TW201928963A - Dynamic random access memory - Google Patents
Dynamic random access memory Download PDFInfo
- Publication number
- TW201928963A TW201928963A TW106145882A TW106145882A TW201928963A TW 201928963 A TW201928963 A TW 201928963A TW 106145882 A TW106145882 A TW 106145882A TW 106145882 A TW106145882 A TW 106145882A TW 201928963 A TW201928963 A TW 201928963A
- Authority
- TW
- Taiwan
- Prior art keywords
- node
- switching elements
- coupled
- memory
- bit line
- Prior art date
Links
Landscapes
- Dram (AREA)
Abstract
Description
本發明是有關於一種記憶體元件,且特別是有關於一種動態隨機存取記憶體(Dynamic Random Access Memory,DRAM)。The present invention relates to a memory component, and more particularly to a dynamic random access memory (DRAM).
動態隨機存取記憶體由於電路架構的需要,每隔一段時間就必須進行刷新操作來刷新記憶體晶胞(cell)所儲存的資料。一般而言,動態隨機存取記憶體會在待機模式(standby mode)中進行自我刷新(self-refresh)操作。然而,若自我刷新電流過高將會造成動態隨機存取記憶體在待機模式產生過多的功率消耗。此外,自我刷新電流的大小通常是取決於在自我刷新期間位元線的等效電容的大小。位元線的等效電容愈大,自我刷新電流愈大。反之,位元線的等效電容愈小,自我刷新電流愈小。Due to the needs of the circuit architecture, the dynamic random access memory must perform a refresh operation at intervals to refresh the data stored in the memory cell. In general, DRAM will perform a self-refresh operation in a standby mode. However, if the self-refresh current is too high, the dynamic random access memory will generate excessive power consumption in the standby mode. In addition, the magnitude of the self-refresh current is typically dependent on the equivalent capacitance of the bit line during self-refresh. The larger the equivalent capacitance of the bit line, the larger the self-refresh current. Conversely, the smaller the equivalent capacitance of the bit line, the smaller the self-refresh current.
為了解決自我刷新電流過大的問題,在現有技術中,可利用減少與位元線耦接的字元線的數量來降低位元線的等效電容。然而,此種方式雖然降低位元線的等效電容,但是卻會增加記憶體晶片的面積。In order to solve the problem of excessive self-refresh current, in the prior art, the number of word lines coupled to the bit line can be reduced to reduce the equivalent capacitance of the bit line. However, this method reduces the equivalent capacitance of the bit line, but increases the area of the memory chip.
本發明提供一種動態隨機存取記憶體,在自我刷新期間具有低自我刷新電流。The present invention provides a dynamic random access memory having a low self-refresh current during self-refresh.
本發明的動態隨機存取記憶體包括記憶體晶胞陣列以及記憶體控制器。記憶體晶胞陣列包括多個位元線、多個字元線以及多個記憶體晶胞。記憶體控制器經由位元線及字元線耦接至記憶體晶胞。記憶體控制器用以在自我刷新期間對記憶體晶胞陣列執行自我刷新操作。各位元線包括開關元件。記憶體控制器在自我刷新期間控制開關元件的一部分導通,一部分不導通。The dynamic random access memory of the present invention includes a memory cell array and a memory controller. The memory cell array includes a plurality of bit lines, a plurality of word lines, and a plurality of memory cells. The memory controller is coupled to the memory cell via a bit line and a word line. The memory controller is configured to perform a self-refresh operation on the memory cell array during self-refresh. Each element line includes a switching element. The memory controller controls a part of the switching element to be turned on during self-refresh, and a part is not turned on.
在本發明的一實施例中,上述的開關元件包括多個第一開關元件以及多個第二開關元件。包括第一開關元件的位元線耦接至第一感測放大器電路。包括第二開關元件的位元線耦接至第二感測放大器電路。記憶體控制器利用第一控制訊號控制第一開關元件的導通狀態。記憶體控制器利用第二控制訊號控制第二開關元件的導通狀態。In an embodiment of the invention, the switching element includes a plurality of first switching elements and a plurality of second switching elements. A bit line including the first switching element is coupled to the first sense amplifier circuit. A bit line including the second switching element is coupled to the second sense amplifier circuit. The memory controller controls the conduction state of the first switching element by using the first control signal. The memory controller controls the conduction state of the second switching element by using the second control signal.
