TW201921137A - 度量衡方法、裝置及電腦程式 - Google Patents

度量衡方法、裝置及電腦程式 Download PDF

Info

Publication number
TW201921137A
TW201921137A TW107128395A TW107128395A TW201921137A TW 201921137 A TW201921137 A TW 201921137A TW 107128395 A TW107128395 A TW 107128395A TW 107128395 A TW107128395 A TW 107128395A TW 201921137 A TW201921137 A TW 201921137A
Authority
TW
Taiwan
Prior art keywords
measurement
target
radiation
measurements
wideband
Prior art date
Application number
TW107128395A
Other languages
English (en)
Inventor
法爾查德 法哈迪查德
莫哈瑪德瑞薩 哈吉阿瑪迪
德 斯加 毛瑞斯 凡
慕拉特 波斯肯特
Original Assignee
荷蘭商Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荷蘭商Asml荷蘭公司 filed Critical 荷蘭商Asml荷蘭公司
Publication of TW201921137A publication Critical patent/TW201921137A/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B11/272Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/56Measuring geometric parameters of semiconductor structures, e.g. profile, critical dimensions or trench depth

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本發明揭示一種判定一基板上之一目標之一效能參數(例如疊對)的方法及相關聯裝置,以及一種相關聯度量衡裝置。該方法包含根據與該目標相關之一組寬頻帶量測值估計一組窄頻帶量測值,及自該組窄頻帶量測值判定該效能參數。該等寬頻帶量測值係與使用寬頻帶量測輻射執行之該目標之量測相關,且可對應於不同中心波長。該等窄頻帶量測值可包含將自使用一頻寬窄於該寬頻帶量測輻射的窄頻帶量測輻射進行之該目標之量測所獲得的該等量測值之一估計值。

Description

度量衡方法、裝置及電腦程式
本發明係關於用於可用於例如藉由微影技術進行器件製造之度量衡方法及裝置,且係關於使用微影技術來製造器件之方法。
微影裝置為將所要圖案施加至基板上(通常施加至基板之目標部分上)之機器。微影裝置可用於例如積體電路(IC)之製造中。在彼情況下,圖案化器件(其替代地被稱作光罩或倍縮光罩)可用以產生待形成於IC之個別層上之電路圖案。可將此圖案轉印至基板(例如矽晶圓)上之目標部分(例如包括晶粒之部分、一個晶粒或若干晶粒)上。通常經由成像至提供於基板上之輻射敏通常感材料(抗蝕劑)層上來進行圖案之轉印。一般而言,單一基板將含有經順次地圖案化之鄰近目標部分之網路。在微影程序中,需要頻繁地進行所產生結構之量測(例如)以用於程序控制及驗證。用於進行此類量測之各種工具係已知的,包括常常用以量測臨界尺寸(CD)之掃描電子顯微鏡,及用以量測疊對(器件中兩個層之對準準確度之量度)之特殊化工具。可依據兩個層之間的未對準程度來描述疊對,例如,對1奈米之經量測疊對之參考可描述兩個層未對準達1奈米之情形。
