷一會聚點。會聚點可以係使用者眼睛的兩個中央窩軸的交點(或兩軸之間的最近點)。使用者的注視方向可以係通過會聚點以及使用者眼睛的瞳孔之間的中間點的線的方向。For example, the near-eye display 1720 can utilize the pointing of the eye to determine the inter-pupillary distance (IPD) of the user; determine the direction of the gaze; and introduce a depth cues (eg, blur the image outside the main line of sight of the user); Collecting heuristics on user interactions in artificial reality media (eg, time spent on any particular subject, object, or frame that is a function of exposing stimuli), based at least on the user's Some other features of an eye pointing, or some combination of them. Since the eye tracking unit 1730 can determine the orientation of the user's two eyes, it can determine where the user looks. For example, the determination of the gaze direction of the user may include determining a convergence point based on the determined orientations of the left and right eyes of the user. The point of convergence may be the intersection of the two fovea axes of the user's eyes (or the closest point between the two axes). The direction of the user's gaze may be the direction of the line passing through the convergence point and the intermediate point between the pupils of the user's eyes.

輸入輸出介面1740可以係供使用者來發送動作要求至控制台1710的裝置。動作要求可以係執行特定動作的要求。舉例來說,動作要求可以係開始或結束一應用程式,或執行應用程式內的特定動作。輸入輸出介面1740可以包含一或多個輸入裝置。示例的輸入裝置可以包含鍵盤、滑鼠、遊戲控制器、手套、按鈕、觸控螢幕,或是用於接收動作要求並將接收的動作要求傳送至控制台1710的任何其它合適的裝置。輸入輸出介面1740所接收的動作要求可以被傳送至控制台1710,控制台1710可以執行對應於所要求動作的動作。於一些實施例中,輸入輸出介面1740可以依據從控制台1710接收到的指令來提供觸覺反饋給使用者。舉例來說,當動作要求被接受時,或者控制台1710已經執行所要求的動作並傳送指令至輸入輸出介面1740時,輸入輸出介面1740可以提供觸覺反饋。The input and output interface 1740 can be a device for the user to send an action request to the console 1710. Action requirements can be requirements for performing specific actions. For example, an action request can start or end an application or perform a specific action within the application. Input and output interface 1740 can include one or more input devices. An exemplary input device can include a keyboard, mouse, game controller, glove, button, touch screen, or any other suitable device for receiving an action request and transmitting the received action request to the console 1710. The action requirements received by the input and output interface 1740 can be communicated to the console 1710, which can perform actions corresponding to the desired action. In some embodiments, the input and output interface 1740 can provide haptic feedback to the user in accordance with instructions received from the console 1710. For example, the input and output interface 1740 can provide tactile feedback when the action request is accepted, or the console 1710 has performed the required action and transmitted an instruction to the input and output interface 1740.

控制台1710可以依據從外部成像裝置1750、近眼顯示器1720及輸入輸出介面1740之中的一或多者所接收到的資訊,來提供用於呈現給使用者的內容至近眼顯示器1720。於圖17所示的例子中,控制台1710可以包含應用程式商店1712、耳機追蹤模組1714、人造實境發動機1716以及眼動追蹤模組1718。控制台1710的一些實施例可以包含與圖17所描述的不同或額外的模組。以下所進一步描述的功能可以透過與本文所描述的方式不同的方式分佈在控制台1710的元件之間。The console 1710 can provide content for presentation to the user to the near-eye display 1720 based on information received from one or more of the external imaging device 1750, the near-eye display 1720, and the input-output interface 1740. In the example shown in FIG. 17, the console 1710 can include an application store 1712, an earphone tracking module 1714, an artificial reality engine 1716, and an eye tracking module 1718. Some embodiments of console 1710 may include different or additional modules than those depicted in FIG. The functions described further below may be distributed between elements of console 1710 in a manner different than that described herein.

於一些實施例中,控制台1710可以包含處理器及非暫態電腦可讀取儲存媒體,其中非暫態電腦可讀取儲存媒體儲存有多個可由處理器執行的指令。處理器可以包含多個處理單元並行地執行指令。電腦可讀取儲存媒體可以係任何記憶體,像是硬碟驅動裝置、可移動式記憶體或固態硬碟(例如快閃記憶體或動態隨機存取記憶體(DRAM))。於各種實施例中,結合圖17以描述的控制台1710的模組可以被編碼為於非暫態電腦可讀取儲存媒體中的指令,當所述指令由處理器來執行時,其會使得處理器執行以下進一步描述之功能。In some embodiments, the console 1710 can include a processor and a non-transitory computer readable storage medium, wherein the non-transitory computer readable storage medium stores a plurality of instructions executable by the processor. The processor can include a plurality of processing units to execute the instructions in parallel. The computer readable storage medium can be any type of memory, such as a hard disk drive, a removable memory or a solid state drive (such as a flash memory or a dynamic random access memory (DRAM)). In various embodiments, the modules of console 1710 described in connection with FIG. 17 can be encoded as instructions in a non-transitory computer readable storage medium that, when executed by a processor, cause The processor performs the functions described further below.

應用程式商店1712可以儲存一或多個應用程式供控制台1710來執行。一個應用程式可以包含一組指令,其在由處理器來執行時,會產生內容以呈現給使用者。應用程式所產生的內容可以回應於從使用者端,透過使用者的眼睛運動,所接收到的輸入,或是從輸入輸出介面1740接收到的輸入。應用程式的例子可以包含遊戲應用程式、會議應用程式、影像回放應用程式或其他合適的應用程式。The application store 1712 can store one or more applications for execution by the console 1710. An application can contain a set of instructions that, when executed by the processor, produce content for presentation to the user. The content generated by the application can be responsive to input from the user, through the user's eye movement, received input, or input received from the input and output interface 1740. Examples of applications can include game applications, conferencing applications, video playback applications, or other suitable applications.

耳機追蹤模組1714可以利用來自外部成像裝置1750的慢或快校正資料來追蹤近眼顯示器1720的移動。舉例來說,耳機追蹤模組1714可以利用來自慢校正資料的觀測定位物以及近眼顯示器1720的模型來判斷近眼顯示器1720的參考點的位置。耳機追蹤模組1714可以利用來自快校正資料的位置資訊來判斷近眼顯示器1720的參考點的位置。此外,於一些實施例中,耳機追蹤模組1714可以使用部分的快校正資料、慢校正資料或二者之某些組合,來預測近眼顯示器1720的未來位置。耳機追蹤模組1714可以提供近眼顯示器1720的估計或預測的未來位置至人造實境發動機1716。The earphone tracking module 1714 can utilize the slow or fast correction data from the external imaging device 1750 to track the movement of the near-eye display 1720. For example, the earphone tracking module 1714 can utilize the observations from the slow correction data and the model of the near-eye display 1720 to determine the position of the reference point of the near-eye display 1720. The headset tracking module 1714 can utilize the location information from the fast calibration data to determine the location of the reference point of the near-eye display 1720. Moreover, in some embodiments, the headset tracking module 1714 can use a portion of the fast correction data, slow correction data, or some combination of the two to predict the future location of the near-eye display 1720. The headset tracking module 1714 can provide an estimated or predicted future location of the near-eye display 1720 to the artificial reality engine 1716.

