TW201926879A - Soft-switching power inversion or rectifier circuits - Google Patents

Soft-switching power inversion or rectifier circuits Download PDF

Info

Publication number
TW201926879A
TW201926879A TW106143237A TW106143237A TW201926879A TW 201926879 A TW201926879 A TW 201926879A TW 106143237 A TW106143237 A TW 106143237A TW 106143237 A TW106143237 A TW 106143237A TW 201926879 A TW201926879 A TW 201926879A
Authority
TW
Taiwan
Prior art keywords
terminal
switch
block
circuit
transformer
Prior art date
Application number
TW106143237A
Other languages
Chinese (zh)
Other versions
TWI649954B (en
Inventor
呂錦山
Original Assignee
呂錦山
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 呂錦山 filed Critical 呂錦山
Priority to TW106143237A priority Critical patent/TWI649954B/en
Application granted granted Critical
Publication of TWI649954B publication Critical patent/TWI649954B/en
Publication of TW201926879A publication Critical patent/TW201926879A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

The present invention is to provide a soft-switching power inversion circuits, wherein the inversion circuit is connected in parallel to an input DC voltage source, a middle network, and a clamping capacitor. The middle network includes a top block, a first switch-pair block, a middle block, a second switch-pair block and a bottom block and at least one transformer series-connected vertically. Both the first switch-pair block and the second switch-pair block include at least one switch-pair. Wherein three combinations of the middle block can be applied so that the semiconducting switches therein can be soft-switched alternately to reduce the switching loss. Moreover, the inversion circuit can be modified by adding more switch-pair in both the first switch-pair block and the second switch-pair block to reduce the voltage stress on the semiconductor switch. Consequently, low voltage rating semiconductor switch accompanied with lower RDS(on), conduction losses can be reduced to improve the converter efficiency. Similar topologies may be used to achieve soft-switching low output-current ripple for rectification instead of inversion.

Description

具軟切換之逆變或整流電路 Inverter or rectifier circuit with soft switching

本發明係關於一種電力逆變(inversion)或整流(rectification)電路,尤指一種具軟切換之電力逆變或整流電路,以期在工作切換週期中,因具有軟切換性能,而減少其半導體開關(semiconductor switch)的導通瞬間或斷開瞬間的交換損失,以有效提高電力轉換的效率。 The invention relates to a power inversion or rectification circuit, in particular to a power switching or rectifying circuit with soft switching, in order to reduce the semiconductor switch due to the soft switching performance during the working switching period. (Semiconductor switch) exchange loss at the moment of instant or disconnection to effectively improve the efficiency of power conversion.

按,現今許多電力裝置(electrical device)上廣泛使用之直流-直流的轉換電路中,均有一逆變電路(inversion circuit)及一整流電路(rectifier circuit),其中,該逆變電路係將一直流電壓逆變成一交流電壓,該交流電壓再經該整流電路及一濾波電路(filter circuit),轉換成一直流電壓,以提供該電力裝置所需之不同直流位準。 According to the DC-DC conversion circuit widely used in many electrical devices, there is an inverter circuit and a rectifier circuit, wherein the inverter circuit is always flowing. The voltage is inverted into an AC voltage, and the AC voltage is converted into a DC voltage through the rectifier circuit and a filter circuit to provide different DC levels required by the power device.

一般言,諸多習知之直流-直流轉換電路包括半橋式(half-bridge)、推挽式(push-pull)及全橋式(full-bridge)等拓樸之電路,且該等習知轉換電路均具備前述逆變功能,其中,最被廣泛使用者乃全橋轉換電路(Full-Bridge Converter,以下簡稱FBC),其為一種降壓型衍生轉換電路(Buck-derived),其逆變電路之輸入電流具有脈動波形的缺點,常會因瞬間電流變化(di/dt),產生相當高的雜訊,且會伴隨著因瞬間電壓變化(dv/dt)所產生之另一種雜訊,進而發生電磁幹擾(EMI)的問題。因此,在該等習知轉換電路中,必需加裝一防制電磁幹擾濾波器(EMI filter),才能符合電磁幹擾規範之要求,此舉不僅增加了該等習知轉換電路的成本,亦增加了該等習知轉換電路所需的空間。有鑒於此,為了降低電流漣波及瞬間電流變動率所產生之雜訊,已有業者廣泛地將兩組相同之逆變電路予以交錯(interleaved)分時工作,然而,採取此一交錯分時工作架構者,除了會增加電路的複雜度與製作成本之外,因電流漣波是否降低或消除,完全需視該等逆變電路 上各開關之工作週期而定,若該各開關之工作週期小於50%,仍然無法有效減輕前述電磁幹擾(EMI)的問題。 In general, many conventional DC-DC conversion circuits include topology circuits such as half-bridge, push-pull, and full-bridge, and such conventional conversions The circuit has the aforementioned inverter function, and the most widely used user is a Full-Bridge Converter (FBC), which is a buck-derived conversion circuit (Buck-derived), and its inverter circuit The input current has the disadvantage of a pulsating waveform, and often generates a relatively high noise due to the instantaneous current change (di/dt), and is accompanied by another kind of noise generated by the instantaneous voltage change (dv/dt). Electromagnetic interference (EMI) problems. Therefore, in such conventional conversion circuits, it is necessary to install an EMI filter to comply with the requirements of the electromagnetic interference specification, which not only increases the cost of the conventional conversion circuits, but also increases The space required for such conventional conversion circuits. In view of this, in order to reduce the noise generated by current chopping and instantaneous current fluctuation rate, the two groups of the same inverter circuit are widely interleaved and time-division work, however, this interleaved time-sharing operation is adopted. In addition to increasing the complexity and production cost of the circuit, the architects need to consider the inverter circuits because current ripple is reduced or eliminated. Depending on the duty cycle of each switch, if the duty cycle of the switches is less than 50%, the aforementioned electromagnetic interference (EMI) problem cannot be effectively alleviated.

針對前述問題,本發明的發明人曾陸續提出數件相關之能減少電流漣波的逆變電路,且先後獲准專利在案,如:2009年4月7日獲准的美國第7,515,439號專利權、2011年6月7日獲准的美國第7,957,161號專利權、2012年9月4日獲准的美國第8,259,469號專利權、2014年3月4日公獲准的美國第8,665,616號專利權、2016年10月18日獲准的美國第9,473,045號專利權、其中,美國第7,515,439號專利權圖2(c)及圖3(a)所主張保護者,為一低輸入電流漣波的全橋逆變電路(以下簡稱FBC-CRR),該全橋逆變電路因能有效降低輸入電流的漣波,故僅需使用一較小的防制電磁幹擾濾波器,即能滿足規範的要求。 In view of the foregoing problems, the inventors of the present invention have successively proposed several related inverter circuits capable of reducing current chopping, and have been granted patents, such as the US Patent No. 7,515,439 approved on April 7, 2009, US Patent No. 7,957,161 granted on June 7, 2011, US Patent No. 8,259,469 approved on September 4, 2012, US Patent No. 8,665,616 granted on March 4, 2014, October 2016 US Patent No. 9,473,045, which was approved on the 18th, and the protector claimed in Figure 2(c) and Figure 3(a) of US Patent No. 7,515,439, is a full-bridge inverter circuit with low input current chopping (below) Referred to as FBC-CRR), the full-bridge inverter circuit can effectively reduce the chopping of the input current, so only a small anti-electromagnetic interference filter is needed, which can meet the requirements of the specification.

然而,因前述FBC-CRR係採用對稱式的脈波寬度調變機制,以調節輸出電壓,其雖能在不同的輸入電壓及工作負載之條件下,獲得穩定的輸出電壓,但是,仍將產生不同的死區時間(dead time),導致半導體開關因工作於硬切換(hard switching)狀態,而有較高之導通瞬間切換損耗(turn on switching losses),此一損耗與工作頻率成正比增加,因此,限制了該全橋逆變電路之操作頻率,致無法有效降低該逆變電路中的感抗元件值(如:電感值或電容值等),進而導致該全橋逆變電路所欲提高的功率密度性能也無法被有效達成。 However, because the aforementioned FBC-CRR system uses a symmetric pulse width modulation mechanism to regulate the output voltage, although it can obtain a stable output voltage under different input voltages and working loads, it will still be generated. Different dead time causes the semiconductor switch to operate in a hard switching state, and has a higher turn-on switching losses, which is proportional to the operating frequency. Therefore, the operating frequency of the full-bridge inverter circuit is limited, so that the inductive component value (such as inductance value or capacitance value) in the inverter circuit cannot be effectively reduced, thereby causing the full-bridge inverter circuit to be improved. The power density performance cannot be effectively achieved.

為了使前述全橋逆變電路能操作在較高的工作頻率,發明人經過諸多實驗及測試後認為,採用軟切換技術的零電壓切換(zero voltage switch,ZVS)應是唯一且必須的解決之道,如此,始能在不犧牲逆變電路的效率之前提下,有效實現逆變電路的高功率密度性能,此亦為本發明在此欲探討之一重要課題。 In order to enable the above-mentioned full-bridge inverter circuit to operate at a higher operating frequency, the inventors have, after many experiments and tests, believe that zero voltage switch (ZVS) using soft switching technology should be the only and necessary solution. Therefore, the high power density performance of the inverter circuit can be effectively realized without sacrificing the efficiency of the inverter circuit, which is an important subject to be discussed herein.

有鑑於前述習知逆變電路之問題與缺點,發明人根據多年實務經驗及研究實驗,終於開發設計出本發明具軟切換之逆變電路或整流電路,以期該電路在電力逆變(或整流)過程中,能有效降低其中切換損失(switching losses),並據以有效改善整體效能。 In view of the problems and shortcomings of the conventional inverter circuit described above, the inventors finally developed and designed the inverter circuit or rectifier circuit with soft switching according to years of practical experience and research experiments, in order to convert the circuit in power inverter (or rectification). In the process, the switching losses can be effectively reduced, and the overall performance can be effectively improved.

本發明之另一目的,係該電路能在電力逆變(或整流)過程中,使漏電感(leakage inductance)及雜散電容(parasitic capacitor)成為一無耗損緩衝器(lossless snubber),進而使漏電感的能量得被有效回收(recycling),並據以有效改善整體效能。 Another object of the present invention is to enable a leakage inductance and a parasitic capacitor to be a lossless snubber during power inversion (or rectification). The energy of the leakage inductance is effectively recycled and is used to effectively improve overall performance.

本發明之又另一目的,係因該電路能降低電壓應力(low voltage rating),得以使用具低導通阻值(Rdson)之低電壓規格之半導體開關(semiconductor switches),或得以使用低順向壓降(forward voltage drop)低電壓規格之整流二極體(rectifier diodes),以有效降低其中導通損失(conduction losses),並據以有效提升效率。 Still another object of the present invention is to use a semiconductor switch having a low on-resistance (Rdson) low voltage rating, or to use a low forward direction because the circuit can reduce the low voltage rating. Forward voltage drop Rectifier diodes of low voltage specifications to effectively reduce conduction losses and improve efficiency.

據此,如何透過簡單之電路設計,使所製成之電路,能有效提昇該電路之效率,即成為本發明在此欲揭露的技術重點。 Accordingly, how to make the circuit made by a simple circuit design can effectively improve the efficiency of the circuit, which is the technical focus of the present invention.

為便 貴審查委員能對本發明之目的、結構及其功效,做更進一步之認識與瞭解,茲舉實施例配合圖式,詳細說明如下: For your convenience, the review committee can make a further understanding and understanding of the purpose, structure and efficacy of the present invention. The embodiments are described in conjunction with the drawings, which are described in detail as follows:

〔習知〕 [study]

no

〔本發明〕 〔this invention〕

Z1‧‧‧上層方塊 Z1‧‧‧Upper box

Z2‧‧‧中層方塊 Z2‧‧‧ middle layer

Z3‧‧‧下層方塊 Z3‧‧‧lower square

Z4n‧‧‧嵌位網路 Z4n‧‧‧Clamping Network

Vin‧‧‧輸入電壓 Vin‧‧‧Input voltage

C1、Cr、Co1、Co2‧‧‧電容 C1, Cr, Co1, Co2‧‧‧ capacitors

switch-pair 1...switch-pair n‧‧‧開關對方塊 Switch-pair 1...switch-pair n‧‧‧switch to square

switch-cell 1...switch-cell n‧‧‧開關對單元 Switch-cell 1...switch-cell n‧‧‧switch pair unit

Q11、Q12、Q21、Q22、Q31、Q32、Qn1、Qn2、Qn3、Qn4‧‧‧開關 Q11, Q12, Q21, Q22, Q31, Q32, Qn1, Qn2, Qn3, Qn4‧‧‧ switch

