TW201925419A - Multicomponent luminophores as colour converters for solid-state light sources - Google Patents

Multicomponent luminophores as colour converters for solid-state light sources Download PDF

Info

Publication number
TW201925419A
TW201925419A TW107132606A TW107132606A TW201925419A TW 201925419 A TW201925419 A TW 201925419A TW 107132606 A TW107132606 A TW 107132606A TW 107132606 A TW107132606 A TW 107132606A TW 201925419 A TW201925419 A TW 201925419A
Authority
TW
Taiwan
Prior art keywords
luminophore
core
sio
mmol
luminophores
Prior art date
Application number
TW107132606A
Other languages
Chinese (zh)
Inventor
拉夫 派翠
印格 寇勒
克里斯多夫 罕波
凱瑟玲那 希沃特
湯瑪斯 約舒泰
芙羅理恩 鮑爾
馬克斯 法比恩 伏哈德
史蒂芬 費雪
Original Assignee
德商馬克專利公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商馬克專利公司 filed Critical 德商馬克專利公司
Publication of TW201925419A publication Critical patent/TW201925419A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7792Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7736Vanadates; Chromates; Molybdates; Tungstates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7737Phosphates
    • C09K11/7738Phosphates with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/779Halogenides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

What are proposed are multicomponent luminophores comprising or consisting of (i) a core and (ii) at least one shell arranged concentrically around the core, where (a) the core comprises at least one first luminophore doped with Ce<SP>3+</SP> and/or Eu<SP>2+</SP> and (b) the shell includes at least one second luminophore which is a compound containing (b1) Eu<SP>3+</SP> and/or Pr<SP>3+</SP> and/or Sm<SP>3+</SP> and (b2) Tb<SP>3+</SP> and/or Gd<SP>3+</SP>.

Description

作為固態光源之色彩轉換器的多組分發光團Multicomponent luminophore as a color converter for solid state light sources

本發明在於發光團之領域且係關於以下各者:新穎多組分發光團,較佳地為內核-外殼化合物類型;其生產方法;其用途;及包含該等物質之組件。The invention resides in the field of luminophores and relates to the following: novel multicomponent luminophores, preferably of the core-shell compound type; methods for their production; uses thereof; and components comprising such materials.

自S. Nakamura等人的白光LED之發明以來,摻Ce3+ 石榴石已成為基於(In,Ga)N半導體之固態光源中最重要的輻射轉換器[參看TSA等人的「III-Nitride Based Light Emitting Diodes and Applications 」,Springer, Dordrecht, 2013 ,第 11 26 (2013) SCHUBERT的「Light-emitting diodes 」, 2 Cambridge Univ. Press, Cambridge, (2010) ]。來自石榴石綱之化合物已被發現為特別合適的主體化合物。此等化合物之特徵為高化學、熱及機械穩定性。此外,石榴石基發光團通常具有極高淬滅溫度,此使其特別適合於供在LED晶片上使用。標準輻射轉換器特定地為發黃光至發綠光摻Ce3+ 石榴石Y3 Al5 O12 :Ce3+ 及Lu3 Al5 O12 :Ce3+ 。結合發藍光(In,Ga)N半導體,因此有可能實施色溫度為約4000 K之冷白光源[參看MOTTIER(編)的「LEDs for lighting applications 」,ISTE Ltd, London, 2009 ;BORN等人,ChiuZ 40 ,第 294 305 (2006) ]。Since the invention of the white LED of S. Nakamura et al., the Ce 3+ garnet has become the most important radiation converter in solid-state light sources based on (In,Ga)N semiconductors [see TSA et al. " III-Nitride Based" Light Emitting Diodes and Applications ", Springer, Dordrecht, 2013, 26 pp. 11 to (2013); SCHUBERT's" Light-emitting diodes ", 2nd Edition, Cambridge Univ Press, Cambridge, ( 2010)].. Compounds derived from the garnet class have been found to be particularly suitable host compounds. These compounds are characterized by high chemical, thermal and mechanical stability. In addition, garnet-based luminophores typically have extremely high quenching temperatures which make them particularly suitable for use on LED wafers. The standard radiation converter is specifically yellow-emitting to green-emitting Ce 3+ garnet Y 3 Al 5 O 12 :Ce 3+ and Lu 3 Al 5 O 12 :Ce 3+ . In combination with blue-emitting (In, Ga) N semiconductors, it is possible to implement a cool white light source with a color temperature of about 4000 K [see MOTTIER (eds.) " LEDs for lighting applications ", ISTE Ltd, London, 2009 ; BORN et al. ChiuZ 40, 305 to page 294 (2006)].

為了實現基於發藍光(In,Ga)N LED之暖白光源(色溫度為2700至3000 K),除了發黃光或發綠光石榴石以外,亦另外需要發紅光轉換器材料,該等發紅光轉換器材料在適當波長之初級輻射(370至480 nm)下具有足夠強的吸收且展現具有高量子產率之光致發光。同時,此等發光團之穩定性必須與石榴石之穩定性同樣高,以便在固態光源之壽命過程內使色彩軌跡不存在非想要的移位。In order to realize a warm white light source based on blue (In,Ga)N LED (color temperature of 2700 to 3000 K), in addition to yellowing or green garnet, a red light converter material is additionally required. The red-emitting converter material has sufficiently strong absorption at primary radiation of appropriate wavelength (370 to 480 nm) and exhibits photoluminescence with high quantum yield. At the same time, the stability of such luminophores must be as high as the stability of the garnet so that there is no unwanted shift in the color trajectory during the life of the solid state light source.

出於此目的,在過去的20年中已開發出滿足此等需求之多種發光團。迄今使用之發光團,即,(Ca,Sr,Ba)2 SiO4 :Eu (正矽酸鹽)、(Ca,Sr)S:Eu、(Ca,Sr)AlSiN3 :Eu,O及(Ca,Sr,Ba)2 Si5 N8 :Eu,O,皆係基於活化劑Eu2+ ,其特徵為寬吸收光譜及寬發射頻帶兩者[參看MÜLLER MACH等人,Phys. Status Solid (A) 202 ,第 1727 1732 (2005) ]。For this purpose, a variety of luminophores have been developed that have met these needs over the past 20 years. Luminescent group used so far, that is, (Ca, Sr, Ba) 2 SiO 4 :Eu (n-decanoate), (Ca,Sr)S:Eu, (Ca,Sr)AlSiN 3 :Eu,O and (Ca , Sr,Ba) 2 Si 5 N 8 :Eu,O, both based on the activator Eu 2+ , characterized by both broad absorption spectra and broad emission bands [see MÜLLER MACH et al., Phys. Status Solid (A) 202, 1732 to 1727 (2005)].

J. ALLOYS COMP. 708 ,第 1 5 (2017) 中GUI等人的名為「Hydrothermally synthesized β-NaGdF4 :Eu3+ @β-NaGdF4 :Ce3+ ,Dy3+ phosphors with multicolour luminescence properties via dual-channel excitation and energy migration procedure 」之論文揭示內核-外殼發光團,其外殼為六方相。然而,此等發光團獨佔式地為含氟鹼金屬化合物。在此等材料中,僅在約250至300 nm之光譜範圍內才可能存在高效激發。該等化合物因此不適合於供在(In,Ga)N LED晶片中使用。 . J. ALLOYS COMP 708, 5 pp. 1 (2017) in the GUI et al entitled "Hydrothermally synthesized β-NaGdF 4: Eu 3+ @ β-NaGdF 4: Ce 3+, Dy 3+ phosphors with multicolour luminescence The paper of the properties via dual-channel excitation and energy migration procedure reveals a core-shell luminophore with a hexagonal phase. However, such luminophores are exclusively fluorine-containing alkali metal compounds. In these materials, efficient excitation is only possible in the spectral range of about 250 to 300 nm. These compounds are therefore not suitable for use in (In,Ga)N LED wafers.

就此而論,亦參考以下公開案:中國專利說明書CN 103865535 A (GRIREM ADVANCED MATERIALS)揭示具有內核-外殼結構之白光LED,其中內核由YAG組成且外殼由LuAG組成。舉例而言,自WO 2008 107062 A1 (MERCK)獲知具有石榴石內核及含有氧化釔之外殼的相當發光團。兩份文件US 2012 0032113 A1US 2016 0251574 A1 (RHODIA)提供具有礦物內核及由各種稀土金屬氧化物或鋁酸鹽構成之外殼的內核-外殼發光團。In this connection, reference is also made to the following publication: Chinese Patent Specification CN 103865535 A (GRIREM ADVANCED MATERIALS) discloses a white light LED having a core-shell structure in which the inner core is composed of YAG and the outer casing is composed of LuAG. For example, a relatively luminescent group having a garnet core and an outer shell containing cerium oxide is known from WO 2008 107062 A1 (MERCK). Two documents US 2012 0032113 A1 and US 2016 0251574 A1 (RHODIA) provide a core-shell luminophore with a mineral core and an outer shell composed of various rare earth metal oxides or aluminates.

此等Eu2+ 活化材料之顯著缺點為其相對於光降解之相對高敏感度,此係由於Eu2+ 具有光電離趨勢,特別是在具有相對小能帶隙之主體材料中。另外缺點為Eu2+ 發射頻帶之半高寬度非常高,此在色彩軌跡處於深紅光譜區時被顯現為適度流明當量(<200 lm/W) [參看BAUR等人,J. Mater. Chem. C 3 ,第 2054 2064 (2015) ]。A significant disadvantage of these Eu 2+ activating materials is their relatively high sensitivity to photodegradation due to the photoionization tendency of Eu 2+ , particularly in host materials having relatively small energy band gaps. A further disadvantage is that the half-height width of the Eu 2+ emission band is very high, which is manifested as a moderate lumen equivalent (<200 lm/W) when the color trajectory is in the deep red spectral region [see BAUR et al., J. Mater. Chem. C 3, of 2054 to 2064 (2015)].

已開發之替代物為具有窄頻帶紅光發射之K2 SiF6 :Mn4+ 發光團,其在深紅光譜區中不會展現任何發射且因此具有高得多的效率(流明當量> 200 lm/W) [US 2006 0169998 A1 (SRIVASTAVA)]。然而,因為[Ar]3d3 至[Ar]3d3 躍遷出於量子力學原因而被宇稱禁止(parity-forbidden),所以藍光譜區中之吸收劑比在具有相當濃度之Eu2+ 基發光團之狀況下低得多。因此,需要比較高的使用量以產生暖白光。此外,氟主體材料中之Mn4+ 具有參加與F- 陰離子之氧還反應的趨勢,此會導致形成與發光團之降解相關聯的元素氟及Mn3+ 或MnF3 。此需要對經合成發光糰粒子進行特定後處理,以便在操作中保證足夠的穩定性。另外,可用作LED發光團的係用Sm3+ 或Pr3+ 活化之發紅光線發光團。然而,濃度淬滅甚至在兩種活化劑之非常低的活化劑濃度下仍會開始,此不利於LED發光團之必要吸收強度。An alternative that has been developed is the K 2 SiF 6 :Mn 4+ luminophore with narrow-band red light emission, which does not exhibit any emission in the deep red spectral region and therefore has a much higher efficiency (lumen equivalents > 200 lm/ W) [ US 2006 0169998 A1 (SRIVASTAVA)]. However, since the [Ar]3d 3 to [Ar]3d 3 transitions are parity-forbidden for quantum mechanical reasons, the absorber in the blue spectral region has a higher concentration than the Eu 2+ -based luminescence. The situation of the regiment is much lower. Therefore, a relatively high usage amount is required to produce warm white light. Furthermore, Mn 4+ in the fluorine host material has a tendency to participate in the reaction with the oxygen of the F - anion, which results in the formation of elemental fluorine and Mn 3+ or MnF 3 associated with degradation of the luminophore. This requires specific post-treatment of the synthesized luminophore particles to ensure adequate stability during operation. In addition, a red light illuminating group which is activated by Sm 3+ or Pr 3+ can be used as the LED light-emitting group. However, concentration quenching can begin even at very low activator concentrations of the two activators, which is detrimental to the necessary absorption intensity of the LED luminophore.

出於此原因,需要開發不具有此等缺點之發紅光發光團。出於此目的,摻Eu3+ 發光團尤其為選項,此係由於此等發光團在約610與630 nm之間的紅光譜區中具有光產率高之線發射。歸因於宇稱禁止及自旋禁止4f6 至4f6 躍遷,在藍光譜區中之吸收強度仍低於Mn4+ 之吸收強度。改良吸收之標準方法為使用在所要光譜區內展現強吸收且將能量轉移至Eu3+ 活化劑之增感劑。舉例而言,儘管Ce3+ 為用於Tb3+ 之習用增感劑,但其無法結合Eu3+ 而使用,此係由於自Ce3+ 至Eu3+ 發生所謂的金屬-金屬電荷轉移,此會顯著地縮減量子產率。可能的替代增感劑為具有s2 電子組態之離子,諸如Pb2+ 、Sb3+ 或Bi3+ 。然而,此等增感劑僅在<350 nm之UV區域中展示足夠的吸收且因此不適合於供在發藍光(Al,In,Ga)N半導體中使用[US 8,252,613 B1 (LYONS)]。儘管在此領域中進行了大量的研究活動,但迄今因此尚不可能向半導體LED提供具有足夠高的吸收強度之摻Eu3+ 發光團。For this reason, it is necessary to develop a red-emitting luminophore that does not have such disadvantages. For this purpose, the doping of Eu 3+ luminophores is especially an option since these luminophores have a high light yield in the red spectral region between about 610 and 630 nm. Due to the parity prohibition and spin inhibition of 4f 6 to 4f 6 transitions, the absorption intensity in the blue spectral region is still lower than the absorption intensity of Mn 4+ . A standard method of improved absorption is to use a sensitizer that exhibits strong absorption in the desired spectral region and transfers energy to the Eu3 + activator. For example, although Ce 3+ is a conventional sensitizer for Tb 3+ , it cannot be used in combination with Eu 3+ because of the so-called metal-metal charge transfer from Ce 3+ to Eu 3+ . This will significantly reduce the quantum yield. Possible alternative sensitizers are ions having an s 2 electronic configuration, such as Pb 2+ , Sb 3+ or Bi 3+ . However, these sensitizers exhibit sufficient absorption only in the UV region of <350 nm and are therefore unsuitable for use in blue- emitting (Al,In,Ga)N semiconductors [ US 8,252,613 B1 (LYONS)]. Despite a large amount of research activity in this field, it has not been possible so far to provide a semiconductor LED with an Eu 3+-doped luminophore having a sufficiently high absorption intensity.

由本發明解決之問題因此為補救先前技術之上述缺點且尤其是提供具有多組分結構之新穎發光團,用該等發光團可生產廣受歡迎的具有高顯色指數(CRI > 90)且同時具有極高流明當量之暖白光LED。The problem solved by the present invention is therefore to remedy the above-mentioned disadvantages of the prior art and in particular to provide novel luminophores having a multi-component structure with which a highly popular color rendering index (CRI > 90) can be produced and simultaneously A warm white LED with a very high lumen equivalent.

本發明首先提供多組分發光團,其包含以下各者或由以下各者組成:
(i) 內核,及
(ii) 至少一個外殼,其同心地配置於該內核周圍,
其中
(a) 該內核包含摻雜有Ce3+ 及/或Eu2+ 之至少一種第一無機發光團,且
(b) 該外殼包括至少一種第二發光團,該至少一種第二發光團為含有以下各者之化合物:
(b1) Eu3+ 及/或Pr3+ 及/或Sm3+ ,及
(b2) Tb3+ 及/或Gd3+
The present invention first provides a multicomponent luminophore comprising the following or consisting of:
(i) the kernel, and
(ii) at least one outer casing that is concentrically disposed about the core,
among them
(a) the core comprises at least one first inorganic luminophore doped with Ce 3+ and/or Eu 2+ , and
(b) the outer shell comprises at least one second luminophore, the at least one second luminophore being a compound comprising:
(b1) Eu 3+ and/or Pr 3+ and/or Sm 3+ , and
(b2) Tb 3+ and/or Gd 3+ .

該等多組分發光團較佳地為如下文中詳細地所描述之內核-外殼化合物。簡言之,其係藉由沈澱在內核材料上形成外殼之物質而生產。圖11中展示示意圖。The multicomponent luminophores are preferably core-shell compounds as described in detail below. In short, it is produced by depositing a substance that forms a shell on the core material. A schematic diagram is shown in FIG.

然而,術語「多組分發光團」亦應被理解為包括並不完全地符合外殼及內核之方案的複合化合物。出於此目的,簡言之,單獨地生產意欲用於內核及外殼之材料,且接著將其以將對應於內核-外殼化合物中之重量比的重量比壓縮在一起且隨後燒結。此等複合化合物與內核-外殼化合物具有類似效能,但生產起來容易得多且因此成本亦少得多。下文中亦詳細地描述複合化合物之生產。However, the term "multi-component luminophore" should also be understood to include composite compounds that do not fully conform to the housing and core protocols. For this purpose, in brief, the materials intended for the inner core and the outer casing are separately produced, and then they are compressed together in a weight ratio corresponding to the weight ratio in the core-shell compound and then sintered. These composite compounds have similar performance to core-shell compounds, but are much easier to produce and therefore less costly. The production of the composite compound is also described in detail below.

已發現,出人意料地,本發明之內核-外殼發光團完全地解決了剛開始時所闡述之複雜問題。此係因為,若在特定晶體中Ce3+ 或Eu2+ 離子空間上近接於Eu3+ 離子,則已觀測到金屬至金屬電荷轉移(MMCT)會導致量子產率顯著地縮減。此製程有礙於高效地使用Ce3+ 或Eu2+ 作為用於Eu3+ 之增感劑。然而,若在微晶或發光糰粒子內離子彼此空間上分離,則可完全地或很大程度上防止MMCT。若離子仍同時處於用於經由介體(例如Tb3+ 或Gd3+ )之高效共振能量轉移(ET)之足夠的空間近接度中,則有可能使用Ce3+ 或Eu2+ 作為用於Eu3+ 且亦可能用於Pr3+ 或Sm3+ 之增感劑,而不會由於上述MMCT而減損量子產率。Surprisingly, it has been found that the core-shell luminophore of the present invention completely solves the complex problems set forth at the outset. This is because if the Ce 3+ or Eu 2+ ions are spatially close to the Eu 3+ ions in a particular crystal, it has been observed that metal-to-metal charge transfer (MMCT) results in a significant reduction in quantum yield. This process hinders the efficient use of Ce 3+ or Eu 2+ as a sensitizer for Eu 3+ . However, if the ions are spatially separated from each other within the crystallite or luminophore particles, the MMCT can be completely or largely prevented. If the ions are still in sufficient spatial proximity for efficient resonance energy transfer (ET) via a mediator (eg Tb 3+ or Gd 3+ ), it is possible to use Ce 3+ or Eu 2+ as Eu 3+ may also be used for the sensitizer of Pr 3+ or Sm 3+ without detracting from the quantum yield due to the above MMCT.

內核之組成Kernel composition

本發明之新穎發光團之內核由Ce3+ 活化或Eu2+ 活化第一發光團組成;此外,亦可存在摻雜有Tb3+ 及/或Gd3+ 之另外發光團。較佳地,此第一發光團具有石榴石、矽酸鹽、硼酸鹽、(氧基)氟化物及/或(氧基)氮化物結構。較佳地,第一發光團具有石榴石結構且已摻雜有Ce3+The core of the novel luminophore of the present invention consists of Ce 3+ activated or Eu 2+ activated first luminophore; in addition, there may be additional luminophore doped with Tb 3+ and/or Gd 3+ . Preferably, the first luminophore has a garnet, citrate, borate, (oxy) fluoride and/or (oxy) nitride structure. Preferably, the first luminophore has a garnet structure and has been doped with Ce 3+ .

特別較佳的第一發光團為:
Lu3 Al5 O12 :Ce3+ (LuAG);Lu3 Sc2 Al3 O12 :Ce3+ (LSAG);Gd3 Al5 O12 :Ce3+ (GdAG);Gd3 Sc2 Al3 O12 :Ce3+ (GSAG);Tb3 Al5 O12 :Ce3+ (TAG);(Ca,Sr,Ba)2 SiO4 :Eu2+ ;(Ca,Sr,Ba)3 SiO5 :Eu2+ ;(Ca,Sr,Ba)Si2 N2 O2 :Eu2+ ;(Sr,Ba)(Al,Y,Gd,Lu)Si4 N7 :Eu2+ ;(La,Gd,Tb)3 Si6 N11 :Ce3+ ;及其共晶體。舉例而言,自EP 2937315 A1 (PANASONIC)獲知另外合適的石榴石結構。關於摻鈰石榴石發光團之光學性質之理論,參考INORG. CHEM. 53 6607 6614 (2014) 中GONG等人的名為「Novel garnet-structure Ca2 GdZr2 (AlO4 )3 :Ce3+ phosphor and its structural tuning of optical properties 」之論文。
A particularly preferred first luminophore is:
Lu 3 Al 5 O 12 :Ce 3+ (LuAG); Lu 3 Sc 2 Al 3 O 12 :Ce 3+ (LSAG); Gd 3 Al 5 O 12 :Ce 3+ (GdAG); Gd 3 Sc 2 Al 3 O 12 :Ce 3+ (GSAG); Tb 3 Al 5 O 12 :Ce 3+ (TAG); (Ca,Sr,Ba) 2 SiO 4 :Eu 2+ ;(Ca,Sr,Ba) 3 SiO 5 : Eu 2+ ;(Ca,Sr,Ba)Si 2 N 2 O 2 :Eu 2+ ;(Sr,Ba)(Al,Y,Gd,Lu)Si 4 N 7 :Eu 2+ ;(La,Gd, Tb) 3 Si 6 N 11 :Ce 3+ ; and its eutectic. Further suitable garnet structures are known, for example, from EP 2937315 A1 (PANASONIC). Theory on the optical properties of the garnet doped luminophores of cerium, reference INORG CHEM 53, 6614 to pp. 6607 (2014) in GONG et al., Entitled "Novel garnet-structure Ca 2 GdZr 2 (AlO 4) 3..: Ce 3+ phosphor and its structural tuning of optical properties ".