耳機追蹤模組1714可以使用一或多個校正參數來校正人造實境系統環境1700,且可以調整一或多個校正參數以降低判斷近眼顯示器1720位置的誤差。舉例來說,耳機追蹤模組1714可以調整外部成像裝置1750的焦點以取得觀測定位物在近眼顯示器1720上更精準的位置。此外,耳機追蹤模組1714所執行的校正亦可以考量從IMU1732所接收的資訊。另外,若近眼顯示器1720的追蹤迷失時(例如外部成像裝置1750遺失至少閾值數量的定位物1726的視線),耳機追蹤模組1714可以重新校正一些或全部的校正參數。The headset tracking module 1714 can use one or more correction parameters to correct the artificial reality system environment 1700, and can adjust one or more calibration parameters to reduce the error in determining the position of the near-eye display 1720. For example, the earphone tracking module 1714 can adjust the focus of the external imaging device 1750 to obtain a more accurate position of the observed position on the near-eye display 1720. In addition, the corrections performed by the headset tracking module 1714 can also take into account the information received from the IMU 1732. Additionally, if the tracking of the near-eye display 1720 is lost (eg, the external imaging device 1750 loses at least a threshold number of lines of sight 1726), the earphone tracking module 1714 can recalibrate some or all of the calibration parameters.

人造實境發動機1716可以執行人造實境系統環境1700內的應用程式,並從耳機追蹤模組1714接收近眼顯示器1720的位置資訊、近眼顯示器1720的加速度資訊、近眼顯示器1720的速度資訊、近眼顯示器1720的預測未來位置,或上述資訊中的一些組合。人造實境發動機1716也可以從眼動追蹤模組1718接收估測的眼睛位置及指向資訊。基於所接收到的資訊,人造實境發動機1716可以決定提供給近眼顯示器1720以呈現給使用者的內容。舉例來說,若所接收到的資訊指示使用者看向左邊,則人造實境發動機1716可以產生給近眼顯示器1720的內容,其在虛擬環境中鏡向於使用者的眼睛運動。此外,為了回應於從輸入輸出介面1740所接收到的動作要求,人造實境發動機1716可以執行應用程式內的動作,其中應用程式執行於控制台1710上,且人造實境發動機1716可以提供反饋至使用者,表示動作已被執行。所述反饋可以係透過近眼顯示器1720的視覺或聽覺的反饋,或是透過輸入輸出介面1740的觸覺反饋。The artificial reality engine 1716 can execute an application within the artificial reality system environment 1700 and receive position information of the near-eye display 1720, acceleration information of the near-eye display 1720, speed information of the near-eye display 1720, the near-eye display 1720 from the earphone tracking module 1714. Predict future locations, or some combination of the above information. The artificial reality engine 1716 can also receive estimated eye position and pointing information from the eye tracking module 1718. Based on the received information, the artificial reality engine 1716 can determine the content that is provided to the near-eye display 1720 for presentation to the user. For example, if the received information indicates that the user is looking to the left, the artificial reality engine 1716 can generate content for the near-eye display 1720 that mirrors the user's eye movement in the virtual environment. Moreover, in response to the action request received from the input and output interface 1740, the artificial reality engine 1716 can perform an in-app action, wherein the application is executed on the console 1710 and the artificial reality engine 1716 can provide feedback to User, indicating that the action has been executed. The feedback may be through visual or audible feedback of the near-eye display 1720 or through tactile feedback of the input-output interface 1740.

眼動追蹤模組1718可以自眼動追蹤單元1730接收眼動追蹤資料,並依據所述眼動追蹤資料判斷使用者的眼睛位置。眼睛位置(position)可以包含眼睛相對於近眼顯示器1720或其任何元件的指向(orientation)、區位(location)或所述二者。由於眼睛的旋轉軸會根據眼睛在眼窩中的區位而有所改變,判斷眼睛在眼窩中的區位可以使得眼動追蹤模組1718更精準地判斷眼睛的指向。The eye tracking module 1718 can receive the eye tracking data from the eye tracking unit 1730 and determine the eye position of the user based on the eye tracking data. The position of the eye may include an orientation, a location, or both of the eye relative to the near-eye display 1720 or any of its elements. Since the axis of rotation of the eye changes depending on the location of the eye in the orbit, determining the location of the eye in the eye socket allows the eye tracking module 1718 to more accurately determine the direction of the eye.

於一些實施例中,眼動追蹤單元1730可以輸出包含眼睛的影像的眼動追蹤資料,且眼動追蹤模組1718可以依據這些影像判斷眼睛的位置。舉例來說,眼動追蹤模組1718可以儲存眼動追蹤單元1730所擷取到的多個影像與多個眼睛位置之間的對應關係,以從眼動追蹤單元1730擷取到的一影像來決定一參考眼睛位置。可選地或另外地,眼動追蹤模組1718可以藉由將決定參考眼睛位置的影像與欲從之判斷更新眼睛位置的影像進行比較,以判斷相對於參考眼睛位置的更新眼睛位置。眼動追蹤模組1718可以利用來自不同成像裝置或其他感測器的測量來判斷眼睛位置。舉例來說,如上所述,眼動追蹤模組1718可以利用來自慢眼動追蹤系統的量測以決定參考眼睛位置,接著從快眼動追蹤系統判斷相對於參考眼睛位置的更新眼睛位置,直至基於來自慢眼動追蹤系統的量測而決定下一個參考眼睛位置。In some embodiments, the eye tracking unit 1730 can output eye tracking data including images of the eyes, and the eye tracking module 1718 can determine the position of the eyes based on the images. For example, the eye tracking module 1718 can store the correspondence between the plurality of images captured by the eye tracking unit 1730 and the plurality of eye positions to capture an image from the eye tracking unit 1730. Decide on a reference eye position. Alternatively or additionally, the eye tracking module 1718 can determine the updated eye position relative to the reference eye position by comparing the image that determines the reference eye position with the image from which the eye position is to be updated. The eye tracking module 1718 can utilize measurements from different imaging devices or other sensors to determine eye position. For example, as described above, the eye tracking module 1718 can utilize the measurements from the slow eye tracking system to determine the reference eye position, and then determine from the fast eye tracking system the updated eye position relative to the reference eye position until The next reference eye position is determined based on measurements from the slow eye tracking system.

上述之方法、系統及裝置皆為示例。各種實施例可以適當地省略、替換或添加各種流程或元件。舉例來說,在替代配置方案中,所描述的方法可以用與所描述順序不同的順序來執行,並且/或者可以添加、省略和/或組合各種階段。此外,關於某些實施例所描述的特徵可以在各種其他實施例中組合起來。實施例的不同方面和元件可以用類似的方式組合起來。此外,由於技術持續發展,因此所述之許多元件皆為示例,並非限制本揭示的範圍僅於那些特定的示例中。The above methods, systems and devices are all examples. Various embodiments may omit, substitute, or add various processes or elements as appropriate. For example, in alternative configurations, the methods described may be performed in a different order than that described, and/or various stages may be added, omitted, and/or combined. Moreover, the features described with respect to certain embodiments may be combined in various other embodiments. Different aspects and elements of the embodiments can be combined in a similar manner. In addition, many of the described elements are exemplary, and the scope of the disclosure is not limited to those specific examples.

上述內容中的具體細節提供了實施例的深入解釋。然而,實施例仍可以在沒有這些具體細節的情況下實施。舉例來說,眾所周知的電路、過程、系統、結構及技術的非必要細節並未呈現出來,以避免模糊實施例。本說明書僅提供示例性的實施例,並非意圖限制本發明的範圍、適用性或配置。另外,前述實施例的描述將為本領域技術人員提供一種實施說明,用於實施各種實施例。在不脫離本揭示的精神和範圍的情況下,可以對元件的功能和佈置進行各種改變。The specific details in the above are provided for an in-depth explanation of the embodiments. However, the embodiments may be practiced without these specific details. For example, well-known details of circuits, processes, systems, structures, and techniques are not shown in order to avoid obscuring the embodiments. The description is merely illustrative of the embodiments, and is not intended to limit the scope, the In addition, the description of the foregoing embodiments will provide those of ordinary skill in the art the implementation of the embodiments. Various changes may be made in the function and arrangement of the elements without departing from the spirit and scope of the disclosure.

