TW201929050A - Epitaxial growth device and method for manufacturing epitaxial wafer using the same - Google Patents
Epitaxial growth device and method for manufacturing epitaxial wafer using the same Download PDFInfo
- Publication number
- TW201929050A TW201929050A TW107136927A TW107136927A TW201929050A TW 201929050 A TW201929050 A TW 201929050A TW 107136927 A TW107136927 A TW 107136927A TW 107136927 A TW107136927 A TW 107136927A TW 201929050 A TW201929050 A TW 201929050A
- Authority
- TW
- Taiwan
- Prior art keywords
- gas
- discharge port
- epitaxial growth
- semiconductor wafer
- growth device
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/14—Feed and outlet means for the gases; Modifying the flow of the reactive gases
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Vapour Deposition (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
本發明,係關於磊晶成長裝置及使用此裝置的半導體磊晶晶圓的製造方法。The present invention relates to an epitaxial growth device and a method for manufacturing a semiconductor epitaxial wafer using the same.
磊晶晶圓,係在半導體晶圓的表面上氣相成長磊晶膜。例如,更要求結晶的完全性的情況下或需要不同電阻率的多層構造的情況下等,矽晶圓上氣相成長單結晶矽薄膜(磊晶成長)製造磊晶矽晶圓。An epitaxial wafer is an epitaxial film grown on the surface of a semiconductor wafer. For example, when completeness of crystallization is required or when a multilayer structure with different resistivity is required, etc., a vapor-grown single-crystal silicon film (epitaxial growth) on a silicon wafer is used to manufacture an epitaxial silicon wafer.
磊晶晶圓的製造中,例如使用枚葉式(single wafer processing(單一晶圓處理))磊晶成長裝置。在此,關於一般的枚葉式磊晶成長裝置,參照第1圖說明。如第1圖所示,磊晶成長裝置900,具有包含上部圓頂11、下部圓頂12以及圓頂安裝體13的密室10,上述密室10畫分磊晶膜形成室。又,以基座為邊界畫分圓頂安裝體13為上部襯墊17以及下部襯墊18。密室10中,在其側面對向位置的上部襯墊17側設置反應氣體供給口15A以及反應氣體排出口16A,分別進行反應氣體GP 的供給及排出。又,密室10的側面對向位置的下部襯墊18側設置大氣氣體供給口15B以及大氣氣體排出口16B,分別進行大氣氣體GA 的供給及排出,用以保持密室內下部圓頂12的部分在氫大氣中。In the production of epitaxial wafers, for example, a single wafer processing (single wafer processing) epitaxial growth device is used. Here, a general epitaxial epitaxial growth device will be described with reference to FIG. 1. As shown in FIG. 1, the epitaxial growth device 900 includes a dense chamber 10 including an upper dome 11, a lower dome 12, and a dome mounting body 13. The dense chamber 10 defines an epitaxial film formation chamber. In addition, the dome-shaped mounting body 13 is drawn with the base as a boundary, and the upper pad 17 and the lower pad 18 are drawn. In the closed chamber 10, a reaction gas supply port 15A and a reaction gas discharge port 16A are provided on the upper gasket 17 side of the side facing position, and supply and discharge of the reaction gas G P are performed, respectively. And, provided on the side of the atmospheric chamber 10 gas supply port 15B and the gas exhaust outlet to the atmosphere lower liner 18 side position 16B, respectively G A gas supplying air and discharge to a lower portion remains secret chamber dome 12 In a hydrogen atmosphere.
又,密室10內,配置裝載半導體晶圓W的基座20。基座20,從下方以基座支持軸30支持。基座支持軸30,以手臂的前端3個支持桿(未圖示)吻合支持基座20的下面外周部。又,基座20中形成3個貫通孔(本文,未圖示1個),基座支持軸30的手臂中也各形成1個貫通孔。這些手臂的貫通孔以及基座的貫通孔中,插通升降頂桿(LIFT PIN)40A、40B、40C(但是,升降頂桿40B由於配置關係,在第1圖的模式剖面圖未圖示)。又,升降頂桿40的下端部以升降軸50支持。支持密室10內搬入的半導體晶圓W、裝載至此半導體晶圓W的基座20上、以及搬出氣相磊晶成長後的磊晶晶圓至密室20外之際,藉由升降升降軸50,升降頂桿40邊轉動手臂的貫通孔以及基座的貫通孔‧動邊升降,以其上端部進行半導體晶圓W的升降。利用此枚葉式磊晶成長裝置900形成磊晶層EP時,旋轉基座20的同時,使基座20裝載的半導體晶圓W的上表面接觸反應氣體GP 。又,所謂反應氣體GP ,意味載子氣體內混合來源氣體的氣體。作為磊晶層EP形成矽磊晶層時,來源氣體使用三氯矽烷氣體等的矽來源氣體。又,基座20的側面,一般以3mm左右的間隙介於其間,以Pre-heat ring(預熱環)60覆蓋。In the back room 10, a susceptor 20 on which the semiconductor wafer W is mounted is arranged. The base 20 is supported by a base support shaft 30 from below. The base support shaft 30 supports the lower peripheral portion of the base 20 with three support rods (not shown) at the front end of the arm. In addition, three through holes (here, one is not shown) are formed in the base 20, and one through hole is also formed in each arm of the base support shaft 30. The through holes of these arms and the through holes of the base are inserted into LIFT PINs 40A, 40B, and 40C (however, the lifting pins 40B are not shown in the schematic cross-sectional view of FIG. 1 because of their arrangement) . The lower end portion of the lifting jack 40 is supported by a lifting shaft 50. The semiconductor wafer W carried in the closet 10 is supported on the susceptor 20 mounted on the semiconductor wafer W, and the epitaxial wafer grown after the vapor phase epitaxy is taken out of the closet 20, by lifting and lowering the shaft 50, The lifting and lowering lever 40 lifts and lowers the through hole of the arm and the through hole of the base while moving, and lifts and lowers the semiconductor wafer W at its upper end. When the epitaxial layer EP is formed by using this leaf type epitaxial growth device 900, the upper surface of the semiconductor wafer W mounted on the susceptor 20 is brought into contact with the reaction gas G P while the susceptor 20 is rotated. The reaction gas G P means a gas in which a source gas is mixed in a carrier gas. When forming a silicon epitaxial layer as the epitaxial layer EP, a silicon source gas such as trichlorosilane gas is used as the source gas. In addition, the side surface of the base 20 is generally interposed therebetween with a gap of about 3 mm, and is covered with a pre-heat ring 60.
Pre-heat ring60也稱作預熱環或預加熱環,反應氣體GP 流入磊晶膜形成室,反應氣體GP 與半導體晶圓W接觸前,預熱環60預熱基座20以及反應氣體GP ,提高成膜前以及成膜中的半導體晶圓W的熱均勻性,提高磊晶膜的均勻性。The pre-heat ring 60 is also called a pre-heating ring or a pre-heating ring. The reaction gas G P flows into the epitaxial film formation chamber. Before the reaction gas G P contacts the semiconductor wafer W, the pre-heat ring 60 preheats the susceptor 20 and the reaction gas. G P improves the thermal uniformity of the semiconductor wafer W before and during film formation, and improves the uniformity of the epitaxial film.
關於反應氣體排出口16A以及大氣氣體排出口16B側的反應氣體GP 以及大氣氣體GA 的氣流,參照第2圖說明。如第2圖所示,反應氣體GP 主要往反應氣體排出口16A側流動,大氣氣體GA 主要往大氣氣體排出口16B側流動,經由基座20與預熱環60之間的間隙g,反應氣體GP 的一部分能夠往大氣氣體排出口16B側沉入,相反地,大氣氣體GA 能夠將那一部分吹上氣體排出口16A側。但是,大氣氣體GA 與反應氣體GP 不同,基本上不打算往半導體晶圓W的上表面方向供給。The flow of the reaction gas G P and the atmospheric gas G A on the side of the reaction gas discharge port 16A and the atmospheric gas discharge port 16B will be described with reference to FIG. 2. As shown in FIG. 2, the reaction gas G P mainly flows to the reaction gas discharge port 16A side, and the atmospheric gas G A mainly flows to the atmosphere gas discharge port 16B side, and passes through the gap g between the base 20 and the preheating ring 60. A part of the reaction gas G P can sink into the atmospheric gas discharge port 16B side. Conversely, the atmospheric gas G A can blow that part onto the gas discharge port 16A side. However, unlike the reaction gas G P , the atmospheric gas G A is basically not intended to be supplied toward the upper surface of the semiconductor wafer W.