近來,已開發供微影領域中使用的各種形式之散射計。此等器件將輻射光束導向至目標上且量測散射輻射之一或多個屬性-例如在單一反射角下依據波長而變化的強度;在一或多個波長下依據反射角而變化的強度;或依據反射角而變化的偏振-以獲得可供判定目標之所關注屬性之「光譜」。可藉由各種技術來執行所關注屬性之判定:例如,藉由諸如嚴密耦合波分析或有限元素方法之反覆途徑而進行的目標之重新建構;庫搜尋;及主成份分析。
由習知散射計使用之目標相對較大光柵,例如,40微米乘40微米,且量測光束產生小於光柵之光點(亦即,光柵填充不足)。此情形簡化目標之數學重新建構,此係因為目標可被視為無限的。然而,為了減小目標之大小,例如減小至10微米乘10微米或更小,例如因此其可定位於產品特徵當中而非切割道中,已提議使光柵小於量測光點(亦即光柵填充過度)之度量衡。通常使用暗場散射量測來量測此等目標,其中阻擋零繞射階(對應於鏡面反射),且僅處理高階。可在國際專利申請案WO 2009/078708及WO 2009/106279中找到暗場度量衡之實例,該等專利申請案之文件之全文係特此以引用方式併入。專利公開案US20110027704A、US20110043791A及US20120242970A已描述該技術之進一步開發。所有此等申請案之內容亦以引用方式併入本文中。使用繞射階之暗場偵測的以繞射為基礎之疊對實現對較小目標之疊對量測。此等目標可小於照明光點且可由晶圓上之產品結構環繞。目標可包含可在一個影像中量測之多個光柵。
在已知度量衡技術中,藉由在某些條件下量測疊對目標兩次,同時旋轉疊對目標或改變照明模式或成像模式以分離地獲得-1繞射階強度及+1繞射階強度來獲得疊對量測結果。關於給定疊對目標之強度不對稱性(此等繞射階強度之比較)提供目標不對稱性(亦即,目標中之不對稱性)之量測。疊對目標中之此不對稱性可用作疊對(兩個層之不當未對準)之指示符。
當量測厚堆疊時,在厚堆疊中在經量測兩個層之間可存在相當大的距離。此可使得判定諸如疊對之效能參數不可靠,此係因為對於此類厚堆疊目標之堆疊敏感度趨向於依據波長快速地振盪。另外,一些度量衡裝置目前不能夠產生頻寬顯著窄於此振盪週期的窄頻帶量測輻射。由此裝置產生之量測輻射之有限頻寬趨向於使堆疊敏感度之平均數達到極低值,從而導致極不準確的量測。雖然在未來有可能開發具有窄頻帶源之度量衡器件,但出於各種技術及/或商業原因,至少在短期至中期內改變此類裝置之規格並非簡單的。
將需要能夠以改良之準確度對厚堆疊執行疊對度量衡,且尤其能夠在使用現有度量衡硬體時對厚堆疊執行疊對度量衡。
在一第一態樣中,本發明提供一種判定一基板上之一目標之一效能參數的方法,其包含:根據與該目標相關之一組寬頻帶量測值估計一組窄頻帶量測值;及自該組窄頻帶量測值判定該效能參數。
在一第二態樣中,本發明提供一種度量衡裝置,其包含:一照明系統,其經組態以運用具有一有限頻寬之寬頻帶量測輻射照明一目標;一偵測系統,其經組態以偵測起因於該目標之照明之散射輻射;及一處理器,其可操作以:控制該照明系統及該偵測系統以使用該寬頻帶量測輻射執行該目標之複數個量測,從而獲得與該目標相關的一組寬頻帶量測值;根據該等寬頻帶量測值估計一組窄頻帶量測值;及自該組窄頻帶量測值判定該效能參數。