此外,有些實施例被描述為過程,這些過程被描繪為流程圖或方塊圖。儘管每個實施例將多個操作描述為依序的過程,但是許多操作係可以並行或同時執行的。此外,這些操作的順序可以重新排列。過程可以具有未包括在圖中的附加步驟。另外,方法的實施例可以通過硬體、軟體、韌體、中介軟體、微代碼、硬體描述語言或其任何組合來實行。當以軟體、韌體、中介軟體或微代碼實施時,可以將用於執行相關任務的程式碼或代碼段儲存在像是儲存媒體的電腦可讀取媒體中。處理器可以執行相關聯的任務。Moreover, some embodiments are described as processes that are depicted as flowcharts or block diagrams. Although each embodiment describes multiple operations as a sequential process, many of the operations can be performed in parallel or concurrently. In addition, the order of these operations can be rearranged. The process can have additional steps not included in the figure. Additionally, embodiments of the methods may be implemented by hardware, software, firmware, mediation software, microcode, hardware description language, or any combination thereof. When implemented in software, firmware, mediation software or microcode, the code or code segments used to perform the relevant tasks can be stored in a computer readable medium such as a storage medium. The processor can perform the associated tasks.

對於本領域技術人員來說顯而易見的是,可以根據具體要求進行實質性的變化。舉例來說,亦可以使用專門或具特述用途的硬體,並且/或者可以用硬體、軟體(包含可攜式軟體,像是小型應用程式等)或所述二者來實行特定的元件或兩者。此外,可以採用與其他計算裝置像是網絡輸入輸出設備的連接。It will be apparent to those skilled in the art that substantial changes can be made depending on the particular requirements. For example, hardware that is specific or specific for use may be used, and/or specific components may be implemented by hardware, software (including portable software, such as a small application, etc.) or both. Or both. In addition, connections to other computing devices such as network input and output devices may be employed.

參照附圖,可以包含記憶體的元件可以包含非暫態機器可讀取媒體。本文所使用之術語「機器可讀取媒體」及「電腦可讀取媒體」係指參與提供資料使得機器以特定方式操作的任何儲存媒介。於上文所提供的實施例中,各種機器可讀取媒體可以涉及提供指令/代碼至處理單元及/或其他裝置以供執行。額外地或替代地,機器可讀取媒體可以用於儲存及/或乘載指令/代碼。於許多實施方案中,電腦可讀取媒體係實體及/或有形的儲存媒介。這種媒介可以採用多種形式,包含但不限於非揮發性媒體、揮發性媒體及傳輸媒體。舉例來說,常見的電腦可讀取媒體的形式包含磁性及/或光學性媒體,諸如光碟(compact disk,CD)或數位多功能光碟(digital versatile disk,DVD)、打孔卡片(punch card)、紙帶、任何其他具有孔洞圖案的實體媒介、隨機存取記憶體(random access memory,RAM)、可程式化唯讀記憶體(programmable read-only memory,PROM)、可抹除可程式化唯獨記憶體(erasable programmable read-only memory,EPROM)、快閃可抹除可程式化唯獨記憶體(FLASH-EPROM)、任何其他記憶晶片或卡閘、如後述之載波,或是電腦可在其中讀取指令及/或代碼的任何其他媒介。電腦程式產物可以包含代碼及/或機器可執行指令,其表示一個流程、函式、子程式、程式、常式(routine)、應用程式(App)、子常式、模組、套裝軟體、類別(class),或多個指令、資料結構或程式敘述的任何組合。Referring to the drawings, elements that can include memory can include non-transitory machine readable media. The terms "machine readable medium" and "computer readable medium" as used herein mean any storage medium that participates in providing material to cause the machine to operate in a particular manner. In the embodiments provided above, various machine readable media may be involved in providing instructions/code to a processing unit and/or other device for execution. Additionally or alternatively, machine readable media may be used to store and/or load instructions/code. In many embodiments, the computer can read media entities and/or tangible storage media. Such media can take many forms, including but not limited to non-volatile media, volatile media, and transmission media. For example, common forms of computer readable media include magnetic and/or optical media, such as compact disk (CD) or digital versatile disk (DVD), punch card. , paper tape, any other physical medium with a hole pattern, random access memory (RAM), programmable read-only memory (PROM), erasable programmable only Erasable programmable read-only memory (EPROM), flash erasable programmable memory (FLASH-EPROM), any other memory chip or card gate, carrier wave as described later, or computer Any other medium in which instructions and/or code are read. The computer program product may contain code and/or machine executable instructions representing a process, a function, a subroutine, a program, a routine, an application, a subroutine, a module, a package, a category. (class), or any combination of multiple instructions, data structures, or program descriptions.

本領域技術人員將理解能夠使用各種不同科技及技術中的任何一種來表示用於傳達本文所述訊息的資訊和訊號。舉例來說,在整個上列描述中可以參考的資料、指令、命令、資訊、訊號、位元、符號及晶片,可以由電壓、電流、電磁波,磁場或磁粒子、光場或光粒子,或其任何組合來表示。Those skilled in the art will appreciate that any of a variety of different technologies and techniques can be used to represent information and signals for communicating the messages described herein. For example, the data, instructions, commands, information, signals, bits, symbols, and wafers that may be referenced throughout the above description may be by voltage, current, electromagnetic waves, magnetic or magnetic particles, light fields, or light particles, or Any combination of them is indicated.

本文所使用的術語「及」與「或」可以包含多種含義,這些含義也預期至少部分地取決於使用這些術語的上下文。一般而言,如果「或」係用於聯合一列表,像是A、B或C,則其意指A、B與C,這理係以包含性的意義來使用,亦意指A、B或C,這裡則係以排除性的意義來使用。此外,本文所使用的術語「一或多個」可以用於以單數形式描述任何特徵、結構或特性,或可以用於描述多個I特徵、結構或特性的某種組合。然而,需注意的是這僅為說明性的示例,且所要求保護的標的並不限於此示例。此外,如果使用術語「至少一」以聯合一列表,像是A、B或C,則可以解釋為表示A、B及/或C的任何組合,如A、AB、AC、BC、AA、ABC、AAB、AABBCCC等。The terms "and" and "or" as used herein may include a plurality of meanings that are also intended to depend, at least in part, on the context in which the terms are used. In general, if "or" is used to unite a list, such as A, B or C, it means A, B and C. This is used in an inclusive sense, also means A, B. Or C, here is used in a sense of exclusion. In addition, the term "one or more" may be used to describe any feature, structure, or characteristic in the singular, or may be used to describe a certain combination of a plurality of I features, structures, or characteristics. However, it should be noted that this is merely an illustrative example, and the claimed subject matter is not limited to this example. In addition, if the term "at least one" is used in conjunction with a list, such as A, B, or C, it can be interpreted to mean any combination of A, B, and/or C, such as A, AB, AC, BC, AA, ABC. , AAB, AABBCCC, etc.

進一步來說,雖然某些實施例中使用了特定組合的硬體及軟體來描述,但應理解的是其他種硬體及軟體的組合也是可能的。某些實施例可以僅於硬體中、僅於軟體中,或使用其組合來實行。於一例子中,軟體可以用包含電腦程式碼或指令的電腦程式產物來實行,電腦程式碼或指令可由一或多個處理器來執行以進行本揭示所述的任何或全部的步驟、操作或過程,其中電腦程式可以儲存在非暫態電腦可讀取媒體上。本文所描述的各種過程可以任何組合於同一個處理器或是不同處理器上來實行。Further, while certain embodiments have been described using specific combinations of hardware and software, it should be understood that other combinations of hardware and software are also possible. Certain embodiments may be practiced only in hardware, only in software, or using a combination thereof. In one example, the software may be implemented by a computer program product comprising computer code or instructions executable by one or more processors for performing any or all of the steps, operations or operations described herein. The process in which the computer program can be stored on a non-transitory computer readable medium. The various processes described herein can be implemented in any combination on the same processor or on different processors.