除了此等特定發光團以外,可摻雜有Ce3+ 及/或Eu2+ 之其他化合物當然亦有用,即,例如:
Lu3 (Al1-x-y Gax Scy )5 O12 ,其中0<x≤0.4且0<y≤0.4;
Y3 (Al1-x-y Gax Scy )5 O12 ,其中0<x≤0.4且0<y≤0.4;
Tb3 (Al1-x-y Gax Scy )5 O12 ,其中0<x≤0.4且0<y≤0.4;
Gd3 (Al1-x-y Gax Scy )5 O12 ,其中0<x≤0.4且0<y≤0.4;
Ca2 (Lu1-x-y-z Gdx Yy Scz )(Zr1-a Hfa )2 Al3 O12 ,其中0<x+y+z≤1且0<a≤1;
Ca2 (Lu1-x-y-z Gdx Yy Scz Mgm )(Zr1-a Hfa )2 (Al1-m Sim )3 O12 ,其中0<x+y+z≤1且0<a≤1且0<m≤1;
Ca2-b (Lu1-x-y-z-t Gdx Yy Scz Tbt )1+b (Zr1-a Hfa )2-b Al3+b O12 ,其中0 <x+y+z≤1且0<a≤1且0<t≤1且0<b≤1;
(Lu1-z Mgz )3 (Al1-z Siz )5 O12 ,其中0<z≤0.6;
(Y1-z Mgz )3 (Al1-z Siz )5 O12 ,其中0<z≤0.6;
(Tb1-z Mgz )3 (Al1-z Siz )5 O12 ,其中0<z≤0.6;及
(Gd1-z Mgz )3 (Al1-z Siz )5 O12 ,其中0<z≤0.6。
In addition to these specific luminophores, other compounds which may be doped with Ce 3+ and/or Eu 2+ are of course also useful, ie for example:
Lu 3 (Al 1-xy Ga x Sc y ) 5 O 12 , where 0<x≤0.4 and 0<y≤0.4;
Y 3 (Al 1-xy Ga x Sc y ) 5 O 12 , wherein 0<x≤0.4 and 0<y≤0.4;
Tb 3 (Al 1-xy Ga x Sc y ) 5 O 12 , wherein 0<x≤0.4 and 0<y≤0.4;
Gd 3 (Al 1-xy Ga x Sc y ) 5 O 12 , wherein 0<x≤0.4 and 0<y≤0.4;
Ca 2 (Lu 1-xyz Gd x Y y Sc z )(Zr 1-a Hf a ) 2 Al 3 O 12 , wherein 0<x+y+z≤1 and 0<a≤1;
Ca 2 (Lu 1-xyz Gd x Y y Sc z Mg m )(Zr 1-a Hf a ) 2 (Al 1-m Si m ) 3 O 12 , where 0<x+y+z≤1 and 0< A≤1 and 0<m≤1;
Ca 2-b (Lu 1-xyzt Gd x Y y Sc z Tb t ) 1+b (Zr 1-a Hf a ) 2-b Al 3+b O 12 , where 0 <x+y+z≤1 and 0<a≤1 and 0<t≤1 and 0<b≤1;
(Lu 1-z Mg z ) 3 (Al 1-z Si z ) 5 O 12 , where 0 < z ≤ 0.6;
(Y 1-z Mg z ) 3 (Al 1-z Si z ) 5 O 12 , where 0 < z ≤ 0.6;
(Tb 1-z Mg z ) 3 (Al 1-z Si z ) 5 O 12 , where 0 < z ≤ 0.6;
(Gd 1-z Mg z ) 3 (Al 1-z Si z ) 5 O 12 , where 0 < z ≤ 0.6.

下文中列出可用作內核之其他材料:
(Ca,Sr,Ba)2 SiO4 :Eu2+ ;(Ca,Sr,Ba)3 SiO5 :Eu2+ ;(Gd,Y)F3 :Ce3+ ;(Ca,Sr,Ba)Si2 N2 O2 :Eu2+ ;(Sr,Ba)(Al,Y,Gd,Lu)Si4 N7 :Eu2+ ;(La,Gd,Tb)3 Si6 N11 :Ce3+ ;及其混合物及共晶體。
Other materials that can be used as a kernel are listed below:
(Ca,Sr,Ba) 2 SiO 4 :Eu 2+ ;(Ca,Sr,Ba) 3 SiO 5 :Eu 2+ ;(Gd,Y)F 3 :Ce 3+ ;(Ca,Sr,Ba)Si 2 N 2 O 2 :Eu 2+ ;(Sr,Ba)(Al,Y,Gd,Lu)Si 4 N 7 :Eu 2+ ;(La,Gd,Tb) 3 Si 6 N 11 :Ce 3+ ; And mixtures thereof and co-crystals.

當內核材料具有高化學、熱及機械穩定性,以便使其在塗佈操作期間不會參加任何反應時,已發現就此而論非常有用。This has been found to be very useful when the core material has high chemical, thermal and mechanical stability so that it does not participate in any reaction during the coating operation.

外殼之組成Composition of the outer casing

塗層或外殼由含Tb3+ 或含Gd3+ 、Eu3+ 活化、Pr3+ 活化及/或Sm3+ 活化第二發光團組成。第二發光團被Eu3+ 活化之實施例係明確地較佳的。此外,具有高濃度之Tb3+ 之材料係特別較佳的。內核中之Ce3+ 或Eu2+ 離子自(Al,In,Ga)N半導體晶片吸收發射(340至510 nm),且將所吸收之能量轉移至外殼。自Ce3+ 或Eu2+ 至Tb3+ 及自Tb3+ 至Eu3+ 兩者之能量轉移皆非常高效;因此,Tb3+ 充當用以確保自Ce3+ 至Eu3+ 之極其實質上完全能量轉移的介體。 10 中以示意性形式展示該製程。The coating or shell consists of a second luminophore containing Tb 3+ or containing Gd 3+ , Eu 3+ activated, Pr 3+ activated and/or Sm 3+ activated. The embodiment in which the second luminophore is activated by Eu 3+ is clearly preferred. Further, materials having a high concentration of Tb 3+ are particularly preferred. The Ce 3+ or Eu 2+ ions in the core absorb the emission (340 to 510 nm) from the (Al, In, Ga) N semiconductor wafer and transfer the absorbed energy to the outer casing. Energy transfer from both Ce 3+ or Eu 2+ to Tb 3+ and from Tb 3+ to Eu 3+ is very efficient; therefore, Tb 3+ acts as an essential substance to ensure self-Ce 3+ to Eu 3+ A mediator with complete energy transfer. This process is shown in schematic form in Figure 10 .

舉例而言,第二發光團係選自由以下各者形成之化合物之群組:
Tb2 SiO5 ;Tb2 Si2 O7 ;TbBO3 ;TbB3 O6 ;Tb2 MoO6 ;Tb2 Mo2 O9 ;Tb2 Mo3 O12 ;Tb2 Mo4 O15 ;Tb3 Al5 O12 ;Tb3 (Al1-x Gax )5 O12 ,其中0 < x ≤ 0.4;TbAl3 [BO3 ]4 ;CaTbAl3 O7 ;TbAl[Ge2 O7 ];SrTb2 Al2 O7 ;Sr2 TbAlO5 ;TbAlO3 ;Tb4 Al2 O9 ;(Ba,Sr,Ca)3 TbB9 O18 ;(Ba,Sr,Ca)2 Tb2 Si4 O13 ;MgTbB5 O10 ;TbB5 O9 ;Tb2 B4 O9 ;ZnTbB5 O10 ;Ba2 TbNbO6 ;Ba2 TbTaO6 ;TbGa3 [BO3 ]4 ;Sr3 Tb2 [BO3 ]4 ;Sr3 Tb[BO3 ]3 ;Ca9 Tb[VO4 ]7 ;Ca9 Tb[PO4 ]7 ;LiTbW2 O8 ;Tb2 Mo2 O7 ;Tb2 Mo4 O15 ;Tb2 Sn2 O7 ;Sr2 TbTaO6 ;Tb2 Ti2 O7 ;Tb[VO4 ];GdF3 ;(Lu1-x-y-z-t Gdx Yy Scz Tbt )2 O3 ,其中0 < x + y + z ≤ 1且0 < t ≤ 1;Ca2 (Lu1-t Tbt )Zr2 Al3 O12 ,其中0 < t ≤ 1;Ca2 (Gd1-t Tbt )Zr2 Al3 O12 ,其中0 < t ≤ 1;Ca2 (Lu1-t Tbt )Hf2 Al3 O12 ,其中0 < t ≤ 1;Ca2 (Gd1-t Tbt )Hf2 Al3 O12 ,其中0 < t ≤ 1;Ca2 (Lu1-x-y-z-t Gdx Yy Scz Tbt )(Zr1-a Hfa )2 Al3 O12 ,其中0 < x + y + z ≤ 1且0 < a ≤ 1且0 < t ≤ 1;Ca2 (Lu1-x-y-z-t Gdx Yy Scz Mgm Tbt )(Zr1- a Hfa )2 (Al1-m Sim )3 O12 ,其中0 < x + y + z ≤ 1且0 < a ≤ 1且0 < m ≤1且0 < t ≤ 1;Ca2-b (Lu1-x-y-z-t Gdx Yy Scz Tbt )1+b (Zr1-a Hfa )2-b Al3+b O12 ,其中0 < x + y + z ≤ 1且0 < a ≤ 1且0 < t ≤ 1且0 < b ≤ 1;及其共晶體。
For example, the second luminophore is selected from the group of compounds formed by:
Tb 2 SiO 5 ; Tb 2 Si 2 O 7 ; TbBO 3 ; TbB 3 O 6 ; Tb 2 MoO 6 ; Tb 2 Mo 2 O 9 ; Tb 2 Mo 3 O 12 ; Tb 2 Mo 4 O 15 ; Tb 3 Al 5 O 12 ; Tb 3 (Al 1-x Ga x ) 5 O 12 , where 0 < x ≤ 0.4; TbAl 3 [BO 3 ] 4 ; CaTbAl 3 O 7 ; TbAl [Ge 2 O 7 ]; SrTb 2 Al 2 O 7 ; Sr 2 TbAlO 5 ; TbAlO 3 ; Tb 4 Al 2 O 9 ; (Ba, Sr, Ca) 3 TbB 9 O 18 ; (Ba, Sr, Ca) 2 Tb 2 Si 4 O 13 ; MgTbB 5 O 10 ; TbB 5 O 9 ; Tb 2 B 4 O 9 ; ZnTbB 5 O 10 ; Ba 2 TbNbO 6 ; Ba 2 TbTaO 6 ; TbGa 3 [BO 3 ] 4 ; Sr 3 Tb 2 [BO 3 ] 4 ; Sr 3 Tb [BO 3 ] 3 ; Ca 9 Tb[VO 4 ] 7 ; Ca 9 Tb[PO 4 ] 7 ; LiTbW 2 O 8 ; Tb 2 Mo 2 O 7 ; Tb 2 Mo 4 O 15 ; Tb 2 Sn 2 O 7 ; Sr 2 TbTaO 6 ; Tb 2 Ti 2 O 7 ; Tb[VO 4 ]; GdF 3 ; (Lu 1-xyzt Gd x Y y Sc z Tb t ) 2 O 3 , where 0 < x + y + z ≤ 1 and 0 < t ≤ 1; Ca 2 (Lu 1-t Tb t )Zr 2 Al 3 O 12 , where 0 < t ≤ 1; Ca 2 (Gd 1-t Tb t )Zr 2 Al 3 O 12 , where 0 < t ≤ 1; Ca 2 (Lu 1-t Tb t )Hf 2 Al 3 O 12 , where 0 < t ≤ 1; Ca 2 (Gd 1-t Tb t )Hf 2 Al 3 O 12 , where 0 < t ≤ 1; Ca 2 (Lu 1-xyzt Gd x Y y Sc z Tb t )(Zr 1-a Hf a ) 2 Al 3 O 12 , where 0 < x + y + z ≤ 1 and 0 < a ≤ 1 and 0 < t ≤ 1; Ca 2 (Lu 1-xyzt Gd x Y y Sc z Mg m Tb t )(Zr 1- a Hf a ) 2 (Al 1-m Si m ) 3 O 12 , where 0 < x + y + z ≤ 1 and 0 < a ≤ 1 and 0 < m ≤ 1 and 0 < t ≤ 1; Ca 2-b (Lu 1-xyzt Gd x Y y Sc z Tb t ) 1+b (Zr 1-a Hf a ) 2-b Al 3+b O 12 , where 0 < x + y + z ≤ 1 and 0 < a ≤ 1 and 0 < t ≤ 1 and 0 < b ≤ 1; and its eutectic.

此處藉由Eu3+ 以1%至90%之比例置換至少一個層中之Tb3+ 或Gd3+ 。具有低熔點之化合物係較佳的,此係由於此處可能存在內核保持穩定所處之低燒結溫度。Here, Tb 3+ or Gd 3+ in at least one of the layers is replaced by Eu 3+ at a ratio of 1% to 90%. Compounds having a low melting point are preferred because of the low sintering temperatures at which the core remains stable.

為了在Ce3+ 或Eu2+ 與Eu3+ 離子之間保證甚至更好的空間分離,本發明之特定實施例為內核由兩個同心配置外殼包圍之實施例。較佳地,內部外殼既不含有Ce3+ 亦不含有Eu3+ 發光團或化合物。由於兩個外殼皆含有高濃度之Tb3+ ,故可經由Tb3+ 將能量自內核經由間層轉移至摻Eu3+ 外部層中。若存在另外的額外外殼,則相同構造會加以必要的變更。In order to ensure even better spatial separation between Ce 3+ or Eu 2+ and Eu 3+ ions, a particular embodiment of the invention is an embodiment in which the core is surrounded by two concentrically configured outer casings. Preferably, the inner casing contains neither Ce 3+ nor Eu 3+ luminophores or compounds. Since both shells contain a high concentration of Tb 3+ , energy can be transferred from the core via the interlayer to the Eu 3 + -doped outer layer via Tb 3+ . If there are additional extra casings, the same construction will be changed as necessary.

方法method

本發明進一步提供一種用於生產內核-外殼發光團之方法,其包含以下步驟或由以下步驟組成:
(a) 提供包含至少一種Eu3+ 化合物且視情況包含至少一種Tb3+ 及/或Gd3+ 化合物之溶液(外殼材料);
(b) 提供已摻雜有Ce3+ 及/或Eu2+ 且不溶於來自步驟(a)之該溶液中之至少一種發光團(內核材料);
(c) 混雜該溶液與該發光團及沈澱劑;
(d) 將該Eu3+ 、Tb3+ 及/或Gd3+ 化合物沈澱於該發光團上;
(e) 移除溶劑;及
(f) 視情況密化及/或熱後處理殘餘物。
The invention further provides a method for producing a core-shell luminophore comprising the following steps or consisting of the following steps:
(a) providing a solution (shell material) comprising at least one Eu 3+ compound and optionally at least one Tb 3+ and/or Gd 3+ compound;
(b) providing at least one luminophore (core material) that has been doped with Ce 3+ and/or Eu 2+ and is insoluble in the solution from step (a);
(c) mixing the solution with the luminophore and the precipitating agent;
(d) precipitating the Eu 3+ , Tb 3+ and/or Gd 3+ compound onto the luminophore;
(e) remove the solvent; and
(f) Densification and/or thermal post-treatment of residues as appropriate.

較佳地,根據步驟(a)及(b)之組分—亦即,外殼材料及內核材料—係以約70:30至約90:10之重量比而使用—在每一狀況下以固體含量計。特別較佳的是約80:20之重量比。合適的溶劑包括有機及無機溶劑類似物;在許多狀況下,用於外殼材料之起始材料係水溶性的或溶解於稀釋礦物酸中。在一些狀況下,完全溶解係不必要的,且使起始材料懸浮係足夠的。除了Eu3+ 、Tb3+ 及/或Gd3+ 化合物以外,溶液亦可包含適合於形成共晶體或混合化合物之另外組分,且接著同樣沈澱於內核材料上。可例如原位或以反序共沈澱分出(reverse strike)之形式進行沈澱。合適的沈澱劑尤其為脲及碳酸氫銨。沈澱係較佳地用溶劑之回流在高溫下進行,且通常需要1至10小時之反應時間。下文中藉由多個工作實例詳細地闡明該方法,而不藉此限於此等實例。Preferably, the components according to steps (a) and (b) - that is, the outer shell material and the inner core material - are used in a weight ratio of from about 70:30 to about 90:10 - in each case as a solid Content meter. Particularly preferred is a weight ratio of about 80:20. Suitable solvents include organic and inorganic solvent analogs; in many cases, the starting materials for the outer shell material are water soluble or soluble in the dilute mineral acid. In some cases, complete dissolution is not necessary and the starting material suspension is sufficient. In addition to the Eu 3+ , Tb 3+ and/or Gd 3+ compounds, the solution may also comprise additional components suitable for forming a eutectic or mixed compound, and then likewise precipitated onto the core material. Precipitation can be carried out, for example, in situ or in the form of a reverse sequence of reverse strike. Suitable precipitating agents are, in particular, urea and ammonium hydrogencarbonate. The precipitation is preferably carried out at elevated temperature with reflux of the solvent, and usually requires a reaction time of from 1 to 10 hours. The method is clarified in detail below by means of a plurality of working examples without being limited to such examples.

在本發明之另外較佳實施例中,使沈澱產物經受熱後處理。此係為了在內核與外殼之間保證改良能量轉移而進行。較佳地進行用於外殼之密化或結晶之燒結程序,使得燒結溫度比外殼材料之熔點低100至500 K。此會引起內核與外殼之間的陽離子之相互擴散受到局部限制,使得化合物採用「磊晶」特性且能量轉移變得更高效。 12 中以示意性形式展示此情形。實務上,在約500至約2000℃之範圍內的溫度下在約1至約10小時之時段內進行熱後處理。必要時,為了改良結晶,亦以0.1重量%至5重量%添加焊劑。In a further preferred embodiment of the invention, the precipitated product is subjected to a thermal aftertreatment. This is done to ensure improved energy transfer between the core and the housing. The sintering procedure for densification or crystallization of the outer casing is preferably carried out such that the sintering temperature is lower by 100 to 500 K than the melting point of the outer casing material. This causes the interdiffusion of cations between the core and the outer shell to be locally limited, making the compound "epitaxial" and the energy transfer becomes more efficient. This situation is shown in schematic form in Figure 12 . In practice, the thermal aftertreatment is carried out at a temperature in the range of from about 500 to about 2000 ° C for a period of from about 1 to about 10 hours. If necessary, in order to improve crystallization, the flux is also added in an amount of 0.1% by weight to 5% by weight.

本發明進一步提供一種用於生產複合發光團之替代方法,其包含以下步驟或由以下步驟組成:
(a) 提供摻雜有Ce3+ 及/或Eu2+ 之第一發光團;
(b) 提供第二發光團,該第二發光團為含有(b1) Eu3+ 及(b2) Tb3+ 及/或Gd3+ 之化合物;
(c) 以約30:70至10:90之重量比混合該第一發光團與該第二發光團;
(d) 壓製該混合物以得到生坯;
(e) 在比該第一發光團之熔融溫度低100至500 K之溫度下燒結該生坯。
The invention further provides an alternative method for producing a composite luminophore comprising the following steps or consisting of the following steps:
(a) providing a first luminophore doped with Ce 3+ and/or Eu 2+ ;
(b) providing a second luminophore, the second luminophore being a compound containing (b1) Eu 3+ and (b2) Tb 3+ and/or Gd 3+ ;
(c) mixing the first luminophore with the second luminophore in a weight ratio of about 30:70 to 10:90;
(d) pressing the mixture to obtain a green body;
(e) sintering the green body at a temperature lower than the melting temperature of the first luminophore by 100 to 500 K.

此方法產生陶瓷材料,其中Ce3+ 與Eu3+ 空間上分離,但由於此處存在之界面之「磊晶」特性,可進行自Ce3+ 至Eu3+ 之能量轉移。當出於技術原因歸因於內核或外殼材料之物理或化學性質而無法進行塗佈製程時,此程序為選項。 12 中以示意性形式展示此情形。實務上,在約500至約2000℃之範圍內的溫度下在約1至約10小時之時段內進行生坯之燒結。以大盈餘包含外殼材料之所得複合材料與來自第一方法之內核-外殼發光團具有類似於等效行為,且因此同樣在本發明之內容背景中被認為由術語「多組分發光團」涵蓋。
工業實用性
This method produces a ceramic material in which Ce 3+ is spatially separated from Eu 3+ , but energy transfer from Ce 3+ to Eu 3+ can be performed due to the "epitaxial" nature of the interface present therein. This procedure is an option when the coating process cannot be performed due to technical or physical properties of the core or housing material for technical reasons. This situation is shown in schematic form in Figure 12 . In practice, the sintering of the green body is carried out at a temperature in the range of from about 500 to about 2000 ° C for a period of from about 1 to about 10 hours. The resulting composite comprising the outer shell material in a large surplus has similar behavior to the core-shell luminophore from the first method, and thus is also considered to be encompassed by the term "multi-component luminophore" in the context of the context of the present invention. .
Industrial applicability

本發明進一步關於本發明之化合物之用途,該等化合物用作發光團或轉換發光團,尤其是用作對發藍光或發UV-A輻射半導體源之輻射轉換器,且出於彼原因,該等化合物因此亦一般被稱為發光團。The invention further relates to the use of the compounds of the invention as light-emitting groups or converted luminophores, in particular as radiation converters for blue-emitting or UV-A radiation semiconductor sources, and for reasons of such Compounds are therefore also generally referred to as luminophores.

發射轉換材料Launch conversion material

本發明亦進一步關於一種發射轉換材料,其包含本發明之化合物。該發射轉換材料可由本發明之化合物組成,且在此狀況下將等效於上文所定義之術語「轉換發光團」。亦可較佳的是使本發明之發射轉換材料包含另外轉換發光團以及本發明之化合物。在此狀況下,本發明之發射轉換材料較佳地包含至少兩種轉換發光團之混合物,該至少兩種轉換發光團中之至少一者為本發明之化合物。尤其較佳的是,至少兩種轉換發光團為發射具有互補波長之光的發光團。The invention further relates to an emission conversion material comprising a compound of the invention. The emissive conversion material may consist of a compound of the invention and in this case will be equivalent to the term "converting luminophore" as defined above. It is also preferred that the emissive conversion material of the present invention comprises an additional converted luminophore and a compound of the invention. In this case, the emissive conversion material of the present invention preferably comprises a mixture of at least two converted luminophores, at least one of which is a compound of the invention. It is especially preferred that the at least two converted luminophores are luminophores that emit light having complementary wavelengths.

在本申請案之內容背景中,紫外光係指發射最大值介於100與399 nm之間的彼光,紫光係指發射最大值介於400與430 nm之間的彼光,藍光係指發射最大值介於431與480 nm之間的彼光,青光係指發射最大值介於481與510 nm之間的彼光,綠光係指發射最大值介於511與565 nm之間的彼光,黃光係指發射最大值介於566與575 nm之間的彼光,橙光係指發射最大值介於576與600 nm之間的彼光,且紅光係指發射最大值介於601與750 nm之間的彼光。In the context of the present application, ultraviolet light refers to the light with a maximum emission between 100 and 399 nm, and violet light refers to the light with a maximum emission between 400 and 430 nm. The maximum value is between 431 and 480 nm, the cyan is the emission with a maximum between 481 and 510 nm, and the green is the emission with a maximum between 511 and 565 nm. Light, yellow light refers to the light with a maximum emission between 566 and 575 nm, orange light refers to the light with a maximum emission between 576 and 600 nm, and red light refers to the maximum emission value. The light between 601 and 750 nm.