在本發明的一實施例中,上述的自我刷新期間包括第一期間以及第二期間。在第一期間記憶體控制器控制第一開關元件導通,第二開關元件不導通。在第二期間記憶體控制器控制第一開關元件不導通,第二開關元件導通。In an embodiment of the invention, the self-refresh period includes a first period and a second period. During the first period, the memory controller controls the first switching element to be turned on, and the second switching element is not turned on. During the second period, the memory controller controls the first switching element to be non-conductive and the second switching element to be turned on.
在本發明的一實施例中,上述各開關元件包括第一端、第二端以及控制端。各位元線包括第一節點、第二節點、第三節點以及第四節點。各位元線的第一節點耦接至對應的記憶體晶胞。各位元線的第二節點耦接至各開關元件的第一端。各位元線的第三節點耦接至各開關元件的第二端。各位元線的第四節點耦接至各開關元件的對應的感測放大器電路。各開關元件的控制端接收控制訊號。In an embodiment of the invention, each of the switching elements includes a first end, a second end, and a control end. Each of the element lines includes a first node, a second node, a third node, and a fourth node. The first node of each bit line is coupled to the corresponding memory cell. A second node of each of the bit lines is coupled to the first end of each of the switching elements. The third node of each of the bit lines is coupled to the second end of each of the switching elements. A fourth node of each of the bit lines is coupled to a corresponding sense amplifier circuit of each of the switching elements. The control terminal of each switching element receives the control signal.
在本發明的一實施例中,上述各位元線在第一節點以及第二節點之間耦接第一數量的記憶體晶胞,在第三節點以及第四節點之間耦接第二數量的記憶體晶胞。第一數量與第二數量相等。In an embodiment of the invention, the bit lines are coupled to the first number of memory cells between the first node and the second node, and coupled to the second number of nodes between the third node and the fourth node. Memory unit cell. The first quantity is equal to the second quantity.
在本發明的一實施例中,上述各位元線在第一節點以及第二節點之間耦接第一數量的記憶體晶胞,在第三節點以及第四節點之間耦接第二數量的記憶體晶胞。第一數量與第二數量不相等。In an embodiment of the invention, the bit lines are coupled to the first number of memory cells between the first node and the second node, and coupled to the second number of nodes between the third node and the fourth node. Memory unit cell. The first quantity is not equal to the second quantity.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.
以下提出多個實施例來說明本發明,然而本發明不僅限於所例示的多個實施例。又實施例之間也允許有適當的結合。The invention is illustrated by the following examples, but the invention is not limited to the illustrated embodiments. Further combinations are also allowed between the embodiments.
圖1繪示本發明一實施例之動態隨機存取記憶體的概要示意圖。圖2繪示圖1實施例之記憶體晶胞陣列以及感測放大器電路的概要示意圖。請參考圖1及圖2,本實施例之動態隨機存取記憶體100包括記憶體控制器110、記憶體晶胞陣列120以及感測放大器電路130。記憶體晶胞陣列120包括多個位元線BL、多個字元線WL以及多個記憶體晶胞122。記憶體控制器110經由位元線WL及字元線BL耦接至記憶體晶胞122。在本實施例中,記憶體控制器110用以在自我刷新期間對記憶體晶胞陣列120執行自我刷新操作,其操作方法可以由所屬技術領域的通常知識獲致足夠的教示、建議與實施說明。FIG. 1 is a schematic diagram of a dynamic random access memory according to an embodiment of the invention. 2 is a schematic diagram showing the memory cell array and the sense amplifier circuit of the embodiment of FIG. 1. Referring to FIG. 1 and FIG. 2, the DRAM memory 100 of the present embodiment includes a memory controller 110, a memory cell array 120, and a sense amplifier circuit 130. The memory cell array 120 includes a plurality of bit lines BL, a plurality of word lines WL, and a plurality of memory cells 122. The memory controller 110 is coupled to the memory cell 122 via a bit line WL and a word line BL. In the present embodiment, the memory controller 110 is configured to perform a self-refresh operation on the memory cell array 120 during self-refresh, and the method of operation can be sufficiently taught, suggested, and implemented by the general knowledge in the art.