在將裝置、系統、元件或模塊描述為用於執行某些操作或功能的情況下,例如藉由設計電子電路以執行操作、藉由編程可編程電子電路(諸如微處理器)以像是透過運行電腦指令或代碼來執行操作,或是編程處理器或核心以運行儲存於非暫態記憶體媒介上的代碼或指令,或是上述之任何組合。多個行程可以使用各種技術進行通訊,包含但不限於行程間通訊(inter-process communication)之習知技術,且不同的行程對可以使用不同的技術,或者同一對行程可以在不同時間使用不同的技術。Where an apparatus, system, component or module is described as being used to perform certain operations or functions, such as by designing an electronic circuit to perform an operation, by programming a programmable electronic circuit (such as a microprocessor) Run computer instructions or code to perform operations, or program the processor or core to run code or instructions stored on non-transitory media, or any combination of the above. Multiple trips can be communicated using a variety of techniques, including but not limited to conventional techniques for inter-process communication, and different trip pairs can use different techniques, or the same pair of trips can be used at different times. technology.

因此,本說明書與圖式應被視為說明性而非限制性的。然而,顯而易見的是,在不脫離更廣泛的精神和範圍的情況下,係可以對其進行添加,減少,刪除和其他修改和改變。因此,儘管本文描述了特定的實施例,但這些並非意圖產生限制。各種修改和等同物都在後列之權利要求的範圍之內。Accordingly, the specification and drawings are to be regarded as However, it will be apparent that additions, reductions, deletions, and other modifications and changes can be made without departing from the broader spirit and scope. Accordingly, although specific embodiments are described herein, these are not intended to be limiting. Various modifications and equivalents are intended to be included within the scope of the appended claims.