當以少量使用本發明之化合物時,其已經產生良好LED品質。LED品質係由習用參數描述,例如顯色指數(CRI)、相關色溫度(CCT)、流明當量或絕對流明,或在CIE x及y座標中之色彩軌跡。When the compound of the present invention is used in a small amount, it has produced good LED quality. LED quality is described by conventional parameters such as color rendering index (CRI), correlated color temperature (CCT), lumen equivalent or absolute lumen, or color trajectories in CIE x and y coordinates.

顯色指數 (CRI)為熟習此項技術者所熟悉之無單位照明技術參數,其比較人工光源之色彩再現真實性與日光或燈絲光源(後兩者之CRI為100)之色彩再現真實性。 The color rendering index (CRI) is a unitless illumination technical parameter familiar to those skilled in the art that compares the color reproduction authenticity of an artificial light source with the color reproduction authenticity of daylight or filament sources (the latter two have a CRI of 100).

相關色溫度 (CCT) 為熟習此項技術者所熟悉之照明技術參數,單位為克耳文(kelvin)。數值愈高,則光之藍色分量愈高且來自合成輻射源之白光對觀測者顯得愈冷。CCT遵循黑色輻射體之概念,其色溫度係由CIE圖中之所謂的蒲朗克(Planck)曲線描述。 Correlated color temperature (CCT) is a lighting technical parameter familiar to those skilled in the art, and the unit is kelvin. The higher the value, the higher the blue component of the light and the white light from the synthetic radiation source appears colder to the observer. The CCT follows the concept of a black radiator whose color temperature is described by the so-called Planck curve in the CIE diagram.

流明當量 為熟習此項技術者所熟悉之照明技術參數,單位為lm/W,其描述在單位為瓦特之特定輻射量測輻射功率下來自光源之流明中光度光通量之大小。流明當量愈高,則光源愈高效。 Lumens equivalents are lighting technical parameters familiar to those skilled in the art, in lm/W, which describe the amount of luminosity flux in the lumen from the source at a specific radiation radiant power in watts. The higher the lumen equivalent, the more efficient the source.

流明 為熟習此項技術者所熟悉之光度照明技術參數,其描述來自光源之光通量,該光通量為由輻射源發射之總可見光輻射之量度。光通量愈大,則光源對觀測者顯得愈亮。 Lumens is a photometric illumination parameter familiar to those skilled in the art that describes the flux of light from a source that is a measure of the total visible radiation emitted by the source. The greater the luminous flux, the brighter the light source appears to the observer.

CIE x CIE y 為熟習此項技術者所熟悉之CIE標準色彩圖(此處為1931標準觀測者)中之座標,其描述光源之色彩。 CIE x and CIE y are coordinates in the CIE standard color map (here 1931 standard observer) familiar to those skilled in the art, which describe the color of the light source.

可藉由熟習此項技術者所知之方法自光源之發射光譜計算上文所列出之所有參數。All of the parameters listed above can be calculated from the emission spectrum of the source by methods known to those skilled in the art.

本發明之發光團之可激發性在自約250至約550 nm、較佳地自約300至約400 nm延伸之廣範圍內延伸。通常,激發曲線之最大值介於325與375 nm之間。The excitability of the luminophore of the present invention extends over a wide range extending from about 250 to about 550 nm, preferably from about 300 to about 400 nm. Typically, the maximum excitation curve is between 325 and 375 nm.

光源light source

本發明進一步提供一種光源,其包含至少一個初級光源及本發明之至少一種化合物。此處,初級光源之發射最大值通常在約250至約550 nm之範圍內,較佳地在約300至約400 nm之範圍內。尤其較佳的範圍介於325與375 nm之間,其中藉由本發明之發光團將初級輻射部分地或完全地轉換為較長波輻射。The invention further provides a light source comprising at least one primary light source and at least one compound of the invention. Here, the emission maximum of the primary source is typically in the range of from about 250 to about 550 nm, preferably in the range of from about 300 to about 400 nm. A particularly preferred range is between 325 and 375 nm, wherein the primary radiation is partially or completely converted to longer wavelength radiation by the luminophore of the invention.

在本發明之光源之較佳實施例中,初級光源為發光氮化銦鋁鎵,尤其是式Ini Gaj Alk N之發光氮化銦鋁鎵,其中0 ≤ i,0 ≤ j,0 ≤ k,且i + j + k = 1。In a preferred embodiment of the light source of the present invention, the primary light source is an indium aluminum gallium nitride, in particular an indium aluminum gallium nitride of the formula In i Ga j Al k N, wherein 0 ≤ i, 0 ≤ j, 0 ≤ k, and i + j + k = 1.

熟習此項技術者知曉此種光源之可能形式。此等形式可為不同構造之發光LED晶片。Those skilled in the art are aware of the possible forms of such light sources. These forms can be luminescent LED wafers of different configurations.

在本發明之光源之另外較佳實施例中,初級光源為基於ZnO、TCO (透明導電氧化物)、ZnSe或SiC之發光配置,或為基於有機發光層(OLED或PLED)之配置。In a further preferred embodiment of the light source of the invention, the primary source is a luminescent arrangement based on ZnO, TCO (transparent conductive oxide), ZnSe or SiC, or a configuration based on an organic light-emitting layer (OLED or PLED).

在本發明之光源之另外較佳實施例中,初級光源為展現電致發光及/或光致發光之源。此外,初級光源亦可為電漿源或放電源。In a further preferred embodiment of the light source of the invention, the primary source is a source exhibiting electroluminescence and/or photoluminescence. In addition, the primary light source can also be a plasma source or a discharge source.

本發明之對應光源亦被稱為發光二極體或LED。The corresponding light source of the present invention is also referred to as a light emitting diode or LED.

發光團混合物Luminous mixture

本發明之發光團可被個別地使用,或用作與熟習此項技術者所熟悉之合適發光團的混合物。原則上適合於混合物之對應發光團為例如:The luminophores of the present invention can be used individually or as a mixture with suitable luminophores that are familiar to those skilled in the art. The corresponding luminophores which are suitable in principle for the mixture are, for example:

Ba2 SiO4 :Eu2+ 、Ba3 SiO5 :Eu2+ 、(Ba,Ca)3 SiO5 :Eu2+ 、BaSi2 N2 O2 :Eu,BaSi2 O5 :Pb2+ 、Ba3 Si6 O12 N2 :Eu、Bax Sr1-x F2 :Eu2+ (其中0 ≤ x ≤ 1)、BaSrMgSi2 O7 :Eu2+ 、BaTiP2 O7 、(Ba,Ti)2 P2 O7 :Ti、BaY2 F8 :Er3+ ,Yb+ 、Be2 SiO4 :Mn2+ 、Bi4 Ge3 O12 、CaAl2 O4 :Ce3+ 、CaLa4 O7 :Ce3+ 、CaAl2 O4 :Eu2+ 、CaAl2 O4 :Mn2+ 、CaAl4 O7 :Pb2+ ,Mn2+ 、CaAl2 O4 :Tb3+ 、Ca3 Al2 Si3 O12 :Ce3+ 、Ca3 Al2 Si3 O12 :Ce3+ 、Ca3 Al2 Si3 O12 :Eu2+ 、Ca2 B5 O9 Br:Eu2+ 、Ca2 B5 O9 Cl:Eu2+ 、Ca2 B5 O9 Cl:Pb2+ 、CaB2 O4 :Mn2+ 、Ca2 B2 O5 :Mn2+ 、CaB2 O4 :Pb2+ 、CaB2 P2 O9 :Eu2+ 、Ca5 B2 SiO10 :Eu3+ 、Ca0.5 Ba0.5 Al12 O19 :Ce3+ ,Mn2+ 、Ca2 Ba3 (PO4 )3 Cl:Eu2+ 、SiO2 中CaBr2 :Eu2+ 、SiO2 中CaCl2 :Eu2+ 、SiO2 中CaCl2 :Eu2+ ,Mn2+ 、CaF2 :Ce3+ 、CaF2 :Ce3+ ,Mn2+ 、CaF2 :Ce3+ ,Tb3+ 、CaF2 :Eu2+ 、CaF2 :Mn2+ 、CaGa2 O4 :Mn2+ 、CaGa4 O7 :Mn2+ 、CaGa2 S4 :Ce3+ 、CaGa2 S4 :Eu2+ 、CaGa2 S4 :Mn2+ 、CaGa2 S4 :Pb2+ 、CaGeO3 :Mn2+ 、SiO2 中CaI2 :Eu2+ 、SiO2 中CaI2 :Eu2+ ,Mn2+ 、CaLaBO4 :Eu3+ 、CaLaB3 O7 :Ce3+ ,Mn2+ 、Ca2 La2 BO6 .5 :Pb2+ 、Ca2 MgSi2 O7 、Ca2 MgSi2 O7 :Ce3+ 、CaMgSi2 O6 :Eu2+ 、Ca3 MgSi2 O8 :Eu2+ 、Ca2 MgSi2 O7 :Eu2+ 、CaMgSi2 O6 :Eu2+ ,Mn2+ 、Ca2 MgSi2 O7 :Eu2+ ,Mn2+ 、CaMoO4 、CaMoO4 :Eu3+ 、CaO:Bi3+ 、CaO:Cd2+ 、CaO:Cu+ 、CaO:Eu3+ 、CaO:Eu3+ 、Na+ 、CaO:Mn2+ 、CaO:Pb2+ 、CaO:Sb3+ 、CaO:Sm3+ 、CaO:Tb3+ 、CaO:Tl、CaO:Zn2+ 、Ca2 P2 O7 :Ce3+ 、α-Ca3 (PO4 )2 :Ce3+ 、β-Ca3 (PO4 )2 :Ce3+ 、Ca5 (PO4 )3 Cl:Eu2+ 、Ca5 (PO4 )3 Cl:Mn2+ 、Ca5 (PO4 )3 Cl:Sb3+ 、Ca5 (PO4 )3 Cl:Sn2+ 、β-Ca3 (PO4 )2 :Eu2+ ,Mn2+ 、Ca5 (PO4 )3 F:Mn2+ 、Ca5 (PO4 )3 F:Sb3+ 、Ca5 (PO4 )3 F:Sn2+ 、α-Ca3 (PO4 )2 :Eu2+ 、β-Ca3 (PO4 )2 :Eu2+ 、Ca2 P2 O7 :Eu2+ 、Ca2 P2 O7 :Eu2+ ,Mn2+ 、CaP2 O6 :Mn2+ 、α-Ca3 (PO4 )2 :Pb2+ 、α-Ca3 (PO4 )2 :Sn2+ 、β-Ca3 (PO4 )2 :Sn2+ 、β-Ca2 P2 O7 :Sn,Mn、α-Ca3 (PO4 )2 :Tr、CaS:Bi3+ 、CaS:Bi3+ ,Na、CaS:Ce3+ 、CaS:Eu2+ 、CaS:Cu+ ,Na+ 、CaS:La3+ 、CaS:Mn2+ 、CaSO4 :Bi、CaSO4 :Ce3+ 、CaSO4 :Ce3+ ,Mn2+ 、CaSO4 :Eu2+ 、CaSO4 :Eu2+ ,Mn2+ 、CaSO4 :Pb2+ 、CaS:Pb2+ 、CaS:Pb2+ ,Cl、CaS:Pb2+ ,Mn2+ 、CaS:Pr3+ ,Pb2+ ,Cl、CaS:Sb3+ 、CaS:Sb3+ ,Na、CaS:Sm3+ 、CaS:Sn2+ 、CaS:Sn2+ ,F、CaS:Tb3+ 、CaS:Tb3+ ,Cl、CaS:Y3+ 、CaS:Yb2+ 、CaS:Yb2+ ,Cl、CaSc2 O4 :Ce,Ca3 (Sc,Mg)2 Si3 O12 :Ce,CaSiO3 :Ce3+ 、Ca3 SiO4 Cl2 :Eu2+ 、Ca3 SiO4 Cl2 :Pb2+ 、CaSiO3 :Eu2+ 、Ca3 SiO5 :Eu2+ 、(Ca,Sr)3 SiO5 :Eu2+ 、(Ca,Sr)3 MgSi2 O8 :Eu2+ 、(Ca,Sr)3 MgSi2 O8 :Eu2+ ,Mn2+ 、CaSiO3 :Mn2+ ,Pb、CaSiO3 :Pb2+ 、CaSiO3 :Pb2+ ,Mn2+ 、CaSiO3 :Ti4+ 、CaSr2 (PO4 )2 :Bi3+ 、β-(Ca,Sr)3 (PO4 )2 :Sn2+ Mn2+ 、CaTi0 .9 Al0 .1 O3 :Bi3+ 、CaTiO3 :Eu3+ 、CaTiO3 :Pr3+ 、Ca5 (VO4 )3 Cl、CaWO4 、CaWO4 :Pb2+ 、CaWO4 :W、Ca3 WO6 :U、CaYAlO4 :Eu3+ 、CaYBO4 :Bi3+ 、CaYBO4 :Eu3+ 、CaYB0 .8 O3 .7 :Eu3+ 、CaY2 ZrO6 :Eu3+ 、(Ca,Zn,Mg)3 (PO4 )2 :Sn、(Ce,Mg)BaAl11 O18 :Ce、(Ce,Mg)SrAl11 O18 :Ce、CeMgAl11 O19 :Ce:Tb、Cd2 B6 O11 :Mn2+ 、CdS:Ag+ ,Cr、CdS:In、CdS:In、CdS:In,Te、CdS:Te、CdWO4 、CsF、Csl、CsI:Na+ 、CsI:Tl、(ErCl3 )0.25 (BaCl2 )0 .75 、GaN:Zn、Gd3 Ga5 O12 :Cr3+ 、Gd3 Ga5 O12 :Cr,Ce、GdNbO4 :Bi3+ 、Gd2 O2 S:Eu3+ 、Gd2 O2 Pr3+ 、Gd2 O2 S:Pr,Ce,F、Gd2 O2 S:Tb3+ 、Gd2 SiO5 :Ce3+ 、KAI11 O17 :Tl+ 、KGa11 O17 :Mn2+ 、K2 La2 Ti3 O10 :Eu、KMgF3 :Eu2+ 、KMgF3 :Mn2+ 、K2 SiF6 :Mn4+ 、LaAl3 B4 O12 :Eu3+ 、LaAlB2 O6 :Eu3+ 、LaAlO3 :Eu3+ 、LaAlO3 :Sm3+ 、LaAsO4 :Eu3+ 、LaBr3 :Ce3+ 、LaBO3 :Eu3+ 、LaCl3 :Ce3+ 、La2 O3 :Bi3+ 、LaOBr:Tb3+ 、LaOBr:Tm3+ 、LaOCl:Bi3+ 、LaOCl:Eu3+ 、LaOF:Eu3+ 、La2 O3 :Eu3+ 、La2 O3 :Pr3+ 、La2 O2 S:Tb3+ 、LaPO4 :Ce3+ 、LaPO4 :Eu3+ 、LaSiO3 Cl:Ce3+ 、LaSiO3 Cl:Ce3+ ,Tb3+ 、LaVO4 :Eu3+ 、La2 W3 O12 :Eu3+ 、LiAlF4 :Mn2+ 、LiAl5 O8 :Fe3+ 、LiAlO2 :Fe3+ 、LiAlO2 :Mn2+ 、LiAl5 O8 :Mn2+ 、Li2 CaP2 O7 :Ce3+ ,Mn2+ 、LiCeBa4 Si4 O14 :Mn2+ 、LiCeSrBa3 Si4 O14 :Mn2+ 、LiInO2 :Eu3+ 、LiInO2 :Sm3+ 、LiLaO2 :Eu3+ 、LuAlO3 :Ce3+ 、(Lu,Gd)2 SiO5 :Ce3+ 、Lu2 SiO5 :Ce3+ 、Lu2 Si2 O7 :Ce3+ 、LuTaO4 :Nb5+ 、Lu1- x Yx AlO3 :Ce3+ (其中0 ≤ x ≤ 1)、(Lu,Y)3 (Al,Ga,Sc)5 O12 :Ce,MgAl2 O4 :Mn2+ 、MgSrAl10 O17 :Ce、MgB2 O4 :Mn2+ 、MgBa2 (PO4 )2 :Sn2+ 、MgBa2 (PO4 )2 :U、MgBaP2 O7 :Eu2+ 、MgBaP2 O7 :Eu2+ ,Mn2+ 、MgBa3 Si2 O8 :Eu2+ 、MgBa(SO4 )2 :Eu2+ 、Mg3 Ca3 (PO4 )4 :Eu2+ 、MgCaP2 O7 :Mn2+ 、Mg2 Ca(SO4 )3 :Eu2+ 、Mg2 Ca(SO4 )3 :Eu2+ ,Mn2 、MgCeAln O19 :Tb3+ 、Mg4 (F)GeO6 :Mn2+ 、Mg4 (F)(Ge,Sn)O6 :Mn2+ 、MgF2 :Mn2+ 、MgGa2 O4 :Mn2+ 、Mg8 Ge2 O11 F2 :Mn4+ 、MgS:Eu2+ 、MgSiO3 :Mn2+ 、Mg2 SiO4 :Mn2+ 、Mg3 SiO3 F4 :Ti4+ 、MgSO4 :Eu2+ 、MgSO4 :Pb2+ 、MgSrBa2 Si2 O7 :Eu2+ 、MgSrP2 O7 :Eu2+ 、MgSr5 (PO4 )4 :Sn2+ 、MgSr3 Si2 O8 :Eu2+ ,Mn2+ 、Mg2 Sr(SO4 )3 :Eu2+ 、Mg2 TiO4 :Mn4+ 、MgWO4 、MgYBO4 :Eu3+ 、M2 MgSi2 O7 :Eu2+ (M = Ca、Sr及/或Ba)、M2 MgSi2 O7 :Eu2+ ,Mn2+ (M = Ca、Sr及/或Ba)、M2 MgSi2 O7 :Eu2+ ,Zr4+ (M = Ca、Sr及/或Ba)、M2 MgSi2 O7 :Eu2+ ,Mn2+ ,Zr4+ (M = Ca、Sr及/或Ba)、Na3 Ce(PO4 )2 :Tb3+ 、Na1 .23 KO .42 Eu0 .12 TiSi4 O11 :Eu3+ 、Na1.23 K0.42 Eu0.12 TiSi5 O13 *xH2 O:Eu3+ 、Na1.29 K0.46 Er0.08 TiSi4 O11 :Eu3+ 、Na2 Mg3 Al2 Si2 O10 :Tb、Na(Mg2-x Mnx )LiSi4 O10 F2 :Mn (其中0 ≤ x ≤ 2)、NaYF4 :Er3+ 、Yb3+ 、NaYO2 :Eu3+ 、P46(70%)+P47 (30%)、β-SiAlON:Eu,SrAl12 O19 :Ce3+ 、Mn2+ 、SrAl2 O4 :Eu2+ 、SrAl4 O7 :Eu3+ 、SrAl12 O19 :Eu2+ 、SrAl2 S4 :Eu2+ 、Sr2 B5 O9 Cl:Eu2+ 、SrB4 O7 :Eu2+ (F,Cl,Br)、SrB4 O7 :Pb2+ 、SrB4 O7 :Pb2+ 、Mn2+ 、SrB8 O13 :Sm2+ 、Srx Bay Clz Al2 O4-z/2 :Mn2+ 、Ce3+ 、SrBaSiO4 :Eu2+ 、(Sr,Ba)3 SiO5 :Eu,(Sr,Ca)Si2 N2 O2 :Eu、SiO2 中Sr(Cl,Br,I)2 :Eu2+ 、SiO2 中SrCl2 :Eu2+ 、Sr5 Cl(PO4 )3 :Eu、Srw Fx B4 O6.5 :Eu2+ 、Srw Fx By Oz :Eu2+ ,Sm2+ 、SrF2 :Eu2+ 、SrGa12 O19 :Mn2+ 、SrGa2 S4 :Ce3+ 、SrGa2 S4 :Eu2+ 、Sr2-y Bay SiO4 :Eu (其中0 ≤ y ≤ 2)、SrSi2 O2 N2 :Eu、SrGa2 S4 :Pb2+ 、SrIn2 O4 :Pr3+ 、Al3+ 、(Sr,Mg)3 (PO4 )2 :Sn、SrMgSi2 O6 :Eu2+ 、Sr2 MgSi2 O7 :Eu2+ 、Sr3 MgSi2 O8 :Eu2+ 、SrMoO4 :U、SrO·3B2 O3 :Eu2+ ,Cl、β-SrO·3B2 O3 :Pb2+ 、β-SrO·3B2 O3 :Pb2+ ,Mn2+ 、α-SrO·3B2 O3 :Sm2+ 、Sr6 P5 BO20 :Eu,Sr5 (PO4 )3 Cl:Eu2+ 、Sr5 (PO4 )3 Cl:Eu2+ ,Pr3+ 、Sr5 (PO4 )3 Cl:Mn2+ 、Sr5 (PO4 )3 Cl:Sb3+ ,Sr2 P2 O7 :Eu2+ 、β-Sr3 (PO4 )2 :Eu2+ 、Sr5 (PO4 )3 F:Mn2+ ,Sr5 (PO4 )3 F:Sb3+ 、Sr5 (PO4 )3 F:Sb3+ ,Mn2+ 、Sr5 (PO4 )3 F:Sn2+ 、Sr2 P2 O7 :Sn2+ 、β-Sr3 (PO4 )2 :Sn2+ 、β-Sr3 (PO4 )2 :Sn2+ ,Mn2+ (Al)、SrS:Ce3+ 、SrS:Eu2+ 、SrS:Mn2+ 、SrS:Cu+ ,Na、SrSO4 :Bi、SrSO4 :Ce3+ 、SrSO4 :Eu2+ 、SrSO4 :Eu2+ ,Mn2+ 、Sr5 Si4 O10 Cl6 :Eu2+ 、Sr2 SiO4 :Eu2+ 、Sr3 SiO5 :Eu2+ 、(Sr,Ba)3 SiO5 :Eu2+ 、SrTiO3 :Pr3+ 、SrTiO3 :Pr3+ ,Al3+ ,SrY2 O3 :Eu3+ 、ThO2 :Eu3+ 、ThO2 :Pr3+ 、ThO2 :Tb3+ 、YAl3 B4 O12 :Bi3+ 、YAl3 B4 O12 :Ce3+ 、YAl3 B4 O12 :Ce3+ ,Mn、YAl3 B4 O12 :Ce3+ ,Tb3+ 、YAl3 B4 O12 :Eu3+ 、YAl3 B4 O12 :Eu3+ ,Cr3+ 、YAl3 B4 O12 :Th4+ ,Ce3+ ,Mn2+ 、YAlO3 :Ce3+ 、Y3 Al5 O12 :Ce3+ 、Y3 Al5 O12 :Cr3+ 、YAlO3 :Eu3+ 、Y3 Al5 O12 :Eu3r 、Y4 Al2 O9 :Eu3+ 、Y3 Al5 O12 :Mn4+ 、YAlO3 :Sm3+ 、YAlO3 :Tb3+ 、Y3 Al5 O12 :Tb3+ 、YAsO4 :Eu3+ 、YBO3 :Ce3+ 、YBO3 :Eu3+ 、YF3 :Er3+ ,Yb3+ 、YF3 :Mn2+ 、YF3 :Mn2+ ,Th4+ 、YF3 :Tm3+ ,Yb3+ 、(Y,Gd)BO3 :Eu、(Y,Gd)BO3 :Tb、(Y,Gd)2 O3 :Eu3+ 、Y1.34 Gd0.60 O3 (Eu,Pr)、Y2 O3 :Bi3+ 、YOBr:Eu3+ 、Y2 O3 :Ce、Y2 O3 :Er3+ 、Y2 O3 :Eu3+ 、Y2 O3 :Ce3+ ,Tb3+ 、YOCl:Ce3+ 、YOCl:Eu3+ 、YOF:Eu3+ 、YOF:Tb3+ 、Y2 O3 :Ho3+ 、Y2 O2 S:Eu3+ 、Y2 O2 S:Pr3+ 、Y2 O2 S:Tb3+ 、Y2 O3 :Tb3+ 、YPO4 :Ce3+ 、YPO4 :Ce3+ ,Tb3+ 、YPO4 :Eu3+ 、YPO4 :Mn2+ ,Th4+ 、YPO4 :V5+ 、Y(P,V)O4 :Eu、Y2 SiO5 :Ce3+ 、YTaO4 、YTaO4 :Nb5+ 、YVO4 :Dy3+ 、YVO4 :Eu3+ 、ZnAl2 O4 :Mn2+ 、ZnB2 O4 :Mn2+ 、ZnBa2 S3 :Mn2+ 、(Zn,Be)2 SiO4 :Mn2+ 、Zn0.4 Cd0.6 S:Ag、Zn0.6 Cd0.4 S:Ag、(Zn,Cd)S:Ag,Cl、(Zn,Cd)S:Cu、ZnF2 :Mn2+ 、ZnGa2 O4 、ZnGa2 O4 :Mn2+ 、ZnGa2 S4 :Mn2+ 、Zn2 GeO4 :Mn2+ 、(Zn,Mg)F2 :Mn2+ 、ZnMg2 (PO4 )2 :Mn2+ 、(Zn,Mg)3 (PO4 )2 :Mn2+ 、ZnO:Al3+ ,Ga3+ 、ZnO:Bi3+ 、ZnO:Ga3+ 、ZnO:Ga、ZnO-CdO:Ga、ZnO:S、ZnO:Se、ZnO:Zn、ZnS:Ag+ ,Cl- 、ZnS:Ag,Cu,Cl、ZnS:Ag,Ni、ZnS:Au,In、ZnS-CdS (25-75)、ZnS-CdS (50-50)、ZnS-CdS (75-25)、ZnS-CdS:Ag,Br,Ni、ZnS-CdS:Ag+ ,Cl、ZnS-CdS:Cu,Br、ZnS-CdS:Cu,I、ZnS:Cl- 、ZnS:Eu2+ 、ZnS:Cu、ZnS:Cu+ ,Al3+ 、ZnS:Cu+ ,Cl- 、ZnS:Cu,Sn、ZnS:Eu2+ 、ZnS:Mn2+ 、ZnS:Mn,Cu、ZnS:Mn2+ ,Te2+ 、ZnS:P、ZnS:P3- ,Cl- 、ZnS:Pb2+ 、ZnS:Pb2+ ,Cl- 、ZnS:Pb,Cu、Zn3 (PO4 )2 :Mn2+ 、Zn2 SiO4 :Mn2+ 、Zn2 SiO4 :Mn2+ ,As5+ 、Zn2 SiO4 :Mn,Sb2 O2 、Zn2 SiO4 :Mn2+ ,P、Zn2 SiO4 :Ti4+ 、ZnS:Sn2+ 、ZnS:Sn,Ag、ZnS:Sn2+ ,Li+ 、ZnS:Te,Mn、ZnS-ZnTe:Mn2+ 、ZnSe:Cu+ ,Cl及ZnWO4Ba 2 SiO 4 :Eu 2+ , Ba 3 SiO 5 :Eu 2+ , (Ba,Ca) 3 SiO 5 :Eu 2+ , BaSi 2 N 2 O 2 :Eu,BaSi 2 O 5 :Pb 2+ ,Ba 3 Si 6 O 12 N 2 :Eu, Ba x Sr 1-x F 2 :Eu 2+ (where 0 ≤ x ≤ 1), BaSrMgSi 2 O 7 :Eu 2+ , BaTiP 2 O 7 , (Ba, Ti) 2 P 2 O 7 : Ti, BaY 2 F 8 : Er 3+ , Yb + , Be 2 SiO 4 : Mn 2+ , Bi 4 Ge 3 O 12 , CaAl 2 O 4 : Ce 3+ , CaLa 4 O 7 : Ce 3+ , CaAl 2 O 4 :Eu 2+ , CaAl 2 O 4 :Mn 2+ , CaAl 4 O 7 :Pb 2+ , Mn 2+ , CaAl 2 O 4 :Tb 3+ , Ca 3 Al 2 Si 3 O 12 :Ce 3+ , Ca 3 Al 2 Si 3 O 12 :Ce 3+ , Ca 3 Al 2 Si 3 O 12 :Eu 2+ , Ca 2 B 5 O 9 Br:Eu 2+ , Ca 2 B 5 O 9 Cl:Eu 2+ , Ca 2 B 5 O 9 Cl:Pb 2+ , CaB 2 O 4 :Mn 2+ , Ca 2 B 2 O 5 :Mn 2+ , CaB 2 O 4 :Pb 2+ ,CaB 2 P 2 O 9 :Eu 2+ , Ca 5 B 2 SiO 10 :Eu 3+ , Ca 0.5 Ba 0.5 Al 12 O 19 :Ce 3+ , Mn 2+ , Ca 2 Ba 3 (PO 4 ) 3 Cl:Eu 2 +, SiO 2 in CaBr 2: Eu 2+, SiO 2 in CaCl 2: Eu 2+, SiO 2 in CaCl 2: Eu 2+, Mn 2+ , CaF 2: Ce 3+, CaF 2: Ce 3+, Mn 2+ , CaF 2 :Ce 3+ , Tb 3+ , CaF 2 :Eu 2+ , CaF 2 :Mn 2+ , CaGa 2 O 4 :Mn 2+ , CaGa 4 O 7 : Mn 2+ , CaGa 2 S 4 :Ce 3+ , CaGa 2 S 4 :Eu 2+ , CaGa 2 S 4 :Mn 2+ , CaGa 2 S 4 :Pb 2+ , CaGeO 3 :Mn 2+ , SiO 2 CaI 2 :Eu 2+ , SiO 2 CaI 2 :Eu 2+ , Mn 2+ , CaLaBO 4 :Eu 3+ , CaLaB 3 O 7 :Ce 3+ , Mn 2+ , Ca 2 La 2 BO 6 . 5 : Pb 2+ , Ca 2 MgSi 2 O 7 , Ca 2 MgSi 2 O 7 :Ce 3+ , CaMgSi 2 O 6 :Eu 2+ , Ca 3 MgSi 2 O 8 :Eu 2+ , Ca 2 MgSi 2 O 7 :Eu 2+ , CaMgSi 2 O 6 :Eu 2+ ,Mn 2+ , Ca 2 MgSi 2 O 7 :Eu 2+ ,Mn 2+ ,CaMoO 4 ,CaMoO 4 :Eu 3+ ,CaO:Bi 3+ ,CaO : Cd 2+ , CaO : Cu + , CaO : Eu 3+ , CaO : Eu 3+ , Na + , CaO : Mn 2+ , CaO : Pb 2+ , CaO : Sb 3+ , CaO : Sm 3+ , CaO : Tb 3+ , CaO: Tl, CaO: Zn 2+ , Ca 2 P 2 O 7 : Ce 3+ , α-Ca 3 (PO 4 ) 2 : Ce 3+ , β-Ca 3 (PO 4 ) 2 : Ce 3+ , Ca 5 (PO 4 ) 3 Cl:Eu 2+ , Ca 5 (PO 4 ) 3 Cl:Mn 2+ , Ca 5 (PO 4 ) 3 Cl:Sb 3+ , Ca 5 (PO 4 ) 3 Cl:Sn 2+ , β-Ca 3 (PO 4 ) 2 :Eu 2+ , Mn 2+ , Ca 5 (PO 4 ) 3 F:Mn 2+ , Ca 5 (PO 4 ) 3 F:Sb 3+ , Ca 5 (PO 4 ) 3 F:S 2+ , α-Ca 3 (PO 4 ) 2 :Eu 2+ , β-Ca 3 (PO 4 ) 2 :Eu 2+ , Ca 2 P 2 O 7 :Eu 2 + , Ca 2 P 2 O 7 :Eu 2+ , Mn 2+ , CaP 2 O 6 :Mn 2+ , α-Ca 3 (PO 4 ) 2 :Pb 2+ , α-Ca 3 (PO 4 ) 2 :Sn 2+ , β-Ca 3 (PO 4 ) 2 :S 2+ , β-Ca 2 P 2 O 7 :Sn, Mn, α-Ca 3 (PO 4 ) 2 :Tr, CaS:Bi 3+ , CaS:Bi 3+ , Na, CaS: Ce 3+ , CaS: Eu 2+ , CaS: Cu + , Na + , CaS: La 3+ , CaS: Mn 2+ , CaSO 4 : Bi, CaSO 4 : Ce 3+ , CaSO 4 : Ce 3+ , Mn 2+ , CaSO 4 :Eu 2+ , CaSO 4 :Eu 2+ , Mn 2+ , CaSO 4 :Pb 2+ , CaS:Pb 2+ , CaS:Pb 2+ , Cl, CaS:Pb 2+ , Mn 2+ , CaS: Pr 3+ , Pb 2+ , Cl, CaS: Sb 3+ , CaS: Sb 3+ , Na, CaS: Sm 3+ , CaS: Sn 2+ , CaS: Sn 2+ , F, CaS: Tb 3+ , CaS: Tb 3+ , Cl, CaS: Y 3+ , CaS: Yb 2+ , CaS: Yb 2+ , Cl, CaSc 2 O 4 : Ce, Ca 3 (Sc, Mg 2 Si 3 O 12 :Ce, CaSiO 3 :Ce 3+ , Ca 3 SiO 4 Cl 2 :Eu 2+ , Ca 3 SiO 4 Cl 2 :Pb 2+ , CaSiO 3 :Eu 2+ , Ca 3 SiO 5 : Eu 2+ , (Ca,Sr) 3 SiO 5 :Eu 2+ , (Ca,Sr) 3 MgSi 2 O 8 :Eu 2+ , (Ca,Sr) 3 MgSi 2 O 8 :Eu 2+ ,Mn 2+ , CaSiO 3 : Mn 2+ , Pb, CaSiO 3 : Pb 2+ , CaSiO 3 : Pb 2+ , Mn 2+ , CaSiO 3 : Ti 4+ , CaSr 2 (PO 4 ) 2 : Bi 3+ , β-( Ca,Sr) 3 (PO 4 ) 2 :S 2+ Mn 2+ , Ca Ti 0 . 9 Al 0 . 1 O 3 :Bi 3+ , CaTiO 3 :Eu 3+ , CaTiO 3 :Pr 3+ , Ca 5 (VO 4 ) 3 Cl, CaWO 4 , CaWO 4 :Pb 2+ , CaWO 4 :W, Ca 3 WO 6 :U, CaYAlO 4 :Eu 3+ , CaYBO 4 :Bi 3+ , CaYBO 4 :Eu 3+ , CaYB 0 . 8 O 3 . 7 :Eu 3+ , CaY 2 ZrO 6 :Eu 3+ , (Ca, Zn, Mg) 3 (PO 4 ) 2 : Sn, (Ce, Mg) BaAl 11 O 18 : Ce, (Ce, Mg) SrAl 11 O 18 : Ce, CeMgAl 11 O 19 : Ce: Tb, Cd 2 B 6 O 11 : Mn 2+ , CdS: Ag + , Cr, CdS: In, CdS: In, CdS: In, Te, CdS: Te, CdWO 4 , CsF, Csl, CsI: Na + , CsI: Tl, (ErCl 3) 0.25 (BaCl 2) 0 75, GaN:. Zn, Gd 3 Ga 5 O 12: Cr 3+, Gd 3 Ga 5 O 12: Cr, Ce, GdNbO 4: Bi 3+, Gd 2 O 2 S: Eu 3+ , Gd 2 O 2 Pr 3+ , Gd 2 O 2 S: Pr, Ce, F, Gd 2 O 2 S: Tb 3+ , Gd 2 SiO 5 : Ce 3+ , KAI 11 O 17 :Tl + , KGa 11 O 17 :Mn 2+ , K 2 La 2 Ti 3 O 10 :Eu, KMgF 3 :Eu 2+ , KMgF 3 :Mn 2+ , K 2 SiF 6 :Mn 4+ , LaAl 3 B 4 O 12 :Eu 3+ , LaAlB 2 O 6 :Eu 3+ , LaAlO 3 :Eu 3+ , LaAlO 3 :Sm 3+ ,LaAsO 4 :Eu 3+ ,LaBr 3 :Ce 3+ ,LaBO 3 :Eu 3+ , LaCl 3 :Ce 3+ , La 2 O 3 :Bi 3+ , LaOBr:Tb 3+ ,LaOBr: Tm 3+, LaOCl: Bi 3+, LaOCl: Eu 3+, LaOF: Eu 3+, La 2 O 3: Eu 3+, La 2 O 3: Pr 3+, La 2 O 2 S: Tb 3+, LaPO 4 :Ce 3+ , LaPO 4 :Eu 3+ , LaSiO 3 Cl:Ce 3+ , LaSiO 3 Cl:Ce 3+ , Tb 3+ , LaVO 4 :Eu 3+ , La 2 W 3 O 12 :Eu 3 + , LiAlF 4 : Mn 2+ , LiAl 5 O 8 : Fe 3+ , LiAlO 2 : Fe 3+ , LiAlO 2 : Mn 2+ , LiAl 5 O 8 : Mn 2+ , Li 2 CaP 2 O 7 : Ce 3 + , Mn 2+ , LiCeBa 4 Si 4 O 14 : Mn 2+ , LiCeSrBa 3 Si 4 O 14 : Mn 2+ , LiInO 2 : Eu 3+ , LiInO 2 : Sm 3+ , LiLaO 2 : Eu 3+ , LuAlO 3 : Ce 3+ , (Lu, Gd) 2 SiO 5 : Ce 3+ , Lu 2 SiO 5 : Ce 3+ , Lu 2 Si 2 O 7 : Ce 3+ , LuTaO 4 : Nb 5+ , Lu 1- x Y x AlO 3 :Ce 3+ (where 0 ≤ x ≤ 1), (Lu, Y) 3 (Al, Ga, Sc) 5 O 12 :Ce, MgAl 2 O 4 :Mn 2+ , MgSrAl 10 O 17 : Ce, MgB 2 O 4 : Mn 2+ , MgBa 2 (PO 4 ) 2 : Sn 2+ , MgBa 2 (PO 4 ) 2 : U, MgBaP 2 O 7 : Eu 2+ , MgBaP 2 O 7 : Eu 2+ , Mn 2+ , MgBa 3 Si 2 O 8 :Eu 2+ , MgBa(SO 4 ) 2 :Eu 2+ , Mg 3 Ca 3 (PO 4 ) 4 :Eu 2+ , MgCaP 2 O 7 :Mn 2+ , Mg 2 Ca(SO 4 ) 3 :Eu 2+ , Mg 2 Ca(SO 4 ) 3 :Eu 2+ ,Mn 2 ,MgCeAl n O 19 : Tb 3+ , Mg 4 (F) GeO 6 : Mn 2+ , Mg 4 (F) (Ge, Sn) O 6 : Mn 2+ , MgF 2 : Mn 2+ , MgGa 2 O 4 : Mn 2+ , Mg 8 Ge 2 O 11 F 2 :Mn 4+ , MgS:Eu 2+ , MgSiO 3 :Mn 2+ , Mg 2 SiO 4 :Mn 2+ , Mg 3 SiO 3 F 4 :Ti 4+ , MgSO 4 :Eu 2+ , MgSO 4 :Pb 2+ , MgSrBa 2 Si 2 O 7 :Eu 2+ , MgSrP 2 O 7 :Eu 2+ , MgSr 5 (PO 4 ) 4 :Sn 2+ , MgSr 3 Si 2 O 8 :Eu 2+ , Mn 2+ , Mg 2 Sr(SO 4 ) 3 :Eu 2+ , Mg 2 TiO 4 :Mn 4+ , MgWO 4 , MgYBO 4 :Eu 3+ , M 2 MgSi 2 O 7 :Eu 2+ ( M = Ca, Sr and/or Ba), M 2 MgSi 2 O 7 :Eu 2+ , Mn 2+ (M = Ca, Sr and/or Ba), M 2 MgSi 2 O 7 :Eu 2+ , Zr 4 + (M = Ca, Sr and/or Ba), M 2 MgSi 2 O 7 :Eu 2+ , Mn 2+ , Zr 4+ (M = Ca, Sr and/or Ba), Na 3 Ce(PO 4 ) 2 : Tb 3+ , Na 1 . 23 K O . 42 Eu 0 . 12 TiSi 4 O 11 :Eu 3+ , Na 1.23 K 0.42 Eu 0.12 TiSi 5 O 13 *xH 2 O:Eu 3+ , Na 1.29 K 0.46 Er 0.08 TiSi 4 O 11 :Eu 3+ , Na 2 Mg 3 Al 2 Si 2 O 10 :Tb, Na(Mg 2-x Mn x )LiSi 4 O 10 F 2 :Mn (where 0 ≤ x ≤ 2), NaYF 4 : Er 3+ , Yb 3+ , NaYO 2 :Eu 3+ , P46 (70%)+P47 (30%), β-SiAlON:Eu, SrAl 12 O 19 :C e 3+ , Mn 2+ , SrAl 2 O 4 :Eu 2+ , SrAl 4 O 7 :Eu 3+ , SrAl 12 O 19 :Eu 2+ , SrAl 2 S 4 :Eu 2+ ,Sr 2 B 5 O 9 Cl:Eu 2+ , SrB 4 O 7 :Eu 2+ (F,Cl,Br), SrB 4 O 7 :Pb 2+ , SrB 4 O 7 :Pb 2+ ,Mn 2+ ,SrB 8 O 13 :Sm 2+ , Sr x Ba y Cl z Al 2 O 4-z/2 : Mn 2+ , Ce 3+ , SrBaSiO 4 :Eu 2+ , (Sr,Ba) 3 SiO 5 :Eu,(Sr,Ca)Si 2 N 2 O 2 :Eu, SiO 2 Sr(Cl,Br,I) 2 :Eu 2+ , SiO 2 SrCl 2 :Eu 2+ , Sr 5 Cl(PO 4 ) 3 :Eu,Sr w F x B 4 O 6.5 :Eu 2+ , Sr w F x B y O z :Eu 2+ ,Sm 2+ ,SrF 2 :Eu 2+ , SrGa 12 O 19 :Mn 2+ , SrGa 2 S 4 :Ce 3+ , SrGa 2 S 4 :Eu 2+ , Sr 2-y Ba y SiO 4 :Eu (where 0 ≤ y ≤ 2), SrSi 2 O 2 N 2 :Eu, SrGa 2 S 4 :Pb 2+ , SrIn 2 O 4 : Pr 3+ , Al 3+ , (Sr, Mg) 3 (PO 4 ) 2 : Sn, SrMgSi 2 O 6 :Eu 2+ , Sr 2 MgSi 2 O 7 :Eu 2+ , Sr 3 MgSi 2 O 8 :Eu 2+ , SrMoO 4 :U, SrO·3B 2 O 3 :Eu 2+ ,Cl,β-SrO·3B 2 O 3 :Pb 2+ ,β-SrO·3B 2 O 3 :Pb 2+ ,Mn 2+ , α-SrO·3B 2 O 3 :Sm 2+ , Sr 6 P 5 BO 20 :Eu,Sr 5 (PO 4 ) 3 Cl:Eu 2+ , Sr 5 (PO 4 ) 3 Cl:Eu 2+ , Pr 3+ , Sr 5 (PO 4 ) 3 Cl:Mn 2+ , Sr 5 (PO 4 ) 3 Cl:Sb 3+ , Sr 2 P 2 O 7 :Eu 2+ , β-Sr 3 (PO 4 ) 2 :Eu 2+ , Sr 5 ( PO 4 ) 3 F: Mn 2+ , Sr 5 (PO 4 ) 3 F: Sb 3+ , Sr 5 (PO 4 ) 3 F: Sb 3+ , Mn 2+ , Sr 5 (PO 4 ) 3 F: Sn 2+ , Sr 2 P 2 O 7 :S 2+ , β-Sr 3 (PO 4 ) 2 :S 2+ , β-Sr 3 (PO 4 ) 2 :S 2+ , Mn 2+ (Al), SrS :Ce 3+ , SrS:Eu 2+ , SrS:Mn 2+ , SrS:Cu + ,Na,SrSO 4 :Bi, SrSO 4 :Ce 3+ , SrSO 4 :Eu 2+ ,SrSO 4 :Eu 2+ , Mn 2+ , Sr 5 Si 4 O 10 Cl 6 :Eu 2+ , Sr 2 SiO 4 :Eu 2+ , Sr 3 SiO 5 :Eu 2+ , (Sr,Ba) 3 SiO 5 :Eu 2+ ,SrTiO 3 : Pr 3+ , SrTiO 3 :Pr 3+ , Al 3+ , SrY 2 O 3 :Eu 3+ , ThO 2 :Eu 3+ , ThO 2 :Pr 3+ , ThO 2 :Tb 3+ , YAl 3 B 4 O 12 :Bi 3+ , YAl 3 B 4 O 12 :Ce 3+ , YAl 3 B 4 O 12 :Ce 3+ , Mn, YAl 3 B 4 O 12 :Ce 3+ , Tb 3+ , YAl 3 B 4 O 12 :Eu 3+ , YAl 3 B 4 O 12 :Eu 3+ , Cr 3+ , YAl 3 B 4 O 12 :Th 4+ , Ce 3+ , Mn 2+ , YAlO 3 :Ce 3+ , Y 3 Al 5 O 12 :Ce 3+ , Y 3 Al 5 O 12 :Cr 3+ , YAlO 3 :Eu 3+ , Y 3 Al 5 O 12 :Eu 3r , Y 4 Al 2 O 9 :Eu 3+ , Y 3 al 5 O 12: Mn 4+, YAlO 3: Sm 3+ YAlO 3: Tb 3+, Y 3 Al 5 O 12: Tb 3+, YAsO 4: Eu 3+, YBO 3: Ce 3+, YBO 3: Eu 3+, YF 3: Er 3+, Yb 3+, YF 3 : Mn 2+ , YF 3 : Mn 2+ , Th 4+ , YF 3 : Tm 3+ , Yb 3+ , (Y, Gd) BO 3 : Eu, (Y, Gd) BO 3 : Tb, ( Y,Gd) 2 O 3 :Eu 3+ , Y 1.34 Gd 0.60 O 3 (Eu,Pr), Y 2 O 3 :Bi 3+ , YOBr:Eu 3+ , Y 2 O 3 :Ce, Y 2 O 3 :Er 3+ , Y 2 O 3 :Eu 3+ , Y 2 O 3 :Ce 3+ , Tb 3+ , YOCl:Ce 3+ , YOCl:Eu 3+ ,YOF:Eu 3+ ,YOF:Tb 3+ Y 2 O 3 : Ho 3+ , Y 2 O 2 S: Eu 3+ , Y 2 O 2 S: Pr 3+ , Y 2 O 2 S: Tb 3+ , Y 2 O 3 : Tb 3+ , YPO 4 : Ce 3+ , YPO 4 : Ce 3+ , Tb 3+ , YPO 4 : Eu 3+ , YPO 4 : Mn 2+ , Th 4+ , YPO 4 : V 5+ , Y (P, V) O 4 :Eu, Y 2 SiO 5 :Ce 3+ , YTaO 4 , YTaO 4 :Nb 5+ , YVO 4 :Dy 3+ , YVO 4 :Eu 3+ , ZnAl 2 O 4 :Mn 2+ , ZnB 2 O 4 : Mn 2+ , ZnBa 2 S 3 : Mn 2+ , (Zn, Be) 2 SiO 4 : Mn 2+ , Zn 0.4 Cd 0.6 S: Ag, Zn 0.6 Cd 0.4 S: Ag, (Zn, Cd) S: Ag , Cl, (Zn, Cd) S: Cu, ZnF 2 : Mn 2+ , ZnGa 2 O 4 , ZnGa 2 O 4 : Mn 2+ , ZnGa 2 S 4 : Mn 2+ , Zn 2 GeO 4 : Mn 2+ , (Zn, Mg) F 2 : Mn 2+, ZnMg 2 (PO 4) 2: Mn 2+ (Zn, Mg) 3 (PO 4) 2: Mn 2+, ZnO: Al 3+, Ga 3+, ZnO: Bi 3+, ZnO: Ga 3+, ZnO: Ga, ZnO-CdO: Ga, ZnO: S, ZnO: Se, ZnO: Zn, ZnS: Ag + , Cl - , ZnS: Ag, Cu, Cl, ZnS: Ag, Ni, ZnS: Au, In, ZnS-CdS (25-75), ZnS-CdS (50-50), ZnS-CdS (75-25), ZnS-CdS: Ag, Br, Ni, ZnS-CdS: Ag + , Cl, ZnS-CdS: Cu, Br, ZnS-CdS: Cu, I, ZnS:Cl - , ZnS:Eu 2+ , ZnS:Cu, ZnS:Cu + ,Al 3+ ,ZnS:Cu + ,Cl - ,ZnS:Cu,Sn,ZnS:Eu 2+ ,ZnS:Mn 2+ , ZnS: Mn, Cu, ZnS: Mn 2+ , Te 2+ , ZnS: P, ZnS: P 3- , Cl - , ZnS: Pb 2+ , ZnS: Pb 2+ , Cl - , ZnS: Pb, Cu, Zn 3 (PO 4 ) 2 : Mn 2+ , Zn 2 SiO 4 : Mn 2+ , Zn 2 SiO 4 : Mn 2+ , As 5+ , Zn 2 SiO 4 : Mn, Sb 2 O 2 , Zn 2 SiO 4 : Mn 2+ , P, Zn 2 SiO 4 : Ti 4+ , ZnS: Sn 2+ , ZnS: Sn, Ag, ZnS: Sn 2+ , Li + , ZnS: Te, Mn, ZnS-ZnTe: Mn 2+ , ZnSe: Cu + , Cl and ZnWO 4 .