本發明進一步提供一種電腦程式,其包含處理器可讀指令,該等處理器可讀指令在經執行於合適處理器控制之裝置上時致使該處理器控制之裝置執行該第一態樣之方法;及一種包含此電腦程式之電腦程式載體。
下文參看隨附圖式詳細地描述本發明之另外特徵及優點,以及本發明之各種實施例之結構及操作。應注意,本發明不限於本文中所描述之特定實施例。本文中僅出於說明性目的而呈現此類實施例。基於本文中含有之教示,額外實施例對於熟習相關技術者而言將顯而易見。
在詳細地描述本發明之實施例之前,有指導性的是呈現可供實施本發明之實施例之實例環境。
圖1示意性地描繪微影裝置LA。該裝置包括:照明光學系統(照明器) IL,其經組態以調節輻射光束B (例如UV輻射或DUV輻射);圖案化器件支撐件或支撐結構(例如光罩台) MT,其經建構以支撐圖案化器件(例如光罩) MA且連接至經組態以根據某些參數來準確地定位該圖案化器件之第一定位器PM;基板台(例如晶圓台) WT,其經建構以固持基板(例如抗蝕劑塗佈晶圓) W且連接至經組態以根據某些參數來準確地定位該基板之第二定位器PW;及投影光學系統(例如折射投影透鏡系統) PS,其經組態以將由圖案化器件MA賦予至輻射光束B之圖案投影至基板W之目標部分C (例如包括一或多個晶粒)上。
照明光學系統可包括用於導向、塑形或控制輻射的各種類型之光學或非光學組件,諸如折射、反射、磁性、電磁、靜電或其他類型之組件,或其任何組合。
圖案化器件支撐件以取決於圖案化器件之定向、微影裝置之設計及其他條件(諸如圖案化器件是否被固持於真空環境中)之方式來固持圖案化器件。圖案化器件支撐件可使用機械、真空、靜電或其他夾持技術以固持圖案化器件。圖案化器件支撐件可為例如框架或台,其可根據需要而固定或可移動。圖案化器件支撐件可確保圖案化器件例如相對於投影系統處於所要位置。可認為本文對術語「倍縮光罩」或「光罩」之任何使用皆與更一般之術語「圖案化器件」同義。
本文所使用之術語「圖案化器件」應被廣泛地解譯為係指可用以在輻射光束之橫截面中向輻射光束賦予圖案以便在基板之目標部分中產生圖案的任何器件。應注意,舉例而言,若被賦予至輻射光束之圖案包括相移特徵或所謂輔助特徵,則該圖案可不確切地對應於基板之目標部分中之所要圖案。通常,被賦予至輻射光束之圖案將對應於目標部分中所產生之器件(諸如積體電路)中的特定功能層。
圖案化器件可為透射的或反射的。圖案化器件之實例包括光罩、可程式化鏡面陣列,及可程式化LCD面板。光罩在微影中係熟知的,且包括諸如二元、交變相移及衰減相移之光罩類型,以及各種混合式光罩類型。可程式化鏡面陣列之一實例使用小鏡面之矩陣配置,該等小鏡面中之每一者可個別地傾斜,以便使入射輻射光束在不同方向上反射。傾斜鏡面在由鏡面矩陣反射之輻射光束中賦予圖案。
如此處所描繪,裝置屬於透射類型(例如,使用透射光罩)。替代地,裝置可屬於反射類型(例如,使用如上文所提及之類型之可程式化鏡面陣列,或使用反射光罩)。
微影裝置亦可屬於以下類型:其中基板之至少一部分可由具有相對較高折射率之液體(例如水)覆蓋,以便填充投影系統與基板之間的空間。亦可將浸潤液體施加至微影裝置中之其他空間,例如光罩與投影系統之間的空間。浸潤技術在此項技術中被熟知用於增大投影系統之數值孔徑。本文中所使用之術語「浸潤」並不意謂諸如基板之結構必須浸沒於液體中,而是僅意謂液體在曝光期間位於投影系統與基板之間。
參看圖1,照明器IL自輻射源SO接收輻射光束。舉例而言,當源為準分子雷射時,源及微影裝置可為單獨實體。在此類狀況下,不認為源形成微影裝置之部分,且輻射光束係憑藉包括(例如)合適導向鏡及/或光束擴展器之光束遞送系統BD而自源SO傳遞至照明器IL。在其他狀況下,舉例而言,當源為水銀燈時,源可為微影裝置之整體部分。源SO及照明器IL連同光束遞送系統BD在需要時可被稱作輻射系統。