100、200‧‧‧近眼顯示器100,200‧‧‧ near-eye display

105、205‧‧‧框架105, 205‧‧‧ framework

110、210‧‧‧顯示器110, 210‧‧‧ display

120a~120d、250a、250b‧‧‧影像感測器120a~120d, 250a, 250b‧‧‧ image sensor

130、240a~240f‧‧‧照明器130, 240a ~ 240f‧‧‧ illuminators

A~D‧‧‧方向A~D‧‧‧ direction

235‧‧‧眼球235‧‧‧ eyeballs

300‧‧‧影像感測器300‧‧‧Image Sensor

310‧‧‧像素陣列310‧‧‧pixel array

320‧‧‧類比數位轉換介面320‧‧‧ analog digital conversion interface

330‧‧‧數位類比轉換與支持電路330‧‧‧Digital Analog Conversion and Support Circuit

340‧‧‧控制電路340‧‧‧Control circuit

400‧‧‧主動像素400‧‧‧Active pixels

410‧‧‧固定式光二極體410‧‧‧Fixed light diode

412‧‧‧寄生電412‧‧‧ Parasitic electricity

420‧‧‧轉移閘420‧‧‧Transition gate

430‧‧‧浮動擴散電容430‧‧‧Floating diffusion capacitor

440‧‧‧重置閘440‧‧‧Reset brake

450‧‧‧源極隨耦放大電晶體450‧‧‧Source Parallel Amplifying Transistor

460‧‧‧選擇閘460‧‧‧Selection gate

480‧‧‧行線路480‧‧‧ lines

510‧‧‧影像感測器510‧‧‧Image Sensor

520、530、540‧‧‧列520, 530, 540‧‧‧

600‧‧‧數位像素影像感測器600‧‧‧Digital Pixel Image Sensor

610‧‧‧數位像素陣列610‧‧‧Digital Pixel Array

620‧‧‧列驅動與全域訊號驅動電路620‧‧‧ column driver and global signal driver circuit

630‧‧‧全域計數器630‧‧‧Global Counter

640‧‧‧計數緩衝器640‧‧‧Counter buffer

650‧‧‧斜坡產生與緩衝電路650‧‧‧Ramp generation and buffer circuit

660‧‧‧感測放大器660‧‧‧Sense Amplifier

670‧‧‧放大偏壓電路670‧‧‧Amplification bias circuit

680‧‧‧線存儲器680‧‧‧ line memory

690‧‧‧數位區塊690‧‧‧Digital Blocks

695‧‧‧功率調節電路695‧‧‧Power adjustment circuit

698‧‧‧行動產業處理器接口電路698‧‧‧Action Industry Processor Interface Circuit

700‧‧‧數位像素700‧‧‧Digital pixels

702‧‧‧光二極體702‧‧‧Light diode

703‧‧‧積分電容703‧‧‧Integral Capacitance

704‧‧‧轉移閘704‧‧‧Transition gate

706‧‧‧量測電容706‧‧‧Measure capacitance

708‧‧‧量測控制訊號708‧‧‧Measurement control signals

710‧‧‧光學緩衝器710‧‧‧Optical buffer

712‧‧‧類比輸出節點712‧‧‧ analog output node

718‧‧‧重置開關718‧‧‧Reset switch

720‧‧‧重置訊號720‧‧‧Reset signal

722‧‧‧電荷槽722‧‧‧charge trough

724‧‧‧曝光致能訊號724‧‧‧Exposure enable signal

726‧‧‧快門開關726‧‧‧Shutter switch

750‧‧‧像素數化器750‧‧‧pixel digitizer

752‧‧‧參考訊號752‧‧‧Reference signal

754‧‧‧比較器754‧‧‧ Comparator

760‧‧‧數位輸出產生器760‧‧‧Digital Output Generator

762‧‧‧時脈計數器762‧‧‧clock counter

764‧‧‧像素記憶體764‧‧‧pixel memory

766‧‧‧計數輸出766‧‧‧Counting output

770‧‧‧參考訊號產生器770‧‧‧Reference signal generator

772‧‧‧數位類比轉換器772‧‧‧Digital Analog Converter

780‧‧‧時脈訊號780‧‧‧clock signal

790‧‧‧像素輸出匯流排790‧‧‧Pixel Output Bus

810‧‧‧在像素1的類比電壓訊號810‧‧‧ analog voltage signal in pixel 1

820‧‧‧在像素2的類比電壓訊號820‧‧‧ analog voltage signal in pixel 2

830‧‧‧參考訊號830‧‧‧ reference signal

840‧‧‧像素1中的比較器的輸出840‧‧‧ Comparator output in pixel 1

850‧‧‧像素2中的比較器的輸出850‧‧‧ Comparator output in pixel 2

860‧‧‧時脈訊號860‧‧‧clock signal

870‧‧‧時脈計數值870‧‧‧ clock count

D1、D2‧‧‧數位值D1, D2‧‧‧ digit value

t0、t1、t2‧‧‧時間點T0, t1, t2‧‧‧ time points

900‧‧‧數位像素900‧‧‧Digital pixels

910‧‧‧固定式光二極體910‧‧‧Fixed light diode

920‧‧‧轉移閘920‧‧‧Transition gate

930‧‧‧浮動擴散節點930‧‧‧ Floating Diffusion Node

940‧‧‧重置閘940‧‧‧Reset brake

950‧‧‧選擇閘950‧‧‧Selection gate

942、952‧‧‧電晶體942, 952‧‧‧Optoelectronics

960‧‧‧類比相關性雙重取樣電路960‧‧‧ analog correlation double sampling circuit

970‧‧‧比較器970‧‧‧ comparator

980‧‧‧像素記憶體980‧‧‧pixel memory

RST、SEL、TX‧‧‧控制訊號RST, SEL, TX‧‧‧ control signals

1000‧‧‧數位像素1000‧‧‧ digit pixels

1010‧‧‧固定式光二極體1010‧‧‧Fixed light diode

1020‧‧‧轉移閘1020‧‧‧Transition gate

1030‧‧‧浮動擴散電容1030‧‧‧Floating diffusion capacitor

1040‧‧‧重置閘1040‧‧‧Remove the brake

1050‧‧‧比較器1050‧‧‧ comparator

1060‧‧‧m位元記憶體塊1060‧‧‧m bit memory block

1070‧‧‧n位元記憶體塊1070‧‧‧n-bit memory block

1100‧‧‧數位像素1100‧‧‧ digit pixels

1105‧‧‧光感測器1105‧‧‧Light sensor

1110‧‧‧固定式光二極體1110‧‧‧Fixed light diode

1120‧‧‧轉移閘1120‧‧‧Transition gate

1130‧‧‧浮動擴散電容1130‧‧‧Floating diffusion capacitor

1140‧‧‧重置閘1140‧‧‧Remove the brake

1150‧‧‧比較器1150‧‧‧ comparator

1160‧‧‧及閘1160‧‧‧ and gate

1170‧‧‧及閘1170‧‧‧ and gate

1180‧‧‧m位元格1180‧‧‧m grid

1190‧‧‧n位元格1190‧‧‧n cells

RAMP‧‧‧斜坡訊號RAMP‧‧‧Slope Signal

ENABLE_RST‧‧‧重置致能訊號ENABLE_RST‧‧‧Reset enable signal

ENABLE_SIG‧‧‧讀取致能訊號ENABLE_SIG‧‧‧Read enable signal

WR‧‧‧寫入致能輸入端WR‧‧‧ write enable input

1200‧‧‧時間週期1200‧‧ ‧ time period

1210‧‧‧快門時期1210‧‧ ‧Shutter period

1212‧‧‧積分時期1212‧‧ points period

1214‧‧‧重置時期1214‧‧‧Reset period

1216‧‧‧重置位準轉換時期1216‧‧‧Reset level conversion period

1218‧‧‧電荷轉移時期1218‧‧‧ Charge Transfer Period

1220‧‧‧訊號位準轉換時期1220‧‧‧Signal level conversion period

1222‧‧‧資料輸出時期1222‧‧‧data export period

T_Frame‧‧‧訊框影像週期T_Frame‧‧‧ frame image cycle

1250‧‧‧重置訊號1250‧‧‧Reset signal

1252‧‧‧第一重置脈衝1252‧‧‧First reset pulse

1254‧‧‧第二重置脈衝1254‧‧‧Second reset pulse

1260‧‧‧轉移控制訊號1260‧‧‧Transfer Control Signal

1262‧‧‧第一轉移控制脈衝1262‧‧‧First transfer control pulse

1264‧‧‧第二轉移控制脈衝1264‧‧‧Second transfer control pulse

1270‧‧‧斜坡訊號1270‧‧‧Slope signal

1272、1274‧‧‧斜坡1272, 1274‧‧ ‧ slope

1280‧‧‧時脈計數值1280‧‧‧ clock count

1282‧‧‧重置計數值1282‧‧‧Reset count value

1284‧‧‧訊號計數值1284‧‧‧Signal count

1290‧‧‧行動產業處理器接口介面1290‧‧‧Mobile Industry Processor Interface

1292‧‧‧輸出資料1292‧‧‧Output data

1300‧‧‧比較器1300‧‧‧ comparator

1310、1320‧‧‧P通道電晶體1310, 1320‧‧‧P channel transistor

1325‧‧‧節點1325‧‧‧ nodes

1330、1340、1350‧‧‧N通道電晶體1330, 1340, 1350‧‧‧N-channel transistors

1360‧‧‧反向器1360‧‧‧ reverser

VFD‧‧‧電壓訊號VFD‧‧‧ voltage signal

VRAMP‧‧‧斜坡訊號VRAMP‧‧‧Slope Signal

1400‧‧‧比較器1400‧‧‧ comparator

1410、1430~1460‧‧‧電晶體1410, 1430 ~ 1460‧‧ ‧ transistor

1420‧‧‧預充電電晶體1420‧‧‧Precharged transistor

COMP‧‧‧節點COMP‧‧‧ node

Write‧‧‧寫入訊號Write‧‧‧ write signal

Writeb‧‧‧寫入b訊號Writeb‧‧‧Write b signal

1500‧‧‧時序圖1500‧‧‧ Timing diagram

1510‧‧‧預充電訊號1510‧‧‧Precharge signal

1520‧‧‧斜坡訊號1520‧‧‧Slope signal

1530‧‧‧電壓訊號1530‧‧‧Voltage signal

1540‧‧‧節點COMP的電壓訊號1540‧‧‧ Voltage signal of node COMP

1550‧‧‧寫入訊號1550‧‧‧Write signal

1560‧‧‧寫入b訊號1560‧‧‧Write b signal

Vtp‧‧‧閾值電壓Vtp‧‧‧ threshold voltage

t1‧‧‧時間Time t1‧‧‧

1700‧‧‧人造實境系統環境1700‧‧‧Artificial Reality System Environment

1710‧‧‧控制台1710‧‧‧ console

1712‧‧‧應用程式商店1712‧‧‧ App Store

1714‧‧‧耳機追蹤模組1714‧‧‧ Headphone Tracking Module

1716‧‧‧人造實境發動機1716‧‧‧Artificial engine

1718‧‧‧眼動追蹤模組1718‧‧‧Eye tracking module

1720‧‧‧近眼顯示器1720‧‧‧ near-eye display

1722‧‧‧顯示電子元件1722‧‧‧Display electronic components

1724‧‧‧顯示光學元件1724‧‧‧Display optical components

1726‧‧‧定位器1726‧‧‧ Locator

1728‧‧‧位置感測器1728‧‧‧ position sensor

1730‧‧‧眼動追蹤單元1730‧‧‧Eye tracking unit

1732‧‧‧慣性量測單元1732‧‧‧Inertial measurement unit

1740‧‧‧輸入輸出介面1740‧‧‧Input and output interface

1750‧‧‧外部成像裝置1750‧‧‧External imaging device

於後之說明性實施例的詳細描述係參考下列圖式: 圖1A係依據某些實施例所繪示的包含多種感測器的簡化示例的近眼顯示器的透視圖。 圖1B係依據某些實施例所繪示的包含多種感測器的簡化示例的近眼顯示器的剖面圖。 圖2A係依據某些實施例所繪示的包含多種感測器的簡化示例的近眼顯示器的前視圖。 圖2B係依據某些實施例所繪示的包含多種感測器的簡化示例的近眼顯示器的剖面圖。 圖3係具有類比像素的示例的影像感測器的簡化方塊圖。 圖4繪示主動像素感測器(active pixel sensor,APS)的示例的三電晶體的主動像素。 圖5A繪示在第一時間時使用滾動快門的影像感測器中的不同列的像素的示例狀態。 圖5B繪示在第二時間時使用滾動快門的影像感測器中的不同列的像素的示例狀態。 圖6係依據某些實施例所繪示的示例的全域快門數位像素影像感測器的簡化方塊圖。 圖7係依據某些實施例所繪示的示例的全域快門數位像素影像感測器的示例數位像素的簡化方塊圖。 圖8依據某些實施例繪示示例的全域快門數位像素影像感測器的示例數位像素的示例操作。 圖9係依據某些實施例所繪示的包含類比相關性雙重取樣(correlated double sampling,CDS)電路的示例數位像素的簡化方塊圖。 圖10係依據某些實施例所繪示的包含數位CDS電路的示例數位像素的簡化方塊圖。 圖11依據某些實施例繪示包含數位CDS電路的示例數位像素。 圖12A依據某些實施例繪示全域快門數位像素感測器的示例時間訊框中的示例時序週期,全域快門數位像素感測器的每個像素具有數位CDS電路。 圖12B係依據某些實施例所繪示的在全域快門數位像素影像感測器中具有數位CDS電路的數位像素的操作的時序圖。 圖13繪示包含直流偏壓電路的比較器。 圖14依據某些實施例繪示包含預充電電路的示例比較器。 圖15係依據某些實施例所繪示的圖14的示例比較器的操作的時序圖。 圖16係依據某些實施例所繪示的示例的數位成像方法的流程圖。 圖17係可以實施本文揭示的一些例子的包含近眼顯示器的示例的人造實境系統環境的簡化方塊圖。The detailed description of the following illustrative embodiments refers to the following drawings: FIG. 1A is a perspective view of a near-eye display including a simplified example of various sensors, in accordance with certain embodiments. 1B is a cross-sectional view of a near-eye display including a simplified example of a plurality of sensors, in accordance with some embodiments. 2A is a front elevational view of a near-eye display including a simplified example of multiple sensors, in accordance with certain embodiments. 2B is a cross-sectional view of a near-eye display including a simplified example of multiple sensors, in accordance with certain embodiments. 3 is a simplified block diagram of an image sensor with an example of analog pixels. 4 illustrates an active pixel of a three-electrode of an example of an active pixel sensor (APS). FIG. 5A illustrates an example state of pixels of different columns in an image sensor using a rolling shutter at a first time. FIG. 5B illustrates an example state of pixels of different columns in an image sensor using a rolling shutter at a second time. 6 is a simplified block diagram of an exemplary global shutter digital pixel image sensor in accordance with some embodiments. 7 is a simplified block diagram of an example digital pixel of an exemplary global shutter digital pixel image sensor in accordance with some embodiments. 8 illustrates example operations of example digital pixels of an exemplary global shutter digital pixel image sensor, in accordance with some embodiments. 9 is a simplified block diagram of an exemplary digital pixel including an analog correlation double sampling (CDS) circuit, in accordance with some embodiments. 10 is a simplified block diagram of an exemplary digital pixel including a digital CDS circuit, in accordance with some embodiments. Figure 11 illustrates example digital pixels including a digital CDS circuit in accordance with some embodiments. 12A illustrates an example timing cycle of an example time frame of a global shutter digital pixel sensor having a digital CDS circuit in accordance with some embodiments. 12B is a timing diagram of the operation of a digital pixel having a digital CDS circuit in a global shutter digital pixel image sensor, in accordance with some embodiments. Figure 13 depicts a comparator including a DC bias circuit. Figure 14 illustrates an example comparator including a pre-charge circuit in accordance with some embodiments. 15 is a timing diagram of the operation of the example comparator of FIG. 14 in accordance with some embodiments. 16 is a flow chart of an exemplary digital imaging method in accordance with some embodiments. 17 is a simplified block diagram of an artificial reality system environment including an example of a near-eye display that may implement some of the examples disclosed herein.

Claims (20)