在本實施例中,各位元線BL包括開關元件210或220。記憶體控制器110在自我刷新期間控制開關元件210或220的一部分導通,一部分不導通。具體而言,在本實施例中,位元線121耦接至第一感測放大器電路132_1並且包括第一開關元件210。第一開關元件210的控制端接收第一控制訊號SW0。位元線123耦接至第二感測放大器電路132_2並且包括第二開關元件220。第二開關元件220的控制端接收第二控制訊號SW1。在本實施例中,記憶體控制器110分別利用第一控制訊號SW0及第二控制訊號SW1來控制第一開關元件210及第二開關元件220的導通狀態。In the present embodiment, each bit line BL includes a switching element 210 or 220. The memory controller 110 controls a portion of the switching element 210 or 220 to be turned on during self-refresh, and a portion is not turned on. Specifically, in the present embodiment, the bit line 121 is coupled to the first sense amplifier circuit 132_1 and includes the first switching element 210. The control terminal of the first switching element 210 receives the first control signal SW0. The bit line 123 is coupled to the second sense amplifier circuit 132_2 and includes a second switching element 220. The control terminal of the second switching element 220 receives the second control signal SW1. In this embodiment, the memory controller 110 controls the conduction states of the first switching element 210 and the second switching element 220 by using the first control signal SW0 and the second control signal SW1, respectively.
圖3繪示本發明一實施例之第一控制訊號及第二控制訊號的概要示意圖。請參考圖1至圖3,本實施例之記憶體控制器110在自我刷新期間TSR對記憶體晶胞陣列120執行自我刷新操作。在本實施例中,自我刷新期間TSR包括第一期間T1以及第二期間T2。在第一期間T1,第一控制訊號SW0為高準位,第二控制訊號SW1為低準位。記憶體控制器110利用第一控制訊號SW0來控制第一開關元件210導通,並且利用第二控制訊號SW1來控制第二開關元件220不導通。因此,在第一期間T1,位元線123的等效電容可被降低。在第二期間T2,第一控制訊號SW0為低準位,第二控制訊號SW1為高準位。記憶體控制器110利用第一控制訊號SW0來控制第一開關元件210不導通,並且利用第二控制訊號SW1來控制第二開關元件220導通。因此,在第二期間T2,位元線121的等效電容可被降低。FIG. 3 is a schematic diagram of a first control signal and a second control signal according to an embodiment of the invention. Referring to FIG. 1 to FIG. 3, the memory controller 110 of the present embodiment performs a self-refresh operation on the memory cell array 120 during self-refresh. In the present embodiment, the self-refresh period TSR includes the first period T1 and the second period T2. In the first period T1, the first control signal SW0 is at a high level, and the second control signal SW1 is at a low level. The memory controller 110 controls the first switching element 210 to be turned on by using the first control signal SW0, and controls the second switching element 220 to be non-conductive by using the second control signal SW1. Therefore, in the first period T1, the equivalent capacitance of the bit line 123 can be lowered. In the second period T2, the first control signal SW0 is at a low level, and the second control signal SW1 is at a high level. The memory controller 110 controls the first switching element 210 to be non-conducting by using the first control signal SW0, and controls the second switching element 220 to be turned on by using the second control signal SW1. Therefore, in the second period T2, the equivalent capacitance of the bit line 121 can be lowered.
在本實施例中,雖然僅以位元線121、123及開關元件210、220作為例示說明,但其餘的位元線BL、開關元件的操作方式可依此類推。因此,在本實施例中,在自我刷新期間TSR,位元線BL之整體的等效電容可被降低,從而降低自我刷新電流。In the present embodiment, although only the bit lines 121 and 123 and the switching elements 210 and 220 are exemplified, the operation of the remaining bit lines BL and the switching elements can be deduced by analogy. Therefore, in the present embodiment, during the self-refresh period TSR, the equivalent capacitance of the entire bit line BL can be lowered, thereby reducing the self-refresh current.