在此,專利文件1中揭示氣體注入裝置,在磊晶成長裝置中,包括噴出口第1組,對於1個平面狀表面以1個角度供給附加第1處理氣體的角度的注入;以及噴出口第2組,接近上述噴出口第1組,實質上沿著上述平面狀表面供給加壓第2處理氣體的層流;上述平面狀表面,對上述噴出口第2組垂直擴大。Here, Patent Document 1 discloses a gas injection device. In an epitaxial growth device, a first group of ejection ports is provided, and an injection of an angle at which a first treatment gas is added to a flat surface at an angle is provided; and an ejection port The second group is close to the first group of the ejection outlets, and supplies a laminar flow of the pressurized second processing gas substantially along the planar surface; the planar surface is vertically enlarged to the second group of the ejection outlets.
根據專利文件1,由於使用這樣的2種噴出口,磊晶層成膜時使用的處理氣體間的流動發生相互作用,欲改善磊晶層的厚度以及組成上的不均勻性或此兩方。
[先行技術文件]
[專利文件]According to Patent Document 1, since the two kinds of ejection ports are used, the flow between the processing gases used in forming the epitaxial layer interacts with each other, and it is desired to improve the thickness and unevenness of the epitaxial layer or both.
[Advanced technical documents]
[Patent Document]
[專利文件1]特表第2015-534283號公報[Patent Document 1] Special Table No. 2015-534283
[發明所欲解決的課題][Problems to be Solved by the Invention]
發明者們,利用第3圖所示的磊晶成長裝置800,期待可以良好控制半導體晶圓W上形成磊晶層EP時的膜厚均勻性,嘗試實驗。在此,磊晶成長裝置800,具有第1氣體供給部15,包括放出包含反應氣體GP 的第1處理氣體G1之第1放出口15A,對半導體晶圓W的上表面供給第1處理氣體G1;以及第2氣體供給部70,包括放出控制半導體晶圓W的周邊部中的第1處理氣體G1氣流的第2處理氣體G2之第2放出口70A,往半導體晶圓W的上表面方向供給第2處理氣體G2。於是,如第3圖所示,俯視半導體晶圓W的話,第1處理氣體G1與第2處理氣體G2的供給方向垂直交叉。The inventors expect that the epitaxial growth device 800 shown in FIG. 3 can control the uniformity of the film thickness when the epitaxial layer EP is formed on the semiconductor wafer W, and try an experiment. Here, the epitaxial growth device 800 includes a first gas supply unit 15 including a first discharge port 15A that discharges a first processing gas G1 containing a reaction gas G P , and supplies a first processing gas to the upper surface of the semiconductor wafer W. G1; and a second gas supply unit 70 including a second discharge port 70A of a second processing gas G2 that emits a first processing gas G1 in a peripheral portion of the semiconductor wafer W and directed toward the upper surface of the semiconductor wafer W A second processing gas G2 is supplied. Then, as shown in FIG. 3, when the semiconductor wafer W is viewed in plan, the supply direction of the first processing gas G1 and the second processing gas G2 intersect perpendicularly.
使用磊晶成長裝置800的話,因為第1處理氣體G1均勻流入晶圓周邊部,期待可以改善磊晶層EP的膜厚均勻性。但是,實際上形成磊晶層EP時,如之後詳述的第7B圖,確認有時產生稱作「凸塊(bump)」的晶圓周邊部中的隆起(捲起再滾下)。為了求出磊晶周邊部(晶圓邊緣部)的膜厚以單調減少或單調增加改變,不能容許如此的凸塊形成。When the epitaxial growth device 800 is used, the first processing gas G1 flows uniformly into the peripheral portion of the wafer, and it is expected that the film thickness uniformity of the epitaxial layer EP can be improved. However, when the epitaxial layer EP is actually formed, as shown in FIG. 7B described later in detail, it is confirmed that bumps (roll-up and roll-down) may occur in a peripheral portion of a wafer called a “bump”. In order to determine that the film thickness of the epitaxial peripheral portion (wafer edge portion) changes monotonically or monotonically, such bump formation cannot be allowed.
又,確認如此的凸塊形成,也受到基座20的旋轉數、第1處理氣體G1在晶圓中央部以及周邊部的供給比率很大的影響。因此,本發明者們理解使用第2處理氣體G2之際,需要改善磊晶層形成時的膜厚均勻性控制的堅固性作為新的課題。Moreover, it was confirmed that such bump formation is also greatly affected by the number of rotations of the susceptor 20 and the supply ratio of the first processing gas G1 in the central portion and the peripheral portion of the wafer. Therefore, the inventors understand that when using the second processing gas G2, it is necessary to improve the robustness of controlling the uniformity of the film thickness during the formation of the epitaxial layer as a new subject.
於是,本發明,提供可以改善磊晶層形成時的膜厚均勻性控制的堅固性的磊晶成長裝置。又,本發明,目的在於提供使用此磊晶成長裝置的半導體磊晶晶圓的製造方法。
[用以解決課題的手段]Therefore, the present invention provides an epitaxial growth device that can improve the robustness of the film thickness uniformity control during the formation of the epitaxial layer. It is another object of the present invention to provide a method for manufacturing a semiconductor epitaxial wafer using the epitaxial growth device.
[Means to solve the problem]
本發明者們,為了解決上述各個課題專心研討。磊晶成長中,藉由旋轉基座20,也旋轉其裝載的半導體晶圓W,噴塗第1處理氣體G1至半導體晶圓W的上表面。因此,隨著基座20以及半導體晶圓W的旋轉,第1處理氣體G1及第2處理氣體G2的氣流也改變,認為那是干擾的主因之一。再探討後,如第3圖模式顯示,基座20上在旋轉方向中,第2處理氣體G2與反應氣體排出口16A之間,形成第1處理氣體G1的濃度局部變高的區域,發現那能夠成為形成上述凸塊的原因。The inventors intensively studied in order to solve the above-mentioned problems. During epitaxial growth, by rotating the susceptor 20, the semiconductor wafer W mounted thereon is also rotated, and the first processing gas G1 is sprayed onto the upper surface of the semiconductor wafer W. Therefore, as the susceptor 20 and the semiconductor wafer W rotate, the gas flow of the first processing gas G1 and the second processing gas G2 also changes, which is considered to be one of the main causes of interference. After further discussion, as shown in the mode of FIG. 3, in the rotation direction on the base 20, between the second processing gas G2 and the reaction gas discharge port 16A, an area where the concentration of the first processing gas G1 became locally high was found. This can be a cause of the formation of the bumps.
於是,使用第2處理氣體G2時,為了均勻化半導體晶圓W上表面的濃度分布,本發明者構思藉由適當化第2處理氣體G2的氣流方向,控制第1處理氣體G1的氣流。於是,本發明者發現藉由使用適當化第2處理氣體G2的氣流方向之磊晶成長裝置,可以解決上述課題,達到完成本發明。Therefore, when the second processing gas G2 is used, in order to uniformize the concentration distribution on the upper surface of the semiconductor wafer W, the inventors conceived to control the gas flow of the first processing gas G1 by appropriately adjusting the direction of the gas flow of the second processing gas G2. Then, the present inventors have found that by using an epitaxial growth apparatus that optimizes the flow direction of the second processing gas G2, the above-mentioned problems can be solved and the present invention has been completed.
即,本發明的主旨構成與以下相同。
(1) 一種磊晶成長裝置,在半導體晶圓的表面上氣相磊晶成長磊晶層,
其特徵在於具有:
密室;
基座,在上述密室的內部裝載上述半導體晶圓;
第1氣體供給部,包括第1放出口,放出包含用以氣相磊晶成長上述磊晶層的反應氣體之第1處理氣體,對上述半導體晶圓的上表面供給上述第1處理氣體;
第2氣體供給部,包括第2放出口,放出控制上述半導體晶圓的周邊部中的上述第1處理氣體的氣流之第2處理氣體,往上述半導體晶圓的上表面方向供給上述第2處理氣體;
同時供給上述第1以及第2處理氣體時的上述第2處理氣體的氣流的主流路流入上述基座上,而且裝設上述第2氣體供給部,使上述主流路與上述半導體晶圓的周邊隔離。That is, the gist structure of the present invention is the same as the following.
(1) An epitaxial growth device, which epitaxially grows an epitaxial layer on the surface of a semiconductor wafer.