一種數位像素影像感測器,包含: 多個像素,每一該些像素包含: 一光二極體,用於產生多個電荷以回應一光訊號; 一電荷儲存裝置用於儲存該光二極體所產生的該些電荷,被儲存的該些電荷在該電荷儲存裝置上產生一電壓訊號; 一像素記憶體;以及 一數化器,包含: 一比較器,用於接收一斜坡訊號及該電壓訊號,其中在一時脈訊號的每一週期後,該斜坡訊號的一電壓位準上升或下降,且用於在該斜坡訊號的該電壓位準達到該電壓訊號的一電壓位準後,改變該比較器的一輸出狀態;以及 一數位輸出產生電路,在該比較器的該輸出狀態改變的一時間點時,用於接收一第一數量對應於該斜坡訊號開始的一時間點與該比較器的該輸出狀態改變的該時間點之間的該時脈訊號的一週期總數量,且儲存該第一數量至該像素記憶體,該第一數量對應於該電壓訊號的該電壓位準的一數位值。A digital pixel image sensor comprising: a plurality of pixels, each of the pixels comprising: a photodiode for generating a plurality of charges in response to an optical signal; and a charge storage device for storing the photodiode The generated charges, the stored charges generate a voltage signal on the charge storage device; a pixel memory; and a digitizer comprising: a comparator for receiving a ramp signal and the voltage signal The voltage level of the ramp signal rises or falls after each cycle of the clock signal, and is used to change the voltage level after the voltage level of the ramp signal reaches a voltage level of the voltage signal. An output state of the device; and a digital output generating circuit for receiving a first number of time points corresponding to the start of the ramp signal and the comparator at a time point of the output state change of the comparator a total number of cycles of the clock signal between the time points at which the output state changes, and storing the first amount to the pixel memory, the first number corresponding to the voltage A digital value of the voltage level of the signal. 如請求項1所述的數位像素影像感測器,更包含一時脈計數器,用於: 在該斜坡訊號開始後,計算所接受到的該時脈訊號的該週期總數量;以及 發送對應於該週期總數量的一計數器值至該些像素。The digital pixel image sensor of claim 1, further comprising a clock counter, configured to: after the start of the ramp signal, calculate a total number of the cycles of the received clock signal; and send the corresponding A counter value of the total number of cycles to the pixels. 如請求項2所述的數位像素影像感測器,更包含一參考訊號產生器,用於: 基於該計數器值產生該斜坡訊號;以及 發送該斜坡訊號至該些像素。The digital pixel image sensor of claim 2, further comprising a reference signal generator, configured to: generate the ramp signal based on the counter value; and send the ramp signal to the pixels. 如請求項1所述的數位像素影像感測器,更包含: 一轉移閘,耦接該光二極體及該電荷儲存裝置; 其中該光二極體用於在一曝光期期間累積該些電荷; 其中該轉移閘用於: 在該曝光期期間,將該光二極體從該電荷儲存裝置斷開; 在該曝光期之後,連接該光二極體至該電荷儲存裝置,以將所累積的該些電荷從該光二極體轉移至該電荷儲存裝置;以及 在轉移所累積的該些電荷之後,將該光二極體從該電荷儲存裝置斷開。The digital pixel image sensor of claim 1, further comprising: a transfer gate coupled to the photodiode and the charge storage device; wherein the photodiode is used to accumulate the charge during an exposure period; Wherein the transfer gate is used to: disconnect the photodiode from the charge storage device during the exposure period; after the exposure period, connect the photodiode to the charge storage device to accumulate the Charge is transferred from the photodiode to the charge storage device; and after the accumulated charge is transferred, the photodiode is disconnected from the charge storage device. 如請求項1所述的數位像素影像感測器,更包含: 一重置電路,用於重置該電荷儲存裝置至一重置電壓位準。The digital pixel image sensor of claim 1, further comprising: a reset circuit for resetting the charge storage device to a reset voltage level. 如請求項5所述的數位像素影像感測器,其中在該電荷儲存裝置重置之後,該比較器更用於: 接收一第二斜坡訊號,其中在該時脈訊號的每一週期之後,該第二斜坡訊號的一電壓位準上升或下降;以及 在該第二斜坡訊號的該電壓位準達到該重置電壓位準之後,改變該比較器的該輸出狀態; 其中在該第二斜坡訊號的該電壓位準達到該重置電壓位準之後該比較器的該輸出狀態改變的一時間點時,該數位輸出產生電路更用於: 接收一第二數量對應於該第二斜坡訊號開始的一時間點與該比較器的該輸出狀態改變的該時間點之間的該時脈訊號的一週期總數量;以及 儲存該第二數量至該像素記憶體,該第二數量對應於該重置電壓位準的一數位值; 其中該第一數量與該第二數量之間的差值對應於該光訊號的一強度。The digital pixel image sensor of claim 5, wherein after the charge storage device is reset, the comparator is further configured to: receive a second ramp signal, wherein after each cycle of the clock signal, A voltage level of the second ramp signal rises or falls; and after the voltage level of the second ramp signal reaches the reset voltage level, the output state of the comparator is changed; wherein the second slope is When the voltage level of the signal reaches the reset voltage level and the output state of the comparator changes, the digital output generating circuit is further configured to: receive a second quantity corresponding to the second slope signal to start And a total number of cycles of the clock signal between the time point and the time point of the output state change of the comparator; and storing the second quantity to the pixel memory, the second quantity corresponding to the weight And a digit value of the voltage level; wherein the difference between the first quantity and the second quantity corresponds to an intensity of the optical signal. 如請求項6所述的數位像素影像感測器,其中該像素記憶體包含: 一M位元記憶體塊用於儲存該第二數量;以及 一N位元記憶體塊用於儲存該第一數量,其中N大於M。The digital pixel image sensor of claim 6, wherein the pixel memory comprises: an M-bit memory block for storing the second quantity; and an N-bit memory block for storing the first Quantity, where N is greater than M. 如請求項6所述的數位像素影像感測器,更包含: 一轉移閘,耦接該光二極體及該電荷儲存裝置,該轉移閘用於: 在一曝光期期間,將該光二極體從該電荷儲存裝置斷開; 在該曝光期之後,連接該光二極體至該電荷儲存裝置,以將該些電荷從該光二極體轉移至該電荷儲存裝置;以及 在轉移該些電荷之後,將該光二極體從該電荷儲存裝置斷開。The digital pixel image sensor of claim 6, further comprising: a transfer gate coupled to the photodiode and the charge storage device, wherein the transfer gate is used to: the photodiode during an exposure period Disconnecting from the charge storage device; after the exposure period, connecting the photodiode to the charge storage device to transfer the charge from the photodiode to the charge storage device; and after transferring the charges, The photodiode is disconnected from the charge storage device. 如請求項8所述的數位像素影像感測器,其中該重置電路用於在曝光期結束且該轉移閘連接該光二極體至該電荷儲存裝置之前,重置該電荷儲存裝置。The digital pixel image sensor of claim 8, wherein the reset circuit is configured to reset the charge storage device before the exposure period ends and the transfer gate connects the photodiode to the charge storage device. 如請求項1所述的數位像素影像感測器,其中該比較器包含一預充電電路,耦接於該比較器的一輸出節點,該預充電電路用於將該比較器的該輸出節點充電至一直流位準。The digital pixel image sensor of claim 1, wherein the comparator comprises a precharge circuit coupled to an output node of the comparator, the precharge circuit for charging the output node of the comparator Until the flow level. 如請求項10所述的數位像素影像感測器,其中該比較器更包含一P通道金氧半(PMOS)電晶體,該PMOS電晶體的一閘極耦接於該電荷儲存裝置,該PMOS電晶體的一源極用於接收該斜坡訊號,且該比較器的該輸出節點耦接於該PMOS電晶體的一汲極。The digital pixel image sensor of claim 10, wherein the comparator further comprises a P-channel MOS transistor, a gate of the PMOS transistor being coupled to the charge storage device, the PMOS A source of the transistor is configured to receive the ramp signal, and the output node of the comparator is coupled to a drain of the PMOS transistor. 如請求項1所述的數位像素影像感測器,其中每一該些像素更包含一快門,每一該些像素的該快門受控於同一曝光致能訊號。The digital pixel image sensor of claim 1, wherein each of the pixels further comprises a shutter, and the shutter of each of the pixels is controlled by the same exposure enable signal. 