Lr、Lr1、Lr2‧‧‧電感 Lr, Lr1, Lr2‧‧‧ inductance

T1、T2‧‧‧變壓器 T1, T2‧‧‧ transformer

P1、P2‧‧‧初級繞組 P1, P2‧‧‧ primary winding

S1、S2‧‧‧次級繞組 S1, S2‧‧‧ secondary winding

Ro‧‧‧負載 Ro‧‧‧ load

第1(a)~1(b)圖所示,係本發明第一個實施例,具單變壓器、軟切換、多開關之直流-交流(DC-AC)逆變電路及其中層方塊電路之示意圖;第2(a)~2(b)圖所示,係本發明第一個實施例,具雙變壓器、軟切換、多開關之直流-交流(DC-AC)逆變電路及其中層方塊電路之示意圖;第3圖所示,係第1(a)圖所示實施例中之中層方塊電路以短路來實現之逆變電路圖;第4圖所示,係第3圖所示實施例中之開關對之開關,使用MOSFET實現之逆變電路圖;第5(a)~5(d)圖所示,係第4圖所示逆變電路在穩態操作下各階段的等效電路圖;第6圖所示,係第4圖所示逆變電路以相移調變(phase shift modulation)控制,藉助電腦模擬軟體Simplis產生之數組工作波形圖;第7(a)~7(b)圖所示,係傳統全橋電路與第3圖所示逆變電路之輸入電流Iin波形比較圖; 第8圖所示,係中層方塊電路以使用一諧振電感串接一諧振電容來實現第1圖之逆變電路;第9圖所示,係中層方塊電路以使用一諧振電容來實現第1圖之逆變電路;第10圖係第9圖所示逆變電路之開關對之開關,使用MOSFET實現之逆變電路圖;第11(a)~11(d)圖所示,係第10圖所示逆變電路在穩態操作下各階段的等效電路圖;第12圖所示,係第10圖所示逆變電路以變頻調變(variable frequency)控制藉助電腦模擬軟體Simplis產生之數組工作波形圖;第13圖所示,係具嵌位網路之第1圖逆變電路示意圖;第14圖所示,係具嵌位網路之第2圖逆變電路示意圖;第15圖所示,係以飛越電容嵌位技術(flying capacitor technique)實現第13圖逆變電路之嵌位網路示意圖;第16圖所示,係以二極體嵌位技術(diode clamping technique)實現第13圖逆變電路之嵌位網路示意圖;第17圖所示,係使用一諧振電容與使用飛越電容嵌位技術實現第13圖逆變電路圖之一實施應用例;第18圖所示,係第17圖所示逆變電路之開關對之開關,使用MOSFET實現之逆變電路圖;第19圖所示,係本發明第二個實施例,具單變壓器、軟切換、多開關之交流-直流(AC-DC)整流電路之示意圖;第20圖所示,係本發明第二個實施例,具雙變壓器、軟切換、多開關之交流-直流(AC-DC)整流電路之示意圖;第21圖所示,係使用飛越電容嵌位技術實現第19圖之交流-直流(AC-DC)整流電路之示意圖;第22圖所示,係使用飛越電容嵌位技術實現第20圖之交流-直流(AC-DC)整流電路之示意圖;第23(a)~23(c)圖所示,係本發明第二個實施例之第21圖及第22圖之 整流電路圖所示,其中之中層網路之一上層方塊Z1,一中層方塊Z2,一下層方塊Z3,及嵌位網路Z4n之三種實施系列;第24圖所示,係第19圖之整流電路圖所示中層網路之一之上層方塊Z1,一中層方塊Z2,及一下層方塊Z3之第一系列之一實施應用例;第25圖所示,係第24圖所示整流電路之開關對之開關,使用整流二極體實現之逆變電路圖;第26圖所示,係第24圖所示整流電路之開關對之開關,使用MOSFET實現之逆變電路圖;第27圖所示,係第19圖之整流電路圖所示中層網路之上層方塊Z1,一中層方塊Z2,及一下層方塊Z3之第二系列之一實施應用例;第28圖所示,係第27圖所示整流電路之開關對之開關,使用整流二極體實現之逆變電路圖;第29圖所示,係第27圖所示整流電路之開關對之開關,使用MOSFET實現之逆變電路圖;第30圖所示,係第19圖之整流電路圖所示中層網路之之上層方塊Z1,一中層方塊Z2,及一下層方塊Z3之第三系列之一實施應用例;第31圖所示,係第30圖所示整流電路之開關對之開關,使用整流二極體實現之逆變電路圖;第32圖所示,係第30圖所示整流電路之開關對之開關,使用MOSFET實現之逆變電路圖;第33(a)~(d)圖所示,係第31圖所示整流電路在穩態操作下各階段的等效電路圖;第34圖所示,係第31圖所示整流電路以相移調變(phase shift modulation)控制,藉助電腦模擬軟體Simplis產生之數組工作波形圖;第35圖所示,係本發明第三個實施例,具單變壓器、軟切換、多開關之交流-直流(AC-DC)兩倍壓整流電路示意圖;第36圖所示,係本發明第三個實施例,具雙變壓器、軟切換、多開關之交流-直流(AC-DC)兩倍壓整流電路示意圖;第37圖所示,係使用飛越電容嵌位技術實現第35圖之交流-直流(AC- DC)兩倍壓整流電路示意圖;第38圖所示,係使用飛越電容嵌位技術實現第36圖之交流-直流(AC-DC)兩倍壓整流電路示意圖;第39(a)~39(c)圖所示,係第35圖及第37圖之兩倍壓整流電路圖所示之中層網路之上層方塊Z1,中層方塊Z2,下層方塊Z3,及嵌位網路Z4n之三種實施系列;第40圖所示,係第35圖之兩倍壓整流電路圖所示中層網路之上層方塊Z1,中層方塊Z2,及下層方塊Z3之第一系列之一實施應用例;第41圖所示,係第40圖之開關對之開關,使用整流二極體實現之兩倍壓整流電路圖;第42圖係第40圖之開關對之開關,使用MOSFET實現之兩倍壓整流電路圖;第43(a)~43(d)圖所示,係第41圖所示之兩倍壓整流電路在穩態操作下各階段的等效電路圖;第44圖所示,係第41圖所示之兩倍壓整流電路以相移調變(phase shift)控制,藉助電腦模擬軟體Simplis產生之數組工作波形圖; 1(a) to 1(b), showing a first embodiment of the present invention, a DC-AC inverter circuit with a single transformer, a soft switching, and a multi-switch, and a mid-layer block circuit thereof Schematic diagram; shown in Figures 2(a) to 2(b), is a first embodiment of the present invention, a DC-AC inverter circuit with a double transformer, a soft switching, and a multi-switch, and a middle layer thereof Schematic diagram of the circuit; FIG. 3 is an inverter circuit diagram realized by a short circuit in the middle block circuit in the embodiment shown in FIG. 1(a); FIG. 4 is a view showing the embodiment shown in FIG. The switching circuit diagram of the switch pair, using the MOSFET to achieve the inverter circuit diagram; the fifth (a) ~ 5 (d) diagram, is the equivalent circuit diagram of the inverter circuit in the steady state operation shown in Figure 4; In Fig. 6, the inverter circuit shown in Fig. 4 is controlled by phase shift modulation, and the array operation waveform generated by the computer simulation software Simplis is shown in Fig. 7(a)~7(b). , comparing the input current Iin waveform of the traditional full bridge circuit with the inverter circuit shown in Fig. 3; As shown in FIG. 8, the middle layer block circuit realizes the inverter circuit of FIG. 1 by using a resonant inductor in series with a resonant capacitor; and in FIG. 9, the middle layer block circuit uses a resonant capacitor to realize the first figure. Inverter circuit; Figure 10 is the switch circuit diagram of the switch pair of the inverter circuit shown in Figure 9; the inverter circuit diagram realized by MOSFET; Figure 11(a)~11(d) is shown in Figure 10 The equivalent circuit diagram of each stage of the inverter circuit under steady state operation; shown in Fig. 12, the inverter circuit shown in Fig. 10 is controlled by variable frequency to control the array working waveform generated by the computer simulation software Simplis. Figure 13 is a schematic diagram of the inverter circuit of Figure 1 with a clamped network; Figure 14 is a schematic diagram of the inverter circuit of Figure 2 with a clamped network; The fly-through capacitor technique is used to realize the clamp network diagram of the inverter circuit of Fig. 13; the 16th figure shows the inverse of the 13th map by the diode clamping technique. Schematic diagram of the clamped network of the variable circuit; as shown in Figure 17, a resonant capacitor is used The application example of the inverter circuit diagram of Fig. 13 is realized by the flying over capacitor clamping technology; the 18th figure is the switching circuit diagram of the switching pair of the inverter circuit shown in Fig. 17, using the MOSFET to realize the inverter circuit diagram; The figure shows a second embodiment of the present invention, a schematic diagram of an AC-DC rectifier circuit with a single transformer, a soft switching, and a multi-switch; and a second embodiment of the present invention shown in FIG. Schematic diagram of an AC-DC rectification circuit with dual transformers, soft switching, and multi-switch; Figure 21 shows the AC-DC (AC-DC) of Figure 19 using a flying capacitor clamping technique. Schematic diagram of the rectifier circuit; Figure 22 shows a schematic diagram of the AC-DC rectifier circuit of Figure 20 using the overcapacity clamp technique; as shown in Figures 23(a) to 23(c), 21 and 22 of the second embodiment of the present invention As shown in the rectifier circuit diagram, one of the upper layer blocks Z1, one middle layer block Z2, the lower layer block Z3, and the clamp network Z4n is implemented in the middle layer network; and the rectifier circuit diagram shown in Fig. 19 is shown in Fig. 24. One of the first series of the upper layer block Z1, the middle layer block Z2, and the lower layer block Z3 is implemented in one of the middle layers shown in the middle layer network; and the switching circuit of the rectifier circuit shown in Fig. 24 is shown in Fig. 25. The switch, the inverter circuit diagram realized by the rectifying diode; FIG. 26 is the inverter circuit diagram of the switch pair of the rectifier circuit shown in FIG. 24, and the inverter circuit diagram realized by the MOSFET; In the rectification circuit diagram shown in the figure, the upper layer of the middle layer network Z1, the middle layer block Z2, and the second layer of the lower layer block Z3 are implemented in an application example; and in the figure 28, the switch of the rectifier circuit shown in Fig. 27 is shown. For the switch, the inverter circuit diagram realized by the rectifier diode is used; FIG. 29 is the switch circuit diagram of the switch pair of the rectifier circuit shown in FIG. 27, and the inverter circuit diagram realized by the MOSFET; The middle layer network shown in the rectification circuit diagram in Figure 19 One of the third series of the upper layer Z1, the middle layer Z2, and the lower layer Z3 is applied; and the third embodiment is shown in Fig. 30, which is the switch of the rectifier circuit shown in Fig. 30, using a rectifying diode The inverter circuit diagram realized by the body; FIG. 32 is the inverter circuit diagram of the switch pair of the rectifier circuit shown in FIG. 30, and the inverter circuit diagram realized by the MOSFET; FIG. 33(a)~(d), The equivalent circuit diagram of each stage of the rectifier circuit shown in Fig. 31 is shown in Fig. 34. The rectifier circuit shown in Fig. 31 is controlled by phase shift modulation, which is generated by the computer simulation software Simplis. Array working waveform diagram; FIG. 35 is a schematic diagram of an AC-DC double-voltage rectification circuit with a single transformer, soft switching, and multi-switch according to a third embodiment of the present invention; According to a third embodiment of the present invention, a schematic diagram of an AC-DC bipolar voltage rectification circuit with dual transformers, soft switching, and multiple switches is shown in FIG. 37, which is implemented by using a flying capacitor clamping technique. 35 Figure AC-DC (AC- DC) double-voltage rectifier circuit schematic; Figure 38 shows the schematic diagram of AC-DC (double-voltage) rectification circuit of Figure 36 using fly-by-capacitor clamping technology; 39(a)~39( c) shown in the figure, is the three implementation series of the upper layer network block Z1, the middle layer block Z2, the lower layer block Z3, and the clamp network Z4n shown in the double voltage rectifier circuit diagram shown in FIG. 35 and FIG. 37; Figure 40 shows an application example of one of the first series of the upper layer network Z1, the middle layer Z2, and the lower layer Z3 shown in the double-voltage rectification circuit diagram shown in Fig. 35; The switch of the switch pair of Fig. 40 uses a rectifying diode to realize a double voltage rectification circuit diagram; the 42nd figure is the switch of the switch pair of Fig. 40, using a MOSFET to realize a double voltage rectification circuit diagram; ) ~43 (d) shows the equivalent circuit diagram of the two-voltage rectifier circuit shown in Figure 41 under steady state operation; Figure 44 shows the double pressure shown in Figure 41 The rectifier circuit is controlled by phase shift, and the array operation waveform generated by the computer simulation software Simplis is used;

發明人在諸多實驗及測試中發現,若欲在逆變電路達成零電壓操作的性能,必須符合下列兩項必要條件:1、兩組控制驅動信號之間,需要有一個固定的死區間隔(dead time interval);及2、在漏感(或激磁電感)和半導體開關的輸出電容之間,需要有足夠大的能量轉移。 The inventor found in many experiments and tests that if the performance of the zero voltage operation is to be achieved in the inverter circuit, the following two necessary conditions must be met: 1. A fixed dead zone is required between the two groups of control drive signals ( Dead time interval; and 2, between the leakage inductance (or magnetizing inductance) and the output capacitance of the semiconductor switch, a large enough energy transfer is required.

另,發明人在諸多控制方案中發現,使用非對稱的脈衝寬度調變(Asymmetrical Pulse-Width Modulation,以下簡稱APWM)的控制方案,或使用接近50%工作週期之相移調變(Phase Shift Modulation,以下簡稱PS)的控制方案,或使用接近50%工作週期之變頻(Variable Frequency,以下簡稱VF)的控制方案,能獲得所需要的固定死區時間。因此,若在前述電路中,採用上述控制方案,將能實現零電壓開關的操作條件。 In addition, the inventors have found in many control schemes that asymmetric Asymmetric Pulse-Width Modulation (APWM) control schemes are used, or phase shift modulation (Phase Shift Modulation, which is close to 50% duty cycle) is used. The control scheme of PS), or the control scheme of Variable Frequency (VF) which is close to 50% duty cycle, can obtain the required fixed dead time. Therefore, if the above control scheme is employed in the aforementioned circuit, the operating conditions of the zero voltage switch can be realized.

除了降低開關的切換損失,發明人為了能更進一步地提昇前述電路之轉換效率,如何減低該等半導體開關的導通損失,亦為本發明之另一個動機,針對此,本發明係利用串接兩個低電壓規格的MOSFET的技術,以期能有效降低等效的導通電阻值RDSon,進而有效降低該等半導體開關的導通損耗,以提高該電路的轉換效率,同時,發明人利用串接多個低電壓規格MOSFET的技術,尚能克服高達數千伏的輸入電壓,而在欠缺可資使用的半導體開關的電壓規格技術瓶頸下,達成本發明欲解決之前述問題,且滿足業界對電力轉換的嚴格要求。 In addition to reducing the switching loss of the switch, in order to further improve the conversion efficiency of the aforementioned circuit, how to reduce the conduction loss of the semiconductor switches is also another motivation of the present invention. For the purpose of the present invention, the present invention utilizes two serial connections. A low-voltage MOSFET technology is designed to effectively reduce the equivalent on-resistance value R DSon , thereby effectively reducing the conduction losses of the semiconductor switches to improve the conversion efficiency of the circuit. At the same time, the inventors use multiple connections. The technology of a low-voltage MOSFET can overcome the input voltage of up to several thousand volts, and under the bottleneck of the voltage specification technology of the semiconductor switch that can be used, the above problems to be solved by the present invention are achieved, and the power conversion is satisfied. Strict requirements.