It is characterized by:
Secret room
A pedestal for mounting the semiconductor wafer inside the dense chamber;
The first gas supply unit includes a first discharge port, discharges a first processing gas containing a reaction gas for vapor phase epitaxial growth of the epitaxial layer, and supplies the first processing gas to an upper surface of the semiconductor wafer;
The second gas supply unit includes a second discharge port, and discharges a second processing gas that controls the flow of the first processing gas in the peripheral portion of the semiconductor wafer, and supplies the second processing to the upper surface direction of the semiconductor wafer. gas;
When the first and second processing gases are supplied simultaneously, the main flow path of the gas flow of the second processing gas flows into the pedestal, and the second gas supply section is installed to isolate the main flow path from the periphery of the semiconductor wafer. .
(2) 上述(1)所記載的磊晶成長裝置,在對向上述第1氣體放出口的位置具有排出上述第1處理氣體的排出口;
上述基座的旋轉方向中,配置上述第2氣體放出口在上述第1氣體放出口與上述排出口之間的旋轉方向上流。(2) The epitaxial growth device described in (1) above, which has a discharge port for discharging the first processing gas at a position opposite to the first gas discharge port;
In the rotation direction of the base, the second gas discharge port is arranged to flow upward in the rotation direction between the first gas discharge port and the discharge port.
(3) 上述(2)所記載的磊晶成長裝置,其中,上述第2氣體放出口,配置在上述基座的旋轉方向中的上述第1處理氣體的上流側。(3) The epitaxial growth device according to the above (2), wherein the second gas discharge port is arranged on an upstream side of the first processing gas in a rotation direction of the susceptor.
(4) 上述(2)或(3)所記載的磊晶成長裝置,其中,從上述第1氣體放出口對向上述排出口的第1方向與從上述第2氣體放出口放出上述第2處理氣體的放出方向形成的角度是銳角。(4) The epitaxial growth device according to the above (2) or (3), wherein the second treatment is performed in a first direction from the first gas discharge port to the discharge port, and the second process is discharged from the second gas discharge port. The angle formed by the gas release direction is an acute angle.
(5) 上述(4)所記載的磊晶成長裝置,其中,上述第1方向與上述放出方向形成的角度是從40度到80度的範圍。(5) The epitaxial growth device according to the above (4), wherein an angle formed by the first direction and the releasing direction is in a range from 40 degrees to 80 degrees.
(6) 上述(1)~(5)中任一項所記載的磊晶成長裝置,其中,上述第1處理氣體包含來源氣體以及載子氣體,上述第2處理氣體由上述載子氣體形成。(6) The epitaxial growth device according to any one of (1) to (5), wherein the first processing gas includes a source gas and a carrier gas, and the second processing gas is formed of the carrier gas.
(7) 上述(1)~(6)中任一項所記載的磊晶成長裝置,上述半導體晶圓的周邊與上述第2處理氣體的上述主流路之間的最短距離在5mm(毫米)以上40mm以下。(7) The epitaxial growth device according to any one of (1) to (6), wherein the shortest distance between the periphery of the semiconductor wafer and the main flow path of the second processing gas is 5 mm (mm) or more Below 40mm.
(8) 一種半導體磊晶晶圓的製造方法,包含上述(1)~(7)中任一項所記載的磊晶成長裝置的上述基座上裝載半導體晶圓之步驟;以及同時供給上述第1處理氣體以及上述第2處理氣體,在上述半導體晶圓的表面上氣相磊晶成長磊晶層之步驟。
[發明效果](8) A method for manufacturing a semiconductor epitaxial wafer, comprising the step of loading a semiconductor wafer on the pedestal of the epitaxial growth apparatus described in any one of (1) to (7) above; (1) A step in which a process gas and the second process gas are epitaxially grown on the surface of the semiconductor wafer to form an epitaxial layer.
[Inventive effect]
根據本發明,提供可以改善磊晶層形成時的膜厚均勻性控制的堅固性之磊晶成長裝置。又,根據本發明,可以提供使用此磊晶成長裝置的半導體磊晶晶圓的製造方法。According to the present invention, there is provided an epitaxial growth device capable of improving the uniformity of film thickness control during the formation of an epitaxial layer. Furthermore, according to the present invention, a method for manufacturing a semiconductor epitaxial wafer using the epitaxial growth device can be provided.
以下,參照圖面,說明關於根據本發明的磊晶成長裝置100。又,圖中的各構成的縱橫比,在說明的方便上誇張圖示,與實際不同。又,為了簡化說明,對各構成使用適當方塊圖。又,參照第1圖,關於與已述的一般磊晶成長裝置900重複的構成,使用相同的符號。Hereinafter, an epitaxial growth device 100 according to the present invention will be described with reference to the drawings. In addition, the aspect ratios of the respective components in the figure are exaggerated for convenience of explanation, and are different from the actual ones. In order to simplify the description, an appropriate block diagram is used for each configuration. In addition, referring to FIG. 1, the same reference numerals are used for the structures overlapping with the general epitaxial growth device 900 described above.
(磊晶成長裝置)
根據本發明的一實施形態的磊晶成長裝置100,係在半導體晶圓W的表面上氣相磊晶成長磊晶層EP,可以用於製造半導體磊晶晶圓EW之磊晶成長裝置。參照第1及4圖,說明此磊晶成長裝置100。(Epimorph growth device)
An epitaxial growth device 100 according to an embodiment of the present invention is a vapor phase epitaxial growth epitaxial layer EP on the surface of a semiconductor wafer W, and can be used to manufacture an epitaxial growth device for a semiconductor epitaxial wafer EW. The epitaxial growth device 100 will be described with reference to FIGS. 1 and 4.
根據本實施形態的磊晶成長裝置100,包含密室10、密室10的內部裝載半導體晶圓W的基座20、對上述半導體晶圓的上表面供給第1處理氣體G1的第1氣體供給部150、以及往半導體晶圓W的上表面方向供給第2處理氣體G2的第2氣體供給部170。在此,第1氣體供給部150,包括第1氣體放出口150A,放出包含用以氣相磊晶成長磊晶層EP的反應氣體之第1處理氣體G1。又,第2氣體供給部170,包括第2氣體放出口170A,放出控制半導體晶圓W的周邊部中的第1處理氣體G1氣流之第2處理氣體G2。又,第4圖中,對向第1氣體放出口150A的位置上,圖示排出第1處理氣體G1的排出口160。The epitaxial growth apparatus 100 according to the present embodiment includes a dense chamber 10, a susceptor 20 on which a semiconductor wafer W is mounted, and a first gas supply unit 150 that supplies a first processing gas G1 to the upper surface of the semiconductor wafer. And a second gas supply unit 170 that supplies the second processing gas G2 toward the upper surface of the semiconductor wafer W. Here, the first gas supply unit 150 includes a first gas discharge port 150A, and discharges a first process gas G1 containing a reaction gas for vapor phase epitaxial growth epitaxial layer EP. The second gas supply unit 170 includes a second gas discharge port 170A, and discharges a second processing gas G2 that controls the flow of the first processing gas G1 in the peripheral portion of the semiconductor wafer W. In addition, in FIG. 4, a discharge port 160 through which the first process gas G1 is discharged is shown at a position opposite to the first gas discharge port 150A.
說明的方便上,定義從排出口160朝向第1氣體供給部150,兩者對向的方向為x軸,與上述y軸直交,而且定義第2氣體供給部170側的方向為y軸。並且,以半導體晶圓W的厚度方向為z方向(以形成磊晶層EP側為z軸的正方向)。又,定義半導體晶圓W的中心位置為此x、y、z空間的原點。又,定義y軸與第2氣體放出口170A的中心位置形成的角為θ1 。又,定義從第1氣體放出口150A朝向排出口160的第1方向(即,x軸的負方向)與從第2氣體放出口170A放出第2處理氣體G2的放出方向形成的角度為角度θ2 。For convenience of description, the direction from the discharge port 160 toward the first gas supply unit 150 is defined as the x-axis, which is orthogonal to the y-axis, and the direction on the second gas supply unit 170 side is defined as the y-axis. In addition, the thickness direction of the semiconductor wafer W is the z direction (the side in which the epitaxial layer EP is formed is the positive direction of the z axis). The center position of the semiconductor wafer W is defined as the origin of the x, y, and z spaces. The angle formed by the y-axis and the center position of the second gas discharge port 170A is defined as θ 1 . In addition, the angle formed by the first direction (that is, the negative direction of the x-axis) from the first gas discharge port 150A toward the discharge port 160 and the discharge direction of the second process gas G2 from the second gas discharge port 170A is defined as an angle θ 2 .