圖4繪示圖2實施例之記憶體晶胞陣列以及感測放大器電路的部分示意圖。在本實施例中,耦接在位元線121的第一節點N1以及第二節點N2之間的記憶體晶胞例如為N個(包括與第一節點N1耦接的記憶體晶胞),耦接在位元線121的第三節點N3以及第四節點N4之間的記憶體晶胞例如為M個,其中M、N為正整數。在本實施例中,第一數量N與第二數量M相等。在一實施例中,第一數量N與第二數量M也可以不相等。與位元線123耦接的記憶體晶胞的數量也可依此類推。4 is a partial schematic view of the memory cell array and the sense amplifier circuit of the embodiment of FIG. 2. In this embodiment, the memory cell coupled between the first node N1 and the second node N2 of the bit line 121 is, for example, N (including a memory cell coupled to the first node N1), The memory cell coupled between the third node N3 and the fourth node N4 of the bit line 121 is, for example, M, where M and N are positive integers. In the present embodiment, the first number N is equal to the second number M. In an embodiment, the first number N and the second number M may also be unequal. The number of memory cells coupled to the bit line 123 can also be deduced by analogy.
在本實施例中,開關元件可被分為兩群,亦即受第一控制訊號SW0控制的開關元件(第一開關元件210)可被歸類為第一群,受第二控制訊號SW1控制的開關元件(第二開關元件220)可被歸類為第二群。因此,位元線BL也可被分為兩群,亦即包括第一開關元件210的位元線BL以及包括第二開關元件220的位元線BL,但本發明並不限於此。在一實施例中,開關元件可被分為三群或三群以上,受三個或三個以上的控制訊號控制。因此,在自我刷新期間TSR,位元線BL之整體的等效電容的降低量可依設計需求加以調整。In this embodiment, the switching elements can be divided into two groups, that is, the switching elements controlled by the first control signal SW0 (the first switching element 210) can be classified into the first group and controlled by the second control signal SW1. The switching elements (second switching element 220) can be classified as a second group. Therefore, the bit line BL can also be divided into two groups, that is, the bit line BL including the first switching element 210 and the bit line BL including the second switching element 220, but the present invention is not limited thereto. In an embodiment, the switching elements can be divided into three or more groups and controlled by three or more control signals. Therefore, during the self-refresh period, the amount of reduction in the equivalent capacitance of the bit line BL as a whole can be adjusted according to design requirements.
綜上所述,在本發明的示範實施例中,各位元線包括開關元件。在自我刷新期間,部分的開關元件導通,部分的開關元件不導通。因此,位元線之整體的等效電容在自我刷新期間可被降低,從而可降低自我刷新電流。In summary, in an exemplary embodiment of the invention, each bit line includes a switching element. During the self-refresh, some of the switching elements are turned on, and some of the switching elements are not turned on. Therefore, the equivalent capacitance of the entire bit line can be lowered during self-refresh, thereby reducing the self-refresh current.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.