一種影像感測器的數位像素,該數位像素包含: 一光二極體,用於產生多個電荷以回應一光訊號; 一電荷儲存裝置用於儲存該光二極體所產生的該些電荷,被儲存的該些電荷在該電荷儲存裝置上產生一電壓訊號; 一像素記憶體;以及 一數化器,包含: 一比較器,用於接收一斜坡訊號及該電壓訊號,其中在一時脈訊號的每一週期後,該斜坡訊號的一電壓位準上升或下降,且用於在該斜坡訊號的該電壓位準達到該電壓訊號的一電壓位準後,改變該比較器的一輸出狀態;以及 一數位輸出產生電路,用於在該比較器的該輸出狀態改變的一時間點時,接收一第一數量對應於該斜坡訊號開始的一時間點與該比較器的該輸出狀態改變的該時間點之間的該時脈訊號的一週期總數量,且儲存該第一數量至該像素記憶體,其中該第一數量對應於該電壓訊號的該電壓位準的一數位值。A digital pixel of an image sensor, the digital pixel comprising: a photodiode for generating a plurality of charges in response to an optical signal; a charge storage device for storing the electric charges generated by the photodiode The stored charge generates a voltage signal on the charge storage device; a pixel memory; and a digitizer comprising: a comparator for receiving a ramp signal and the voltage signal, wherein the signal is in a clock signal After each cycle, a voltage level of the ramp signal rises or falls, and is used to change an output state of the comparator after the voltage level of the ramp signal reaches a voltage level of the voltage signal; a digital output generating circuit for receiving a first number of time points corresponding to the start of the ramp signal and the time when the output state of the comparator changes at a time point of the output state change of the comparator a total number of cycles of the clock signal between the points, and storing the first quantity to the pixel memory, wherein the first quantity corresponds to the voltage of the voltage signal A quasi-digit value. 如請求項13所述的數位像素,更包含: 一重置閘,用於重置該電荷儲存裝置至一重置電壓位準, 其中該比較器更用於在該電荷儲存裝置重置之後: 接收一第二斜坡訊號,其中在該時脈訊號的每一週期之後,該第二斜坡訊號的一電壓位準上升或下降;以及 在該第二斜坡訊號的該電壓位準達到該重置電壓位準之後,改變該比較器的該輸出狀態; 其中該數位輸出產生電路更用於在該第二斜坡訊號的該電壓位準達到該重置電壓位準之後該比較器的該輸出狀態改變的一時間點時, 接收一第二數量對應於該第二斜坡訊號開始的一時間點與該比較器的該輸出狀態改變的該時間點之間的該時脈訊號的一週期總數量;以及 儲存該第二數量至該像素記憶體,該第二數量對應於該重置電壓位準的一數位值; 其中該第一數量與該第二數量之間的差值對應於該光訊號的一強度。The digital pixel of claim 13, further comprising: a reset gate for resetting the charge storage device to a reset voltage level, wherein the comparator is further used after the charge storage device is reset: Receiving a second ramp signal, wherein after each period of the clock signal, a voltage level of the second ramp signal rises or falls; and the voltage level of the second ramp signal reaches the reset voltage After the leveling, the output state of the comparator is changed; wherein the digital output generating circuit is further configured to change the output state of the comparator after the voltage level of the second ramp signal reaches the reset voltage level At a time point, receiving a second number corresponding to a total number of cycles of the clock signal between a time point at which the second ramp signal begins and the time point at which the output state of the comparator changes; and storing The second quantity is to the pixel memory, and the second quantity corresponds to a digit value of the reset voltage level; wherein a difference between the first quantity and the second quantity corresponds to one of the optical signals strength. 一種數位成像的方法,該方法包含: 在一曝光期期間,藉由一影像感測器中的一像素的一光二極體接收一光訊號; 藉由該像素,將該光訊號轉換為在該像素的一電荷儲存裝置上的一電壓訊號; 啟動一時脈計數器,計算一時脈訊號的一時脈週期數量; 藉由該像素的一比較器,比較該電壓訊號及一斜坡訊號,其中該斜坡訊號的一電壓位準隨著該時脈週期數量線性地增加或減少; 藉由該比較器,在該斜坡訊號的該電壓位準達到該電壓訊號的一電壓位準時,改變該比較器的一輸出狀態;以及 在該比較器的該輸出狀態改變的一時間點時,儲存對應於此時該時脈週期數量的一第一數量至該像素的一像素記憶體,以作為該電壓訊號的一第一數位值。A digital imaging method, the method comprising: receiving an optical signal by a photodiode of a pixel in an image sensor during an exposure period; and converting the optical signal to the optical signal by the pixel a voltage signal on a charge storage device of the pixel; a clock counter is activated to calculate a number of clock cycles of a clock signal; and a voltage comparator and a ramp signal are compared by a comparator of the pixel, wherein the slope signal is A voltage level linearly increases or decreases with the number of clock cycles; the comparator changes an output state of the comparator when the voltage level of the ramp signal reaches a voltage level of the voltage signal And storing, at a time point of the output state change of the comparator, a first quantity corresponding to the number of clock cycles at this time to a pixel memory of the pixel as a first of the voltage signal Digital value. 如請求項15所述的方法,更包含: 將該電荷儲存裝置從該光二極體斷開; 重置該電荷儲存裝置至一直流電壓位準; 啟動該時脈計數器,計算該時脈訊號的該時脈週期數量; 藉由該比較器,比較該直流電壓位準及一第二斜坡訊號,其中該第二斜坡訊號的一電壓位準隨著該時脈週期數量線性地增加或減少;以及 在該第二斜坡訊號的該電壓位準達到該直流電壓位準的一時間點時,儲存此時對應於該時脈週期數量的一第二數量至該像素記憶體,以作為一第二數位值。The method of claim 15, further comprising: disconnecting the charge storage device from the photodiode; resetting the charge storage device to a DC voltage level; activating the clock counter to calculate the clock signal The number of the clock cycles is compared by the comparator, wherein the DC voltage level and a second ramp signal are compared, wherein a voltage level of the second ramp signal linearly increases or decreases with the number of clock cycles; And storing, at a time point when the voltage level of the second ramp signal reaches the DC voltage level, a second quantity corresponding to the number of the clock cycles to the pixel memory as a second digit value. 如請求項16所述的方法,其中重置該電荷儲存裝置至該直流電壓位準包含: 在該曝光期結束時,重置該電荷儲存裝置至該直流電壓位準。The method of claim 16, wherein resetting the charge storage device to the DC voltage level comprises: resetting the charge storage device to the DC voltage level at the end of the exposure period. 如請求項15所述的方法,其中將該光訊號轉換為該電荷儲存裝置上的該電壓訊號包含: 斷開該電荷儲存裝置及該光二極體的連接; 藉由該光二極體,在該曝光期期間產生多個電荷以作為接收該光訊號的回應; 在該曝光期期間,累積該些電荷於該光二極體; 在該曝光期之後,連接該電荷儲存裝置至該光二極體,以將所累積的該些電荷轉移至該電荷儲存裝置,其中所累積的該些電荷在該電荷儲存裝置上產生該電壓訊號;以及 斷開該電荷儲存裝置及該光二極體的連接。The method of claim 15, wherein converting the optical signal to the voltage signal on the charge storage device comprises: disconnecting the charge storage device and the photodiode; by the photodiode, A plurality of charges are generated during the exposure period as a response to receive the optical signal; during the exposure period, the charges are accumulated in the photodiode; after the exposure period, the charge storage device is connected to the photodiode to And transferring the accumulated charges to the charge storage device, wherein the accumulated charges generate the voltage signal on the charge storage device; and disconnecting the charge storage device and the photodiode. 如請求項15所述的方法,更包含: 在該曝光期之前,重置該光二極體及該電荷儲存裝置。The method of claim 15, further comprising: resetting the photodiode and the charge storage device prior to the exposure period. 如請求項15所述的方法,在比較該電壓訊號及該斜坡訊號之前更包含: 連接該比較器的一輸出節點至一直流電壓源,以將該比較器的該輸出節點預先充電;以及 將該比較器的該輸出節點從該直流電壓源斷開。The method of claim 15, before comparing the voltage signal and the ramp signal, further comprising: connecting an output node of the comparator to a DC voltage source to pre-charge the output node of the comparator; The output node of the comparator is disconnected from the DC voltage source.
TW107124385A 2017-12-19 2018-07-13 Digital pixel image sensor TWI772462B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/847,517 2017-12-19
US15/847,517 US10419701B2 (en) 2017-06-26 2017-12-19 Digital pixel image sensor