那麼,第1處理氣體G1包含反應氣體,利用上述反應氣體在半導體晶圓W的表面上形成磊晶層EP。因此,對半導體晶圓W的上表面供給第1處理氣體G1。本說明書中,所謂反應氣體,意味載子氣體中混合來源氣體的氣體。另一方面,因為第2處理氣體G2控制第1處理氣體G1氣流,不必直接接觸半導體晶圓W的上表面,供給第2處理氣體G2。藉由往半導體晶圓W的上表面方向供給第2處理氣體G2,第2處理氣體G2將會控制第1處理氣體G1的流動。Then, the first processing gas G1 includes a reaction gas, and the epitaxial layer EP is formed on the surface of the semiconductor wafer W by the reaction gas. Therefore, the first processing gas G1 is supplied to the upper surface of the semiconductor wafer W. In the present specification, a reaction gas means a gas in which a source gas is mixed with a carrier gas. On the other hand, since the second processing gas G2 controls the flow of the first processing gas G1, it is not necessary to directly contact the upper surface of the semiconductor wafer W, and the second processing gas G2 is supplied. By supplying the second processing gas G2 toward the upper surface of the semiconductor wafer W, the second processing gas G2 controls the flow of the first processing gas G1.
在此,根據本實施形態的磊晶成長裝置100中,同時供給第1及第2處理氣體G1、G2時的第2處理氣體G2氣流的主流路F流入基座20上,而且裝設第2氣體供給部170,使上述主流路F與半導體晶圓W的周邊W0 隔離。Here, in the epitaxial growth device 100 according to this embodiment, the main flow path F of the second process gas G2 gas flow when the first and second process gases G1 and G2 are supplied simultaneously flows into the base 20, and the second The gas supply unit 170 isolates the main flow path F from the periphery W 0 of the semiconductor wafer W.
參照第4及5A、5B圖,說明關於第2處理氣體G2氣流的主流路F。第5A圖,模式記載以本實施形態的磊晶成長裝置100,邊旋轉基座20,邊流動第1處理氣體G1及第2處理氣體G2時的第2處理氣體的主流路F。在此所說的第2處理氣體G2氣流的主流路F,係指第2處理氣體的擴散速度成為最大的流動方向。第5B圖,在第5A圖的構成中,顯示同時流動第1處理氣體G1及第2處理氣體G2時的來源氣體(具體而言三氯矽烷)的質量濃度分布的一例。第5B圖中的濃色部指示來源氣體的質量濃度相對低(因此,第2處理氣體G2的質量濃度相對高)的區域,淡色部指示來源氣體的質量濃度相對高(因此,第2處理氣體G2的質量濃度相對低)的區域。擴散速度成為最大的流動方向與第4、5A圖所示的主流路F一致。The main flow path F regarding the flow of the second process gas G2 will be described with reference to FIGS. 4 and 5A and 5B. FIG. 5A schematically illustrates the main flow path F of the second processing gas when the first processing gas G1 and the second processing gas G2 flow while rotating the susceptor 20 according to the epitaxial growth device 100 according to this embodiment. The main flow path F of the flow of the second processing gas G2 is a flow direction in which the diffusion speed of the second processing gas is maximized. FIG. 5B shows an example of the mass concentration distribution of the source gas (specifically, trichlorosilane) when the first processing gas G1 and the second processing gas G2 flow simultaneously in the configuration of FIG. 5A. The thick portion in FIG. 5B indicates a region where the mass concentration of the source gas is relatively low (therefore, the mass concentration of the second processing gas G2 is relatively high), and the light portion indicates that the mass concentration of the source gas is relatively high (therefore, the second processing gas G2 mass concentration is relatively low). The flow direction where the diffusion velocity becomes the maximum corresponds to the main flow path F shown in Figs. 4 and 5A.
因為第2處理氣體G2的主流路F與半導體晶圓W的周邊W0 隔離,可以比較均勻擴散半導體晶圓W的周邊部中的第1處理氣體G1的質量濃度。因此,可以抑制形成磊晶層EP時的上述凸塊的形成,又,對於基座的旋轉數等的干擾主因,也可以改善磊晶層形成時的膜厚均勻性控制的堅固性。Since the main flow path F of the second processing gas G2 is isolated from the periphery W 0 of the semiconductor wafer W, the mass concentration of the first processing gas G1 in the peripheral portion of the semiconductor wafer W can be uniformly diffused. Therefore, it is possible to suppress the formation of the bumps when the epitaxial layer EP is formed, and also to improve the robustness of the uniformity control of the film thickness during the formation of the epitaxial layer due to the main cause of interference such as the rotation number of the pedestal.
又,為了將第2處理氣體G2的主流路F與半導體晶圓W的周邊W0 隔離,只要適當調整放出第2處理氣體G2的第2氣體放出口170A的位置以及放出方向(也可以說噴嘴)即可。又,主流路F是否與半導體晶圓W的周邊W0 隔離,例如可以根據有限體積法的數值解析判別。如此數值解析,例如利用市售的通用熱流體解析軟體,至少設定第1處理氣體G1的流量、放出起點以及放出方向、第2處理氣體G2的流量、放出起點以及放出方向、基座20的旋轉方向以及旋轉數、密室空間、晶圓表面溫度作為參數,只要動態數值解析第1處理氣體G1或第2處理氣體G2的擴散即可。In addition, in order to isolate the main flow path F of the second processing gas G2 from the periphery W 0 of the semiconductor wafer W, as long as the position and direction of the second gas discharge port 170A that discharges the second processing gas G2 are appropriately adjusted (the nozzle can also be said ). In addition, whether or not the main flow path F is isolated from the periphery W 0 of the semiconductor wafer W can be determined by, for example, numerical analysis using a finite volume method. In such numerical analysis, for example, a commercially available general-purpose thermal fluid analysis software is used to set at least the flow rate of the first processing gas G1, the release start point and the release direction, the flow rate of the second treatment gas G2, the release start point and the release direction, and the rotation of the base 20. The direction and the number of rotations, the chamber space, and the surface temperature of the wafer are used as parameters, as long as the diffusion of the first processing gas G1 or the second processing gas G2 is dynamically analyzed.
為了更確實得到本發明效果,如第4圖所示,基座20的旋轉方向中,最好配置第2氣體放出口170A在第1氣體放出口150A與排出口160之間的旋轉方向上流(即,-90度<θ1 <90度)。又,為了此目的,最好配置第2氣體放出口170A在基座20的旋轉方向中的第1處理氣體G1的上流側(即,x軸方向,0度<θ1 <90度),形成2度<θ1 <15度又更理想。作為θ1 的適當例,可以例示8度~12度的範圍。此時,最好配置第2氣體放出口170A從半導體晶圓W的中心(即,密室10的中心)往第1處理氣體G1的上流側(x軸方向)錯開既定距離L配置,作為此既定距離L,對半導體晶圓W的半徑R,可以是1/10~1/3左右。於是,對應往第1處理氣體G1的上流側將第2氣體放出口170A的位置錯開的距離L,只要適當調整第2氣體放出口170A的方向即可。具體說明的話,導體晶圓的半徑例如150mm(直徑300mm)時,只要往第1處理氣體G1的上流側將第2氣體放出口170A的位置錯開15mm~50mm左右即可。又,關於往y方向錯開的距離,如果配置在密室的圓周上,只要決定x方向上錯開的距離L,就可以對應距離L決定。In order to obtain the effect of the present invention more reliably, as shown in FIG. 4, in the rotation direction of the base 20, it is preferable to arrange the second gas discharge port 170A to flow in the rotation direction between the first gas discharge port 150A and the discharge port 160 ( That is, -90 degrees <θ 1 <90 degrees). For this purpose, it is preferable to arrange the second gas discharge port 170A on the upstream side of the first processing gas G1 in the rotation direction of the susceptor 20 (that is, in the x-axis direction, 0 degrees <θ 1 <90 degrees) to form 2 degrees <θ 1 <15 degrees is more desirable. A suitable example of θ 1 is a range of 8 to 12 degrees. At this time, it is preferable to arrange the second gas discharge port 170A to be shifted from the center of the semiconductor wafer W (that is, the center of the dense chamber 10) to the upstream side (x-axis direction) of the first processing gas G1 by a predetermined distance L, as this predetermined The distance L and the radius R to the semiconductor wafer W may be about 1/10 to 1/3. Therefore, the direction of the second gas discharge port 170A may be adjusted appropriately by the distance L in which the position of the second gas discharge port 170A is shifted toward the upstream side of the first processing gas G1. Specifically, when the radius of the conductor wafer is, for example, 150 mm (diameter 300 mm), the position of the second gas discharge port 170A may be shifted from about 15 mm to 50 mm toward the upstream side of the first processing gas G1. In addition, as for the distance staggered in the y direction, if it is arranged on the circumference of the dense room, as long as the distance L staggered in the x direction is determined, it can be determined corresponding to the distance L.