為達成前述的目標,發明人思及利用最少之元件,製作出本發明之第一實施例,單變壓器之直流-交流(DC-AC)逆變電路之示意圖,如第1圖所示,為一具軟切換(soft-switching)之逆變電路,該逆變電路初級側之基本架構係與一直流電壓相並聯(paralleled-connect),將輸入端之直流輸入電壓Vin逆變成一交流電壓,且透過變壓器T1之磁耦合,輸出至包括至少一第一次級繞組S1之輸出端產生所需之交流電壓,該第一變壓器T1係由一第一初級繞組P1、一第二初級繞組P2及至少一次級繞組S1所組成,其中,該第一初級繞組P1及第二初級繞組P2具有相同的繞線匝數,該逆變電路包括一中層網路(middle network)、一嵌位電容(clamping capacitor)及至少一變壓器(transformer),所有的開關將依據其操作分為四個群組:Q11-Q21-...-Qn1,Q12-Q22-...-Qn2,Q13-Q23-...-Qn3,and Q14-Q24-...-Qn4,屬於同一組群的開關,將同時被導通與關斷。 In order to achieve the foregoing objectives, the inventors have considered the first embodiment of the present invention with a minimum of components, and a schematic diagram of a DC-AC inverter circuit of a single transformer, as shown in FIG. A soft-switching inverter circuit, the basic structure of the primary side of the inverter circuit is parallel-connected with the DC voltage, and the DC input voltage Vin of the input terminal is inverted into an AC voltage. And through the magnetic coupling of the transformer T1, the output to the output terminal including the at least one first secondary winding S1 generates a required AC voltage, and the first transformer T1 is composed of a first primary winding P1 and a second primary winding P2. At least one primary winding S1 is formed, wherein the first primary winding P1 and the second primary winding P2 have the same number of winding turns, and the inverter circuit comprises a middle network and a clamping capacitor (clamping) Capacitor and at least one transformer, all switches will be divided into four groups according to their operation: Q11-Q21-...-Qn1, Q12-Q22-...-Qn2, Q13-Q23-.. .-Qn3, and Q14-Q24-...-Qn4, switches belonging to the same group, will be the same It is turned on and off.

請參閱第2(a)圖所示,為本發明具雙變壓器之軟切換直流-交流(DC-AC)逆變電路示意圖,為將第1(a)圖逆變電路之單一變壓器,使用兩個變壓器T1和T2取代,以提高輸出功率,其中,變壓器T1包括至少一第一初級繞組P1與一第一次級繞組S1,變壓器T2包括至少一第二初級繞組P2與至少一第二次級繞組S2,該第一次級繞組S1及該第二次級繞組S2,得以併聯或串聯,產生所需的交流輸出電壓,若需要一個直流輸出電壓,必須在次級側額外加設整流和濾波電路(圖中未顯示),該第一電感Lr1及該第二電感Lr2將分別代表該第一個變壓器T1之初級繞組P1和該第二個變壓器T2之初級繞組P2的漏感,或兩個獨立外加的電感,或一耦合電 感。 Please refer to FIG. 2(a), which is a schematic diagram of a soft-switching DC-AC inverter circuit with dual transformers according to the present invention, which is used for the single transformer of the inverter circuit of the first (a) diagram. The transformers T1 and T2 are replaced to increase the output power, wherein the transformer T1 includes at least a first primary winding P1 and a first secondary winding S1, and the transformer T2 includes at least a second primary winding P2 and at least a second secondary The winding S2, the first secondary winding S1 and the second secondary winding S2, can be connected in parallel or in series to generate a required AC output voltage. If a DC output voltage is required, an additional rectification and filtering must be added on the secondary side. a circuit (not shown), the first inductor Lr1 and the second inductor Lr2 will respectively represent the leakage inductance of the primary winding P1 of the first transformer T1 and the primary winding P2 of the second transformer T2, or two Independently applied inductor, or a coupled inductor sense.

雖然,第1(a)及2(a)圖所揭露者係為提供不同的輸出功率,分別使用單變壓器或雙變壓器之兩個系列各應用例之電路,但應具有相同的工作原理,據此,茲僅以該第1(a)圖之第一個應用例說明其工作原理。 Although the figures disclosed in Figures 1(a) and 2(a) are for providing different output powers, respectively, using two series of application examples of single transformer or dual transformer, but should have the same working principle, Therefore, the working principle of the first application example of Fig. 1(a) will be explained.

復請參閱第1(a)圖所示,該中層網路包含一變壓器之第一初級繞組P1與第一電感Lr1串接之上層方塊(top block),一第一開關對方塊(switch-pair block),一中層方塊Z2(middl block),一第二開關對方塊(switch-pair block),及一變壓器之第二初級繞組P2與第二電感Lr2串接之下層方塊(bottom block),上下串接組成,其中之第一開關對方塊及第二開關對方塊得包含相等數量並至少一開關對,若為降低半導體開關上之電壓應力(voltage stress),可同時增加更多之第一開關對方塊及第二開關對方塊之開關對數量。 Referring to FIG. 1(a), the middle layer network includes a first primary winding P1 of a transformer and a first block Lr1 connected in a top block, and a first switch pair (switch-pair) Block), a middle block Z2 (middl block), a second switch-pair block, and a second primary winding P2 of the transformer and the second inductor Lr2 are connected in series to the bottom block, The serial connection composition, wherein the first switch pair block and the second switch pair block comprise an equal number of at least one switch pair, and if the voltage stress on the semiconductor switch is reduced, more first switches can be added at the same time The number of pairs of switches for the square and the second switch pair.

復請參閱第1(a)圖所示,該上層方塊係由變壓器之第一初級繞組P1與第一電感Lr1串接組成,Lr1可以是變壓器第一初級繞組P1的漏感或是一外加第一諧振電感,或是漏感與一外加電感組合,成為一第一諧振電感,P1的打點端子與Lr1電感的右邊端子分別與輸入電壓及嵌位電容的正端子連接。 Referring to FIG. 1(a), the upper layer is composed of a first primary winding P1 of the transformer and a first inductor Lr1, and Lr1 may be a leakage inductance of the first primary winding P1 of the transformer or an additional A resonant inductor, or a leakage inductance combined with an external inductor, becomes a first resonant inductor, and the dot terminal of P1 and the right terminal of the Lr1 inductor are respectively connected to the positive terminal of the input voltage and the clamp capacitor.

復請參閱第1(a)圖所示,該第一開關對方塊(switch-pair block)係由至少包含一開關對Q11-Q13或n個開關對上下串接,其中每個開關對包含兩個開關,每個開關有上下兩個端子,可與其上下串接的兩個開關對之相對應開關分別連結,如Q21-Q23的兩個下端子與下方串接的兩個開關對之Q11-Q13兩個上端子分別連結,同時Q21-Q23的兩個上端子與上方串接的兩個開關對之Q31-Q33兩個下端子分別連結,依此類推,但第n開關對之Qn1-Qn3的兩個上端子與輸入電壓及嵌位電容的正端子分別連接。 Referring to FIG. 1(a), the first switch-pair block is connected in series by at least one switch pair Q11-Q13 or n switch pairs, wherein each switch pair includes two Each switch has two upper and lower terminals, which can be respectively connected to the corresponding switches of the two switches connected in series, such as the two lower terminals of Q21-Q23 and the two switches connected in series below Q11- Q13 two upper terminals are respectively connected, and the two upper terminals of Q21-Q23 and the two switches connected in series are connected to the two lower terminals of Q31-Q33, and so on, but the nth switch pair is Qn1-Qn3 The two upper terminals are respectively connected to the input voltage and the positive terminal of the clamp capacitor.

復請參閱第1(a)圖所示,該中層方塊Z2(middl block)具有第一個端子與第二個端子。 Referring to FIG. 1(a), the middle block Z2 has a first terminal and a second terminal.

復請參閱第1(a)圖所示,該第二開關對方塊(switch-pair block),係由至少包含一開關對Q12-Q14之n個開關對上下串接,其中每個開關有上下兩個端子,可與其上下串接的兩個開關對之相對應開關分別連 結,如Q22-Q24的兩個下端子與下方串接的開關對之Q32-Q34兩個上端子分別連結,同時Q22-Q24的兩個上端子與上方串接的兩個開關對之Q12-Q14兩個下端子連結,依此類推,直到第n開關對之Qn2-Qn4的兩個上端子分別與輸入電壓及嵌位電容的負端子連接。 Referring to FIG. 1(a), the second switch-pair block is connected in series by n switch pairs including at least one switch pair Q12-Q14, wherein each switch has a top-bottom switch. Two terminals, which can be connected to the corresponding switches of the two switches connected in series The junction, for example, the two lower terminals of Q22-Q24 and the switches connected in series are connected to the two upper terminals of Q32-Q34, and the two upper terminals of Q22-Q24 are connected with the two switches connected above. Q12- Q14 two lower terminals are connected, and so on, until the two upper terminals of the nth switch pair Qn2-Qn4 are respectively connected to the input voltage and the negative terminal of the clamp capacitor.

復請參閱第1(a)圖所示,該下層方塊係由變壓器之第二初級繞組P2與第二電感Lr2串接組成,Lr2可以是變壓器第二初級繞組P2的漏感或是一外加第二諧振電感,或是漏感與一外加電感的組合,成為一第二諧振電感,P2的打點端子與Lr2電感的右邊端子分別與輸入電壓及嵌位電容的負端子連接。 Referring to FIG. 1(a), the lower layer is composed of a second primary winding P2 of the transformer and a second inductor Lr2, and Lr2 may be the leakage inductance of the second primary winding P2 of the transformer or an additional The two resonant inductors, or a combination of leakage inductance and an external inductor, become a second resonant inductor, and the dot terminal of P2 and the right terminal of the Lr2 inductor are respectively connected to the input terminal and the negative terminal of the clamp capacitor.

復請參閱第1(a)圖所示,中層方塊的第一端子,Q11的下端子,Q12的上端子連接在一起,中層方塊的第二端子,Q13的下端子,Q14的上端子連接在一起。 Referring to Figure 1(a), the first terminal of the middle layer, the lower terminal of Q11, the upper terminal of Q12 are connected together, the second terminal of the middle layer, the lower terminal of Q13, and the upper terminal of Q14 are connected. together.

請參閱第1(b)圖所示,該中層方塊Z2(middl block)有三種不同的電路組成;1短路,2.一諧振電感及串接一諧振電容,3.諧振電容,連接於其第一個端子1與第二個端子2之間,因此本發明電路的第一實施例可以衍生如下的三個實施系列。 Please refer to Figure 1(b), the middle block Z2 (middl block) has three different circuit components; 1 short circuit, 2. a resonant inductor and a series connected resonant capacitor, 3. resonant capacitor, connected to its Between one terminal 1 and the second terminal 2, the first embodiment of the circuit of the invention can thus be derived from the following three implementation series.

復請參閱第1(b)圖所示,該中層方塊Z2(middl block)使用短路連接於第一個端子1與第二個端子2之間,成為本發明電路之第一個實施例之第一系列,如第3圖所示,其中Lr1和Lr2分別為變壓器第一初級繞組P1與第二初級繞組P2的漏感。 Referring to FIG. 1(b), the middle layer block Z2 (middl block) is short-circuited between the first terminal 1 and the second terminal 2, which is the first embodiment of the circuit of the present invention. A series, as shown in Fig. 3, in which Lr1 and Lr2 are the leakage inductances of the first primary winding P1 and the second primary winding P2 of the transformer, respectively.

復請參閱第1(a)圖所示,由第一開關對方塊與第二開關對方塊所串接之多個開關對,可應用於高電壓輸入的電力轉換,以降低各開關的電壓應力,所有的開關將因此分為四組:Q11-Q21-...-Qn1,Q12-Q22-...-Qn2,Q13-Q23-...-Qn3,and Q14-Q24-...-Qn4,為實現零電壓操作,屬於同一組群的開關,將由一控制器(圖中未顯示)所產生之非對稱的脈衝寬度調變(Asymmetrical Pulse Width Modulation,APWM),或使用接近50%工作週期之相移調變(Phase Shift Modulation,PS),或接近50%工作週期之變頻(Variable Frequency,VF)等控制方案,產生固定死區間隔(dead time interval)的四組驅動信號,分別導通或斷開各組群的開關,以使該逆變 電路之次級繞組S1產生一交流輸出電壓,惟,若在設計上,該逆變電路需對一負載Ro提供一直流電壓,則所對應之該次級繞組S1輸出端,需增設一整流電路及濾波電路(圖中未顯示)。 Referring to FIG. 1(a), a plurality of switch pairs connected in series by the first switch pair block and the second switch pair block can be applied to power conversion of a high voltage input to reduce voltage stress of each switch. All switches will be divided into four groups: Q11-Q21-...-Qn1, Q12-Q22-...-Qn2, Q13-Q23-...-Qn3, and Q14-Q24-...- Qn4, for the zero voltage operation, the switches belonging to the same group will be asymmetrical pulse width modulation (APWM) generated by a controller (not shown), or use nearly 50% of the work. Phase Shift Modulation (PS), or variable frequency (VF) control schemes close to 50% duty cycle, generate four sets of drive signals with fixed dead time interval, respectively, or Disconnect the switches of each group to make the inverter The secondary winding S1 of the circuit generates an AC output voltage. However, if the inverter circuit needs to provide a DC voltage to a load Ro, the corresponding output of the secondary winding S1 needs to be provided with a rectifier circuit. And filter circuit (not shown).

復請參閱第1(a)及1(b)圖所示,由第一開關對方塊與第二開關對方塊所串接之不同數量的開關對,得以衍生許多不同開關應力的電路,唯其工作原理都是一致,因此將透過第3圖電路之一逆變電路,揭露本發明第一實施例之第一系列之工作原理。 Referring to Figures 1(a) and 1(b), a different number of switch pairs connected in series by the first switch pair block and the second switch pair block can be used to derive many different switching stress circuits. The working principle is the same, so the working principle of the first series of the first embodiment of the present invention will be disclosed through the inverter circuit of one of the circuits of FIG.

請參閱第4圖與第5圖,分別為以MOSFET實現第3圖的逆變電路圖,及其在穩態工作不同時區間的等效電路。 Please refer to Fig. 4 and Fig. 5 for the inverter circuit diagram of Fig. 3 realized by MOSFET, and the equivalent circuit of the interval at steady state operation.

請參閱第5(a)-(d)圖所示,係本發明第一實施例的第一系列第4圖電路所示逆變電路,使用全橋相移控制方式,在一工作週期之四個工作階段之等效電路。 Referring to FIG. 5(a)-(d), the inverter circuit shown in the circuit of the first series of FIG. 4 of the first embodiment of the present invention uses a full bridge phase shift control method, in a fourth duty cycle. The equivalent circuit of a working phase.

請參閱第5(a)圖所示,控制器所提供的驅動信號導通Q11和Q14,經由Vin(+)-Q11-Q14-P2-Lr2-Vin(-)的回路,輸入電壓Vin提供變壓器的第二初級繞組P2的電壓,同時嵌位電容C1上的電壓,經由C1(+)-P1-Lr1-Q11-Q14-C1(-)的回路,提供變壓器的第一初級繞組P1的電壓,此一時區間,嵌位電容C1處於放電狀態。 Referring to Figure 5(a), the driver signal provided by the controller turns on Q11 and Q14, and the input voltage Vin provides the transformer through the loop of Vin(+)-Q11-Q14-P2-Lr2-Vin(-). The voltage of the second primary winding P2, while the voltage on the clamp capacitor C1, provides the voltage of the first primary winding P1 of the transformer via a loop of C1(+)-P1-Lr1-Q11-Q14-C1(-), For a time interval, the clamp capacitor C1 is in a discharged state.