本發明之化合物在與其他螢光色彩之另外發光團混合時或在與此等發光團一起用於LED中時尤其展示優點。較佳的是與發綠光發光團一起使用本發明之化合物。已發現,尤其是當本發明之化合物與發綠光發光團組合時,特別成功地可能存在白光LED之照明參數之最佳化。The compounds of the invention in particular exhibit advantages when mixed with other luminophores of other fluorescent colors or when used in LEDs with such luminophores. It is preferred to use the compound of the invention together with a green-emitting luminophore. It has been found that, especially when the compounds of the invention are combined with a green-emitting luminophore, it is particularly successful to optimize the illumination parameters of white LEDs.

對應發綠光發光團為熟習此項技術者所知,或可由熟習此項技術者自以上清單選擇。此處,特別合適的發綠光發光團為(Sr,Ba)2 SiO4 :Eu、(Sr,Ba)3 SiO5 :Eu、(Sr,Ca)Si2 N2 O2 :Eu、BaSi2 N2 O2 :Eu、(Lu,Y)3 (Al,Ga,Sc)5 O12 :Ce、β-SiAlON:Eu、CaSc2 O4 :Ce、CaSc2 O4 :Ce,Mg、Ba3 Si6 O12 N2 :Eu及Ca3 (Sc,Mg)2 Si3 O12 :Ce。特別較佳的是Ba3 Si6 O12 N2 :Eu及Ca3 (Sc,Mg)2 Si3 O12 :Ce。
在本發明之另外較佳實施例中,較佳的是使用本發明之化合物作為唯一發光團。由於具有高紅色分量之寬發射光譜,本發明之化合物即使在用作單一發光團時亦展示極好的結果。
The corresponding green light illuminating group is known to those skilled in the art, or may be selected from the above list by those skilled in the art. Here, a particularly suitable green-emitting luminophore is (Sr, Ba) 2 SiO 4 :Eu, (Sr,Ba) 3 SiO 5 :Eu, (Sr,Ca)Si 2 N 2 O 2 :Eu, BaSi 2 N 2 O 2 :Eu, (Lu,Y) 3 (Al,Ga,Sc) 5 O 12 :Ce, β-SiAlON:Eu, CaSc 2 O 4 :Ce, CaSc 2 O 4 :Ce,Mg,Ba 3 Si 6 O 12 N 2 :Eu and Ca 3 (Sc,Mg) 2 Si 3 O 12 :Ce. Particularly preferred are Ba 3 Si 6 O 12 N 2 :Eu and Ca 3 (Sc,Mg) 2 Si 3 O 12 :Ce.
In a further preferred embodiment of the invention, it is preferred to use the compounds of the invention as the sole luminophore. Due to the broad emission spectrum with a high red component, the compounds of the invention exhibit excellent results even when used as a single luminophore.

在本發明之又一實施例中,較佳的是將發光團配置於初級光源上,使得發紅光發光團基本上由來自初級光源之光輻照,而發綠光發光團基本上由已經通過發紅光發光團或已藉此散射之光輻照。此可被達成係在於,發紅光發光團裝配於初級光源與發綠光發光團之間。In still another embodiment of the present invention, it is preferred to dispose the luminophore on the primary light source such that the red-emitting luminophore is substantially irradiated by light from the primary light source, and the green-emitting luminophore is substantially Irradiation by a red-emitting luminophore or light that has been scattered therefrom. This can be achieved in that the red-emitting luminophore is assembled between the primary source and the green-emitting luminophore.

本發明之發光團或發光團組合可呈塊體材料、粉末材料、厚或薄片材料或自撐式材料之形式,較佳地呈膜之形式。此外,亦可將其嵌入於灌注材料中。根據應用,此處可將本發明之發光團或發光團組合分散於樹脂(例如環氧樹脂或聚矽氧樹脂)中作為灌注材料,或鑒於合適的大小比率而可直接配置於初級光源頂上或配置成與其相隔一定距離(後一配置亦包括「遠端磷光體技術」)。遠端磷光體技術之優點為熟習此項技術者所知,且可發現於例如以下公開案中:JAPANESE J. OF APPL. PHYS . ,第 44 卷,第 21 (2005) L649 L651The luminophore or luminophore combination of the present invention may be in the form of a bulk material, a powder material, a thick or flake material or a self-supporting material, preferably in the form of a film. In addition, it can also be embedded in the infusion material. Depending on the application, the luminophore or luminophore combination of the present invention may be dispersed in a resin (for example, epoxy resin or polyoxynoxy resin) as a potting material, or may be directly disposed on top of the primary light source or in view of a suitable size ratio or Configured to be at a distance from it (the latter configuration also includes "remote phosphor technology"). Advantage for the distal end of the phosphor technologies known to those skilled in the art, and may be found, for example in the following publications:. JAPANESE J. OF APPL PHYS, vol. 44, No. 21 (2005), L649 to L651..

在另外實施例中,較佳的是藉助於光導引配置來達成發光團與初級光源之間的光學耦合。因此有可能將初級光源安裝於中心部位處且藉助於光導引裝置(例如光纖)將初級光源光學耦合至發光團。以此方式,有可能達成已適應於照明需求且僅僅由一或多種不同發光團組成之照明裝置,該一或多種不同發光團可經配置以形成發光螢幕及耦合至初級光源之光纖。以此方式,有可能將強初級光源定位於有利於電設施之部位處,且無需另外電纜敷設,但僅僅藉由定位光纖,有可能將由耦合至光纖之發光團構成之照明裝置安裝於任何所要部位處。In a further embodiment, it is preferred to achieve optical coupling between the luminophore and the primary source by means of a light guiding arrangement. It is therefore possible to mount the primary light source at the central location and optically couple the primary light source to the luminophore by means of a light guiding device, such as an optical fiber. In this way, it is possible to achieve an illumination device that has been adapted to the lighting needs and consists of only one or more different luminophores that can be configured to form a light-emitting screen and an optical fiber coupled to the primary source. In this way, it is possible to position the strong primary light source at a location that is beneficial to the electrical installation, and without the need for additional cable laying, but by simply positioning the optical fiber, it is possible to install the illuminating device consisting of the luminophore coupled to the optical fiber to any desired At the site.

照明單元Lighting unit

本發明進一步提供一種照明單元,尤其具有發射最大值在340至510 nm之範圍內的初級光源。The invention further provides a lighting unit, in particular a primary light source having an emission maximum in the range of 340 to 510 nm.

供在LED中使用之本發明之發光團的粒徑通常介於50 nm與30 µm之間,較佳地介於1 µm與20 µm之間。The particle size of the luminophore of the present invention for use in LEDs is typically between 50 nm and 30 μm, preferably between 1 μm and 20 μm.

為了在LED中使用,亦可將發光團轉換為任何所要外部形式,諸如球形粒子、薄層、立方體、菱形及結構化材料及陶瓷。根據本發明,此等形式係由術語「塑形本體」涵蓋。較佳地,塑形本體為「發光團本體」。因此,本發明進一步提供一種塑形本體,其包含本發明之發光團。對應塑形本體之生產及使用由熟習此項技術者自大量公開案所知。For use in LEDs, the luminophores can also be converted to any desired external form, such as spherical particles, thin layers, cubes, diamonds, and structured materials and ceramics. According to the invention, these forms are covered by the term "shaped body". Preferably, the shaped body is a "light-emitting body". Accordingly, the present invention further provides a shaped body comprising the luminophore of the present invention. The production and use of the corresponding shaped body is known from a large number of publications by those skilled in the art.

此處所描述之本發明之所有變體可彼此組合,除非各別實施例互斥。更特定言之,鑒於本文件之教示,在常規最佳化過程中之明顯的製程係組合此處所描述之不同變體,尤其以便達成特定的特別較佳的實施例。以下實例意欲說明本發明,且尤其展示所描述之本發明之變體之此等說明性組合的結果。然而,其決不應被視為限制性的;代替地,其應該促進一般化。用於製備中之所有化合物或組分係已知的或市售的,或可藉由已知方法來合成。實例中所報告之溫度始終以℃為單位。亦將不言而喻的是,在實施方式及實例兩者中,用於組合物中之成分之量將始終總計為總共100%。在給定內容背景內應始終看到百分比。All variants of the invention described herein can be combined with each other unless the respective embodiments are mutually exclusive. More specifically, in light of the teachings of this document, the obvious processes in the conventional optimization process combine different variants described herein, especially in order to achieve particular particularly preferred embodiments. The following examples are intended to illustrate the invention, and in particular to show the results of such illustrative combinations of the variants of the invention described. However, it should never be considered limiting; instead, it should promote generalization. All of the compounds or components used in the preparation are known or commercially available or can be synthesized by known methods. The temperatures reported in the examples are always in °C. It will also be self-evident that in both embodiments and examples, the amount of ingredients used in the composition will always total 100% in total. The percentage should always be seen within the context of a given content.

13 中之激發光譜已各自被正規化至485 nm Tb3+ 線,且已被記錄為觀測到Eu3+ 之610.5 nm發射。內核-外殼粒子(- -)相比於習知產生之粒子(—)在410 nm下展示高得多的Ce3+ 頻帶強度。由於金屬-金屬電荷轉移(MMCT)淬滅Ce3+ 發光,故Ce3+ 激發頻帶之相對上升可歸因於MMCT之明顯縮減。此外,Ce3+ 激發頻帶之出現表明自Ce3+ 至Eu3+ 之能量轉移。與保留Ce3+ /Eu3+ 能量轉移的習知產生之粒子相比,內核/外殼粒子因此展現縮減的MMCT。The excitation spectra in Figure 13 have each been normalized to the 485 nm Tb 3+ line and have been recorded as the 610.5 nm emission of Eu 3+ observed. The core-shell particle (--) exhibits a much higher Ce 3+ band intensity at 410 nm compared to the conventionally produced particle (-). Since metal-metal charge transfer (MMCT) quenches Ce 3+ luminescence, the relative increase in the Ce 3+ excitation band can be attributed to a significant reduction in MMCT. Furthermore, the appearance of the Ce 3+ excitation band indicates the energy transfer from Ce 3+ to Eu 3+ . The core/shell particles thus exhibit reduced MMCT compared to conventionally generated particles that retain Ce 3+ /Eu 3+ energy transfer.

與習知產生之粒子(—)相比, 14 中之發射光譜展示內核-外殼粒子(- -)之明顯較高的發射強度。因此有可能表明內核-外殼粒子之較高效率。此外,發射光譜展示可在410 nm激發下在610 nm下觀測到Eu3+ 發射。因此,發生Ce3+ /Eu3+ 能量轉移,其中Tb3+ 充當橋。The emission spectrum in Figure 14 shows a significantly higher emission intensity of the core-shell particles (--) compared to the conventionally produced particles (-). It is therefore possible to show the higher efficiency of the core-shell particles. In addition, the emission spectrum shows that Eu 3+ emission can be observed at 610 nm under 410 nm excitation. Thus, a Ce 3+ /Eu 3+ energy transfer occurs, where Tb 3+ acts as a bridge.

15 及圖 16 在塗佈之前( 15 )及在塗佈之後( 16 )比較典型Tb3 Al5 O12 :Ce粒子。明顯清楚的是,粒子由塗層(外殼)環繞。 Figures 15 and 16 compare typical Tb 3 Al 5 O 12 :Ce particles prior to coating ( Figure 15 ) and after coating ( Figure 16 ). It is clear that the particles are surrounded by a coating (outer casing).

下文中藉由工作實例說明本發明,但決不應將工作實例視為限制。熟習此項技術者將認識到,可對本發明進行各種修改、添加及更改而不脫離如所附申請專利範圍中所界定的本發明之精神及範疇。
實例
The invention is illustrated below by working examples, but the working examples should in no way be considered as limiting. A person skilled in the art will recognize that various modifications, additions and changes can be made to the present invention without departing from the spirit and scope of the invention as defined in the appended claims.
Instance

測試方法Test Methods

用以Bregg-Brentano幾何而操作之Rigaku Miniflex II以0.02°步進與1 s之積分時間記錄x射線繞射圖。在塗佈鐵氟龍(Spectralon)之積分球中用Edinburgh Instruments FL 920光譜儀記錄反射光譜。所使用之光源為450 W Xe放電燈。對照BaSO4 標準量測樣本。用Edinburgh Instruments FLS 920光譜儀記錄激發及發射光譜。所使用之激發源為450 W Xe燈。藉助於參考偵測器校正激發;藉助於校正光譜校正發射。藉由量測由國家物理實驗室(National Physical Laboratory) (英國)認證之鹵素燈來獲得校正光譜。用Edinburgh Instruments FLS 920光譜儀記錄衰變曲線。所使用之激發源為Xe微秒閃爍燈或Edinburgh Instruments雷射二極體。在Zeiss EVO MA 10上進行SEM成像。The Rigaku Miniflex II operating with the Bregg-Brentano geometry records the x-ray diffraction pattern in 0.02° steps with an integration time of 1 s. The reflectance spectra were recorded on a Teflon coated Spectralon sphere using an Edinburgh Instruments FL 920 spectrometer. The light source used was a 450 W Xe discharge lamp. Samples were measured against the BaSO 4 standard. Excitation and emission spectra were recorded on an Edinburgh Instruments FLS 920 spectrometer. The excitation source used was a 450 W Xe lamp. The excitation is corrected by means of a reference detector; the emission is corrected by means of a correction spectrum. The calibration spectrum was obtained by measuring a halogen lamp certified by the National Physical Laboratory (UK). The decay curves were recorded on an Edinburgh Instruments FLS 920 spectrometer. The excitation source used was a Xe microsecond scintillation lamp or an Edinburgh Instruments laser diode. SEM imaging was performed on a Zeiss EVO MA 10.

實例Instance 11
(Tb0.97 Eu0.03 )3 Al5 O12 @ Tb3 Al5 O12 :Ce3+ (Tb 0.97 Eu 0.03 ) 3 Al 5 O 12 @ Tb 3 Al 5 O 12 :Ce 3+ It 製備preparation

以脲作為沈澱劑之原位沈澱的形式實現合成。將0.0355 g (1.009 mmol)之Eu2 O3 及1.2195 g (1.6311 mmol)之Tb4 O7 溶解於10 ml之HNO3 及10 ml之去離子水中。將16.1585 g (269.04 mmol)之脲及4.2053 g (11.21 mmol)之Al(NO3 )3 *9H2 O溶解於200 ml之去離子水中且添加至以上溶液。隨後,將2 g之內核材料(Tb3 Al5 O12 :Ce3+ )分散於總體溶液中。接著在回流下將總體溶液加熱至90℃且攪拌6 h。用415濾紙過濾沈澱產物,用約30 ml之去離子水洗滌三次,且在150℃下在乾燥箱中乾燥3 h。將乾燥之濾餅以研缽及研杵碾碎,轉移至剛玉坩堝,且在1600℃下在空氣中加熱4 h。 1 展示所獲得之產物之x射線繞射圖。 4 5 6 展示各別激發、發射及反射光譜。 7 展示對應衰變曲線。 9 展示掃描電子顯微鏡影像。The synthesis was carried out in the form of in situ precipitation of urea as a precipitant. 0.0355 g (1.009 mmol) of Eu 2 O 3 and 1.2195 g (1.6311 mmol) of Tb 4 O 7 were dissolved in 10 ml of HNO 3 and 10 ml of deionized water. 16.1585 g (269.04 mmol) of urea and 4.2053 g (11.21 mmol) of Al(NO 3 ) 3 *9H 2 O were dissolved in 200 ml of deionized water and added to the above solution. Subsequently, 2 g of the core material (Tb 3 Al 5 O 12 :Ce 3+ ) was dispersed in the overall solution. The bulk solution was then heated to 90 ° C under reflux and stirred for 6 h. The precipitated product was filtered through 415 filter paper, washed three times with about 30 ml of deionized water, and dried at 150 ° C for 3 h in a dry box. The dried filter cake was ground in a mortar and pestle, transferred to corundum crucible, and heated in air at 1600 ° C for 4 h. Figure 1 shows an x-ray diffraction pattern of the product obtained. FIG 4, FIG 5 and FIG. 6 shows the respective excitation, emission and reflection spectra. Figure 7 shows the corresponding decay curve. Figure 9 shows a scanning electron microscope image.

實例Instance 22
(Tb0.94 Ce0.03 Eu0.03 )3 Al5 O12 @ Tb3 Al5 O12 :Ce3+ (Tb 0.94 Ce 0.03 Eu 0.03 ) 3 Al 5 O 12 @ Tb 3 Al 5 O 12 :Ce 3+ 之製備Preparation

以脲作為沈澱劑之原位沈澱的形式實現合成。將0.0356 g (1.011 mmol)之Eu2 O3 及1.1845 g (1.5841 mmol)之Tb4 O7 溶解於10 ml之HNO3 及10 ml之去離子水中。將16.1964 g (269.64 mmol)之脲、4.2053 g (11.21 mmol)之Al(NO3 )3 *9H2 O及0.0878 g (0.2022 mmol)之Ce(NO3 )3 *6H2 O溶解於200 ml之去離子水中且添加至以上溶液。隨後,將2 g之內核材料(Tb3 Al5 O12 :Ce3+ )分散於總體溶液中。接著在回流下將總體溶液加熱至90℃且攪拌6 h。用415濾紙過濾沈澱產物,用約30 ml之去離子水洗滌三次,且在150℃下在乾燥箱中乾燥3 h。將乾燥之濾餅以研缽及研杵碾碎,轉移至剛玉坩堝,且在1600℃下在空氣中加熱4 h。 2 展示所獲得之產物之x射線繞射圖。 4 5 6 展示各別激發、發射及反射光譜。 7 展示對應衰變曲線。The synthesis was carried out in the form of in situ precipitation of urea as a precipitant. 0.0356 g (1.011 mmol) of Eu 2 O 3 and 1.1845 g (1.5841 mmol) of Tb 4 O 7 were dissolved in 10 ml of HNO 3 and 10 ml of deionized water. Dissolve 16.1964 g (269.64 mmol) of urea, 4.2053 g (11.21 mmol) of Al(NO 3 ) 3 *9H 2 O and 0.0878 g (0.2022 mmol) of Ce(NO 3 ) 3 *6H 2 O in 200 ml Deionized water and added to the above solution. Subsequently, 2 g of the core material (Tb 3 Al 5 O 12 :Ce 3+ ) was dispersed in the overall solution. The bulk solution was then heated to 90 ° C under reflux and stirred for 6 h. The precipitated product was filtered through 415 filter paper, washed three times with about 30 ml of deionized water, and dried at 150 ° C for 3 h in a dry box. The dried filter cake was ground in a mortar and pestle, transferred to corundum crucible, and heated in air at 1600 ° C for 4 h. Figure 2 shows an x-ray diffraction pattern of the product obtained. FIG 4, FIG 5 and FIG. 6 shows the respective excitation, emission and reflection spectra. Figure 7 shows the corresponding decay curve.