又,為了得到上述的主流路F,從第1氣體放出口150A朝向排出口160的第1方向與從第2氣體放出口170A放出第2處理氣體放出的放出方向形成的角度θ2 為銳角的話,更確實,尤其,第1方向與上述放出方向形成的角度θ2 在40度~80度的範圍內的話,更確實,45度~55度的範圍內的話,又更確實。又,為了此目的,上述θ1 越大,或距離L越大,越縮小角度θ2 的話,更確實。In order to obtain the above-mentioned main flow path F, the angle θ 2 formed by the first direction from the first gas discharge port 150A to the discharge port 160 and the discharge direction of the second process gas discharge from the second gas discharge port 170A is an acute angle. It is more reliable. In particular, if the angle θ 2 formed by the first direction and the releasing direction is within a range of 40 ° to 80 °, it is more accurate, and if it is within a range of 45 ° to 55 °, it is more accurate. For this purpose, the larger the above-mentioned θ 1 or the larger the distance L is, the more reliable the angle θ 2 becomes.
又,為了確實得到本發明的效果,使半導體晶圓W的周邊W0 與第2處理氣體G1的主流路F之間的最短距離l0 超過0mm以上40mm以下,又,最好是5mm以上。最短距離l0 在此範圍的話,可以確實控制第1處理氣體G1的半導體晶圓周邊部中的氣流,使來源氣體的濃度分布合理化。又,所謂周邊W0 與主流路F之間的最短距離l0 ,意味不同2曲線間的最短距離。In order to ensure the effect of the present invention, the shortest distance l 0 between the periphery W 0 of the semiconductor wafer W and the main flow path F of the second processing gas G1 is more than 0 mm and 40 mm, and more preferably 5 mm or more. When the shortest distance 10 is within this range, the gas flow in the peripheral portion of the semiconductor wafer of the first processing gas G1 can be reliably controlled, and the concentration distribution of the source gas can be rationalized. The shortest distance l 0 between the surrounding W 0 and the main flow path F means the shortest distance between two different curves.
又,上述第2氣體放出口170A的裝設位置不過是適合的形態,第2處理氣體G2氣流的主流路F流入基座20上,且只要上述主流路F與半導體晶圓W的周邊W0 隔離,不限定第2氣體放出口170A的裝設位置。又,第2氣體放出口170A的裝設位置與基座的關係,只要設置第2氣體放出口170A的裝設位置使氣流的主流路F流入基座上即可,例如,設置為從與基座的水平位置同等或比基座高的位置流入基座上也可以,相反也沒關係。In addition, the installation position of the second gas discharge port 170A is just a suitable form. The main flow path F of the second processing gas G2 flow flows into the susceptor 20 as long as the main flow path F and the periphery W 0 of the semiconductor wafer W. Isolation does not limit the installation position of the second gas discharge port 170A. In addition, the relationship between the installation position of the second gas release port 170A and the base may be provided by installing the installation position of the second gas release port 170A so that the main flow path F of the air flow flows into the base. The horizontal position of the seat may be equal to or higher than the base, and it may flow into the base, and the opposite does not matter.
又,根據本實施形態的磊晶成長裝置中,最好使用矽晶圓作為半導體晶圓W,在矽晶圓上成膜的磊晶層最好是矽磊晶層。但是,根據本實施形態的磊晶成長裝置也可應用於化合物半導體晶圓等,也可以應用於異磊晶成長。In the epitaxial growth device according to this embodiment, a silicon wafer is preferably used as the semiconductor wafer W, and the epitaxial layer formed on the silicon wafer is preferably a silicon epitaxial layer. However, the epitaxial growth device according to this embodiment can also be applied to compound semiconductor wafers and the like, and can also be applied to heteroepitaxial growth.
在此,第1處理氣體G1作為反應氣體包含來源氣體以及載子氣體,而且,此時,第2處理氣體G2,最好由載子氣體形成。以矽晶圓中形成矽磊晶層的情況為例說明時,作為來源氣體可以使用二氯矽烷或三氯矽烷等的矽源,作為載子氣體可以使用氫。第2處理氣體與第1處理氣體的載子氣體同類的話,在不影響磊晶成長時的反應方面是理想的。但是,利用本實施例的第1及第2處理氣體G1、G2不限定於這些,只要根據半導體晶圓W的基板類及磊晶層材料,適當選擇即可。又,第1處理氣體G1及第2處理氣體G2中任一方,或兩方,包含摻雜劑氣體也可以。如果是矽晶圓中形成矽磊晶層的情況,可以使用包含硼、磷、砷的化合物氣體。Here, the first processing gas G1 includes a source gas and a carrier gas as a reaction gas, and in this case, the second processing gas G2 is preferably formed of a carrier gas. Taking a case where a silicon epitaxial layer is formed in a silicon wafer as an example, a silicon source such as dichlorosilane or trichlorosilane can be used as a source gas, and hydrogen can be used as a carrier gas. When the second processing gas is the same as the carrier gas of the first processing gas, it is desirable not to affect the reaction during epitaxial growth. However, the use of the first and second processing gases G1 and G2 in this embodiment is not limited to these, and may be appropriately selected according to the substrates and epitaxial layer materials of the semiconductor wafer W. Either or both of the first processing gas G1 and the second processing gas G2 may include a dopant gas. If a silicon epitaxial layer is formed in a silicon wafer, a compound gas containing boron, phosphorus, and arsenic can be used.
又,為了得到前述的主流路F,第1處理氣體G1的氣流量與第2處理氣體G2的氣流量之比,最好設定在8:1~13:1的範圍內。又,在此所說的氣流量,包含複數種不同氣體時,指合計量中的氣流量。即,第1處理氣體G1包含來源氣體及氫氣時,只要使用這些合計的氣流量算出上述比即可。In order to obtain the main flow path F described above, the ratio of the gas flow rate of the first processing gas G1 to the gas flow rate of the second processing gas G2 is preferably set within a range of 8: 1 to 13: 1. In addition, when the air flow rate includes a plurality of different gases, the air flow rate in the total measurement is referred to. That is, when the first processing gas G1 includes a source gas and hydrogen, it is only necessary to calculate the above ratio using these total gas flow rates.
以下,雖然說明可應用於本實施形態的磊晶成長裝置的各構成的具體形態,但本發明毫不限定於這些具體形態。Hereinafter, although specific embodiments of each configuration of the epitaxial growth device applicable to this embodiment will be described, the present invention is not limited to these specific embodiments.
<密室>
如第1圖所示,密室10,包含上部圓頂11、下部圓頂12及圓頂安裝體13,此密室10畫分磊晶膜形成室。密室10中,一般在上部襯墊17側的側面對向的位置設置反應氣體供給口15A以及反應氣體排出口16A,進行反應氣體GP
的供給及排出。又,密室10中,一般在下部襯墊18側的側面交叉的位置設置大氣氣體供給口15B以及大氣氣體排出口16B,進行大氣氣體GA
的供給及排出。第1圖中為了簡化,同一剖面中圖示反應氣體GP
及大氣氣體GA
的供給口及排出口,如同第1圖,也可能設置供給口使反應氣體GP
及大氣氣體GA
並行。又,圓頂安裝體13,與基座及晶圓同樣圓形,設置第2噴嘴。圓頂安裝體13,在處理30mm的晶圓的磊晶裝置中,直徑大約420~470mm。< Secret Room >
As shown in FIG. 1, the secret chamber 10 includes an upper dome 11, a lower dome 12, and a dome mounting body 13, and the secret chamber 10 is an epitaxial film formation chamber. In the closed chamber 10, a reaction gas supply port 15A and a reaction gas discharge port 16A are generally provided at positions facing the side surface on the upper pad 17 side, and the reaction gas G P is supplied and discharged. Further, the chamber 10 is generally provided atmospheric gas supply port 15B, and the atmosphere in the gas discharge port 18 side of the lower liner side surface intersecting the position 16B, the atmospheric gas G A supplied and discharged. In order to simplify FIG. 1, the supply port and discharge port of the same cross-section as illustrated in the reaction gas and the atmospheric gas G P G A, as in FIG. 1, it may set the supply port of the reaction gas and the atmospheric gas G P G A parallel. The dome mount 13 has a circular shape similar to the base and the wafer, and has a second nozzle. The dome mounting body 13 has an diameter of about 420 to 470 mm in an epitaxial device for processing a 30 mm wafer.