請參閱第5(b)圖所示,控制器所提供的驅動信號關斷Q11和Q14,此一時區間,輸入電壓Vin及儲存於漏感的能量,經由Vin(+)-Lr1-P1-C1-P2-Lr2-Vin(-)的回路,對嵌位電容C1進行充電,由於跨在變壓器的第一初級繞組P1的電壓與跨在變壓器的第二初級繞組P2的電壓,極性相反而互相抵消,因此嵌位電容C1上的電壓等於輸入電壓。 Referring to Figure 5(b), the drive signal provided by the controller turns off Q11 and Q14. The time interval, the input voltage Vin and the energy stored in the leakage inductance are via Vin(+)-Lr1-P1-C1. -P2-Lr2-Vin(-) loop, charging the clamp capacitor C1, canceling each other due to the opposite polarity across the voltage across the first primary winding P1 of the transformer and the voltage across the second primary winding P2 of the transformer Therefore, the voltage on the clamp capacitor C1 is equal to the input voltage.

請參閱第5(c)圖所示,控制器所提供的驅動信號導通Q12和Q13,經由Vin(+)-Lr1-P1-Q13-Q12-Vin(-)的回路,輸入電壓Vin提供變壓器的第一初級繞組P1的電壓,同時嵌位電容C1上的電壓,經由C1(+)-Q13-Q12-Lr2-P2-C1(-)的回路提供變壓器的第二初級繞組P2的電壓,此一時區間,嵌位電容C1處於放電狀態。 Referring to Figure 5(c), the driver signal provided by the controller turns on Q12 and Q13, and the input voltage Vin provides the transformer via the loop of Vin(+)-Lr1-P1-Q13-Q12-Vin(-). The voltage of the first primary winding P1, while the voltage on the clamp capacitor C1, provides the voltage of the second primary winding P2 of the transformer via a loop of C1(+)-Q13-Q12-Lr2-P2-C1(-). In the interval, the clamp capacitor C1 is in a discharged state.

請參閱第5(d)圖所示,控制器所提供的驅動信號關斷Q12和Q13,此一時區間,輸入電壓Vin及儲存於漏感的能量,經由 Vin(+)-Lr1-P1-C1-P2-Lr2-Vin(-)的回路,對嵌位電容C1進行充電,由於跨在變壓器的第一初級繞組P1的電壓與跨在變壓器的第二初級繞組P2的電壓,極性相反而互相抵消,因此嵌位電容C1上的電壓等於輸入電壓。 Referring to Figure 5(d), the drive signal provided by the controller turns off Q12 and Q13. The time interval, the input voltage Vin and the energy stored in the leakage inductance are via The circuit of Vin(+)-Lr1-P1-C1-P2-Lr2-Vin(-) charges the clamp capacitor C1 due to the voltage across the first primary winding P1 of the transformer and the second primary across the transformer. The voltage of the winding P2, opposite in polarity, cancels each other, so the voltage on the clamp capacitor C1 is equal to the input voltage.

請參閱第6圖所示,為本發明第一實施例第一系列第5圖逆變電路的主要工作波形,包括控制器所提供的驅動信號及各MOSFET的電壓波形,如圖所示,各MOSFET操作於零電壓導通狀態,因交換損失的降低,有高效率性能。 Please refer to FIG. 6 , which is a main working waveform of the inverter circuit of the first series of FIG. 5 according to the first embodiment of the present invention, including the driving signal provided by the controller and the voltage waveform of each MOSFET, as shown in the figure. The MOSFET operates at zero voltage conduction and has high efficiency due to reduced switching losses.

請參閱第7(a)-7(b)圖所示,分別為傳統全橋逆變電路與第5圖之逆變電路,工作於相同規格下之輸入電流波形比較,顯示後者因有較低的輸入電流漣波,得以使用較小之元件,滿足電磁干擾規範的需求。 Please refer to the figure 7(a)-7(b) for the comparison of the input current waveforms of the traditional full-bridge inverter circuit and the inverter circuit of Figure 5, respectively, under the same specifications, indicating that the latter has lower The input current is chopped to allow the use of smaller components to meet the requirements of the electromagnetic interference specification.

復請參閱第1(b)圖所示,該中層方塊Z2(middl block)使用一諧振電感Lr及一諧振電容Cr串接,連接於第一個端子1與第二個端子2之間,成為本發明電路之第一個實施例之第二系列,如第8圖所示,其中Lr1和Lr2分別為變壓器第一初級繞組P1與第二初級繞組P2的漏感。 Referring to FIG. 1(b), the middle layer block Z2 (middl block) is connected in series with a resonant inductor Lr and a resonant capacitor Cr, and is connected between the first terminal 1 and the second terminal 2 to become A second series of the first embodiment of the circuit of the present invention is shown in Fig. 8, wherein Lr1 and Lr2 are leakage inductances of the first primary winding P1 and the second primary winding P2 of the transformer, respectively.

復請參閱第1(b)圖所示,該中層方塊Z2(middl block)使用一諧振電容,連接於第一個端子1與第二個端子2,成為本發明電路之第一個實施例之第三系列,如第9圖所示,其中Lr1和Lr2分別為變壓器第一初級繞組P1漏感與一第一諧振電感串接,第二初級繞組P2漏感與一第二諧振電感串接。 Referring to FIG. 1(b), the middle layer block Z2 (middl block) is connected to the first terminal 1 and the second terminal 2 by using a resonant capacitor, which is the first embodiment of the circuit of the present invention. The third series, as shown in FIG. 9, wherein Lr1 and Lr2 are respectively connected to the leakage inductance of the first primary winding P1 of the transformer and a first resonant inductor, and the leakage inductance of the second primary winding P2 is connected in series with a second resonant inductor.

請參閱第8圖與第9圖所示,雖然諧振電感放置的位置,有所差異,唯其工作原理都是一致,因此本發明第一實施例之第二系列及第三系列,將透過第9圖之逆變電路,揭露其工作原理。 Please refer to FIG. 8 and FIG. 9. Although the positions of the resonant inductors are different, and the working principle is the same, the second series and the third series of the first embodiment of the present invention will pass through The inverter circuit of Figure 9 reveals its working principle.

請參閱第10圖與第11圖,分別為以MOSFET實現第9圖的逆變電路圖,及其在穩態工作不同時區間的等效電路。 Please refer to Fig. 10 and Fig. 11 for the inverter circuit diagram of Fig. 9 realized by MOSFET, and the equivalent circuit of the interval at steady state operation.

請參閱第11(a)-11(d)圖所示,係本發明第一實施例的第二系列第10圖所示逆變電路,使用變頻控制方式,在一工作週期之四個工作階段之等效電路。 Referring to FIG. 11(a)-11(d), the inverter circuit shown in the second series of FIG. 10 of the first embodiment of the present invention uses the frequency conversion control method in four working phases of one duty cycle. The equivalent circuit.

復請參閱第11(a)圖所示,控制器所提供的驅動信號導通Q11和Q14,透過Q11-Q14的回路,輸入電壓Vin經由Lr2-Cr諧振方式提供變壓 器的第二初級繞組的電壓,同時嵌位電容C1上的電壓經由Lr1-Cr諧振方式提供變壓器的第一初級繞組的電壓,此一時區間,嵌位電容C1處於放電狀態。 Referring to Figure 11(a), the driver signal provided by the controller turns on Q11 and Q14, and through the loop of Q11-Q14, the input voltage Vin provides voltage transformation via Lr2-Cr resonance. The voltage of the second primary winding of the device, while the voltage on the clamp capacitor C1 provides the voltage of the first primary winding of the transformer via the Lr1-Cr resonance mode. In this interval, the clamp capacitor C1 is in a discharged state.

請參閱第11(a)圖所示,控制器所提供的驅動信號導通Q11和Q14,經由Vin(+)-Q11-Cr-Q14-P2-Lr2-Vin(-)的回路,輸入電壓Vin以Cr-Lr2諧振方式,提供變壓器的第二初級繞組P2的電壓,同時嵌位電容C1上的電壓,以Cr-Lr2諧振方式,經由C1(+)-P1-Lr1-Q11-Cr-Q14-C1(-)的回路,提供變壓器的第一初級繞組P1的電壓,此一時區間,嵌位電容C1處於放電狀態。 Referring to Figure 11(a), the driver signal provided by the controller turns on Q11 and Q14, and the input voltage Vin is via the loop of Vin(+)-Q11-Cr-Q14-P2-Lr2-Vin(-). The Cr-Lr2 resonance mode provides the voltage of the second primary winding P2 of the transformer, and the voltage on the clamp capacitor C1 is in the Cr-Lr2 resonance mode via C1(+)-P1-Lr1-Q11-Cr-Q14-C1 The circuit of (-) provides the voltage of the first primary winding P1 of the transformer. In this time interval, the clamp capacitor C1 is in a discharged state.

請參閱第11(b)圖所示,控制器所提供的驅動信號關斷Q11和Q14,此一時區間,輸入電壓Vin及儲存於漏感的能量,經由Vin(+)-Lr1-P1-C1-P2-Lr2-Vin(-)的回路,對嵌位電容C1進行充電,由於跨在變壓器的第一初級繞組P1的電壓與跨在變壓器的第二初級繞組P2的電壓,極性相反而互相抵消,因此嵌位電容C1上的電壓等於輸入電壓。 Referring to Figure 11(b), the driver signal provided by the controller turns off Q11 and Q14. The time interval, the input voltage Vin and the energy stored in the leakage inductance are via Vin(+)-Lr1-P1-C1. -P2-Lr2-Vin(-) loop, charging the clamp capacitor C1, canceling each other due to the opposite polarity across the voltage across the first primary winding P1 of the transformer and the voltage across the second primary winding P2 of the transformer Therefore, the voltage on the clamp capacitor C1 is equal to the input voltage.

請參閱第11(c)圖所示,控制器所提供的驅動信號導通Q12和Q13,經由Vin(+)-Lr1-P1-Q13-Cr-Q12-Vin(-)的回路,輸入電壓Vin,以Cr-Lr1諧振方式,提供變壓器的第一初級繞組P1的電壓,同時嵌位電容C1上的電壓,以Cr-Lr2諧振方式,經由C1(+)-Q13-Cr-Q12-Lr2-P2-C1(-)的回路,提供變壓器的第二初級繞組P2的電壓,此一時區間,嵌位電容C1處於放電狀態。 Referring to Figure 11(c), the driver signal provided by the controller turns on Q12 and Q13, and the input voltage Vin is via the loop of Vin(+)-Lr1-P1-Q13-Cr-Q12-Vin(-). In the Cr-Lr1 resonance mode, the voltage of the first primary winding P1 of the transformer is provided, and the voltage on the clamp capacitor C1 is in the Cr-Lr2 resonance mode, via C1(+)-Q13-Cr-Q12-Lr2-P2- The circuit of C1(-) provides the voltage of the second primary winding P2 of the transformer. In this time interval, the clamp capacitor C1 is in a discharged state.

請參閱第11(d)圖所示,控制器所提供的驅動信號關斷Q12和Q13,此一時區間,輸入電壓Vin及儲存於漏感的能量,經由Vin(+)-Lr1-P1-C1-P2-Lr2-Vin(-)的回路,對嵌位電容C1進行充電,由於跨在變壓器的第一初級繞組P1的電壓與跨在變壓器的第二初級繞組P2的電壓,極性相反而互相抵消,因此嵌位電容C1上的電壓等於輸入電壓。 Referring to Figure 11(d), the driver signal provided by the controller turns off Q12 and Q13. The time interval, the input voltage Vin and the energy stored in the leakage inductance are via Vin(+)-Lr1-P1-C1. -P2-Lr2-Vin(-) loop, charging the clamp capacitor C1, canceling each other due to the opposite polarity across the voltage across the first primary winding P1 of the transformer and the voltage across the second primary winding P2 of the transformer Therefore, the voltage on the clamp capacitor C1 is equal to the input voltage.

請參閱第12圖所示,為本發明第一實施例的第二及第三系列逆變電路的主要電路工作工作波形,包括控制器所提供的驅動信號及各MOSFET的電壓波形,如圖所示,一次側之各MOSFET操作於零電壓導通狀態,一次側之各整流二極體操作於零電流關斷狀態,因交換損失的降低,有高效率性能。 Referring to FIG. 12, the main circuit working waveforms of the second and third series inverter circuits according to the first embodiment of the present invention include the driving signals provided by the controller and the voltage waveforms of the MOSFETs. It is shown that the MOSFETs on the primary side operate in a zero voltage conduction state, and the rectifier diodes on the primary side operate in a zero current off state, and have high efficiency performance due to a reduction in switching loss.

復請參閱第1(a)圖與第2(b)圖之逆變電路示意圖,對於高電壓輸入的應用,必須使用較高電壓規格的元件或串接更多第一開關對方 塊及第二開關對方塊的開關對數量,以降低各半導體開關上之電壓應力(voltage stress),唯,多開關串聯,因元件及電路參數的變異,各元件的電壓應力,無法平均分攤,因此必須使用如第13(a)圖與第14(a)圖所示之外加嵌位電路之逆變電路。 Please refer to the schematic diagram of the inverter circuit in Figure 1(a) and Figure 2(b). For high voltage input applications, it is necessary to use higher voltage components or series of more first switches. The number of switching pairs of the block and the second switch pair block to reduce the voltage stress on each semiconductor switch. However, the multi-switch series is connected, and the voltage stress of each component cannot be evenly distributed due to variations of components and circuit parameters. Therefore, it is necessary to use an inverter circuit with a clamp circuit as shown in Figs. 13(a) and 14(a).

請參閱第15圖與第16圖所示,為第13(a)圖與第14(a)圖所示之外加嵌位電路,分別使用飛越容嵌位技術(flying capacitor clamping technique)或二極體嵌位技術(diode clamping technique)實現之嵌位電路,據此,開關的電壓應力得以平均分擔。 Please refer to Figure 15 and Figure 16, for the addition of the clamp circuit as shown in Figures 13(a) and 14(a), using the flying capacitor clamping technique or the two poles respectively. The clamp circuit realized by the diode clamping technique, according to which the voltage stress of the switch is evenly shared.

請參閱第17圖與第18圖所示,為使用飛越容嵌位技術實現第1(a)圖之逆變電路之一應用例示意圖,及其以MOSFET來實現開關元件之逆變電路圖。 Please refer to Fig. 17 and Fig. 18 for a schematic diagram of an application example of the inverter circuit of Fig. 1(a) using the fly-by-bit clamp technique, and an inverter circuit diagram of the switching element implemented by the MOSFET.