實例Instance 33
Tb3 Al5 O12 @ Lu3 Al5 O12 :Ce3+ Tb 3 Al 5 O 12 @ Lu 3 Al 5 O 12 :Ce 3+ 之製備Preparation

以碳酸氫銨作為沈澱劑之反序共沈澱分出沈澱的形式實現合成。將3.4891 g (4.6665 mmol)之Tb4 O7 溶解於10 ml之HNO3 及10 ml之去離子水中。將11.6704 g (31.11 mmol)之Al(NO3 )3 *9H2 O溶解於50 ml之去離子水中且添加至以上溶液。作為沈澱溶液,將15.7404 g (199.1040 mmol)之NH4 HCO3 溶解於200 ml之去離子水中且用約15 ml之氨將溶液調節至pH 8至9。隨後,將5 g之內核材料(Lu3 Al5 O12 :Ce3+ )分散於沈澱溶液中。隨後在約30 min之過程內用滴液漏斗將硝酸鹽溶液逐滴添加至沈澱溶液。在添加期間,藉助於氨將沈澱溶液保持於pH 8至9。用415濾紙過濾沈澱產物,用約30 ml之去離子水洗滌三次,且在150℃下在乾燥箱中乾燥3 h。將乾燥之濾餅以研缽及研杵碾碎,轉移至剛玉坩堝,且在1000℃下在空氣中加熱4 h。 3 展示所獲得之產物之x射線繞射圖。The synthesis was carried out by the coprecipitation of the ammonium bicarbonate as a precipitant in the form of a precipitate. 3.4891 g (4.6665 mmol) of Tb 4 O 7 was dissolved in 10 ml of HNO 3 and 10 ml of deionized water. 11.6704 g (31.11 mmol) of Al(NO 3 ) 3 *9H 2 O was dissolved in 50 ml of deionized water and added to the above solution. As a precipitation solution, 15.7840 g (199.1040 mmol) of NH 4 HCO 3 was dissolved in 200 ml of deionized water and the solution was adjusted to pH 8 to 9 with about 15 ml of ammonia. Subsequently, 5 g of the core material (Lu 3 Al 5 O 12 :Ce 3+ ) was dispersed in the precipitation solution. The nitrate solution was then added dropwise to the precipitation solution using a dropping funnel over a period of about 30 minutes. The precipitation solution was maintained at pH 8 to 9 by means of ammonia during the addition. The precipitated product was filtered through 415 filter paper, washed three times with about 30 ml of deionized water, and dried at 150 ° C for 3 h in a dry box. The dried filter cake was ground in a mortar and pestle, transferred to corundum crucible, and heated in air at 1000 ° C for 4 h. Figure 3 shows an x-ray diffraction pattern of the product obtained.

實例Instance 44
Gd0.99 Eu0.01 F3 @ Gd0.99 Ce0.01 F3 Gd 0.99 Eu 0.01 F 3 @ Gd 0.99 Ce 0.01 F 3 之製備Preparation

稱出0.9260 g之氟化銨(25 mmol)且將其用160 ml之去離子水溶解於三頸燒瓶中。憑藉電磁攪拌器將水浴加熱至86℃且將三頸燒瓶浸入至其中。在加熱階段期間,稱出1.1586 g之Gd(CH3 CO2 )3 (3.4650 mmol)及0.0152 g之Ce(NO3 )3 *6H2 O (0.0350 mmol)且將其溶解於80 ml之去離子水中。將此溶液轉移至滴液漏斗中且在劇烈攪拌下添加至液相(NH4 F溶液)。針對另外溶液,稱出1.1586 g之Gd(CH3 CO2 )3 (3.4650 mmol)及0.0115 g之Eu(CH3 CO2 )3 (0.0350 mmol),將其溶解於80 ml之去離子水中,轉移至滴液漏斗中,且逐滴添加至懸浮液。移除水浴,且一旦液相已冷卻,就通過2 µm濾紙過濾懸浮液。將濾餅洗滌3次,每次用30 ml之去離子水且用30 ml之乙醇洗滌1次,且在室溫下乾燥。對乾燥之發光團進行稱量,且在丙酮下謹慎地用40w% NH4 F之盈餘以瑪瑙研缽濕磨。一旦丙酮蒸發,就將粉末轉移至具有蓋之瓷坩堝且轉移至已經加熱至700℃之腔室爐中。燒結時間恰好為1小時,且在煅燒之後直接自腔室爐移除樣本。0.9260 g of ammonium fluoride (25 mmol) was weighed out and dissolved in a three-necked flask with 160 ml of deionized water. The water bath was heated to 86 ° C by means of a magnetic stirrer and a three-necked flask was immersed therein. During the heating phase, 1.1586 g of Gd(CH 3 CO 2 ) 3 (3.4650 mmol) and 0.0152 g of Ce(NO 3 ) 3 *6H 2 O (0.0350 mmol) were weighed out and dissolved in 80 ml of deionized In the water. This solution was transferred to a dropping funnel and added to the liquid phase (NH 4 F solution) with vigorous stirring. For the other solution, 1.1586 g of Gd(CH 3 CO 2 ) 3 (3.4650 mmol) and 0.0115 g of Eu(CH 3 CO 2 ) 3 (0.0350 mmol) were weighed out and dissolved in 80 ml of deionized water. Add to the dropping funnel and add dropwise to the suspension. The water bath was removed and once the liquid phase had cooled, the suspension was filtered through a 2 μm filter paper. The filter cake was washed 3 times with 30 ml of deionized water each time and once with 30 ml of ethanol and dried at room temperature. The dried luminophores were weighed and carefully wetted with an agate mortar with a surplus of 40 w% NH 4 F under acetone. Once the acetone evaporates, the powder is transferred to a porcelain crucible with a lid and transferred to a chamber furnace that has been heated to 700 °C. The sintering time was exactly 1 hour and the sample was removed directly from the chamber furnace after calcination.

實例Instance 55
Gd0.985 Eu0.015 F3 @ Gd0.99 Ce0.01 F3 Gd 0.985 Eu 0.015 F 3 @ Gd 0.99 Ce 0.01 F 3 之製備Preparation

稱出0.9260 g之氟化銨(25 mmol)且將其用160 ml之去離子水溶解於三頸燒瓶中。憑藉電磁攪拌器將水浴加熱至86℃且將三頸燒瓶浸入至其中。在加熱階段期間,稱出1.1586 g之Gd(CH3 CO2 )3 (3.4650 mmol)及0.0152 g之Ce(NO3 )3 *6H2 O (0.0350 mmol)且將其溶解於80 ml之去離子水中。將此溶液轉移至滴液漏斗中且在劇烈攪拌下添加至液相(NH4 F溶液)。針對另外溶液,稱出1.1526 g之Gd(CH3 CO2 )3 (3.4475 mmol)及0.0174 g 之Eu(CH3 CO2 )3 (0.0525 mmol),將其溶解於80 ml之去離子水中,轉移至滴液漏斗中,且逐滴添加至懸浮液。移除水浴,且一旦液相已冷卻,就通過2 µm濾紙過濾懸浮液。將濾餅洗滌3次,每次用30 ml之去離子水且用30 ml之乙醇洗滌1次,且在室溫下乾燥。對乾燥之發光團進行稱量,且在丙酮下謹慎地用40w% NH4 F之盈餘以瑪瑙研缽濕磨。一旦丙酮蒸發,就將粉末轉移至具有蓋之瓷坩堝且轉移至已經加熱至700℃之腔室爐中。燒結時間恰好為1小時,且在煅燒之後直接自腔室爐移除樣本。0.9260 g of ammonium fluoride (25 mmol) was weighed out and dissolved in a three-necked flask with 160 ml of deionized water. The water bath was heated to 86 ° C by means of a magnetic stirrer and a three-necked flask was immersed therein. During the heating phase, 1.1586 g of Gd(CH 3 CO 2 ) 3 (3.4650 mmol) and 0.0152 g of Ce(NO 3 ) 3 *6H 2 O (0.0350 mmol) were weighed out and dissolved in 80 ml of deionized In the water. This solution was transferred to a dropping funnel and added to the liquid phase (NH 4 F solution) with vigorous stirring. For the other solution, 1.1526 g of Gd(CH 3 CO 2 ) 3 (3.4475 mmol) and 0.0174 g of Eu(CH 3 CO 2 ) 3 (0.0525 mmol) were weighed out and dissolved in 80 ml of deionized water. Add to the dropping funnel and add dropwise to the suspension. The water bath was removed and once the liquid phase had cooled, the suspension was filtered through a 2 μm filter paper. The filter cake was washed 3 times with 30 ml of deionized water each time and once with 30 ml of ethanol and dried at room temperature. The dried luminophores were weighed and carefully wetted with an agate mortar with a surplus of 40 w% NH 4 F under acetone. Once the acetone evaporates, the powder is transferred to a porcelain crucible with a lid and transferred to a chamber furnace that has been heated to 700 °C. The sintering time was exactly 1 hour and the sample was removed directly from the chamber furnace after calcination.

實例Instance 66
Gd0.985 Eu0.015 F3 @ Gd0.98 Ce0.02 F3 Gd 0.985 Eu 0.015 F 3 @ Gd 0.98 Ce 0.02 F 3 之製備Preparation

稱出0.9260 g之氟化銨(25mmol)且將其用160 ml之去離子水溶解於三頸燒瓶中。憑藉電磁攪拌器將水浴加熱至86℃且將三頸燒瓶浸入至其中。在加熱階段期間,稱出1.1469 g之Gd(CH3 CO2 )3 (3.4300 mmol)及0.0304 g之Ce(NO3 )3 *6H2 O (0.0700 mmol)且將其溶解於80 ml之去離子水中。將此溶液轉移至滴液漏斗中且在劇烈攪拌下添加至液相(NH4 F溶液)。針對另外溶液,稱出1.1528 g之Gd(CH3 CO2 )3 (3.4475 mmol)及0.0173 g之Eu(CH3 CO2 )3 (0.0525 mmol),將其溶解於80 ml之去離子水中,轉移至滴液漏斗中,且逐滴添加至懸浮液。移除水浴,且一旦液相已冷卻,就通過2 µm濾紙過濾懸浮液。將濾餅洗滌3次,每次用30 ml之去離子水且用30 ml之乙醇洗滌1次,且在室溫下乾燥。對乾燥之發光團進行稱量,且在丙酮下謹慎地用40w% NH4 F之盈餘以瑪瑙研缽濕磨。一旦丙酮蒸發,就將粉末轉移至具有蓋之瓷坩堝且轉移至已經加熱至700℃之腔室爐中。燒結時間恰好為1小時,且在煅燒之後直接自腔室爐移除樣本。0.9260 g of ammonium fluoride (25 mmol) was weighed out and dissolved in a three-necked flask with 160 ml of deionized water. The water bath was heated to 86 ° C by means of a magnetic stirrer and a three-necked flask was immersed therein. During the heating phase, 1.1469 g of Gd(CH 3 CO 2 ) 3 (3.4300 mmol) and 0.0304 g of Ce(NO 3 ) 3 *6H 2 O (0.0700 mmol) were weighed out and dissolved in 80 ml of deionized In the water. This solution was transferred to a dropping funnel and added to the liquid phase (NH 4 F solution) with vigorous stirring. For the other solution, 1.1528 g of Gd(CH 3 CO 2 ) 3 (3.4475 mmol) and 0.0173 g of Eu(CH 3 CO 2 ) 3 (0.0525 mmol) were weighed out and dissolved in 80 ml of deionized water. Add to the dropping funnel and add dropwise to the suspension. The water bath was removed and once the liquid phase had cooled, the suspension was filtered through a 2 μm filter paper. The filter cake was washed 3 times with 30 ml of deionized water each time and once with 30 ml of ethanol and dried at room temperature. The dried luminophores were weighed and carefully wetted with an agate mortar with a surplus of 40 w% NH 4 F under acetone. Once the acetone evaporates, the powder is transferred to a porcelain crucible with a lid and transferred to a chamber furnace that has been heated to 700 °C. The sintering time was exactly 1 hour and the sample was removed directly from the chamber furnace after calcination.

實例Instance 77
Na(Tb0.99 Eu0.01 )F4 (Na(Tb 0.99 Eu 0.01 )F 4 ( 六方Six parties ) @ (Ba,Sr)2 SiO4 :Eu2+ ) @ (Ba,Sr) 2 SiO 4 :Eu 2+ 之製備Preparation

此工作實例係針對4 mmol之分批量予以計算。將3.6951 g之NaF (88.0 mmol;Ln:F 1:22)溶解於160 ml之去礦質水中且將pH調節至8.2 ± 0.2。將0.5 g之(Ba,Sr)2 SiO4 :Eu2+ (內核)添加至此混合物且藉由劇烈攪拌懸浮,且將pH保持於8.2 ± 0.2。出於此目的而使用NaOH或硝酸。在下一步驟中將懸浮液加熱至80℃。在第二混合物中,將0.0132之銪(乙酸)3 及1.7940 g之Tb(NO3 )3 *6H2 O溶解於160 ml之去礦質水中且轉移至滴液漏斗中。一旦液相已達到溫度,就在1至1.5小時之時間間隔內逐漸地逐滴添加溶液。通過布赫納漏斗(2 µm濾紙)用抽吸將懸浮液濾出,且用30 ml之去礦質水洗滌3次且最後用30 ml之乙醇洗滌。使產物在通風櫥下乾燥約1小時。This working example is calculated for a batch of 4 mmol. 3.6951 g of NaF (88.0 mmol; Ln: F 1:22) was dissolved in 160 ml of demineralized water and the pH was adjusted to 8.2 ± 0.2. 0.5 g of (Ba,Sr) 2 SiO 4 :Eu 2+ (core) was added to the mixture and suspended by vigorous stirring, and the pH was maintained at 8.2 ± 0.2. NaOH or nitric acid is used for this purpose. The suspension was heated to 80 ° C in the next step. In the second mixture, 0.0132 of hydrazine (acetic acid) 3 and 1.7940 g of Tb(NO 3 ) 3 *6H 2 O were dissolved in 160 ml of demineralized water and transferred to a dropping funnel. Once the liquid phase has reached temperature, the solution is gradually added dropwise over a period of 1 to 1.5 hours. The suspension was filtered off with suction through a Buchner funnel (2 μm filter paper) and washed 3 times with 30 ml of demineralized water and finally with 30 ml of ethanol. The product was allowed to dry under a hood for about 1 hour.

實例Instance 88
Na(Tb0.49 Y0.5 Eu0.01 )F4 (Na(Tb 0.49 Y 0.5 Eu 0.01 )F 4 ( 立方cube ) @ (Ba,Sr)2 SiO4 :Eu2+ ) @ (Ba,Sr) 2 SiO 4 :Eu 2+ 之製備Preparation

此工作實例係針對4 mmol之分批量予以計算。將1.0078 g之NaF (24.0 mmol;Ln:F 1:6)溶解於160 ml去礦質水中且將pH調節至8.5 ± 0.2。將0.5 g之(Ba,Sr)2 SiO4 :Eu2+ (內核)添加至此混合物且藉由劇烈攪拌懸浮,且將pH保持於8.5 ± 0.2。出於此目的而使用NaOH或硝酸。在下一步驟中將懸浮液加熱至80℃。在第二混合物中,將0.0132之銪(乙酸)3 、0.7760 g之Tb(NO3 )3 *6H2 O及0.8879 g之Tb(NO3 )3 *6H2 O溶解於160 ml之去礦質水中且轉移至滴液漏斗中。一旦液相達到溫度,就在1至1.5小時之時間間隔內逐漸地逐滴添加溶液。通過布赫納漏斗(2 µm濾紙)用抽吸將懸浮液濾出,且用30 ml之去礦質水洗滌3次且最後用30 ml之乙醇洗滌。使產物在通風櫥下乾燥約1小時。This working example is calculated for a batch of 4 mmol. 1.078 g of NaF (24.0 mmol; Ln: F 1:6) was dissolved in 160 ml of demineralized water and the pH was adjusted to 8.5 ± 0.2. 0.5 g of (Ba,Sr) 2 SiO 4 :Eu 2+ (core) was added to the mixture and suspended by vigorous stirring, and the pH was maintained at 8.5 ± 0.2. NaOH or nitric acid is used for this purpose. The suspension was heated to 80 ° C in the next step. In the second mixture, 0.0132 of hydrazine (acetic acid) 3 , 0.7760 g of Tb(NO 3 ) 3 *6H 2 O and 0.8879 g of Tb(NO 3 ) 3 *6H 2 O are dissolved in 160 ml of demineralized water. And transferred to the dropping funnel. Once the liquid phase reaches temperature, the solution is gradually added dropwise over a time interval of 1 to 1.5 hours. The suspension was filtered off with suction through a Buchner funnel (2 μm filter paper) and washed 3 times with 30 ml of demineralized water and finally with 30 ml of ethanol. The product was allowed to dry under a hood for about 1 hour.

實例Instance 99
塗佈有Coated with Al2 O3 Al 2 O 3 It Eu2 [H2 O]18 Mo8 O27 *6H2 O @ (Ba,Sr)2 SiO4 :Eu2+ Eu 2 [H 2 O] 18 Mo 8 O 27 *6H 2 O @ (Ba,Sr) 2 SiO 4 :Eu 2+ 之製備Preparation

此工作實例係針對0.8 mmol之分批量予以計算。將0.9887 g之(NH4 )6 Mo7 O24 *4H2 O溶解於40 ml之去礦質水中。將0.1 g之(Ba,Sr)2 SiO4 :Eu2+ (內核)添加至此混合物且藉由劇烈攪拌懸浮。在第二混合物中,將0.5863 g之銪(乙酸)3 溶解於30 ml之去礦質水中且轉移至滴液漏斗中。在1至1.5小時之時間間隔內逐漸地逐滴添加溶液。通過布赫納漏斗(2 µm濾紙)用抽吸將懸浮液濾出,且用30 ml之去礦質水洗滌3次且最後用30 ml之乙醇洗滌。使產物在通風櫥下乾燥約1小時。This working example is calculated for a batch of 0.8 mmol. 0.9887 g of (NH 4 ) 6 Mo 7 O 24 *4H 2 O was dissolved in 40 ml of demineralized water. 0.1 g of (Ba,Sr) 2 SiO 4 :Eu 2+ (core) was added to the mixture and suspended by vigorous stirring. In the second mixture, 0.5863 g of hydrazine (acetic acid) 3 was dissolved in 30 ml of demineralized water and transferred to a dropping funnel. The solution was gradually added dropwise over a period of 1 to 1.5 hours. The suspension was filtered off with suction through a Buchner funnel (2 μm filter paper) and washed 3 times with 30 ml of demineralized water and finally with 30 ml of ethanol. The product was allowed to dry under a hood for about 1 hour.

實例Instance 1010
EuPO4 @ (Ba,Sr)2 SiO4 :Eu2+ EuPO 4 @ (Ba,Sr) 2 SiO 4 :Eu 2+ 之製備Preparation

此工作實例係針對4 mmol之分批量予以計算。將0.5282 g之(NH4 )2 HPO4 溶解於160 ml之去礦質水中。將0.82 g之(Ba,Sr)2 SiO4 :Eu2+ (內核)添加至此混合物且藉由劇烈攪拌懸浮。在第二混合物中,將1.3163 g之銪(乙酸)3 溶解於160 ml之去礦質水中且轉移至滴液漏斗中。在1至1.5小時之時間間隔內逐漸地逐滴添加溶液。通過布赫納漏斗(2 µm濾紙)用抽吸將懸浮液濾出,且用30 ml之去礦質水洗滌3次且最後用30 ml之乙醇洗滌。使產物在通風櫥下乾燥約1小時。This working example is calculated for a batch of 4 mmol. 0.5282 g of (NH 4 ) 2 HPO 4 was dissolved in 160 ml of demineralized water. 0.82 g of (Ba,Sr) 2 SiO 4 :Eu 2+ (core) was added to the mixture and suspended by vigorous stirring. In the second mixture, 1.3163 g of hydrazine (acetic acid) 3 was dissolved in 160 ml of demineralized water and transferred to a dropping funnel. The solution was gradually added dropwise over a period of 1 to 1.5 hours. The suspension was filtered off with suction through a Buchner funnel (2 μm filter paper) and washed 3 times with 30 ml of demineralized water and finally with 30 ml of ethanol. The product was allowed to dry under a hood for about 1 hour.

實例Instance 1111
Tb0.95 Eu0.05 PO4 @ (Ba,Sr)2 SiO4 :Eu2+ Tb 0.95 Eu 0.05 PO 4 @ (Ba,Sr) 2 SiO 4 :Eu 2+ 之製備Preparation

此工作實例係針對4 mmol之分批量予以計算。將0.5282 g之(NH4 )2 HPO4 溶解於160 ml之去礦質水中。將0.82 g之(Ba,Sr)2 SiO4 :Eu2+ (內核)添加至此混合物且藉由劇烈攪拌懸浮。在第二混合物中,將0.0658之銪(乙酸)3 及1.7215 g之Tb(NO3 )3 *6H2 O溶解於160 ml之去礦質水中且轉移至滴液漏斗中。在1至1.5小時之時間間隔內逐漸地逐滴添加溶液。通過布赫納漏斗(2 µm濾紙)用抽吸將懸浮液濾出,且用30 ml之去礦質水洗滌3次且最後用30 ml之乙醇洗滌。使產物在通風櫥下乾燥約1小時。This working example is calculated for a batch of 4 mmol. 0.5282 g of (NH 4 ) 2 HPO 4 was dissolved in 160 ml of demineralized water. 0.82 g of (Ba,Sr) 2 SiO 4 :Eu 2+ (core) was added to the mixture and suspended by vigorous stirring. In the second mixture, 0.0658 g of hydrazine (acetic acid) 3 and 1.7215 g of Tb(NO 3 ) 3 *6H 2 O were dissolved in 160 ml of demineralized water and transferred to a dropping funnel. The solution was gradually added dropwise over a period of 1 to 1.5 hours. The suspension was filtered off with suction through a Buchner funnel (2 μm filter paper) and washed 3 times with 30 ml of demineralized water and finally with 30 ml of ethanol. The product was allowed to dry under a hood for about 1 hour.