<基座>
基座20,係在密室10的內部裝載半導體晶圓W的圓盤狀的構件。基座20,一般具有往周方向以120度等間隔並往鉛直方向貫通表背面的3個貫通孔。這些貫通孔中,分別插通升降頂桿(LIFT PIN)40A、40B、40C。基座20,厚度大概2~8mm左右,可以使用以carbon graphite(黑鉛)作為母材,其表面塗布碳化矽(SiC:Vickers(維氏硬度)2, 346kgf/mm2
)。基座20的表面上,形成容納裝載半導體晶圓W的鑽錐坑(counter sinking)部(未圖示)。<Pedestal>
The susceptor 20 is a disc-shaped member on which the semiconductor wafer W is mounted inside the dense chamber 10. The base 20 generally has three through holes that penetrate the front and back surfaces at a regular interval of 120 degrees in the circumferential direction and pass through the front and back surfaces in the vertical direction. These through holes are respectively inserted into LIFT PINs 40A, 40B, and 40C. The base 20 has a thickness of about 2 to 8 mm, and carbon graphite (black lead) can be used as a base material, and the surface thereof is coated with silicon carbide (SiC: Vickers (Vickers hardness) 2, 346 kgf / mm 2 ). A counter sinking portion (not shown) is formed on the surface of the susceptor 20 to house the semiconductor wafer W thereon.
<基座支持軸>
基座支持軸30,在密室10內從下方支持基座20,其支柱配置為與基座20的中心大致在同軸上。< Base support shaft >
The pedestal support shaft 30 supports the pedestal 20 from below in the back room 10, and its pillars are arranged substantially coaxially with the center of the pedestal 20.
<升降頂桿>
升降頂桿(LIFT PIN)40A、40B、40C,分別插通基座20的貫通孔。升降頂桿40A、40B、40C,以升降軸50,經由往上下方向升降,可以在升降頂桿的上端部邊支持半導體晶圓W(半徑50%以上的背面部區域),邊在基座20上裝卸半導體晶圓W。後述關於升降頂桿的動作。升降頂桿40A、40B、40C的材料中,與基座20相同,一般使用黑鉛及/或碳化矽。< Elevator jacks >
LIFT PINs 40A, 40B, and 40C are respectively inserted into the through holes of the base 20. The lifting pins 40A, 40B, and 40C can be lifted up and down by the lifting shaft 50 to support the semiconductor wafer W (the area of the back portion with a radius of 50% or more) at the upper end of the lifting pin and the base 20 The semiconductor wafer W is loaded and unloaded. The operation of raising and lowering the ejector lever will be described later. The materials of the lifting rods 40A, 40B, and 40C are the same as those of the base 20, and black lead and / or silicon carbide are generally used.
<升降軸>
升降軸50,畫分容納基座支持軸30的主柱之中空,在支柱的前端部分別支持升降頂桿的下端部。升降軸50最好以石英構成。升降軸,藉由沿著基座支持軸30的主柱上下移動,可以升降升降頂桿40A、40B、40C。<Lifting shaft>
The elevating shaft 50 is divided into hollows of the main pillars accommodating the support shaft 30 of the base, and the lower ends of the elevating rods are supported at the front ends of the pillars, respectively. The lifting shaft 50 is preferably made of quartz. The lifting shaft can be moved up and down along the main column of the base support shaft 30 to lift the lifting rods 40A, 40B, and 40C.
<預熱環>
預熱環60,以間隙介於其間覆蓋基座20的側面。以未圖示的鹵素燈照射的光加熱,反應氣體GP
流入磊晶膜形成室,在反應氣體GP
與半導體晶圓W接觸前,預熱環60預熱反應氣體GP
。預熱環60,同時也進行基座20的預熱。以此方式,預熱環60提高成膜前以及成膜中的基座20以及半導體晶圓W的熱均勻性。預熱環60也與基座20相同,可以使用以黑鉛作為母材,其表面塗布碳化矽(SiC:Vickers(維氏硬度)2, 346kgf/mm2
)。< Preheating ring >
The preheating ring 60 covers the side of the base 20 with a gap therebetween. Irradiating light to heat a halogen lamp (not shown), flow into the reaction gas G P epitaxial film forming chamber before the gas G P with the semiconductor wafer W contact reaction, the reaction preheated gas preheat ring 60 G P. The preheating ring 60 also preheats the base 20 at the same time. In this manner, the preheating ring 60 improves the thermal uniformity of the susceptor 20 and the semiconductor wafer W before and during film formation. The preheating ring 60 is also the same as the base 20, and black lead can be used as a base material, and the surface is coated with silicon carbide (SiC: Vickers (Vickers hardness) 2, 346 kgf / mm 2 ).
<加熱燈>
加熱燈,配置在密室10的上側區域以及下側區域,一般,使用升降溫度快且溫度控制性優異的鹵素燈或紅外線燈。< Heating lamp >
The heating lamp is arranged in the upper region and the lower region of the secret chamber 10, and generally, a halogen lamp or an infrared lamp which has a rapid temperature rise and excellent temperature controllability is used.
又,最好使用氫氣作為導入密室內的大氣氣體。不是供給大氣氣體至半導體晶圓W的上表面,與前述相同。Moreover, it is preferable to use hydrogen as the atmospheric gas introduced into the dense chamber. Instead of supplying atmospheric gas to the upper surface of the semiconductor wafer W, it is the same as described above.
(半導體磊晶晶圓的製造方法)
又,根據本發明的一實施形態的半導體磊晶晶圓的製造方法,包含上述磊晶成長裝置的上述基座上裝載半導體晶圓之步驟;以及同時供給上述第1處理氣體以及上述第2處理氣體,在上述半導體晶圓的表面上氣相磊晶成長磊晶層之步驟。根據此製造方法,可以改善磊晶層形成時的膜厚均勻性控制的堅固性。(Manufacturing method of semiconductor epitaxial wafer)
In addition, a method for manufacturing a semiconductor epitaxial wafer according to an embodiment of the present invention includes a step of loading a semiconductor wafer on the pedestal of the epitaxial growth device, and supplying the first processing gas and the second processing simultaneously. A step of vapor-epitaxially growing an epitaxial layer on the surface of the semiconductor wafer by gas. According to this manufacturing method, it is possible to improve the robustness of controlling the uniformity of the film thickness during the formation of the epitaxial layer.
又,半導體晶圓W的表面上形成磊晶層之際的成長條件可以是一般的。如果是矽晶圓中形成矽磊晶層的情況,例如,以氫作為載子氣體,二氯矽烷、三氯矽烷等的來源氣體做為第1處理汽體導入磊晶成長爐內,根據使用的來源氣體成長溫度也不同,在大概1000~1200℃溫度範圍的溫度中以CVD法在半導體晶圓上可以磊晶成長。關於第2處理氣體,與上述相同,最好使用氫。又,形成的磊晶層EP層厚度可以在1~15μm的範圍內。
[實施例]The growth conditions when an epitaxial layer is formed on the surface of the semiconductor wafer W may be general. If a silicon epitaxial layer is formed in a silicon wafer, for example, hydrogen is used as a carrier gas, and a source gas such as dichlorosilane or trichlorosilane is introduced into the epitaxial growth furnace as the first treatment gas. The source gas has a different growth temperature, and can be epitaxially grown on a semiconductor wafer by a CVD method in a temperature range of about 1000 to 1200 ° C. As for the second processing gas, hydrogen is preferably used in the same manner as described above. The thickness of the epitaxial layer EP layer may be in a range of 1 to 15 μm.
[Example]
其次,為了使本發明效果更明確,舉出以下的實施例,但本發明毫不受限於以下實施例。Next, in order to clarify the effects of the present invention, the following examples are given, but the present invention is not limited to the following examples.
(實施例1)
使用第4圖所示的磊晶成長裝置,數值解析矽晶圓表面上形成矽磊晶層時的第2處理氣體G2的主流路F以及形成的磊晶層的膜厚分布。設置第2處理氣體G2的供給口170A在上流側L:40mm的位置,角度θ1
為10度,角度θ2
為50度。(Example 1)
Using the epitaxial growth device shown in FIG. 4, the main flow path F of the second processing gas G2 and the film thickness distribution of the formed epitaxial layer when the silicon epitaxial layer is formed on the surface of the silicon wafer are numerically analyzed. The supply port 170A of the second processing gas G2 is provided at a position on the upstream side L: 40 mm, the angle θ 1 is 10 degrees, and the angle θ 2 is 50 degrees.