請參閱第19圖所示,係本發明之第二實施例,單變壓器之軟切換交流-直流(AC-DC)整流電路(rectifier circuit)之示意圖,該電路之初級側之基本架構係由具至少一雙開關電路,如推挽式,半橋式,全橋式之逆變電路(圖中未顯示),及至少一對接近50%工作週期的控制信號或互補的控制信號(圖中未顯示),該電路之次級之基本架構係由一中層網路(middle network),一第一輸出電容Co,與一負載Ro並聯組成,該第一變壓器T1至少包括一第一初級繞組P1與第一次級繞組S1(包含於該中層網路中),前述之逆變電路之開關對,因接受前述之控制信號,分別交替的導通或關斷,據此本整流電路之初級繞組將產生交流的電壓,並以電磁耦合,在次級繞組產生的交流電壓,對次級側四個群組開關,Q11-Q21-...-Qn1,Q12-Q22-...-Qn2,Q13-Q23-...-Qn3,及Q14-Q24-...-Qn4,之同一群組之開關,同時施以導通或關斷的控制,而分別對一負載Ro輸出一直流電壓。由於逆變電路,得採用二次側元件諧振頻率為工作頻率,二次側開關的電流,將以諧振方式歸零,因此,本整流電路的初次側與二次側的開關元件,都操作於軟切換的最佳工作狀況。 Referring to FIG. 19, which is a schematic diagram of a soft-switching AC-DC rectifier circuit of a single transformer according to a second embodiment of the present invention, the basic structure of the primary side of the circuit is At least one pair of switching circuits, such as push-pull, half-bridge, full-bridge inverter circuits (not shown), and at least one pair of control signals or complementary control signals that are close to 50% duty cycle (not shown) The basic structure of the secondary circuit of the circuit is composed of a middle network, a first output capacitor Co, and a load Ro. The first transformer T1 includes at least a first primary winding P1 and The first secondary winding S1 (included in the middle layer network), the switching pair of the foregoing inverter circuit is alternately turned on or off by receiving the aforementioned control signals, whereby the primary winding of the rectifier circuit is generated AC voltage, and electromagnetic coupling, AC voltage generated in the secondary winding, four group switches on the secondary side, Q11-Q21-...-Qn1, Q12-Q22-...-Qn2, Q13- Q23-...-Qn3, and Q14-Q24-...-Qn4, the same group of switches, simultaneously turned on Shut-off control, respectively of a DC voltage output load Ro. Due to the inverter circuit, the resonant frequency of the secondary side element is used as the operating frequency, and the current of the secondary side switch is reset to zero by resonance. Therefore, the switching elements of the primary side and the secondary side of the rectifier circuit are operated. The best working condition of soft switching.

復請參閱第19圖所示,該中層網路(middle network)係由一上層方塊Z1(top block),一第一開關對方塊(switch-pair block),一中層方塊Z2(middle block),一第二開關對方塊(switch-pair block),及一下層方塊 Z3(bottom block),上下串接組成,其中之第一開關對方塊及第二開關對方塊,得包含相等數量之開關對,若為降低半導體開關上之電壓應力(voltage stress),可同時增加更多之第一開關對方塊及第二開關對方塊之開關對數量。 Referring to FIG. 19, the middle network is a top block, a first switch-pair block, and a middle block Z2 (middle block). a second switch-pair block, and a lower layer Z3 (bottom block), which is composed of up and down serially, wherein the first switch pair block and the second switch pair block comprise an equal number of switch pairs. If the voltage stress on the semiconductor switch is reduced, the voltage balance can be increased simultaneously. More of the number of switch pairs of the first switch pair block and the second switch pair block.

復請參閱第19圖所示,該上層方塊Z1具有第一個端子與第二個端子,該第一個端子,該輸出電容的正端子,與該負載的正端子連接在一起。 Referring to FIG. 19, the upper layer Z1 has a first terminal and a second terminal. The first terminal, the positive terminal of the output capacitor, is connected to the positive terminal of the load.

復請參閱第19圖所示,該第一開關對方塊(switch-pair block)係由至少包含第一開關對(Q11-Q13),直到n個開關對(Qn1-Qn3)上下串接,其中之每個開關對包括兩個開關,其中之每個開關具有上下兩個端子,可與其上下串接的兩個開關對之相對應開關連結,如Q21-Q23的兩個下端子與下方串接的兩個開關對之Q11-Q13兩個上端子分別連結,同時Q21-Q23的兩個上端子與上方串接的兩個開關對之Q31-Q33兩個下端子分別連結,依此類推,直到n開關對之Qn1-Qn3的兩個上端子分別與上層方塊之第一端子與第二端子分別連接。 Referring to FIG. 19, the first switch-pair block includes at least a first switch pair (Q11-Q13) until n switch pairs (Qn1-Qn3) are connected in series, wherein Each switch pair includes two switches, each of which has two upper and lower terminals, and the two switches connected in series with the upper and lower switches are connected with the corresponding switches, for example, the two lower terminals of the Q21-Q23 are connected in series with the lower one. The two switches are respectively connected to the two upper terminals of Q11-Q13, and the two upper terminals of Q21-Q23 are connected with the two lower terminals of Q31-Q33 respectively, and so on, until so on. The two upper terminals of the n-switch pair Qn1-Qn3 are respectively connected to the first terminal and the second terminal of the upper layer.

復請參閱第19圖所示,該中層方塊Z2(middl block)有第一個端子與第二個端子。 Referring to Figure 19, the middle block Z2 has a first terminal and a second terminal.

復請參閱第19圖所示,該第二開關對方塊(switch-pair block)係由至少包含一開關對(Q12-Q14),直到n個開關對(Qn2-Qn4)上下串接,其中之每個開關對包括兩個開關,其中之每個開關具有上下兩個端子,可與其上下串接的兩個開關對之相對應開關連結,如Q12-Q14的兩個下端子與下方串接的兩個開關對之Q22-Q24兩個上端子分別連結,同時Q22-Q24的兩個下端子與下方串接的兩個開關對之Q31-Q33兩個上端子分別連結,依此類推,直到n開關對之Qn1-Qn3的兩個下端子分別與下層方塊之第一端子與第二端子分別連接。 Referring to FIG. 19, the second switch-pair block includes at least one switch pair (Q12-Q14) until n switch pairs (Qn2-Qn4) are connected in series, wherein Each switch pair includes two switches, each of which has two upper and lower terminals, and the two switches connected in series with the upper and lower switches are connected with the corresponding switches, for example, the two lower terminals of the Q12-Q14 are connected in series with the lower end. The two switches are connected to the two upper terminals of Q22-Q24, and the two lower terminals of Q22-Q24 are connected to the two upper terminals of Q31-Q33 connected in series, and so on, until n The two lower terminals of the switch pair Qn1-Qn3 are respectively connected to the first terminal and the second terminal of the lower layer.

復請參閱第19圖所示,該下層方塊具有第一個端子與第二個端子,該第一端子,該輸出電容的負端子,與該負載的負端子連接在一起。 Referring to FIG. 19, the lower layer block has a first terminal and a second terminal, and the first terminal, the negative terminal of the output capacitor, is connected to the negative terminal of the load.

復請參閱第19圖所示,中層方塊的第一端子,Q11的下端 子,Q12的上端子連接在一起,中層方塊的第二端子,Q13的下端子,Q14的上端子連接在一起。 Please refer to Figure 19, the first terminal of the middle layer, the lower end of Q11 The upper terminals of Q12 are connected together, the second terminal of the middle layer, the lower terminal of Q13, and the upper terminal of Q14 are connected together.

請參閱第20圖所示,為本發明具雙變壓器之軟切換交流-直流(AC-DC)整流電路示意圖,為將第19圖整流電路之單變壓器,使用兩個變壓器T1和T2取代,以提高輸出功率,其中,變壓器T1包括至少一第一初級繞組P1與一第一次級繞組S1,變壓器T2包括至少一第二初級繞組P2與至少一第二次級繞組S2,該第一初級繞組P1及該第二初級繞組P2,得以併聯或串聯,產生所需的交流輸入電壓。 Please refer to FIG. 20 , which is a schematic diagram of a soft-switching AC-DC rectifier circuit with dual transformers according to the present invention. In order to replace the single transformer of the rectifier circuit of FIG. 19 with two transformers T1 and T2, The output power is increased, wherein the transformer T1 includes at least a first primary winding P1 and a first secondary winding S1, and the transformer T2 includes at least a second primary winding P2 and at least a second secondary winding S2, the first primary winding P1 and the second primary winding P2 are connected in parallel or in series to produce a desired AC input voltage.

請參閱第21圖與第22圖所示,係針對高電壓輸出之應用,改良本發明第二實施例第19圖與第20圖之整流電路,除了使用較高電壓規格的元件或必須同時增加更多之第一開關對方塊及第二開關對方塊的開關對數量,以降低各半導體開關上之電壓應力(voltage stress),唯多開關串聯,因元件及電路參數的變異,各半導體開關元件承受的電壓應力無法平均分攤,第21圖與第22圖中之Z41,Z42---Z4n1方塊,因此分別以CF1,CF2---CFn等飛越電容嵌位技術,達成平均電壓應力的需求。 Referring to FIG. 21 and FIG. 22, for the application of high voltage output, the rectifier circuit of the 19th and 20th embodiments of the second embodiment of the present invention is improved, except that components of higher voltage specifications are used or must be simultaneously increased. The number of switching pairs of the first switch pair block and the second switch pair block is reduced to reduce the voltage stress on each semiconductor switch, and only the switches are connected in series, and the semiconductor switching elements are changed due to variations of components and circuit parameters. The voltage stress that can be withstood cannot be evenly distributed. The Z41 and Z42---Z4n1 blocks in Fig. 21 and Fig. 22 are therefore required to achieve the average voltage stress by using the flying capacitor clamping technology such as CF1, CF2---CFn.

雖然,第19及20圖所揭露者係為提供不同的輸出功率,分別使用單變壓器或雙變壓器之兩個系列各應用例之電路,同時,第21圖與第22圖所揭露者係為不同輸出電壓的應用,第一開關對方塊與第二開關對方塊,必須串接更多數量的開關對,因而衍生許多不同的整流電路,但所述的電路,應具有相同的工作特性。 Although the 19th and 20th figures disclose different output powers, the circuits of the two series of application examples of the single transformer or the double transformer are respectively used, and the persons disclosed in FIG. 21 and FIG. 22 are different. For the application of the output voltage, the first switch pair block and the second switch pair block must be connected in series with a larger number of switch pairs, thus deriving many different rectifier circuits, but the circuits described should have the same operational characteristics.

復請參閱第19圖所示,連接於上層方塊Z1(top block),中層方塊Z2(middle block),及下層方塊Z3(bottom block)等各方塊之第一端子與第二端子之間,分別有三種不同的電路組合,如第23(a)圖,第23(b)圖,與第23(c)圖所示,因此本發明電路的第二實施例可以衍生三個系列, 請參閱第24圖,為將第19圖中之Z1-Z2-Z3,採用第23(a)圖所示,分別為(短路)-(S1-Cr-Lr)-(短路)之電路組合連接於各方塊之第一端子與第二端子之間,成為本發明電路的第二實施例之第一個系列,其中Lr和Cr分別為諧振電感與諧振電容。 Referring to FIG. 19, the first terminal and the second terminal are connected between the upper block Z1 (top block), the middle block Z2 (middle block), and the lower block Z3 (bottom block). There are three different combinations of circuits, such as Figure 23(a), Figure 23(b), and Figure 23(c), so that the second embodiment of the circuit of the present invention can be derived from three series. Please refer to Fig. 24, for the Z1-Z2-Z3 in Fig. 19, the circuit combination connection of (short circuit)-(S1-Cr-Lr)-(short circuit) is shown in Fig. 23(a). Between the first terminal and the second terminal of each block, the first series of the second embodiment of the circuit of the present invention, wherein Lr and Cr are respectively a resonant inductor and a resonant capacitor.

請參閱第25圖與第26圖,為分別以整流二極體與MOSFET 實現第24圖中之開關元件。 Please refer to Figure 25 and Figure 26 for the rectifier diode and MOSFET respectively. The switching element in Fig. 24 is realized.

請參閱第27圖,為將第19圖中之Z1-Z2-Z3,採用第23(b)圖所示,分別為(Lr1)-(S1-Cr)-(Lr2)之電路組合連接於各方塊之第一端子與第二端子之間,成為本發明電路的第二實施例之第二個系列,其中Lr1及Lr2分別為第一初級繞組P1與第二初級繞組P2之漏感,Lr和Cr分別為諧振電感與諧振電容。 Referring to Fig. 27, in order to use Z1-Z2-Z3 in Fig. 19, the circuit combinations of (Lr1)-(S1-Cr)-(Lr2) are respectively connected to each other as shown in Fig. 23(b). Between the first terminal and the second terminal of the block, the second series of the second embodiment of the circuit of the present invention, wherein Lr1 and Lr2 are leakage inductances of the first primary winding P1 and the second primary winding P2, respectively, Lr and Cr is a resonant inductor and a resonant capacitor, respectively.

請參閱第28圖與第29圖,為分別以整流二極體與MOSFET實現第27圖中之開關元件。 Referring to Figures 28 and 29, the switching elements of Figure 27 are implemented with a rectifying diode and a MOSFET, respectively.

請參閱第30圖,為將第19圖中之Z1-Z2-Z3,採用第23(b)圖所示,分別為(S1-Lr1)-(Cr)-(S2-Lr2)之電路組合連接於各方塊之第一端子與第二端子之間,成為本發明電路的第二實施例之第三個系列,其中Lr1,Lr2和Cr分別為第一諧振電感,第二諧振電感與諧振電容。 Referring to Figure 30, in order to use Z1-Z2-Z3 in Figure 19, the circuit combination connection of (S1-Lr1)-(Cr)-(S2-Lr2) is shown in Figure 23(b). Between the first terminal and the second terminal of each block, the third series of the second embodiment of the circuit of the present invention, wherein Lr1, Lr2 and Cr are the first resonant inductor, the second resonant inductor and the resonant capacitor, respectively.

請參閱第31圖與第32圖,為分別以整流二極體與MOSFET實現第30圖中之開關元件。 Referring to FIGS. 31 and 32, the switching elements in FIG. 30 are implemented by rectifying diodes and MOSFETs, respectively.

復請參閱第19圖所示,依連接於上層方塊分別有三種不同的電路組合,本發明電路的第二實施例,得以衍生三個系列,但所述的電路,應具有相同的工作特性,據此,將以第31圖之整流電路,揭露本發明第二實施例之工作原理。 Referring to FIG. 19, there are three different circuit combinations respectively connected to the upper layer. The second embodiment of the circuit of the present invention can be derived into three series, but the circuit should have the same working characteristics. Accordingly, the operation of the second embodiment of the present invention will be disclosed with the rectifier circuit of Fig. 31.