Publications (2)

Publication Number Publication Date
TW201929534A true TW201929534A (en) 2019-07-16
TWI772462B TWI772462B (en) 2022-08-01

Family

ID=68049221

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107124385A TWI772462B (en) 2017-12-19 2018-07-13 Digital pixel image sensor

Country Status (1)

Country Link
TW (1) TWI772462B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI777574B (en) * 2020-05-22 2022-09-11 新加坡商普里露尼庫斯新加坡私人有限公司 System, method, device and data structure for digital pixel sensors
TWI812938B (en) * 2020-08-17 2023-08-21 友達光電股份有限公司 Biometric sensing apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1881609A1 (en) * 2006-07-21 2008-01-23 STMicroelectronics (Research & Development) Limited Analogue to digital convertor having a non-linear ramp voltage
WO2011030391A1 (en) * 2009-09-11 2011-03-17 パナソニック株式会社 Analog/digital converter, image sensor system, and camera device
US8779346B2 (en) * 2012-05-14 2014-07-15 BAE Systems Imaging Solutions Inc. Digital pixel sensor with reduced noise
JP6188451B2 (en) * 2013-06-27 2017-08-30 オリンパス株式会社 Analog-digital converter and solid-state imaging device
KR102210539B1 (en) * 2013-12-26 2021-02-01 삼성전자주식회사 correlated double sampling circuit, analog-to digital converter and image sensor including the same
US9432597B2 (en) * 2014-07-25 2016-08-30 Rambus Inc. Low-noise, high dynamic-range image sensor
US9560296B2 (en) * 2014-12-05 2017-01-31 Qualcomm Incorporated Pixel readout architecture for full well capacity extension

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI777574B (en) * 2020-05-22 2022-09-11 新加坡商普里露尼庫斯新加坡私人有限公司 System, method, device and data structure for digital pixel sensors
TWI812938B (en) * 2020-08-17 2023-08-21 友達光電股份有限公司 Biometric sensing apparatus

Also Published As

Publication number Publication date
TWI772462B (en) 2022-08-01

Similar Documents

Publication Publication Date Title
KR102525828B1 (en) digital pixel image sensor
US11595598B2 (en) Global shutter image sensor
US11910119B2 (en) Digital pixel with extended dynamic range
US11974044B2 (en) Pixel sensor having adaptive exposure time
EP3815354A1 (en) Pixel sensor having multiple photodiodes
WO2020046862A1 (en) Pixel sensor having multiple photodiodes and shared comparator
JP2021525472A (en) Digital pixels with extended dynamic range
WO2020097004A1 (en) Image sensor post processing
JP2021526327A (en) Digital pixels with extended dynamic range
US11363221B2 (en) Image sensor post processing
TWI772462B (en) Digital pixel image sensor