又,本實施例1中,導入三氯矽烷(TCS)以及氫氣作為第1處理氣體G1,導入氫氣作為第2處理氣體G2。第1處理氣體G1的合計流量為84slm(H2 :75slm, TCS:9slm),第2處理氣體G2的合計流量為7slm。又,基座旋轉數為70rpm、基座上的晶圓溫度為1130℃。In the first embodiment, trichlorosilane (TCS) and hydrogen were introduced as the first processing gas G1, and hydrogen was introduced as the second processing gas G2. The total flow rate of the first process gas G1 is 84 slm (H 2 : 75 slm, TCS: 9 slm), and the total flow rate of the second process gas G2 is 7 slm. The number of rotations of the pedestal was 70 rpm, and the wafer temperature on the pedestal was 1130 ° C.
第1處理氣體的質量濃度分布的數值解析中,計算TCS的質量濃度分布,作為參數,設定第1處理氣體G1的流量、放出起點位置及放出方向、第2處理氣體G2的流量、放出起點位置及放出方向、基座20的旋轉方向及旋轉數、密室空間、晶圓表面溫度及爐內壓力(常壓)。於是,根據得到的質量濃度分布求出主流路F。又,磊晶成長處理的數值解析,使用TCS作為矽來源,求出磊晶成長速度分布。In the numerical analysis of the mass concentration distribution of the first process gas, the mass concentration distribution of the TCS is calculated, and as parameters, the flow rate of the first process gas G1, the release starting position and the release direction, the flow rate of the second process gas G2, and the release start position are set. And the release direction, the rotation direction and number of rotations of the susceptor 20, the chamber space, the wafer surface temperature, and the furnace pressure (normal pressure). Then, the main flow path F is obtained from the obtained mass concentration distribution. In addition, the numerical analysis of the epitaxial growth process uses TCS as the silicon source to obtain the epitaxial growth rate distribution.
第6A圖中,圖示根據數值解析結果的主流路F。如第6A圖所示,主流路F平常與矽晶圓的周邊W0 隔離。上述數值解析中,最短距離l0 是25mm。此時得到的磊晶層的晶圓周邊部中的膜厚分布的計算結果顯示於第7A圖。根據第7A圖,可以確認只有磊晶膜厚捲起。FIG. 6A illustrates a main flow path F based on a numerical analysis result. As shown in FIG. 6A, the main flow path F is usually isolated from the periphery W 0 of the silicon wafer. In the above numerical analysis, the shortest distance 10 is 25 mm. The calculation result of the film thickness distribution in the wafer peripheral portion of the epitaxial layer obtained at this time is shown in FIG. 7A. From FIG. 7A, it can be confirmed that only the epitaxial film is rolled up.
(比較例1)
第3圖的構成,即,為了使第2處理氣體G2的供給口170A的方向朝向晶圓中心,使第1處理氣體G1的上流側的移動距離為0(零)以外,與實施例1相同,數值解析主流路F以及形成的磊晶層的膜厚分布。(Comparative example 1)
The structure of FIG. 3 is the same as that of Example 1 so that the moving distance of the upstream side of the first processing gas G1 is 0 (zero) so that the direction of the supply port 170A of the second processing gas G2 faces the wafer center. , Numerical analysis of the film thickness distribution of the main flow path F and the epitaxial layer formed.
根據比較例1的結果,與實施例1相同,顯示於第6B、7B圖。根據第6B圖,比較例1中可以確認主流路F流入半導體晶圓W。於是,根據第7B圖,可以確認形成稱作凸塊的晶圓圓周部中的磊晶層隆起(捲起後,滾下)。The results of Comparative Example 1 are the same as those of Example 1, and are shown in Figs. 6B and 7B. From FIG. 6B, in Comparative Example 1, it can be confirmed that the main flow path F flows into the semiconductor wafer W. Then, according to FIG. 7B, it can be confirmed that the epitaxial layer in the peripheral portion of the wafer called the bump is raised (after being rolled up, rolled down).
又,實施例1以及比較例1中,使條件1為基座旋轉數70rpm、第1處理氣體的分配比5:1(條件1),即使在基座旋轉數32rpm、第1處理氣體的分配比1:1(條件2)的情況下也進行數值解析。又,分別在條件1、2中,第2處理氣體的流量為3slm、5slm、7slm時在徑方向140mm及148mm的位置間的磊晶層膜厚差分別顯示於第8A(實施例1)圖、第8B(比較例1)圖。In Example 1 and Comparative Example 1, the condition 1 is set to 70 rpm of the base rotation number and the distribution ratio of the first processing gas is 5: 1 (condition 1). Even at 32 rpm of the base rotation number, the first processing gas distribution is set. In the case of a ratio of 1: 1 (condition 2), numerical analysis was also performed. In conditions 1 and 2, respectively, the epitaxial layer film thickness difference between the positions of 140 mm and 148 mm in the radial direction when the flow rate of the second processing gas is 3 slm, 5 slm, and 7 slm is shown in FIG. Figure 8B (Comparative Example 1).
根據第8A、8B圖,比較例1中,隨著第2處理氣體的氫氣流量增加,磊晶晶圓的外周膜厚的響應性不是單調增加,確認雜訊影響大。相對於此,實施例1中,隨著第2處理氣體的氫氣流量增加,因為可以確認磊晶晶圓的外周膜厚的響應性單調增加,雜訊影響小,確認可以改善堅固性。
[產業上的利用可能性]According to FIGS. 8A and 8B, in Comparative Example 1, as the hydrogen flow rate of the second processing gas increases, the responsiveness of the peripheral film thickness of the epitaxial wafer does not increase monotonously, and it is confirmed that the influence of noise is large. In contrast, in Example 1, as the hydrogen flow rate of the second processing gas increased, it was confirmed that the responsiveness of the peripheral film thickness of the epitaxial wafer increased monotonously, and the noise effect was small, and it was confirmed that the robustness can be improved.
[Industrial availability]
根據本發明,可以提供可以改善磊晶層形成時的膜厚均勻性控制的堅固性之磊晶成長裝置。According to the present invention, it is possible to provide an epitaxial growth device capable of improving the uniformity control of the film thickness during the formation of the epitaxial layer.
10‧‧‧密室;10‧‧‧ secret room;
11‧‧‧上部圓頂; 11‧‧‧ upper dome;
12‧‧‧下部圓頂; 12‧‧‧ lower dome;
13‧‧‧圓頂安裝體; 13‧‧‧ dome mounting body;
15A‧‧‧反應氣體供給口; 15A‧‧‧reaction gas supply port;
15B‧‧‧大氣氣體供給口; 15B‧‧‧ Atmospheric gas supply port;
16A‧‧‧反應氣體排出口; 16A‧‧‧Reaction gas discharge port;
16B‧‧‧大氣氣體排出口; 16B‧‧‧ Atmospheric gas outlet;
17‧‧‧上部襯墊; 17‧‧‧ upper pad;
18‧‧‧下部襯墊; 18‧‧‧ lower cushion;
20‧‧‧基座; 20‧‧‧ base;
30‧‧‧基座支持軸; 30‧‧‧ base support shaft;
40‧‧‧升降頂桿; 40‧‧‧ lifting jack;
40A、40B、40C‧‧‧升降頂桿(LIFT PIN); 40A, 40B, 40C ‧‧‧Lift PIN;
50‧‧‧升降軸; 50‧‧‧ lift shaft;
60‧‧‧預熱環; 60‧‧‧preheating ring;
70A‧‧‧第2放出口; 70A‧‧‧ second release;
100‧‧‧磊晶成長裝置; 100‧‧‧ epitaxial growth device;
150‧‧‧第1氣體供給部; 150‧‧‧ the first gas supply department;
150A‧‧‧第1氣體放出口; 150A‧‧‧ the first gas outlet;
160‧‧‧排出口; 160‧‧‧ discharge
170‧‧‧第2氣體供給部; 170‧‧‧second gas supply department;
170A‧‧‧第2氣體放出口; 170A‧‧‧second gas outlet;
800‧‧‧磊晶成長裝置; 800‧‧‧Epimorph growth device;
900‧‧‧磊晶成長裝置; 900‧‧‧ epitaxial growth device;
EP‧‧‧磊晶層; EP‧‧‧ epitaxial layer;
EW‧‧‧半導體磊晶晶圓; EW‧‧‧ semiconductor epitaxial wafer;
F‧‧‧主流路; F‧‧‧ mainstream road;
GA‧‧‧大氣氣體;G A ‧‧‧ Atmospheric gas;
GP‧‧‧反應氣體;G P ‧‧‧reactive gas;
W‧‧‧半導體晶圓; W‧‧‧ semiconductor wafer;
W0‧‧‧半導體晶圓W的周邊;W 0 ‧‧‧ the periphery of the semiconductor wafer W;
G1‧‧‧第1處理氣體; G1‧‧‧ the first processing gas;
G2‧‧‧第2處理氣體; G2‧‧‧ the second processing gas;
GA‧‧‧大氣氣體;G A ‧‧‧ Atmospheric gas;
GP‧‧‧反應氣體。G P ‧‧‧Reactive gas.