請參閱第33(a)-33(d)圖所示,本發明第二實施例的第三系列第31圖之整流電路,其一次側使用採用相移控制方式之全橋逆變電路(圖中未顯示),在一工作週期之四個工作階段之等效電路。 Referring to Figures 33(a)-33(d), the rectifier circuit of the third series of the third embodiment of the second embodiment of the present invention uses a full-bridge inverter circuit using a phase shift control method on the primary side (Fig. Not shown in the equation), the equivalent circuit in four working phases of a duty cycle.

復請參閱第33(a)圖所示,控制器所提供的驅動信號,導通一次側之全橋逆變電路第一組開關(圖中未顯示),變壓器一次側的繞組P1,將產生的交流電壓,透過變壓器之電磁耦合,跨在變壓器二次側之第一繞組S1的電壓,經由S1(non-dot)-C1-Q14-Cr-Q11-Lr1-S1(dot)及第二繞組S2的電壓,經由S2(non-dot)-Q14-Cr-Q11-Ro-Lr2-S2(dot),提供整流二極體的順向偏壓,因而Q11和Q14被導通,其中之電流依Cr-Lr1/Lr2之諧振方式工作,此一時區間,嵌位電容C1處於充電狀態。 Referring to Figure 33(a), the drive signal provided by the controller turns on the first set of switches of the full-bridge inverter circuit on the primary side (not shown), and the winding P1 on the primary side of the transformer will generate The alternating voltage, through the electromagnetic coupling of the transformer, across the voltage of the first winding S1 on the secondary side of the transformer, via S1 (non-dot)-C1-Q14-Cr-Q11-Lr1-S1(dot) and the second winding S2 The voltage, through S2 (non-dot)-Q14-Cr-Q11-Ro-Lr2-S2 (dot), provides the forward bias of the rectifying diode, so Q11 and Q14 are turned on, and the current is based on Cr- The resonant mode of Lr1/Lr2 operates. In this one-time interval, the clamp capacitor C1 is in a charged state.

復請參閱第33(b)圖所示,前述之諧振電流歸零,因此Q11和 Q14自然關斷,此一時區間,嵌位電容C1的電壓,C1(+)-S1-Lr1-Ro-Lr2-S2-C1(-),提供負載電流。 Please refer to Figure 33(b), the aforementioned resonant current is zero, so Q11 and Q14 is naturally turned off. In this interval, the voltage of the clamp capacitor C1, C1(+)-S1-Lr1-Ro-Lr2-S2-C1(-), provides the load current.

復請參閱第33(c)圖所示,控制器所提供的驅動信號,導通一次側之全橋逆變電路第二組開關開關(圖中未顯示),變壓器一次側的繞組P1,將產生的交流電壓,透過變壓器之電磁耦合,跨在變壓器二次側之第一繞組S1的電壓,經由S1(dot)-Lr1-Ro-Q12-Cr-Q13-S1(non-dot)及第二繞組S2的電壓,經由S2(dot)-Lr2-Q12-Cr-Q13-C1-S2(non-dot),提供整流二極體的順向偏壓,因而Q12和Q13被導通,其中之電流依Cr-Lr1/Lr2之諧振方式工作,此一時區間,嵌位電容C1處於充電狀態。 Referring to Figure 33(c), the drive signal provided by the controller turns on the second group of switch switches of the full-bridge inverter circuit on the primary side (not shown), and the winding P1 on the primary side of the transformer will generate The AC voltage, through the electromagnetic coupling of the transformer, across the voltage of the first winding S1 on the secondary side of the transformer, via S1(dot)-Lr1-Ro-Q12-Cr-Q13-S1(non-dot) and the second winding The voltage of S2, through S2(dot)-Lr2-Q12-Cr-Q13-C1-S2(non-dot), provides the forward bias of the rectifying diode, so that Q12 and Q13 are turned on, and the current is based on Cr -Lr1/Lr2 operates in a resonant mode. In this one-time interval, the clamp capacitor C1 is in a charged state.

復請參閱第33(d)圖所示,前述之諧振電流歸零,因此Q12和Q13自然關斷,此一時區間,嵌位電容C1處於放狀態。 Referring to Figure 33(d), the aforementioned resonant current is reset to zero, so Q12 and Q13 are naturally turned off. In this interval, the clamp capacitor C1 is placed.

請參閱第34圖所示,為本發明第二實施例第三系列一應用例第31圖整流電路的工作波形,包括控制器所提供的驅動信號及各MOSFET的電壓波形,各MOSFET操作於零電壓導通狀態,同時,各整流二極體操作於零電流關斷狀態,因交換損失的降低,提高效率性能。 Referring to FIG. 34, the operation waveform of the rectifier circuit of the third series and the application example of the third embodiment of the present invention includes the driving signal provided by the controller and the voltage waveform of each MOSFET, and each MOSFET operates at zero. The voltage is turned on, and at the same time, each of the rectifying diodes operates in a zero current off state, and the efficiency is improved due to a reduction in switching loss.

請參閱第35圖所示,係本發明之第三個實施例,具單變壓器、軟切換之交流-直流(AC-DC)之兩倍壓整流電路(voltage doubler rectifier circuit)之示意圖,該電路之初級側之基本架構係由具至少一雙開關電路,如推挽式,半橋式,全橋式之逆變電路(圖中未顯示),及至少一對接近50%工作週期的控制信號或互補的控制信號(圖中未顯示),該電路之次級之基本架構係由一中層網路(middle network),係由一中層網路(middle network),一第一輸出電容Co1與一第二輸出電容Co2串聯電路,與一負載Ro並聯組成,該第一變壓器T1至少包括一第一初級繞組P1與一第一次級繞組S1(包含於該中層網路中),前述之逆變電路之開關對,因接受前述之控制信號,分別交替的導通或關斷,據此本整流電路之初級繞組將產生交流的電壓,並以電磁耦合,在次級繞組產生的交流電壓,對次級側兩個群組開關,Q11-Q21-...-Qn1,與Q12-Q22-...-Qn2之同一群組之開關,同時施以導通或關斷的控制,而分別對一負載Ro輸出一直流電壓。由於逆變電路,得採用二次側元件諧振頻率為工作頻率,二次側開關的電流,將 以諧振方式歸零,因此,本整流電路的初次側與二次側的開關元件,都操作於軟切換的最佳工作狀況。 Referring to FIG. 35, a third embodiment of the present invention is a schematic diagram of a single transformer, soft-switched AC-DC voltage doubler rectifier circuit. The basic architecture of the primary side consists of at least one dual switching circuit, such as a push-pull, half-bridge, full-bridge inverter circuit (not shown), and at least one pair of control signals approaching 50% duty cycle Or a complementary control signal (not shown), the basic architecture of the secondary of the circuit is a middle network, a middle network, a first output capacitor Co1 and a The second output capacitor Co2 is connected in series with a load Ro. The first transformer T1 includes at least a first primary winding P1 and a first secondary winding S1 (included in the middle layer network), and the foregoing inverter The switching pair of the circuit is alternately turned on or off by receiving the aforementioned control signals, whereby the primary winding of the rectifier circuit will generate an alternating voltage, and electromagnetically coupled, the alternating voltage generated in the secondary winding, Two side group switches , Q11-Q21-...-Qn1, and the switch of the same group of Q12-Q22-...-Qn2, while applying the control of turning on or off, respectively outputting the DC voltage to a load Ro. Due to the inverter circuit, the secondary side component resonant frequency is used as the operating frequency, and the secondary side switching current is Returning to zero by resonance, therefore, the switching elements of the primary side and the secondary side of the rectifier circuit operate in the optimum operating condition of soft switching.

復請參閱第35圖所示,該中層網路(middle network)係由一上層方塊Z1(top block),一第一開關單元方塊(switch-cell block),一中層方塊Z2(middle block),一第二開關單元方塊(switch-cell block),及一下層方塊Z3(bottom block),串接組成,其中之第一開關單元方塊及第二開關單元方塊,得包含相等數量開關單元,每一開關單元包含一開關,若為降低半導體開關上之電壓應力(voltage stress),可同時增加更多之第一開關單元方塊及第二開關單元方塊之開關單元數量。 Referring to FIG. 35, the middle network is composed of a top block, a first switch block, and a middle block, a middle block, a middle block, a middle block, and a middle block. a second switch unit block (switch-cell block) and a lower layer block Z3 (bottom block) are connected in series, wherein the first switch unit block and the second switch unit block comprise an equal number of switch units, each The switch unit includes a switch. If the voltage stress on the semiconductor switch is reduced, the number of switch units of the first switch unit block and the second switch unit block can be increased at the same time.

復請參閱第35圖所示,該上層方塊Z1具有一第一個端子與一第二端子,該第一個端子,該第一輸出電容的正端子,與該負載的正端子連接在一起。 Referring to FIG. 35, the upper layer Z1 has a first terminal and a second terminal. The first terminal, the positive terminal of the first output capacitor, is connected to the positive terminal of the load.

復請參閱第35圖所示,該第一開關單元方塊(switch-cell block)係由至少包含一開關單元Q11,直到n個開關單元Qn1上下串接,其中之開關單元包括一個開關,其中之每個開關有上下兩個端子,可與其上下串接的兩個開關單元之開關連結,如Q21的下端子與下方串接的開關單元之Q11上端子連結,同時Q21上端子與上方串接的開關單元之Q31下端子連結,依此類推,直到n開關單元之Qn1上端子與上層方塊之第二端子連接。 Referring to FIG. 35, the first switch unit block includes at least one switch unit Q11 until n switch units Qn1 are connected in series, wherein the switch unit includes a switch, wherein Each switch has two upper and lower terminals, which can be connected with the switches of the two switch units connected in series with each other. For example, the lower terminal of Q21 is connected with the Q11 upper terminal of the switch unit connected in series below, and the terminal of Q21 is connected in series with the upper end. The lower terminal of Q31 of the switch unit is connected, and so on, until the upper terminal of Qn1 of the n switch unit is connected with the second terminal of the upper layer block.

復請參閱第35圖所示,該中層方塊Z2(middl block)有第一個端子與第二個端子。 Referring to Figure 35, the middle block Z2 has a first terminal and a second terminal.

復請參閱第35圖所示,該第二開關單元方塊(switch-cell block),係由至少包含一開關單元Q12,直到n個開關單元Qn2上下串接,其中之開關單元包括一個開關,其中之每個開關有上下兩個端子,可與其上下串接的兩個開關單元之開關連結,如Q22的下端子與下方串接的開關單元之Q32上端子連結,同時Q22上端子與上方串接的開關單元之Q12下端子連結,依此類推,直到n開關單元之Qn2下端子與下層方塊之第二端子連接。 Referring to FIG. 35, the second switch unit block includes at least one switch unit Q12 until n switch units Qn2 are connected in series, wherein the switch unit includes a switch. Each switch has two upper and lower terminals, which can be connected with the switches of the two switch units connected in series with each other. For example, the lower terminal of Q22 is connected with the Q32 upper terminal of the switch unit connected in series, and the terminal of Q22 is connected in series with the upper end. The Q12 lower terminal of the switch unit is connected, and so on, until the Qn2 lower terminal of the n switch unit is connected to the second terminal of the lower layer block.

復請參閱第35圖所示,該下層方塊Z3具有第一個端子與 第二個端子,該第一端子,第二輸出電容的負端子,與負載的負端子連接在一起。 Referring to Figure 35, the lower layer Z3 has the first terminal and The second terminal, the first terminal, and the negative terminal of the second output capacitor are connected to the negative terminal of the load.

復請參閱第35圖所示,中層方塊的第二端子與Q11的下端子及Q12的上端子連接在一起,中層方塊的第一端子與第一輸出電容的夏端子及第二輸出電容的上端子連接在一起。 Referring to FIG. 35, the second terminal of the middle layer is connected with the lower terminal of Q11 and the upper terminal of Q12, and the first terminal of the middle layer and the summer terminal of the first output capacitor and the second output capacitor The terminals are connected together.

請參閱第36圖所示,為本發明具雙變壓器之軟切換交流-直流(AC-DC)整流電路示意圖,為將第35圖整流電路之單變壓器,使用兩個變壓器T1和T2取代,以提高輸出功率,其中,變壓器T1包括至少一第一初級繞組P1與一第一次級繞組S1,變壓器T2包括至少一第二初級繞組P2與至少一第二次級繞組S2,該第一初級繞組P1及該第二初級繞組P2,得以併聯或串聯,產生所需的交流輸入電壓。 Please refer to FIG. 36, which is a schematic diagram of a soft-switching AC-DC rectifier circuit with dual transformers according to the present invention. In order to replace the single transformer of the rectifier circuit of FIG. 35 with two transformers T1 and T2, The output power is increased, wherein the transformer T1 includes at least a first primary winding P1 and a first secondary winding S1, and the transformer T2 includes at least a second primary winding P2 and at least a second secondary winding S2, the first primary winding P1 and the second primary winding P2 are connected in parallel or in series to produce a desired AC input voltage.

請參閱第37圖與第38圖所示,係針對高電壓輸出之應用,改良本發明第二實施例第35圖與第36圖之整流電路,除了使用較高電壓規格的元件或必須同時增加更多之第一開關對方塊及第二開關對方塊的開關對數量,以降低各半導體開關上之電壓應力(voltage stress),唯多開關串聯,因元件及電路參數的變異,各半導體開關元件承受的電壓應力無法平均分攤,第35圖與第36圖中之Z41,Z42---Z4n方塊,因此分別以CF1,CF2---CFn等飛越電容嵌位技術,達成平均電壓應力的需求。 Referring to Figures 37 and 38, for the application of high voltage output, the rectifier circuit of the 35th and 36th embodiments of the second embodiment of the present invention is improved, except that components of higher voltage specifications are used or must be simultaneously increased. The number of switching pairs of the first switch pair block and the second switch pair block is reduced to reduce the voltage stress on each semiconductor switch, and only the switches are connected in series, and the semiconductor switching elements are changed due to variations of components and circuit parameters. The voltage stress that can be withstood cannot be evenly distributed. The Z41 and Z42---Z4n blocks in Fig. 35 and Fig. 36 are therefore required to achieve the average voltage stress by using the flying capacitor clamping technology such as CF1, CF2---CFn.

雖然,第35及36圖所揭露者係為提供不同的輸出功率,分別使用單變壓器或雙變壓器之兩個系列各應用例之電路,同時,第37圖與第38圖所揭露者係為不同輸出電壓的應用,第一開關對方塊與第二開關對方塊,必須串接更多數量的開關對,因而衍生許多不同的整流電路,但所述的電路,應具有相同的工作特性。 Although the figures disclosed in Figures 35 and 36 provide different output powers, the circuits of the two series of application examples of the single transformer or the dual transformer are respectively used, and the persons disclosed in Fig. 37 and Fig. 38 are different. For the application of the output voltage, the first switch pair block and the second switch pair block must be connected in series with a larger number of switch pairs, thus deriving many different rectifier circuits, but the circuits described should have the same operational characteristics.