照明器IL可包括用於調整輻射光束之角強度分佈之調整器AD。通常,可調整照明器之光瞳平面中之強度分佈的至少外部徑向範圍及/或內部徑向範圍(通常分別被稱作σ外部及σ內部)。另外,照明器IL可包括各種其他組件,諸如積光器IN及聚光器CO。照明器可用以調節輻射光束,以在其橫截面中具有所要均一性及強度分佈。
輻射光束B入射於被固持於圖案化器件支撐件(例如光罩台MT)上之圖案化器件(例如光罩) MA上,且係由該圖案化器件而圖案化。在已橫穿圖案化器件(例如光罩) MA的情況下,輻射光束B傳遞通過投影光學系統PS,投影光學系統PS將該光束聚焦至基板W之目標部分C上,藉此將圖案之影像投影於目標部分C上。憑藉第二定位器PW及位置感測器IF (例如干涉器件、線性編碼器、2D編碼器或電容式感測器),可準確地移動基板台WT,例如以便將不同目標部分C定位於輻射光束B之路徑中。相似地,第一定位器PM及另一位置感測器(其並未在圖1中明確地描繪)可用以例如在自光罩庫之機械擷取之後或在掃描期間相對於輻射光束B之路徑來準確地定位圖案化器件(例如光罩) MA。
可使用光罩對準標記M1、M2及基板對準標記P1、P2來對準圖案化器件(例如光罩) MA及基板W。儘管如所說明之基板對準標記佔據專用目標部分,但該等基板對準標記可位於目標部分之間的空間中(此等標記被稱為切割道對準標記)。相似地,在多於一個晶粒提供於圖案化器件(例如光罩) MA上之情形中,光罩對準標記可位於該等晶粒之間。小對準標記物亦可包括於器件特徵當中之晶粒內,在此狀況下,需要使標記物儘可能地小且無需與鄰近特徵不同的任何成像或程序條件。下文進一步描述偵測對準標記物之對準系統。
此實例中之微影裝置LA屬於所謂的雙載物台類型,其具有兩個基板台WTa、WTb及兩個站-曝光站及量測站-在該兩個站之間可交換基板台。在曝光站處曝光一個台上之一基板的同時,可在量測站處將另一基板裝載至另一基板台上且進行各種預備步驟。該等預備步驟可包括使用位階感測器LS來映射基板之表面控制,及使用對準感測器AS來量測基板上之對準標記物之位置。此情形實現裝置之產出率之相當大增加。
所描繪裝置可用於多種模式中,包括例如步進模式或掃描模式。微影裝置之構造及操作為熟習此項技術者所熟知,且為理解本發明,無需對其進行進一步描述。
如圖2中所展示,微影裝置LA形成微影系統之部分,其被稱作微影製造單元(lithographic cell/lithocell) LC或叢集。微影製造單元LC亦可包括用以對基板執行曝光前程序及曝光後程序之裝置。通常,此等裝置包括用以沈積抗蝕劑層之旋塗器SC、用以顯影經曝光抗蝕劑之顯影器DE、冷卻板CH及烘烤板BK。基板處置器或機器人RO自輸入/輸出埠I/O1、I/O2拾取基板、在不同程序裝置之間移動基板,且接著將基板遞送至微影裝置之裝載匣LB。常常被集體地稱作塗佈顯影系統(track)之此等器件係在塗佈顯影系統控制單元TCU之控制下,塗佈顯影系統控制單元TCU自身受到監督控制系統SCS控制,監督控制系統SCS亦經由微影控制單元LACU來控制微影裝置。因此,不同裝置可經操作以最大化產出率及處理效率。