[第1圖]係根據習知技術的磊晶成長裝置的模式剖面圖;[FIG. 1] A schematic sectional view of an epitaxial growth device according to a conventional technique;
[第2圖]係說明磊晶成長裝置在氣體排出口近旁的氣流之模式剖面圖; [FIG. 2] A schematic cross-sectional view illustrating the air flow near the gas discharge port of the epitaxial growth device;
[第3圖]係包含本發明者們探討的第2處理氣體之磊晶成長裝置的模式平面圖; [FIG. 3] A schematic plan view of an epitaxial growth device including a second processing gas that the present inventors discussed;
[第4圖]係根據本發明的一實施形態的磊晶成長裝置的模式平面圖; 4 is a schematic plan view of an epitaxial growth device according to an embodiment of the present invention;
[第5A圖]係顯示第2處理氣體的主流路F的模式圖; [FIG. 5A] A schematic diagram showing the main flow path F of the second processing gas;
[第5B圖]係第2處理氣體控制的來源氣體的質量濃度分佈的一例; [FIG. 5B] An example of the mass concentration distribution of the source gas controlled by the second process gas;
[第6A圖]係顯示實施例1中的第1處理氣體的質量濃度分布圖; [FIG. 6A] A diagram showing a mass concentration distribution of the first processing gas in Example 1;
[第6B圖]係顯示比較例1中的第1處理氣體的質量濃度分布圖; [FIG. 6B] A mass concentration distribution chart of the first processing gas in Comparative Example 1;
[第7A圖]係顯示實施例1中形成的磊晶層的周邊部中的膜厚分布圖; [FIG. 7A] A diagram showing a film thickness distribution in a peripheral portion of the epitaxial layer formed in Example 1;
[第7B圖]係顯示比較例1中形成的磊晶層的周邊部中的膜厚分布圖; [FIG. 7B] A diagram showing a film thickness distribution in a peripheral portion of the epitaxial layer formed in Comparative Example 1;
[第8A圖]係顯示改變成長條件時實施例1中的第2處理氣體的氣流量與晶圓周邊部中的膜厚差之間的關係圖;以及 [FIG. 8A] A diagram showing a relationship between the air flow rate of the second processing gas and the film thickness difference in the peripheral portion of the wafer when the growth conditions are changed; and
[第8B圖]係顯示改變成長條件時比較例1中的第2處理氣體的氣流量與晶圓周邊部中的膜厚差之間的關係圖。 8B is a graph showing the relationship between the gas flow rate of the second processing gas in Comparative Example 1 and the film thickness difference in the peripheral portion of the wafer when the growth conditions are changed.
Claims (11)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017248019A JP6812961B2 (en) | 2017-12-25 | 2017-12-25 | Epitaxy growth device and manufacturing method of semiconductor epitaxial wafer using it |
JP2017-248019 | 2017-12-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201929050A true TW201929050A (en) | 2019-07-16 |
TWI706446B TWI706446B (en) | 2020-10-01 |
Family
ID=67165086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107136927A TWI706446B (en) | 2017-12-25 | 2018-10-19 | Epitaxial growth device and method for manufacturing epitaxial wafer using the same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6812961B2 (en) |
CN (1) | CN110004487B (en) |
TW (1) | TWI706446B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111455458B (en) * | 2019-09-18 | 2021-11-16 | 北京北方华创微电子装备有限公司 | Epitaxial device and air inlet structure applied to epitaxial device |
CN112133669B (en) * | 2020-09-01 | 2024-03-26 | 北京北方华创微电子装备有限公司 | Semiconductor chamber and semiconductor device |
EP4074861A1 (en) | 2021-04-13 | 2022-10-19 | Siltronic AG | Method for manufacturing semiconductor wafers having an epitaxial layer deposited from the gas phase in a deposition chamber |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2848755B2 (en) * | 1993-02-26 | 1999-01-20 | 日立造船株式会社 | Plasma CVD equipment |
US6902622B2 (en) * | 2001-04-12 | 2005-06-07 | Mattson Technology, Inc. | Systems and methods for epitaxially depositing films on a semiconductor substrate |
JP3908112B2 (en) * | 2002-07-29 | 2007-04-25 | Sumco Techxiv株式会社 | Susceptor, epitaxial wafer manufacturing apparatus and epitaxial wafer manufacturing method |
US7879250B2 (en) * | 2007-09-05 | 2011-02-01 | Applied Materials, Inc. | Method of processing a workpiece in a plasma reactor with independent wafer edge process gas injection |
JP5029340B2 (en) * | 2007-12-14 | 2012-09-19 | 信越半導体株式会社 | Epitaxial growth method |
KR20120004409A (en) * | 2009-04-06 | 2012-01-12 | 스미또모 가가꾸 가부시키가이샤 | Semiconductor substrate, method for manufacturing semiconductor substrate, method for evaluating semiconductor substrate, and electronic device |
JP5602903B2 (en) * | 2013-03-14 | 2014-10-08 | アプライド マテリアルズ インコーポレイテッド | Epitaxial film formation method and epitaxial growth apparatus |
JP6097681B2 (en) * | 2013-12-24 | 2017-03-15 | 昭和電工株式会社 | SiC epitaxial wafer manufacturing apparatus and SiC epitaxial wafer manufacturing method |
JP2017055086A (en) * | 2015-09-11 | 2017-03-16 | 昭和電工株式会社 | MANUFACTURING METHOD OF SiC EPITAXIAL WAFER AND MANUFACTURING APPARATUS OF SiC EPITAXIAL WAFER |
-
2017
- 2017-12-25 JP JP2017248019A patent/JP6812961B2/en active Active
-
2018
- 2018-10-19 TW TW107136927A patent/TWI706446B/en active
- 2018-12-10 CN CN201811502962.1A patent/CN110004487B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN110004487B (en) | 2021-03-02 |
TWI706446B (en) | 2020-10-01 |
JP2019114699A (en) | 2019-07-11 |
JP6812961B2 (en) | 2021-01-13 |
CN110004487A (en) | 2019-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3908112B2 (en) | Susceptor, epitaxial wafer manufacturing apparatus and epitaxial wafer manufacturing method | |
JP4592849B2 (en) | Semiconductor manufacturing equipment | |
KR100889437B1 (en) | Susceptor for vapor deposition apparatus | |
JP5092975B2 (en) | Epitaxial wafer manufacturing method | |
CN110494957B (en) | Epitaxial growth device, preheat ring, and method for manufacturing epitaxial wafer using these | |
US10145012B2 (en) | Substrate processing apparatus and substrate processing method | |
KR101205433B1 (en) | Substrate susceptor and depositon apparatus using sysceptor | |
WO2007091638A1 (en) | Susceptor and apparatus for manufacturing epitaxial wafer | |
US20120040097A1 (en) | Enhanced wafer carrier | |
US20100107974A1 (en) | Substrate holder with varying density | |
TW201929050A (en) | Epitaxial growth device and method for manufacturing epitaxial wafer using the same | |
TWI851023B (en) | Method and apparatus for back-sealing silicon wafers | |
US6887775B2 (en) | Process and apparatus for epitaxially coating a semiconductor wafer and epitaxially coated semiconductor wafer | |
KR101440307B1 (en) | Apparatus for processing substrate | |
JP2006041028A (en) | Susceptor and epitaxial wafer manufacturing method | |
JP5832173B2 (en) | Vapor growth apparatus and vapor growth method | |
JP6587354B2 (en) | Susceptor | |
CN217418861U (en) | Epitaxial graphite base | |
KR20240139506A (en) | Substrate processing apparatus and substrate processing method | |
JP2019121613A (en) | Susceptor | |
JP2010034113A (en) | Vapor deposition device |