實例Instance 1212
Na2 EuPO4 WO4 @ (Ba,Sr)2 SiO4 :Eu2+ Na 2 EuPO 4 WO 4 @ (Ba,Sr) 2 SiO 4 :Eu 2+ 之製備Preparation

此工作實例係針對2 mmol之分批量予以計算。將0.2641 g之(NH4 )2 HPO4 及0.6597 g之Na2 WO4 *2H2 O溶解於160 ml之去礦質水中且將pH設定於7與11之間。將0.87 g之(Ba,Sr)2 SiO4 :Eu2+ (內核)添加至此混合物且藉由劇烈攪拌懸浮,且將pH保持於7與11之間。出於此目的而使用氨或硝酸。在下一步驟中將懸浮液加熱至80℃。在第二混合物中,將0.6581 g之銪(乙酸)3 溶解於160 ml之去礦質水中且轉移至滴液漏斗中。一旦液相達到溫度,就在1至1.5小時之時間間隔內逐漸地逐滴添加溶液。通過布赫納漏斗(2 µm濾紙)用抽吸將懸浮液濾出,且用30 ml之去礦質水洗滌3次且最後用30 ml之乙醇洗滌。使產物在80℃下乾燥。This working example is calculated for a batch of 2 mmol. 0.2641 g of (NH 4 ) 2 HPO 4 and 0.6597 g of Na 2 WO 4 *2H 2 O were dissolved in 160 ml of demineralized water and the pH was set between 7 and 11. 0.87 g of (Ba,Sr) 2 SiO 4 :Eu 2+ (core) was added to the mixture and suspended by vigorous stirring, and the pH was maintained between 7 and 11. Ammonia or nitric acid is used for this purpose. The suspension was heated to 80 ° C in the next step. In the second mixture, 0.6581 g of hydrazine (acetic acid) 3 was dissolved in 160 ml of demineralized water and transferred to a dropping funnel. Once the liquid phase reaches temperature, the solution is gradually added dropwise over a time interval of 1 to 1.5 hours. The suspension was filtered off with suction through a Buchner funnel (2 μm filter paper) and washed 3 times with 30 ml of demineralized water and finally with 30 ml of ethanol. The product was dried at 80 °C.

實例Instance 1313
Ca2 (Lu0.45 Tb0.5 Eu0.2 )Zr2 Al3 O12 @ Ca2 (Lu0.5 Tb0.47 Ce0.03 )Zr2 Al3 O12 Ca 2 (Lu 0.45 Tb 0.5 Eu 0.2 )Zr 2 Al 3 O 12 @ Ca 2 (Lu 0.5 Tb 0.47 Ce 0.03 )Zr 2 Al 3 O 12 之製備Preparation

以脲作為沈澱劑之原位沈澱的形式實現合成。將0.0770 g (0.1935 mmol)之Lu2 O3 、0.0454 g (0.1290 mmol)之Eu2 O3 及0.1206 g (0.1613 mmol)之Tb4 O7 溶解於10 ml之HNO3 及10 ml之去離子水中。將9.2973 g (154.8 mmol)之脲、1.4518 g (3.87 mmol)之Al(NO3 )3 *9H2 O、0.6093 g (2.58 mmol)之Ca(NO3 )2 *4H2 O及0.8522 g (2.58 mmol)之ZrO(NO3 )2 *5.5H2 O溶解於200 ml之去離子水中且添加至以上溶液。隨後,將1 g之內核材料(Ca2 (Lu0.5 Tb0.47 Ce0.03 )Zr2 Al3 O12 )分散於總體溶液中。接著在回流下將總體溶液加熱至90℃且攪拌6 h。用415濾紙過濾沈澱產物,用約30 ml之去離子水洗滌三次,且在150℃下在乾燥箱中乾燥3 h。將乾燥之濾餅以研缽及研杵碾碎,轉移至剛玉坩堝,且在1500℃下在CO氛圍中加熱8 h。 13 14 中展示所獲得之產物之激發及發射光譜。The synthesis was carried out in the form of in situ precipitation of urea as a precipitant. 0.0770 g (0.1935 mmol) of Lu 2 O 3 , 0.0454 g (0.1290 mmol) of Eu 2 O 3 and 0.1206 g (0.1613 mmol) of Tb 4 O 7 were dissolved in 10 ml of HNO 3 and 10 ml of deionized water. . 9.2973 g (154.8 mmol) of urea, 1.4518 g (3.87 mmol) of Al(NO 3 ) 3 *9H 2 O, 0.6093 g (2.58 mmol) of Ca(NO 3 ) 2 *4H 2 O and 0.8522 g (2.58 Methyl) of ZrO(NO 3 ) 2 *5.5H 2 O was dissolved in 200 ml of deionized water and added to the above solution. Subsequently, 1 g of the core material (Ca 2 (Lu 0.5 Tb 0.47 Ce 0.03 ) Zr 2 Al 3 O 12 ) was dispersed in the overall solution. The bulk solution was then heated to 90 ° C under reflux and stirred for 6 h. The precipitated product was filtered through 415 filter paper, washed three times with about 30 ml of deionized water, and dried at 150 ° C for 3 h in a dry box. The dried filter cake was ground in a mortar and pestle, transferred to corundum crucible, and heated at 1500 ° C for 8 h in a CO atmosphere. Excitation and emission spectrum of the product of FIG. 13 and FIG. 14 shows the obtained.

實例Instance 1414
Ca2 (Lu0.495 Tb0.5 Eu0.05 )Zr2 Al3 O12 @ Ca2 (Lu0.5 Tb0.47 Ce0.03 )Zr2 Al3 O12 Ca 2 (Lu 0.495 Tb 0.5 Eu 0.05 )Zr 2 Al 3 O 12 @ Ca 2 (Lu 0.5 Tb 0.47 Ce 0.03 )Zr 2 Al 3 O 12 之製備Preparation

以脲作為沈澱劑之原位沈澱的形式實現合成。將0.1270 g (0.3193 mmol)之Lu2 O3 、0.0113 g (0.0323 mmol)之Eu2 O3 及0.1206 g (0.1613 mmol)之Tb4 O7 溶解於10 ml之HNO3 及10 ml之去離子水中。將9.2973 g (154.8 mmol)之脲、1.4518 g (3.87 mmol)之Al(NO3 )3 *9H2 O、0.6093 g (2.58 mmol)之Ca(NO3 )2 *4H2 O及0.8522 g (2.58 mmol)之ZrO(NO3 )2 *5.5H2 O溶解於200 ml之去離子水中且添加至以上溶液。隨後,將1 g之內核材料(Ca2 (Lu0.5 Tb0.47 Ce0.03 )Zr2 Al3 O12 )分散於總體溶液中。接著在回流下將總體溶液加熱至90℃且攪拌6 h。用415濾紙過濾沈澱產物,用約30 ml之去離子水洗滌三次,且在150℃下在乾燥箱中乾燥3 h。將乾燥之濾餅以研缽及研杵碾碎,轉移至剛玉坩堝,且在1500℃下在CO氛圍中加熱8 h。 13 14 中展示所獲得之產物之激發及發射光譜。The synthesis was carried out in the form of in situ precipitation of urea as a precipitant. 0.1270 g (0.3193 mmol) of Lu 2 O 3 , 0.0113 g (0.0323 mmol) of Eu 2 O 3 and 0.1206 g (0.1613 mmol) of Tb 4 O 7 were dissolved in 10 ml of HNO 3 and 10 ml of deionized water. . 9.2973 g (154.8 mmol) of urea, 1.4518 g (3.87 mmol) of Al(NO 3 ) 3 *9H 2 O, 0.6093 g (2.58 mmol) of Ca(NO 3 ) 2 *4H 2 O and 0.8522 g (2.58 Methyl) of ZrO(NO 3 ) 2 *5.5H 2 O was dissolved in 200 ml of deionized water and added to the above solution. Subsequently, 1 g of the core material (Ca 2 (Lu 0.5 Tb 0.47 Ce 0.03 ) Zr 2 Al 3 O 12 ) was dispersed in the overall solution. The bulk solution was then heated to 90 ° C under reflux and stirred for 6 h. The precipitated product was filtered through 415 filter paper, washed three times with about 30 ml of deionized water, and dried at 150 ° C for 3 h in a dry box. The dried filter cake was ground in a mortar and pestle, transferred to corundum crucible, and heated at 1500 ° C for 8 h in a CO atmosphere. Excitation and emission spectrum of the product of FIG. 13 and FIG. 14 shows the obtained.

實例Instance 1515
Ca2 (Tb0.8 Eu0.2 )Hf2 Al3 O12 @ Ca2 TbHf2 Al3 O12 @ Ca2 (Lu0.17 Tb0.8 Ce0.03 )Hf2 Al3 O12 Ca 2 (Tb 0.8 Eu 0.2 )Hf 2 Al 3 O 12 @ Ca 2 TbHf 2 Al 3 O 12 @ Ca 2 (Lu 0.17 Tb 0.8 Ce 0.03 )Hf 2 Al 3 O 12 之製備Preparation (( 針對For 180180 重量weight %% It Ca2 TbHf2 Al3 O12 Ca 2 TbHf 2 Al 3 O 12 間層之合成。質量比例係基於內核材料之質量。針對具有The synthesis of the interlayer. The quality ratio is based on the quality of the core material. For 9090 重量weight %% It Ca2 TbHf2 Al3 O12 Ca 2 TbHf 2 Al 3 O 12 間層之合成Synthetic layer , 必須對應地調節起始重量。The starting weight must be adjusted accordingly. ))

以碳酸氫銨作為沈澱劑之沈澱的形式實現合成。將0.7757 g (1.0375 mmol)之Tb4 O7 溶解於10 ml之HNO3 及10 ml之去離子水中。將4.6704 g (12.45 mmol)之Al(NO3 )3 *9H2 O、1.96 g (8.3 mmol)之Ca(NO3 )2 *4H2 O及3.6083 g (8.3 mmol)之HfOCl2 *9.4H2 O 溶解於50 ml之去離子水中且添加至以上溶液。將合併之溶液轉移至滴液漏斗。隨後,將11.8116 g (149.4 mmol)之NH4 HCO3 溶解於200 ml之去離子水中,且將2 g之內核材料(Ca2 (Lu0.17 Tb0.8 Ce0.03 )Hf2 Al3 O12 )懸浮於其中。以約2滴每秒將硝酸鹽溶液逐滴添加至沈澱溶液,在此過程中藉由添加NH3 將pH保持於6.8與7.2之間。在完成硝酸鹽溶液之添加時,將攪拌繼續另外30 min。用410濾紙過濾沈澱產物,用約30 ml之乙醇洗滌三次,且在150℃下在乾燥箱中乾燥3 h。將乾燥之濾餅以研缽及研杵碾碎,轉移至剛玉坩堝,且在1550℃下在CO氛圍中加熱8 h。此後,將0.1555 g (0.2080 mmol)之Tb4 O7 及0.0366 g (0.1040 mmol)之Eu2 O3 溶解於10 ml之HNO3 及10 ml之去離子水中。將1.1704 g (3.12 mmol)之Al(NO3 )3 *9H2 O、0.4912 g (2.08 mmol)之Ca(NO3 )2 *4H2 O及0.9043 g (2.08 mmol)之HfOCl2 *9.4H2 O溶解於50 ml之去離子水中且添加至以上溶液。將合併之溶液轉移至滴液漏斗。隨後,將2.96 g (37.44 mmol)之NH4 HCO3 溶解於200 ml之去離子水中,且將1 g之於第一方法中產生且用研缽及研杵碾碎之內核-外殼材料(Ca2 TbHf2 Al3 O12 @ Ca2 (Lu0.17 Tb0.8 Ce0.03 )Hf2 Al3 O12 )懸浮於其中。以約2滴每秒將硝酸鹽溶液逐滴添加至沈澱溶液,在此過程中藉由添加NH3 將pH保持於6.8與7.2之間。在完成硝酸鹽溶液之添加時,將攪拌繼續另外30 min。用410濾紙過濾沈澱產物,用約30 ml之乙醇洗滌三次,且在150℃下在乾燥箱中乾燥3 h。將乾燥之濾餅以研缽及研杵碾碎,轉移至剛玉坩堝,且在1550℃下在CO氛圍中加熱8 h。 17 中展示所獲得之產物之發射光譜。The synthesis was carried out in the form of a precipitate of ammonium bicarbonate as a precipitant. 0.7757 g (1.0375 mmol) of Tb 4 O 7 was dissolved in 10 ml of HNO 3 and 10 ml of deionized water. 4.6704 g (12.45 mmol) of Al(NO 3 ) 3 *9H 2 O, 1.96 g (8.3 mmol) of Ca(NO 3 ) 2 *4H 2 O and 3.6083 g (8.3 mmol) of HfOCl 2 *9.4H 2 O was dissolved in 50 ml of deionized water and added to the above solution. The combined solution was transferred to a dropping funnel. Subsequently, 11.8116 g (149.4 mmol) of NH 4 HCO 3 was dissolved in 200 ml of deionized water, and 2 g of the core material (Ca 2 (Lu 0.17 Tb 0.8 Ce 0.03 )Hf 2 Al 3 O 12 ) was suspended in among them. At about 2 drops per second nitrate solution was added dropwise to a solution of precipitate, in this process by the addition of NH 3 at pH was maintained between 6.8 and 7.2. When the addition of the nitrate solution was completed, the stirring was continued for another 30 min. The precipitated product was filtered through a 410 filter paper, washed three times with about 30 ml of ethanol, and dried in a dry box at 150 ° C for 3 h. The dried filter cake was ground in a mortar and pestle, transferred to corundum crucible, and heated at 1550 ° C for 8 h in a CO atmosphere. Thereafter, 0.1555 g (0.2080 mmol) of Tb 4 O 7 and 0.0366 g (0.1040 mmol) of Eu 2 O 3 were dissolved in 10 ml of HNO 3 and 10 ml of deionized water. 1.1704 g (3.12 mmol) of Al(NO 3 ) 3 *9H 2 O, 0.4912 g (2.08 mmol) of Ca(NO 3 ) 2 *4H 2 O and 0.9043 g (2.08 mmol) of HfOCl 2 *9.4H 2 O was dissolved in 50 ml of deionized water and added to the above solution. The combined solution was transferred to a dropping funnel. Subsequently, 2.96 g (37.44 mmol) of NH 4 HCO 3 was dissolved in 200 ml of deionized water, and 1 g of the core-shell material (Ca) produced in the first method and ground with a mortar and pestle (Ca) 2 TbHf 2 Al 3 O 12 @ Ca 2 (Lu 0.17 Tb 0.8 Ce 0.03 )Hf 2 Al 3 O 12 ) was suspended therein. At about 2 drops per second nitrate solution was added dropwise to a solution of precipitate, in this process, by adding NH 3 pH was maintained between 6.8 and 7.2. When the addition of the nitrate solution was completed, the stirring was continued for another 30 min. The precipitated product was filtered through a 410 filter paper, washed three times with about 30 ml of ethanol, and dried in a dry box at 150 ° C for 3 h. The dried filter cake was ground in a mortar and pestle, transferred to corundum crucible, and heated at 1550 ° C for 8 h in a CO atmosphere. The emission spectrum of the product obtained is shown in FIG. 17 of.

下文中藉由工作實例及 1 至圖 16 詳細地闡明本發明,而不限於此等者。該等圖展示以下:Hereinafter, the present invention will be explained in detail by way of working examples and FIGS. 1 to 16 , without being limited thereto. The figures show the following:

1 實例1的用於Cu K-α輻射之(Tb0.97 Eu0.03 )3 Al5 O12 @ Tb3 Al5 O12 :Ce3+ 之X射線繞射圖。 Figure 1 : X-ray diffraction pattern of (Tb 0.97 Eu 0.03 ) 3 Al 5 O 12 @ Tb 3 Al 5 O 12 :Ce 3+ for Cu K-α radiation of Example 1.

2 實例2的用於Cu K-α輻射之(Tb0.94 Ce0.03 Eu0.03 )3 Al5 O12 @ Tb3 Al5 O12 :Ce3+ 之X射線繞射圖。 Figure 2 : X-ray diffraction pattern of (Tb 0.94 Ce 0.03 Eu 0.03 ) 3 Al 5 O 12 @ Tb 3 Al 5 O 12 :Ce 3+ for Cu K-α radiation of Example 2.

3 實例3的用於Cu K-α輻射之Tb3 Al5 O12 @ Lu3 Al5 O12 :Ce3+ 之X射線繞射圖。 Figure 3 : X-ray diffraction pattern of Tb 3 Al 5 O 12 @ Lu 3 Al 5 O 12 :Ce 3+ for Cu K-α radiation of Example 3.

4 純TAG:Ce3+ 之激發光譜(—), Figure 4 : Pure TAG: Ce 3+ excitation spectrum (-),

實例1的塗佈有TAG:Eu3+ 之TAG:Ce3+ (- -),及Example 1 is coated with TAG:Eu 3+ TAG:Ce 3+ (- -), and

實例2的塗佈有TAG:Ce3+ ,Eu3+ 之TAG:Ce3+ (···)。Example 2 was coated with TAG:Ce 3+ , Eu 3+ TAG: Ce 3+ (···).

5 純TAG:Ce3+ 之發射光譜(—), Figure 5 : Pure TAG: Ce 3+ emission spectrum (-),

實例1的塗佈有TAG:Eu3+ 之TAG:Ce3+ (- -),及Example 1 is coated with TAG:Eu 3+ TAG:Ce 3+ (- -), and

實例2的塗佈有TAG:Ce3+ ,Eu3+ 之TAG:Ce3+ (···)。Example 2 was coated with TAG:Ce 3+ , Eu 3+ TAG: Ce 3+ (···).

6 純TAG:Ce3+ 之反射光譜(—), Figure 6 : Pure TAG: Ce 3+ reflection spectrum (-),

實例1的塗佈有TAG:Eu3+ 之TAG:Ce3+ (- -),及Example 1 is coated with TAG:Eu 3+ TAG:Ce 3+ (- -), and

實例2的塗佈有TAG:Ce3+ ,Eu3+ 之TAG:Ce3+ (···) (對照BaSO4 作為參考而量測)。Example 2 was coated with TAG: Ce 3+ , Eu 3+ TAG: Ce 3+ (···) (measured against BaSO 4 as a reference).

7 純TAG:Ce3+ 之衰變曲線(黑色), Figure 7 : Pure TAG: Ce 3+ decay curve (black),

實例1的塗佈有TAG:Eu3+ 之TAG:Ce3+ (暗灰色),及Example 1 is coated with TAG:Eu 3+ TAG:Ce 3+ (dark gray), and

實例2的塗佈有TAG:Ce3+ ,Eu3+ 之TAG:Ce3+ (淺灰色)。Example 2 was coated with TAG: Ce 3+ , Eu 3+ TAG: Ce 3+ (light grey).

8 Ca2 (Lu0.47 Ce0.03 Tb0.5 )Zr2 Al3 O12 之反射光譜(灰線)、激發光譜(黑線)及發射光譜(虛線)。 Figure 8 : Reflectance spectrum (grey line), excitation spectrum (black line) and emission spectrum (dashed line) of Ca 2 (Lu 0.47 Ce 0.03 Tb 0.5 )Zr 2 Al 3 O 12 .

9 實例1的塗佈有TAG:Eu3+ 之TAG:Ce3+ 之掃描電子顯微鏡影像。 Figure 9 : Scanning electron microscope image of TAG:Ce 3+ coated with TAG:Eu 3+ of Example 1.

10 用於在內核-外殼粒子中將藍光輻射轉換為紅光輻射之發光方法之示意圖。 Figure 10 : Schematic representation of a method of illumination for converting blue light radiation into red light radiation in a core-shell particle.

11 可能的內核-外殼(-外殼)粒子之示意性結構。 Figure 11 : Schematic structure of possible kernel-shell (-shell) particles.

12 可能的陶瓷內核-外殼粒子之示意性結構。 Figure 12 : Schematic structure of possible ceramic core-shell particles.

13 在485 nm下正規化至Tb3+ 激發之激發光譜,λem = 610.5 nm。 Figure 13 : Excitation spectrum normalized to Tb 3+ excitation at 485 nm, λ em = 610.5 nm.

—=Ca2 LuZr2 Al3 O12 :Ce3+ ,Eu3+ ,Tb3+ (=CLZA:Ce3+ ,Eu3+ ,Tb3+ )—=Ca 2 LuZr 2 Al 3 O 12 :Ce 3+ ,Eu 3+ ,Tb 3+ (=CLZA:Ce 3+ ,Eu 3+ ,Tb 3+ )

- - -=塗佈有Ca2 LuZr2 Al3 O12 :Eu3+ ,Tb3+ (=CLZA:Eu3+ ,Tb3+ @ CLZA:Ce3+ ,Tb3+ )之Ca2 LuZr2 Al3 O12 :Ce3+ ,Tb3+ - - - = coated with Ca 2 LuZr 2 Al 3 O 12 : Eu 3+, Tb 3+ (= CLZA: Eu 3+, Tb 3+ @ CLZA: Ce 3+, Tb 3+) of Ca 2 LuZr 2 Al 3 O 12 :Ce 3+ , Tb 3+

14 發射光譜λex =410 nm。 Figure 14 : Emission spectrum λ ex = 410 nm.

—=Ca2 LuZr2 Al3 O12 :Ce3+ ,Eu3+ ,Tb3+ (=CLZA:Ce3+ ,Eu3+ ,Tb3+ )—=Ca 2 LuZr 2 Al 3 O 12 :Ce 3+ ,Eu 3+ ,Tb 3+ (=CLZA:Ce 3+ ,Eu 3+ ,Tb 3+ )

- - -=塗佈有Ca2 LuZr2 Al3 O12 :Eu3+ ,Tb3+ (=CLZA:Eu3+ ,Tb3+ @ CLZA:Ce3+ ,Tb3+ )之Ca2 LuZr2 Al3 O12 :Ce3+ ,Tb3+ - - - = coated with Ca 2 LuZr 2 Al 3 O 12 : Eu 3+, Tb 3+ (= CLZA: Eu 3+, Tb 3+ @ CLZA: Ce 3+, Tb 3+) of Ca 2 LuZr 2 Al 3 O 12 :Ce 3+ , Tb 3+

15 純TAG:Ce3+ 之掃描電子顯微鏡影像。 Figure 15 : Scanning electron microscope image of pure TAG: Ce 3+ .

16 TAG:Eu3+ @ TAG:Ce3+ 之掃描電子顯微鏡影像。 Figure 16 : Scanning electron microscope image of TAG:Eu 3+ @ TAG:Ce 3+ .

17 具有90重量%之Ca2 TbHf2 Al3 O12 間層(實線)或180重量%之Ca2 TbHf2 Al3 O12 間層(虛線)及90重量%之Ca2 (Tb0.8 Eu0.2 )Hf2 Al3 O12 外部層的Ca2 (Tb0.8 Eu0.2 )Hf2 Al3 O12 @ Ca2 TbHf2 Al3 O12 @ Ca2 (Lu0.17 Tb0.8 Ce0.03 ) Hf2 Al3 O12 之發射光譜。 Figure 17 : 90% by weight of Ca 2 TbHf 2 Al 3 O 12 layer (solid line) or 180% by weight of Ca 2 TbHf 2 Al 3 O 12 layer (dashed line) and 90% by weight of Ca 2 (Tb 0.8 Eu 0.2) Hf 2 Al 3 O 12 outer layer Ca 2 (Tb 0.8 Eu 0.2) Hf 2 Al 3 O 12 @ Ca 2 TbHf 2 Al 3 O 12 @ Ca 2 (Lu 0.17 Tb 0.8 Ce 0.03) Hf 2 Al 3 The emission spectrum of O 12 .