100‧‧‧動態隨機存取記憶體100‧‧‧ Dynamic Random Access Memory
110‧‧‧記憶體控制器110‧‧‧ memory controller
120‧‧‧記憶體晶胞陣列120‧‧‧Memory cell array
130、132_1、132_2‧‧‧感測放大器電路130, 132_1, 132_2‧‧‧ sense amplifier circuit
122‧‧‧記憶體晶胞122‧‧‧ memory cell
210、220‧‧‧開關元件210, 220‧‧‧ Switching components
BL、121、123‧‧‧位元線BL, 121, 123‧‧‧ bit line
WL‧‧‧字元線WL‧‧‧ character line
SW0、SW1‧‧‧控制訊號SW0, SW1‧‧‧ control signals
TSR‧‧‧自我刷新期間TSR‧‧‧ self-refresh period
T1、T2‧‧‧期間During T1, T2‧‧
N1、N2、N3、N4‧‧‧節點N1, N2, N3, N4‧‧‧ nodes
圖1繪示本發明一實施例之動態隨機存取記憶體的概要示意圖。 圖2繪示圖1實施例之記憶體晶胞陣列以及感測放大器電路的概要示意圖。 圖3繪示本發明一實施例之第一控制訊號及第二控制訊號的概要示意圖。 圖4繪示圖2實施例之記憶體晶胞陣列以及感測放大器電路的部分示意圖。FIG. 1 is a schematic diagram of a dynamic random access memory according to an embodiment of the invention. 2 is a schematic diagram showing the memory cell array and the sense amplifier circuit of the embodiment of FIG. 1. FIG. 3 is a schematic diagram of a first control signal and a second control signal according to an embodiment of the invention. 4 is a partial schematic view of the memory cell array and the sense amplifier circuit of the embodiment of FIG. 2.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106145882A TWI648736B (en) | 2017-12-27 | 2017-12-27 | Dynamic random access memory |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106145882A TWI648736B (en) | 2017-12-27 | 2017-12-27 | Dynamic random access memory |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI648736B TWI648736B (en) | 2019-01-21 |
TW201928963A true TW201928963A (en) | 2019-07-16 |
Family
ID=65803585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106145882A TWI648736B (en) | 2017-12-27 | 2017-12-27 | Dynamic random access memory |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI648736B (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR950005095Y1 (en) * | 1992-03-18 | 1995-06-22 | 문정환 | A dram with bilateral global bit line |
JP3672946B2 (en) * | 1993-11-30 | 2005-07-20 | 株式会社ルネサステクノロジ | Semiconductor memory device |
JP4629249B2 (en) * | 2001-02-27 | 2011-02-09 | 富士通セミコンダクター株式会社 | Semiconductor memory device and information reading method thereof |
JP4400497B2 (en) * | 2005-03-31 | 2010-01-20 | エルピーダメモリ株式会社 | Semiconductor memory device |
-
2017
- 2017-12-27 TW TW106145882A patent/TWI648736B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI648736B (en) | 2019-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6709825B2 (en) | DRAM and its operating method | |
US8379462B2 (en) | Memory device having reduced standby current and memory system including same | |
US10332571B2 (en) | Memory device including memory cell for generating reference voltage | |
TWI680458B (en) | Memory device and power control method thereof | |
US20100322016A1 (en) | Retention of data during stand-by mode | |
TW201530543A (en) | Counter based design for temperature controlled refresh | |
JPH04344387A (en) | Semiconductor memory device using refresh-request- signal generator for executing refresh operation in response to temperature of element | |
TW202008362A (en) | Power supply control | |
KR100914294B1 (en) | Auto refresh controlling apparatus | |
US20110249523A1 (en) | Semiconductor memory device with a sense amplifier controller for maintaining the connection of a previously selected memory cell array | |
US7760557B2 (en) | Buffer control circuit of memory device | |
JP5591621B2 (en) | Semiconductor device and control method thereof | |
TWI648736B (en) | Dynamic random access memory | |
CN107799137B (en) | Memory storage device and operation method thereof | |
CN109979502B (en) | Dynamic random access memory | |
CN111951844B (en) | Data sensing circuit of semiconductor device | |
KR20060084071A (en) | Refresh control circuits for use in semiconductor memory and method for control therefore | |
US10622055B2 (en) | Apparatus for supplying power supply voltage to semiconductor chip including volatile memory cell | |
TW201807539A (en) | Memory storage apparatus and operating method thereof | |
US6563756B2 (en) | Memory device with reduced refresh noise | |
TW202113836A (en) | Low-cell-voltage (lcv) charge sharing circuit | |
KR20080033017A (en) | Internal voltage generator of semiconductor memory device | |
TWI440043B (en) | Semiconductor memory device | |
KR20070078934A (en) | Device for controlling isolation element | |
KR100481923B1 (en) | Semiconductor memory device |