圖3之(a)展示度量衡裝置。圖3之(b)中更詳細地說明目標T及用以照明該目標之量測輻射之繞射射線。所說明之度量衡裝置屬於被稱為暗場度量衡裝置之類型。此處所描繪之度量衡裝置僅為例示性的,以提供對暗場度量衡之解釋。度量衡裝置可為單機器件,或併入於例如量測站處之微影裝置LA中或併入於微影製造單元LC中。由點線O表示貫穿裝置具有若干分支之光軸。在此裝置中,由源11 (例如氙氣燈)發射之光由包含透鏡12、14及物鏡16之光學系統經由光束分裂器15導向至基板W上。此等透鏡係以4F配置之雙重序列進行配置。可使用不同透鏡配置,其限制條件為:該透鏡配置仍將基板影像提供至偵測器上,且同時地允許接取中間光瞳平面以用於空間頻率濾光。因此,可藉由定義在呈現基板平面之空間光譜之平面(此處被稱作(共軛)光瞳平面)中的空間強度分佈來選擇輻射入射於基板上之角度範圍。詳言之,可藉由在為物鏡光瞳平面之背向投影式影像之平面中在透鏡12與14之間插入合適形式之孔徑板13來進行此選擇。在所說明實例中,孔徑板13具有不同形式,被標註為13N及13S,從而允許選擇不同照明模式。本實例中之照明系統形成離軸照明模式。在第一照明模式中,孔徑板13N提供自僅出於描述起見被指明為「北」之方向之離軸。在第二照明模式中,孔徑板13S係用以提供相似照明,但提供來自被標註為「南」之相對方向之照明。藉由使用不同孔徑,其他照明模式係可能的。光瞳平面之其餘部分理想地暗,此係因為所要照明模式外部之任何不必要光將干涉所要量測信號。
如圖3之(b)中所展示,目標T經置放成使得基板W垂直於物鏡16之光軸O。基板W可由支撐件(圖中未繪示)支撐。與軸線O成一角度而照射於目標T上之量測輻射射線I引起一個零階射線(實線0)及兩個一階射線(點鏈線+1及雙點鏈點線-1)。應記住,在運用填充過度之小目標的情況下,此等射線僅僅為覆蓋包括度量衡目標T及其他特徵之基板區域的許多平行射線中之一者。由於板13中之孔徑具有有限寬度(為接納有用量之光所必要),故入射射線I事實上將佔據一角度範圍,且繞射射線0及+1/-1將稍微散開。根據小目標之點散佈函數(point spread function),每一階+1及-1將遍及一角度範圍而進一步散佈,而非如所展示之單一理想射線。應注意,目標之光柵間距及照明角度可經設計或經調整成使得進入物鏡之一階射線與中心光軸接近地對準。圖3之(a)及圖3之(b)所說明之射線被展示為稍微離軸,以純粹地使其能夠在圖解中被更容易地區分。
由基板W上之目標T繞射之至少0階及+1階係由物鏡16收集,且被返回導向通過光束分裂器15。返回至圖3之(a),藉由指明被標註為北(N)及南(S)之完全相反孔徑來說明第一照明模式及第二照明模式兩者。當量測輻射之入射射線I來自光軸之北側時(亦即,當使用孔徑板13N來應用第一照明模式時),被標註為+1(N)之+1繞射射線進入物鏡16。與此對比,當使用孔徑板13S來應用第二照明模式時,-1繞射射線(標註為 -1(S))為進入透鏡16之繞射射線。
第二光束分裂器17將繞射光束劃分成兩個量測分支。在第一量測分支中,光學系統18使用零階繞射光束及一階繞射光束在第一感測器19 (例如CCD或CMOS感測器)上形成目標之繞射光譜(光瞳平面影像)。每一繞射階射中感測器上之一不同點,使得影像處理可比較及對比若干階。由感測器19捕捉之光瞳平面影像可用於聚焦度量衡裝置及/或正規化一階光束之強度量測。亦可出於諸如重新建構之許多量測目的來使用光瞳平面影像。
在第二量測分支中,光學系統20、22在感測器23 (例如CCD或CMOS感測器)上形成目標T之影像。在第二量測分支中,在與光瞳平面共軛之平面中提供孔徑光闌21。孔徑光闌21用以阻擋零階繞射光束,使得形成於感測器23上之目標之影像係僅由-1或+1一階光束形成。由感測器19及23捕捉之影像經輸出至處理影像之處理器PU,該處理器之功能將取決於正被執行之量測之特定類型。應注意,此處在廣泛意義上使用術語「影像」。因而,若存在-1階及+1階中之僅一者,則將不形成光柵線之影像。