Claims (15)

一種多組分發光團,較佳地為內核-外殼發光團類型,其包含以下各者或由以下各者組成: (i) 內核,及 (ii) 至少一個外殼,其同心地配置於該內核周圍, 其中 (a) 該內核包含摻雜有Ce3+ 及/或Eu2+ 之至少一種第一發光團,且 (b) 該外殼包括至少一種第二發光團,該至少一種第二發光團為含有以下各者之化合物: (b1) Eu3+ 及/或Pr3+ 及/或Sm3+ ,及 (b2) Tb3+ 及/或Gd3+A multicomponent luminophore, preferably of the core-shell luminophore type, comprising or consisting of: (i) a core, and (ii) at least one shell concentrically disposed in the core Surrounding, wherein (a) the inner core comprises at least one first luminophore doped with Ce 3+ and/or Eu 2+ , and (b) the outer shell comprises at least one second luminophore, the at least one second luminophore It is a compound containing (b1) Eu 3+ and/or Pr 3+ and/or Sm 3+ , and (b2) Tb 3+ and/or Gd 3+ . 如請求項1之發光團,其中 該內核進一步包含摻雜有Tb3+ 及/或Gd3+ 之發光團。The luminophore of claim 1, wherein the core further comprises a luminophore doped with Tb 3+ and/or Gd 3+ . 如請求項1或2之發光團,其中 該第一發光團具有石榴石、矽酸鹽、硝酸鹽、(氧基)氟化物及/或(氧基)氮化物結構。The luminophore of claim 1 or 2, wherein the first luminophore has a garnet, citrate, nitrate, (oxy) fluoride and/or (oxy) nitride structure. 如請求項1至3中任一項之發光團,其中 該第一發光團具有石榴石結構且已摻雜有Ce3+The luminophore of any one of claims 1 to 3, wherein the first luminophore has a garnet structure and has been doped with Ce 3+ . 如請求項1至4中任一項之發光團,其中 該等第一發光團係選自由以下各者形成之群組: Lu3 Al5 O12 :Ce3+ (LuAG);Lu3 Sc2 Al3 O12 :Ce3+ (LSAG);Gd3 Al5 O12 :Ce3+ (GdAG);Gd3 Sc2 Al3 O12 :Ce3+ (GSAG);Tb3 Al5 O12 :Ce3+ (TAG);(Ca,Sr,Ba)2 SiO4 :Eu2+ ;(Ca,Sr,Ba)3 SiO5 :Eu2+ ;(Ca,Sr,Ba)Si2 N2 O2 :Eu;(Sr,Ba)(Al,Y,Gd,Lu)Si4 N7 :Eu;(La,Gd,Tb)3 Si6 N11 :Ce;Lu3 (Al1-x-y Gax Scy )5 O12 ,其中0<x≤0.4且0<y≤0.4: Ce3+ 及/或Eu2+ ;Y3 (Al1-x-y Gax Scy )5 O12 ,其中0<x≤0.4且0<y≤0.4: Ce3+ 及/或Eu2+ ;Tb3 (Al1-x-y Gax Scy )5 O12 ,其中0<x≤0.4且0<y≤0.4: Ce3+ 及/或Eu2+ ;Gd3 (Al1-x-y Gax Scy )5 O12 ,其中0<x≤0.4且0<y≤0.4: Ce3+ 及/或Eu2+ ;Ca2 (Lu1-x-y-z Gdx Yy Scz )(Zr1-a Hfa )2 Al3 O12 ,其中0<x+y+z≤1且0<a≤1: Ce3+ 及/或Eu2+ ;Ca2 (Lu1-x-y-z Gdx Yy Scz Mgm ) (Zr1-a Hfa )2 (Al1-m Sim )3 O12 ,其中0<x+y+z≤1且0<a≤1且0<m≤1: Ce3+ 及/或Eu2+ ;Ca2-b (Lu1-x-y-z-t Gdx Yy Scz Tbt )1+b (Zr1-a Hfa )2-b Al3+b O12 ,其中0<x+y+z≤1且0<a≤1且0<t≤1且0<b≤1: Ce3+ 及/或Eu2+ ;(Lu1-z Mgz )3 (Al1-z Siz )5 O12 ,其中0<z≤0.6;(Y1-z Mgz )3 (Al1-z Siz )5 O12 ,其中0<z≤0.6: Ce3+ 及/或Eu2+ ;(Tb1-z Mgz )3 (Al1-z Siz )5 O12 ,其中0<z≤0.6: Ce3+ 及/或Eu2+ ;(Gd1-z Mgz )3 (Al1-z Siz )5 O12 ,其中0<z≤0.6: Ce3+ 及/或Eu2+ ;(Ca,Sr,Ba)2 SiO4 :Eu2+ ;(Ca,Sr,Ba)3 SiO5 :Eu2+ ;(Gd,Y)F3 :Ce3+ ;(Ca,Sr,Ba)Si2 N2 O2 :Eu;(Sr,Ba)(Al,Y,Gd,Lu)Si4 N7 :Eu;(La,Gd,Tb)3 Si6 N11 :Ce;及其混合物或共晶體。The luminophore of any one of claims 1 to 4, wherein the first luminophores are selected from the group consisting of: Lu 3 Al 5 O 12 :Ce 3+ (LuAG); Lu 3 Sc 2 Al 3 O 12 :Ce 3+ (LSAG); Gd 3 Al 5 O 12 :Ce 3+ (GdAG); Gd 3 Sc 2 Al 3 O 12 :Ce 3+ (GSAG); Tb 3 Al 5 O 12 :Ce 3+ (TAG); (Ca,Sr,Ba) 2 SiO 4 :Eu 2+ ;(Ca,Sr,Ba) 3 SiO 5 :Eu 2+ ;(Ca,Sr,Ba)Si 2 N 2 O 2 : Eu;(Sr,Ba)(Al,Y,Gd,Lu)Si 4 N 7 :Eu;(La,Gd,Tb) 3 Si 6 N 11 :Ce;Lu 3 (Al 1-xy Ga x Sc y ) 5 O 12 , where 0<x≤0.4 and 0<y≤0.4: Ce 3+ and/or Eu 2+ ; Y 3 (Al 1-xy Ga x Sc y ) 5 O 12 , where 0<x≤0.4 and 0<y≤0.4: Ce 3+ and/or Eu 2+ ; Tb 3 (Al 1-xy Ga x Sc y ) 5 O 12 , where 0<x≤0.4 and 0<y≤0.4: Ce 3+ and / Or Eu 2+ ; Gd 3 (Al 1-xy Ga x Sc y ) 5 O 12 , where 0<x≤0.4 and 0<y≤0.4: Ce 3+ and/or Eu 2+ ; Ca 2 (Lu 1- Xyz Gd x Y y Sc z )(Zr 1-a Hf a ) 2 Al 3 O 12 , where 0<x+y+z≤1 and 0<a≤1: Ce 3+ and/or Eu 2+ ;Ca 2 (Lu 1-xyz Gd x Y y Sc z Mg m) (Zr 1-a Hf a) 2 (Al 1-m Si m) 3 O 12, where 0 <x + y + z≤1 0 <a≤1, and 0 <m≤1: Ce 3+ and / or Eu 2+; Ca 2-b ( Lu 1-xyzt Gd x Y y Sc z Tb t) 1 + b (Zr 1-a Hf a 2-b Al 3+b O 12 , where 0<x+y+z≤1 and 0<a≤1 and 0<t≤1 and 0<b≤1: Ce 3+ and/or Eu 2+ ; (Lu 1-z Mg z ) 3 (Al 1-z Si z ) 5 O 12 , where 0 < z ≤ 0.6; (Y 1-z Mg z ) 3 (Al 1-z Si z ) 5 O 12 , wherein 0<z≤0.6: Ce 3+ and/or Eu 2+ ; (Tb 1-z Mg z ) 3 (Al 1-z Si z ) 5 O 12 , where 0<z≤0.6: Ce 3+ and/or Eu 2+ ; (Gd 1-z Mg z ) 3 (Al 1-z Si z ) 5 O 12 , where 0 < z ≤ 0.6: Ce 3+ and/or Eu 2+ ; (Ca, Sr, Ba) 2 SiO 4 :Eu 2+ ;(Ca,Sr,Ba) 3 SiO 5 :Eu 2+ ;(Gd,Y)F 3 :Ce 3+ ;(Ca,Sr,Ba)Si 2 N 2 O 2 :Eu; (Sr, Ba) (Al, Y, Gd, Lu) Si 4 N 7 :Eu; (La, Gd, Tb) 3 Si 6 N 11 :Ce; and mixtures or cocrystals thereof. 如請求項1至5中任一項之發光團,其中 該等第二發光團係選自由以下各者形成之化合物之群組: Tb2 SiO5 ;Tb2 Si2 O7 ;TbBO3 ;TbB3 O6 ;Tb2 MoO6 ;Tb2 Mo2 O9 ;Tb2 Mo3 O12 ;Tb2 Mo4 O15 ;Tb3 Al5 O12 ;Tb3 (Al1-x Gax )5 O12 ,其中0<x≤0.4;TbAl3 [BO3 ]4 ;CaTbAl3 O7 ;TbAl[Ge2 O7 ];SrTb2 Al2 O7 ;Sr2 TbAlO5 ;TbAlO3 ;Tb4 Al2 O9 ;(Ba,Sr,Ca)3 TbB9 O18 ;(Ba,Sr,Ca)2 Tb2 Si4 O13 ;MgTbB5 O10 ;TbB5 O9 ;Tb2 B4 O9 ;ZnTbB5 O10 ;Ba2 TbNbO6 ;Ba2 TbTaO6 ;TbGa3 [BO3 ]4 ;Sr3 Tb2 [BO3 ]4 ;Sr3 Tb[BO3 ]3 ;Ca9 Tb[VO4 ]7 ;Ca9 Tb[PO4 ]7 ;LiTbW2 O8 ;Tb2 Mo2 O7 ;Tb2 Mo4 O15 ;Tb2 Sn2 O7 ;Sr2 TbTaO6 ;Tb2 Ti2 O7 ;Tb[VO4 ];GdF3 ;(Lu1-x-y-z-t Gdx Yy Scz Tbt )2 O3 ,其中0<x+y+z≤1且0<t≤1;Ca2 (Lu1-t Tbt )Zr2 Al3 O12 ,其中0<t≤1;Ca2 (Gd1-t Tbt )Zr2 Al3 O12 ,其中0<t≤1;Ca2 (Lu1-t Tbt )Hf2 Al3 O12 ,其中0<t≤ 1;Ca2 (Gd1-t Tbt )Hf2 Al3 O12 ,其中0<t≤1;Ca2 (Lu1-x-y-z-t Gdx Yy Scz Tbt )(Zr1-a Hfa )2 Al3 O12 ,其中0<x+y+z≤1且0<a≤1且0<t≤1;Ca2 (Lu1-x-y-z-t Gdx Yy Scz Mgm Tbt )(Zr1-a Hfa )2 (Al1-m Sim )3 O12 ,其中0<x+y+z≤1且0<a≤1且0<m≤1且0<t≤1;Ca2-b (Lu1-x-y-z-t Gdx Yy Scz Tbt )1+b (Zr1-a Hfa )2-b Al3+b O12 ,其中0<x+y+z≤1且0<a≤1且0<t≤1且0<b≤1;及其共晶體。The luminophore of any one of claims 1 to 5, wherein the second luminophore is selected from the group consisting of: Tb 2 SiO 5 ; Tb 2 Si 2 O 7 ; TbBO 3 ; TbB 3 O 6 ; Tb 2 MoO 6 ; Tb 2 Mo 2 O 9 ; Tb 2 Mo 3 O 12 ; Tb 2 Mo 4 O 15 ; Tb 3 Al 5 O 12 ; Tb 3 (Al 1-x Ga x ) 5 O 12 Wherein 0 < x ≤ 0.4; TbAl 3 [BO 3 ] 4 ; CaTbAl 3 O 7 ; TbAl [Ge 2 O 7 ]; SrTb 2 Al 2 O 7 ; Sr 2 TbAlO 5 ; TbAlO 3 ; Tb 4 Al 2 O 9 (Ba,Sr,Ca) 3 TbB 9 O 18 ;(Ba,Sr,Ca) 2 Tb 2 Si 4 O 13 ;MgTbB 5 O 10 ;TbB 5 O 9 ;Tb 2 B 4 O 9 ;ZnTbB 5 O 10 Ba 2 TbNbO 6 ; Ba 2 TbTaO 6 ; TbGa 3 [BO 3 ] 4 ; Sr 3 Tb 2 [BO 3 ] 4 ; Sr 3 Tb[BO 3 ] 3 ; Ca 9 Tb[VO 4 ] 7 ; Ca 9 Tb [PO 4 ] 7 ; LiTbW 2 O 8 ; Tb 2 Mo 2 O 7 ; Tb 2 Mo 4 O 15 ; Tb 2 Sn 2 O 7 ; Sr 2 TbTaO 6 ; Tb 2 Ti 2 O 7 ; Tb [VO 4 ]; GdF 3 ; (Lu 1-xyzt Gd x Y y Sc z Tb t ) 2 O 3 , where 0<x+y+z≤1 and 0<t≤1; Ca 2 (Lu 1-t Tb t )Zr 2 Al 3 O 12 , where 0 < t ≤ 1; Ca 2 (Gd 1-t Tb t ) Zr 2 Al 3 O 12 , where 0 < t ≤ 1; Ca 2 (L u 1-t Tb t )Hf 2 Al 3 O 12 , where 0<t≤ 1; Ca 2 (Gd 1-t Tb t )Hf 2 Al 3 O 12 , where 0<t≤1; Ca 2 (Lu 1 - xyzt Gd x Y y Sc z Tb t )(Zr 1-a Hf a ) 2 Al 3 O 12 , where 0<x+y+z≤1 and 0<a≤1 and 0<t≤1; Ca 2 (Lu 1-xyzt Gd x Y y Sc z Mg m Tb t )(Zr 1-a Hf a ) 2 (Al 1-m Si m ) 3 O 12 , where 0<x+y+z≤1 and 0< a ≤ 1 and 0 < m ≤ 1 and 0 < t ≤ 1; Ca 2-b (Lu 1-xyzt Gd x Y y Sc z Tb t ) 1+b (Zr 1-a Hf a ) 2-b Al 3 +b O 12 , where 0<x+y+z≤1 and 0<a≤1 and 0<t≤1 and 0<b≤1; and its eutectic. 如請求項1至6中任一項之發光團,其中 其包含內核及同心地配置於該內核周圍之兩個外殼。The luminophore of any one of claims 1 to 6, wherein the illuminating group comprises a core and two outer casings concentrically disposed around the inner core. 如請求項7之發光團,其中 該內部外殼既不含有Ce3+ 亦不含有Eu3+ 發光團或化合物。The luminophore of claim 7, wherein the inner shell contains neither Ce 3+ nor Eu 3+ luminophores or compounds. 一種用於生產內核-外殼發光團之方法,其包含以下步驟或由以下步驟組成: (a) 提供包含至少一種Eu3+ 化合物且視情況包含至少一種Tb3+ 及/或Gd3+ 化合物之溶液; (b) 提供已摻雜有Ce3+ 及/或Eu2+ 且不溶於來自步驟(a)之該溶液中之至少一種發光團; (c) 混雜該溶液與該發光團及沈澱劑; (d) 將該Eu3+ 、Tb3+ 及/或Gd3+ 化合物沈澱於該發光團上; (e) 移除溶劑;及 (f) 視情況密化及/或熱後處理殘餘物。A method for producing a core-shell luminophore comprising the following steps or consisting of: (a) providing at least one Eu 3+ compound and optionally at least one Tb 3+ and/or Gd 3+ compound a solution; (b) providing at least one luminophore that has been doped with Ce 3+ and/or Eu 2+ and is insoluble in the solution from step (a); (c) mixing the solution with the luminophore and the precipitant (d) precipitating the Eu 3+ , Tb 3+ and/or Gd 3+ compound on the luminophore; (e) removing the solvent; and (f) densifying and/or thermally post-treating the residue as appropriate . 如請求項9之方法,其中 根據步驟(a)及(b)之該等組分係在每一狀況下以固體含量計以約70:30至約90:10之重量比而使用。The method of claim 9, wherein the components according to steps (a) and (b) are used in each case at a weight ratio of from about 70:30 to about 90:10 in terms of solids. 一種用於生產複合發光團之方法,其包含以下步驟或由以下步驟組成: (a) 提供摻雜有Ce3+ 及/或Eu2+ 之第一發光團; (b) 提供第二發光團,該第二發光團為含有(b1) Eu3+ 及(b2) Tb3+ 及/或Gd3+ 之化合物; (c) 以約30:70至10:90之重量比混合該第一發光團與該第二發光團; (d) 壓製該混合物以得到生坯; (e) 在比該第一發光團之熔融溫度低100至500 K之溫度下燒結該生坯。A method for producing a composite luminophore comprising the following steps or consisting of: (a) providing a first luminophore doped with Ce 3+ and/or Eu 2+ ; (b) providing a second luminophore The second luminophore is a compound containing (b1) Eu 3+ and (b2) Tb 3+ and/or Gd 3+ ; (c) mixing the first luminescence in a weight ratio of about 30:70 to 10:90 And the second luminophore; (d) pressing the mixture to obtain a green body; (e) sintering the green body at a temperature lower than a melting temperature of the first luminophore by 100 to 500 K. 一種根據請求項1至8中任一項之化合物之用途,該等化合物用作發藍光或發UV-A輻射半導體光源(ALED、OLED或PLED)中之發光團或輻射轉換器。A use according to any one of claims 1 to 8 for use as a luminophore or radiation converter in a blue light or UV-A radiation semiconductor light source (ALED, OLED or PLED). 一種發射轉換材料,其包含如請求項1至8中任一項之發光團且視情況包含至少一種另外轉換發光團。An emissive conversion material comprising the luminophore of any one of claims 1 to 8 and optionally at least one additional converted luminophore. 一種光源,其包含初級光源,及至少一種如請求項1至8中任一項之發光團或如請求項13之發射轉換材料。A light source comprising a primary light source, and at least one luminophore according to any one of claims 1 to 8 or an emissive conversion material as claimed in claim 13. 一種照明單元,其包含至少一個如請求項14之光源,較佳地具有在340至510 nm之範圍內的發射最大值。A lighting unit comprising at least one light source as claimed in claim 14, preferably having an emission maximum in the range of 340 to 510 nm.
TW107132606A 2017-09-18 2018-09-17 Multicomponent luminophores as colour converters for solid-state light sources TW201925419A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
??17191579.6 2017-09-18
EP17191579 2017-09-18

Publications (1)

Publication Number Publication Date
TW201925419A true TW201925419A (en) 2019-07-01

Family

ID=59895225

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107132606A TW201925419A (en) 2017-09-18 2018-09-17 Multicomponent luminophores as colour converters for solid-state light sources

Country Status (2)

Country Link
TW (1) TW201925419A (en)
WO (1) WO2019053242A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111908910B (en) * 2020-08-18 2022-04-22 新沂市锡沂高新材料产业技术研究院有限公司 High-color-rendering-index transparent ceramic for warm white lighting and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7497973B2 (en) 2005-02-02 2009-03-03 Lumination Llc Red line emitting phosphor materials for use in LED applications
DE102007010719A1 (en) 2007-03-06 2008-09-11 Merck Patent Gmbh Phosphors consisting of doped garnets for pcLEDs
FR2943682B1 (en) 2009-03-30 2012-03-30 Rhodia Operations COMPOSITION BASED ON EUROPIUM, YTTRIUM OXIDE OR GADOLINIUM, HEART / SHELL TYPE, LUMINOPHORE COMPRISING THE SAME, AND PROCESSES FOR PREPARING THE SAME
FR2968649B1 (en) 2010-12-14 2015-05-01 Rhodia Operations ALUMINATE COMPOSITION, HEART / SHELL TYPE, LUMINOPHORE THEREOF AND METHODS FOR PREPARING THE SAME
US8252613B1 (en) 2011-03-23 2012-08-28 General Electric Company Color stable manganese-doped phosphors
CN103865535B (en) 2012-12-12 2015-12-02 有研稀土新材料股份有限公司 A kind of white light LEDs fluor with nucleocapsid structure and preparation method thereof
CN104918892B (en) 2012-12-20 2017-03-22 松下知识产权经营株式会社 Rare earth aluminum garnet-type inorganic oxide, phosphor and light-emitting device using same
US9758721B2 (en) * 2015-03-24 2017-09-12 China Glaze Co., Ltd. (Taiwan) Core-shell fluorescent material and a light source device including the same

Also Published As

Publication number Publication date
WO2019053242A1 (en) 2019-03-21

Similar Documents

Publication Publication Date Title
Huang et al. Ultra-high color rendering warm-white light-emitting diodes based on an efficient green-emitting garnet phosphor for solid-state lighting
CN102333844B (en) Nitridosilicates co-doped with zirconium and hafnium
TWI502052B (en) Silicophosphate phosphors
TWI694137B (en) Phosphors and phosphor-converted leds
TWI716401B (en) Phosphors and phosphor-converted leds
US8858834B2 (en) Co-doped 1-1-2 nitrides
KR20160147936A (en) Phosphors
US20160108311A1 (en) Phosphors
KR20160094414A (en) Eu2+ -activated phosphors
US9920246B2 (en) Phosphors
TW201728745A (en) Mn-activated phosphors
KR20150098661A (en) Luminescent substances
KR20150100801A (en) Phosphors
JP2010196049A (en) Phosphor and method for producing the same, phosphor-containing composition, and light-emitting device, image display device and lighting device using the phosphor
TW201925419A (en) Multicomponent luminophores as colour converters for solid-state light sources
JP2017179017A (en) Phosphor, method for producing the same, light emitting device, image display, pigment, and ultraviolet absorber
TW201821593A (en) Mn4+-activated luminescent material as conversion phosphor for LED solid-state light sources
US20170107426A1 (en) Europium- or samarium-doped terbium molybdates
EP3146013A1 (en) Conversion phosphors
TW202024305A (en) Blue-emitting phosphor compounds
TWI814793B (en) Mn-activated oxidohalides as conversion luminophores for led-based solid-state light sources
US12024662B2 (en) Mn-activated oxidohalides as conversion luminescent materials for LED-based solid state light sources
JP2017179021A (en) Phosphor, method for producing the same, light emitting device, image display, pigment, and ultraviolet absorber