復請參閱第35圖所示,連接於上層方塊Z1(top block),中層方塊Z2(middle block),及下層方塊Z3(bottom block)等各方塊之第一端子與第二端子之間,分別有三種不同的電路組合,如第39(a)圖,第39(b)圖,與第39(c)圖所示,因此本發明電路的第三實施例可以衍生不同的三個系列,但三者應具有相同的工作特性,據此,將以第35圖之一應用例,揭露本發明第三實施例之工作原理。 Referring to FIG. 35, the first terminal and the second terminal are connected between the upper block Z1 (top block), the middle block Z2 (middle block), and the lower block Z3 (bottom block). There are three different combinations of circuits, such as Figure 39(a), Figure 39(b), and Figure 39(c), so the third embodiment of the circuit of the present invention can derive three different series, but The three should have the same working characteristics, and accordingly, the working principle of the third embodiment of the present invention will be disclosed with an application example of Fig. 35.

請參閱第40圖,為將第35圖中之Z1-Z2-Z3,採用第39(a)圖所示,分別為(短路)-(S1-Cr-Lr)-(短路)之元件組合連接於各方塊之第一端子與第二端子之間,成為本發明電路的第三實施例之第一個系列,其中Lr和Cr分別為諧振電感與諧振電容。 Please refer to Fig. 40, for the Z1-Z2-Z3 in Fig. 35, using the combination of (short circuit)-(S1-Cr-Lr)-(short circuit) as shown in Fig. 39(a) Between the first terminal and the second terminal of each block, the first series of the third embodiment of the circuit of the present invention, wherein Lr and Cr are respectively a resonant inductor and a resonant capacitor.

請參閱第41圖與第42圖,為分別以整流二極體與MOSFET實現第40圖中之開關元件。 Referring to FIG. 41 and FIG. 42, the switching elements in FIG. 40 are implemented by rectifying diodes and MOSFETs, respectively.

請參閱第43(a)-43(d)圖所示,為本發明第三實施例的第一系列第41圖之整流電路,其一次側使用採用相移控制方式之全橋逆變電路(圖中未顯示),在一工作週期之四個工作階段之等效電路。 Referring to FIG. 43(a)-43(d), the rectifier circuit of the first series 41 of the third embodiment of the present invention uses a full-bridge inverter circuit using a phase shift control method on the primary side ( The figure is not shown), the equivalent circuit in four working phases of a duty cycle.

復請參閱第43(a)圖所示,控制器所提供的驅動信號,導通一次側之全橋逆變電路第一組開關(圖中未顯示),變壓器一次側的繞組P1,將產生的交流電壓,透過變壓器之電磁耦合,跨在變壓器二次側之第一繞組S1的電壓,經由S1(dot)-Q11-Co1-Cr-Lr-S1(non-dot),提供整流二極體的順向偏壓,因而Q11被導通,其中之電流依Cr-Lr之諧振方式工作,同時第二輸出電容Co2,經由Co2(+)-Cr-Lr-S1-Q11-Ro-Co2(-)提供負載電流。 Referring to Figure 43 (a), the drive signal provided by the controller turns on the first set of switches of the full-bridge inverter circuit on the primary side (not shown), and the winding P1 on the primary side of the transformer will generate The alternating voltage, through the electromagnetic coupling of the transformer, across the voltage of the first winding S1 on the secondary side of the transformer, providing a rectifying diode via S1(dot)-Q11-Co1-Cr-Lr-S1(non-dot) Forward bias, so Q11 is turned on, where the current operates in the resonant mode of Cr-Lr, while the second output capacitor Co2 is provided via Co2(+)-Cr-Lr-S1-Q11-Ro-Co2(-) Load current.

復請參閱第43(b)圖所示,前述之諧振電流歸零,因此Q11自然關斷,此一時區間,負載電流由第一輸出電容Co1及第二輸出電容Co2提供。 Referring to Figure 43(b), the aforementioned resonant current is reset to zero, so Q11 is naturally turned off. In this interval, the load current is provided by the first output capacitor Co1 and the second output capacitor Co2.

復請參閱第43(c)圖所示,控制器所提供的驅動信號,導通一次側之全橋逆變電路第二組開關(圖中未顯示),變壓器一次側的繞組P1,將產生的交流電壓,透過變壓器之電磁耦合,跨在變壓器二次側之第一繞組S1的電壓,經由S1(non-dot)-Lr-Cr-Co2-Q12-S1(dot),提供整流二極體的順向偏壓,因而Q12被導通,其中之電流依Cr-Lr之諧振方式工作,同時第一輸出電容Co1,經由Co1(+)-Ro-Q12-S1-Lr-Cr-Co1(-)提供負載電流。 Referring to Figure 43 (c), the drive signal provided by the controller turns on the second set of switches of the full-bridge inverter circuit on the primary side (not shown), and the winding P1 on the primary side of the transformer will generate The alternating voltage, through the electromagnetic coupling of the transformer, across the voltage of the first winding S1 on the secondary side of the transformer, providing a rectifying diode via S1 (non-dot)-Lr-Cr-Co2-Q12-S1(dot) Forward bias, thus Q12 is turned on, where the current operates in the resonant mode of Cr-Lr, while the first output capacitor Co1 is provided via Co1(+)-Ro-Q12-S1-Lr-Cr-Co1(-) Load current.

復請參閱第43(d)圖所示,前述之諧振電流歸零,因此Q12自然關斷,此一時區間,負載電流由第一輸出電容Co1及第二輸出電容Co2提供。 Referring to Figure 43(d), the aforementioned resonant current is zeroed, so Q12 is naturally turned off. In this interval, the load current is provided by the first output capacitor Co1 and the second output capacitor Co2.

請參閱第44圖所示,為本發明第三實施例第一系列一應用例第41圖之兩倍壓整流電路的工作波形,包括控制器所提供的驅動信號及各MOSFET的電壓波形,各MOSFET操作於零電壓導通狀態,同時,各整流二極體操作於零電流關斷狀態,因交換損失的降低,提高效率性能。 Please refer to FIG. 44, which is a working waveform of the double-voltage rectifier circuit of the first series of an application example according to the fourth embodiment of the present invention, including a driving signal provided by the controller and voltage waveforms of the MOSFETs. The MOSFET operates in a zero-voltage conduction state, and at the same time, each rectifying diode operates in a zero-current off state, and the efficiency is improved due to a reduction in switching loss.

但需特別一提者,乃在前述本發明之前述實施例中,該等開關,並不侷限於使用二極體,亦可依實際需要(如欲提高效率),而改採用其它類型之主動半導體開關(如:MOSFET),提供同步整流,或以二者之組合取代。 However, in particular, in the foregoing embodiments of the present invention, the switches are not limited to the use of diodes, but may be adapted to other needs (if efficiency is desired), and other types of initiative may be used. A semiconductor switch (such as a MOSFET) that provides synchronous rectification or a combination of the two.

以上所述,僅係本發明之若干實施例,惟,在實施本發明時,並不侷限於此,亦可依據實際需要,以其它等效元件取代該各電路中之對應元件,故任何熟悉該項技藝者在本發明領域內,可輕易思及之前述等效 變化或修飾,皆應被涵蓋在以下本案之申請專利範圍中。 The above is only a few embodiments of the present invention. However, in the practice of the present invention, it is not limited thereto, and other equivalent elements may be substituted for corresponding components in the respective circuits according to actual needs, so any familiarity. The artist can easily think about the above equivalent in the field of the invention. Changes or modifications should be covered in the scope of the patent application in this case below.

Claims (12)

一種具軟切換之逆變電路,該電路係並聯至一輸入電壓,用以將該輸入電壓提供之一直流電壓轉換成一交流電壓,包括:一輸入電壓、一中層網路、一嵌位電容、及至少一變壓器,該輸入電壓具有一正端子與負端子,該嵌位電容具有一正端子與負端子,該變壓器至少包括一第一初級繞組與一第一次級繞組;該中層網路、包含一上層方塊、一第一開關對方塊、一中層方塊、一第二開關對方塊及下層方塊,上下串聯組成;該上層方塊,包含該變壓器之第一初級繞組及一第一電感,該第一電感具有一右端子與左端子,可以是變壓器第一初級繞組的漏感,或是一外加電感,或是漏感與一外加電感組合;該第一初級繞組之非打點端子與該第一電感左端子連接在一起,該第一初級繞組之打點端子與該電感的右端子分別與輸入電壓及嵌位電容的正端子連接;該第一開關對方塊,包含至少一或多個開關對上下串聯,其中每個開關對包含兩個開關,每個開關有上下兩個端子,可與其上下串聯的兩個開關對之相對應開關分別連結,但最上面之開關對之的兩個上端子與輸入電壓及嵌位電容的正端子分別連接;該中層方塊具有第一個端子與第二個端子; 該第二開關對方塊,包含至少一或多個開關對上下串聯,其中每個開關對包含兩個開關,每個開關有上下兩個端子,可與其上下串聯的兩個開關對之相對應開關分別連結,但最下面之開關對之的兩個下端子與輸入電壓及嵌位電容的負端子分別連接;該下層方塊,包含一變壓器之第二初級繞組與一第二電感串聯,該第二電感具有一右端子與左端子,可以是變壓器第二初級繞組的漏感,或是一外加電感,或是漏感與一外加電感組合;該第二初級繞組之非打點端子與該第二電感左端子連接在一起,該第二初級繞組之打點端子與該電感的右端子分別與輸入電壓及嵌位電容的負端子連接;該第一開關對方塊及該第二開關對方塊得包含相等數量並至少一開關對;該中層方塊的第一端子與第二端子,與第一開關對方塊之第一開關對之兩下端子及第二開關對方塊之第一開關對之兩上端子,分別連接在一起,及該變壓器包含至少一次級繞組,各該次級繞組係與該中層網路內對應之初級繞組磁耦合,而成為至少一具磁耦合之變壓器,以提供該交流電壓;如此,在一開關工作週期內,該逆變電路即能藉 軟切換的機制,交替導通或斷開該等開關,以將該輸入端提供之直流電壓轉換成交流電壓。 An inverter circuit with soft switching, the circuit is connected in parallel to an input voltage for converting a DC voltage of the input voltage into an AC voltage, comprising: an input voltage, a middle layer network, a clamp capacitor, And at least one transformer, the input voltage has a positive terminal and a negative terminal, the clamping capacitor has a positive terminal and a negative terminal, the transformer includes at least a first primary winding and a first secondary winding; the middle layer network, The method includes an upper layer block, a first switch pair block, a middle layer block, a second switch pair block and a lower layer block, which are vertically connected in series; the upper layer block includes a first primary winding of the transformer and a first inductor, the first An inductor has a right terminal and a left terminal, which may be a leakage inductance of the first primary winding of the transformer, or an external inductor, or a leakage inductance combined with an external inductor; the non-doped terminal of the first primary winding and the first The left terminals of the inductor are connected together, and the dot terminal of the first primary winding and the right terminal of the inductor are respectively connected to the positive terminal of the input voltage and the clamping capacitor; The switch pair block includes at least one or more switch pairs connected in series, wherein each switch pair includes two switches, each switch has two upper and lower terminals, and the corresponding switches of the two switch pairs connected in series with each other are respectively connected, However, the upper terminals of the uppermost switch pair are respectively connected with the input terminal and the positive terminal of the clamp capacitor; the middle layer block has a first terminal and a second terminal; The second switch pair block includes at least one or more switch pairs connected in series, wherein each switch pair includes two switches, each switch has two upper and lower terminals, and two switches corresponding to the upper and lower series are correspondingly connected to the switch Connected separately, but the lower two terminals of the lowermost switch are respectively connected with the input voltage and the negative terminal of the clamp capacitor; the lower block includes a second primary winding of a transformer connected in series with a second inductor, the second The inductor has a right terminal and a left terminal, which may be a leakage inductance of the second primary winding of the transformer, or an external inductor, or a leakage inductance combined with an external inductor; the non-drain terminal of the second primary winding and the second inductor The left terminals are connected together, and the dot terminals of the second primary winding and the right terminal of the inductor are respectively connected to the input terminal and the negative terminal of the clamp capacitor; the first switch pair block and the second switch pair block include an equal number And at least one switch pair; the first terminal and the second terminal of the middle layer block, and the second switch terminal of the first switch pair of the first switch pair block and the second switch pair block The two upper terminals of the switch pair are respectively connected together, and the transformer comprises at least one primary winding, each of the secondary windings being magnetically coupled with the corresponding primary winding in the middle layer network to become at least one magnetically coupled transformer To provide the AC voltage; thus, the inverter circuit can be borrowed during a switching cycle A soft switching mechanism that alternately turns on or off the switches to convert the DC voltage provided at the input to an AC voltage. 如申請專利範圍第1項所述的逆變電路,其中,所述中層方塊之第一個端子與第二個端子為一短路的電路。 The inverter circuit of claim 1, wherein the first terminal and the second terminal of the middle layer block are short circuited circuits. 如申請專利範圍第1項所述的逆變電路,其中,所述中層方塊之第一個端子與第二個端子為一諧振電感串聯一諧振電容的電路。 The inverter circuit of claim 1, wherein the first terminal and the second terminal of the middle layer block are a circuit in which a resonant inductor is connected in series with a resonant capacitor. 如申請專利範圍第1項所述的逆變電路,其中,所述中層方塊之第一個端子與第二個端子為一諧振電容的電路。 The inverter circuit of claim 1, wherein the first terminal and the second terminal of the middle layer block are circuits of a resonant capacitor. 一種具軟切換之整流電路,該電路係由一中層網路,一第一輸出電容,與一負載,在一變壓器之二次側並聯組成,用以將該輸入交流電壓,轉換成一直流電壓,包括:一中層網路、一輸出電容、及至少一變壓器,該輸出電容具有一正端子與負端子,該變壓器至少包括一第一初級繞組與一第一次級繞組;該中層網路、包含一上層方塊、一第一開關對方塊、一中層方塊、一第二開關對方塊及下層方塊,上下串聯組成;該上層方塊,具有第一個端子與第二個端子,該上層方塊第一個端子,該輸出電容的正端子,與該負載的正端子連接在一起;該第一開關對方塊,包含至少一或多個開關對上下串聯,其中每 個開關對包含兩個開關,每個開關有上下兩個端子,可與其上下串聯的兩個開關對之相對應開關分別連結,但最上面之開關對之的兩個上端子與上層方塊之第一個端子與第二個端子分別連接;該中層方塊具有第一個端子與第二個端子;該第二開關對方塊,包含至少一或多個開關對上下串聯,其中每個開關對包含兩個開關,每個開關有上下兩個端子,可與其上下串聯的兩個開關對之相對應開關分別連結,但最下面之開關對之的兩個下端子與下層方塊之第一個端子與第二個端子分別連接;該下層方塊,具有第一個端子與第二個端子,該下層方塊第一個端子,該輸出電容的負端子,與該負載的負端子連接在一起;該第一開關對方塊及該第二開關對方塊得包含相等數量並至少一開關對;該中層方塊的第一端子與第二端子,與第一開關對方塊之第一開關對之兩下端子及第二開關對方塊之第一開關對之兩上端子,分別連接在一起,及該變壓器包含至少一次級繞組,各該次級繞組係與該中層網路內對應之初級繞組磁耦合,而成為至少一具磁耦合之變壓器,以提供該直流電壓;如此,在一開關工作週期內,該整流電路即能藉軟切換的機制,以將該輸入端提供之交流電壓轉換成直流電壓。。 A rectifying circuit with soft switching, the circuit is composed of a middle layer network, a first output capacitor, and a load, which are connected in parallel on a secondary side of a transformer, for converting the input AC voltage into a DC voltage. The system includes: a middle layer network, an output capacitor, and at least one transformer, the output capacitor has a positive terminal and a negative terminal, the transformer includes at least a first primary winding and a first secondary winding; the middle layer network includes An upper layer block, a first switch pair block, a middle layer block, a second switch pair block and a lower layer block are vertically connected in series; the upper layer block has a first terminal and a second terminal, and the upper layer block is first a terminal, the positive terminal of the output capacitor is connected to the positive terminal of the load; the first switch pair block includes at least one or more switch pairs connected in series, wherein each The switch pair includes two switches, each of which has two upper and lower terminals, and the two switches connected in series with the upper and lower switches are respectively connected to the corresponding switches, but the uppermost switch has two upper terminals and the upper square One terminal is respectively connected to the second terminal; the middle layer block has a first terminal and a second terminal; the second switch pair block includes at least one or more switch pairs connected in series, wherein each switch pair includes two Each switch has two upper and lower terminals, and the two switches connected in series with the upper and lower switches are respectively connected to the corresponding switches, but the lower end of the lower switch and the second terminal of the lower layer and the first The two terminals are respectively connected; the lower layer has a first terminal and a second terminal, and the first terminal of the lower layer, the negative terminal of the output capacitor is connected with the negative terminal of the load; the first switch The square block and the second switch pair block comprise an equal number of at least one switch pair; the first terminal and the second terminal of the middle layer block are opposite to the first switch of the first switch pair block The lower terminal and the second switch of the second switch pair of the second switch pair are respectively connected together, and the transformer comprises at least one primary winding, each of the secondary windings being magnetically coupled with the corresponding primary winding in the middle layer network And becoming at least one magnetically coupled transformer to provide the DC voltage; thus, during a switching duty cycle, the rectifier circuit can convert the AC voltage provided by the input terminal into a DC voltage by a soft switching mechanism . . 如申請專利範圍第5項所述的整流電路,其中,所述該上層方塊與下層方塊之第一個端子與第二端子為一短路的電路,所述該中層方塊之第一個端子與第二個端子為一變壓器之第一次級繞組,一諧振電感及一諧振電容串聯的電路。 The rectifier circuit of claim 5, wherein the first terminal and the second terminal of the lower layer are a short circuit, and the first terminal of the middle layer The two terminals are a first secondary winding of a transformer, a resonant inductor and a resonant capacitor connected in series. 如申請專利範圍第5項所述的整流電路,其中,所述該上層方塊之第一個端子與第二端子為一第一諧振電感的電路,所述該中層方塊之第一個端子與第二個端子為一變壓器之第一次級繞組,及一諧振電容串聯的電路,所述該下層方塊之第一個端子與第二端子為一第二諧振電感的電路。 The rectifier circuit of claim 5, wherein the first terminal and the second terminal of the upper layer are a circuit of a first resonant inductance, and the first terminal of the middle layer The two terminals are a first secondary winding of a transformer, and a circuit in which a resonant capacitor is connected in series. The first terminal and the second terminal of the lower layer block are circuits of a second resonant inductor. 如申請專利範圍第5項所述的整流電路,其中,所述該上層方塊為一變壓器之第一次級繞組與一第一諧振電感串聯的電路,所述該中層方塊之第一個端子與第二個端子為一諧振電容的電路,所述該下層方塊之第一個端子與第二端子為一變壓器之第二次級繞組與一第二諧振電感串聯的電路。 The rectifier circuit of claim 5, wherein the upper layer is a circuit in which a first secondary winding of a transformer is connected in series with a first resonant inductor, and the first terminal of the middle layer is The second terminal is a resonant capacitor circuit, and the first terminal and the second terminal of the lower layer are a circuit in which a second secondary winding of the transformer is connected in series with a second resonant inductor. 一種具軟切換之整流電路,該電路係由一中層網路,一第一輸出電容,一第二輸出電容,與一負載,在一變壓器之二次側並聯組成,用以將該輸入交流電壓,轉換成一直流電壓,包括:一中層網路、一第一輸出電容與一第二輸出電容上下串聯電路、及至少一變壓器,該第一輸出電容與第二輸出電容,均具有一正 端子與負端子,該變壓器至少包括一第一初級繞組與一第一次級繞組;該中層網路、包含一上層方塊、一第一開關單元方塊、一中層方塊、一第二開關單元方塊及下層方塊,上下串聯組成;該上層方塊,具有第一個端子與第二個端子,該上層方塊第一個端子,該第一輸出電容的正端子,與該負載的正端子連接在一起;該第一開關單元方塊,包含至少一或多個開關單元上下串聯,其中每個開關單元包含一個開關,每個開關有上下兩個端子,可與其上下串聯的兩個開關單元之相對應開關分別連結,但最上面之開關單元之上端子與上層方塊之第二個端子連接;該中層方塊具有第一個端子與第二個端子;該第二開關單元方塊,包含至少一或多個開關單元上下串聯,其中每個開關單元包含一個開關,每個開關有上下兩個端子,可與其上下串聯的兩個開關單元之相對應開關分別連結,但最下面之開關單元之下端子與下層方塊之第二個端子連接;該下層方塊,具有第一個端子與第二個端子,該下層方塊第一個端子,該第二輸出電容的負端子,與該負載的負端子連接在一起;該第一開關單元方塊及該第二開關單元方塊得包含相等數量並至少一開關單元; 該中層方塊的第一端子與第一輸出電容的負端子及第二輸出電容的正端子連接在一起,該中層方塊的第二端子,第一開關單元方塊之第一開關單元之下端子及第二開關單元方塊之第一開關單元之上端子,連接在一起,及該變壓器包含至少一次級繞組,各該次級繞組係與該中層網路內對應之初級繞組磁耦合,而成為至少一具磁耦合之變壓器,以提供該直流電壓;如此,在一開關工作週期內,該整流電路即能藉軟切換的機制,將該輸入端提供之交流電壓轉換成直流電壓。 A rectification circuit with soft switching, the circuit is composed of a middle layer network, a first output capacitor, a second output capacitor, and a load, which are connected in parallel on a secondary side of a transformer for inputting the input AC voltage Converting to a DC voltage, comprising: a middle layer network, a first output capacitor and a second output capacitor connected in series, and at least one transformer, the first output capacitor and the second output capacitor each having a positive a terminal and a negative terminal, the transformer includes at least a first primary winding and a first secondary winding; the middle layer network includes an upper layer block, a first switch unit block, a middle layer block, and a second switch unit block The lower layer is composed of a top and bottom series; the upper layer has a first terminal and a second terminal, and the first terminal of the upper layer, the positive terminal of the first output capacitor is connected with the positive terminal of the load; The first switch unit block includes at least one or more switch units connected in series above and below, wherein each switch unit includes one switch, each switch has two upper and lower terminals, and the corresponding switches of the two switch units connected in series with the upper and lower sides are respectively connected , but the upper terminal of the upper switch unit is connected to the second terminal of the upper layer; the middle layer block has a first terminal and a second terminal; and the second switch unit block includes at least one or more switch units In series, each of the switch units includes a switch, each switch has two upper and lower terminals, and two switch units can be connected in series with the upper and lower The corresponding switches are respectively connected, but the lower terminal of the lower switching unit is connected with the second terminal of the lower layer; the lower layer has the first terminal and the second terminal, and the lower terminal first terminal, the first a negative terminal of the second output capacitor is connected to the negative terminal of the load; the first switch unit block and the second switch unit block include an equal number of at least one switch unit; The first terminal of the middle layer is connected with the negative terminal of the first output capacitor and the positive terminal of the second output capacitor, the second terminal of the middle layer block, the terminal of the first switch unit of the first switch unit block, and the first terminal The upper terminals of the first switch unit of the two switch unit blocks are connected together, and the transformer includes at least one primary winding, each of the secondary windings being magnetically coupled with the corresponding primary winding in the middle layer network to become at least one A magnetically coupled transformer is provided to provide the DC voltage; thus, the rectifier circuit can convert the AC voltage supplied from the input terminal into a DC voltage by a soft switching mechanism during a switching duty cycle. 如申請專利範圍第9項所述的整流電路,其中,所述該上層方塊與下層方塊之第一個端子與第二端子為一短路的電路,所述該中層方塊之第一個端子與第二個端子為一變壓器之第一次級繞組,一諧振電感及一諧振電容串聯的電路。 The rectifier circuit of claim 9, wherein the first terminal and the second terminal of the lower layer block are a short circuit, and the first terminal of the middle layer is The two terminals are a first secondary winding of a transformer, a resonant inductor and a resonant capacitor connected in series. 如申請專利範圍第9項所述的整流電路,其中,所述該上層方塊之第一個端子與第二端子為一第一諧振電感的電路,所述該中層方塊之第一個端子與第二個端子為一變壓器之第一次級繞組,及一諧振電容串聯的電路,所述該下層方塊之第一個端子與第二端子為一第二諧振電感的電路。 The rectifier circuit of claim 9, wherein the first terminal and the second terminal of the upper layer are a circuit of a first resonant inductance, and the first terminal of the middle layer The two terminals are a first secondary winding of a transformer, and a circuit in which a resonant capacitor is connected in series. The first terminal and the second terminal of the lower layer block are circuits of a second resonant inductor. 如申請專利範圍第9項所述的整流電路,其中,所述該上層方塊為一變壓器之第一次級繞組與一第一諧振電感串聯的電 路,所述該中層方塊之第一個端子與第二個端子為一諧振電容的電路,所述該下層方塊之第一個端子與第二端子為一變壓器之第二次級繞組與一第二諧振電感串聯的電路。 The rectifier circuit of claim 9, wherein the upper layer is a first secondary winding of a transformer and a first resonant inductor connected in series The first terminal and the second terminal of the middle layer block are a resonant capacitor circuit, and the first terminal and the second terminal of the lower layer block are a second secondary winding of a transformer and a first A circuit in which two resonant inductors are connected in series.
TW106143237A 2017-12-08 2017-12-08 Soft-switching and low input or output current ripple power inversion or rectifier circuit TWI649954B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106143237A TWI649954B (en) 2017-12-08 2017-12-08 Soft-switching and low input or output current ripple power inversion or rectifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106143237A TWI649954B (en) 2017-12-08 2017-12-08 Soft-switching and low input or output current ripple power inversion or rectifier circuit

Publications (2)

Publication Number Publication Date
TWI649954B TWI649954B (en) 2019-02-01
TW201926879A true TW201926879A (en) 2019-07-01

Family

ID=66213538

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106143237A TWI649954B (en) 2017-12-08 2017-12-08 Soft-switching and low input or output current ripple power inversion or rectifier circuit

Country Status (1)

Country Link
TW (1) TWI649954B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI743652B (en) * 2020-01-09 2021-10-21 呂錦山 Novel tt control zvs power inversion circuits
TWI755143B (en) * 2020-06-19 2022-02-11 立錡科技股份有限公司 Resonant switching power converter

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI309916B (en) * 2006-07-26 2009-05-11 Ching Shan Leu Low voltage stress power inversion and rectification circuits
US7957161B2 (en) * 2009-03-03 2011-06-07 National Taiwan University Of Science And Technology Power converters
US8259469B2 (en) * 2010-08-30 2012-09-04 National Taiwan University Of Science And Technology Current ripple reduction power conversion circuits
US8665616B2 (en) * 2012-05-16 2014-03-04 National Taiwan University Of Science And Technology Near zero current-ripple inversion or rectification circuits
TWI584564B (en) * 2014-04-22 2017-05-21 國立臺灣科技大學 Soft-switching and low input or output current ripple power inversion or rectifier circuit

Also Published As

Publication number Publication date
TWI649954B (en) 2019-02-01

Similar Documents

Publication Publication Date Title
Hu et al. A high gain input-parallel output-series DC/DC converter with dual coupled inductors
US9520792B2 (en) Staggered parallel three-level DC/DC converter and AC/DC converter
US7557546B2 (en) Unidirectional DC-DC converter
KR101151928B1 (en) Resonant power converter with current doubler rectifier and related method
Wen et al. A new interleaved isolated boost converter for high power applications
TWI584564B (en) Soft-switching and low input or output current ripple power inversion or rectifier circuit
KR20130107357A (en) Switching power supply device
TW202143624A (en) Multi-phase ac/dc converter
Mirzaei et al. High voltage gain soft switching full bridge interleaved Flyback DC-DC converter for PV applications
Shi et al. Wide load range ZVS three-level DC–DC converter: Four primary switches, capacitor clamped, two secondary switches, and smaller output filter volume
EP3700074A1 (en) Dc-dc converter
TWI479795B (en) Near zero current-ripple inversion or rectification circuits
Coccia et al. Wide input voltage range compensation in DC/DC resonant architectures for on-board traction power supplies
Shin et al. Analysis of LLC resonant converter with current-doubler rectification circuit
TWI649954B (en) Soft-switching and low input or output current ripple power inversion or rectifier circuit
CN114391218A (en) Wide voltage range DC-DC converter
Patil et al. Review and Comparison of MV grid-connected Extreme Fast Charging Converters for Electric Vehicles
CN103856061A (en) Full-range soft switching method of input-series output-paralleled phase-shifted full-bridge convertor
Jain et al. A comprehensive analysis of hybrid phase-modulated converter with current-doubler rectifier and comparison with its center-tapped counterpart
Shi et al. Large-power ZVZCS full-bridge three-level DC–DC converter with wide operation range and its application in sapphire crystal furnace power supply
Balakrishnan et al. Phase Shift Controlled Full Bridge DC-DC Converter with Less Circulating Loss
KR101333285B1 (en) Sllc resonant converter for bidirectional power conversion
KR20150070898A (en) Dc-dc converter and switching method thereof
CN110808691B (en) Inverter circuit with soft switching and capable of reducing input current ripple
Shi Full ZVS load range diode clamped three-level dc-dc converter with secondary modulation