圖3中所展示之孔徑板13及場光闌21之特定形式純粹為實例。在本發明之另一實施例中,使用目標之同軸照明,且使用具有離軸孔徑之孔徑光闌以將實質上僅一個一階繞射光傳遞至感測器。在其他實例中,可使用兩個象限孔徑。此可使得能夠同時偵測加及減階,其中偵測分支中之光楔(或其他合適元件)用以分離該等階以用於成像。在又其他實施例中,代替一階光束或除了一階光束以外,亦在量測中使用二階光束、三階光束及高階光束(圖3中未繪示)。
為了使量測輻射可適應於此等不同類型之量測,孔徑板13可包含圍繞圓盤而形成之許多孔徑圖案,該圓盤旋轉以使所要圖案處於適當位置。應注意,孔徑板13N或13S可僅用以量測在一個方向(取決於設置而為X或Y)上定向之光柵。為了量測正交光柵,可能實施達90°及270°之目標旋轉。圖3之(c)及(d)中展示不同孔徑板。上文所提及之先前已公佈申請案中描述此等孔徑板之使用以及裝置之眾多其他變化及應用。
圖4描繪根據已知實務形成於基板上的疊對目標或複合疊對目標。此實例中之疊對目標包含四個子疊對目標(例如光柵) 32至35,該等子疊對目標接近地定位在一起使得其將皆在由度量衡裝置之度量衡輻射照明光束形成的量測光點31內。因此,該四個子疊對目標皆被同時地照明且同時地成像於感測器23上。在專用於疊對量測之實例中,子目標32至35自身為由在形成於基板W上之半導體器件之不同層中圖案化之上覆光柵形成的複合結構。子目標32至35可具有經不同偏置之疊對偏移,以便促進經形成有複合子目標之不同部分之層之間的疊對之量測。下文中將參看圖7來解釋疊對偏置之涵義。子目標32至35亦可在其定向方面不同(如所展示),以便使入射輻射在X方向及Y方向上繞射。在一項實例中,子目標32及34為分別具有為+d、-d之偏置的X方向子目標。子目標33及35為分別具有偏移+d及-d之Y方向子目標。可在由感測器23捕捉之影像中識別此等子目標之單獨影像。此僅為疊對目標之一個實例。疊對目標可包含多於或少於4個子目標。
圖5展示在使用來自圖3之(d)之孔徑板13NW或13SE的情況下在圖3之裝置中使用圖4之疊對目標而可形成於感測器23上且由感測器23偵測的影像之實例。雖然光瞳平面影像感測器19不能解析不同個別子目標32至35,但影像感測器23可解析不同個別子目標32至35。陰影區域40表示感測器上之影像之場,在此場內,基板上之經照明光點31成像至對應圓形區域41中。在此場內,矩形區域42至45表示小疊對目標子目標32至35之影像。若疊對目標位於產品區域中,則在此影像場之周邊中亦可見產品特徵。影像處理器及控制器PU使用圖案辨識來處理此等影像以識別子目標32至35之單獨影像42至45。以此方式,影像並不必須在感測器框架內之特定部位處極精確地對準,此情形極大地改良量測裝置整體上之產出率。
一旦已識別疊對目標之單獨影像,就可(例如)藉由平均化或求和經識別區域內之選定像素強度值而量測彼等個別影像之強度。可將該等影像之強度及/或其他屬性彼此進行比較。可組合此等結果以量測微影程序之不同參數。疊對效能係此參數之重要實例。
圖6說明如何使用(例如)申請案WO 2011/012624中所描述之方法來量測含有子目標32至35之兩個層之間的疊對(亦即,不當且非故意之橫向位移)。此方法可被稱作以微繞射為基礎之疊對(micro diffraction based overlay;μDBO)。經由如藉由比較疊對目標在+1階及 -1階暗場影像中之強度(可比較其他對應高階之強度,例如,+2階與-2階)以獲得強度不對稱性之量度而揭露的疊對目標不對稱性來進行此量測。在步驟S1處,經由微影裝置(諸如圖2之微影製造單元)而處理基板(例如,半導體晶圓)一或多次,以產生包括子目標32至35之疊對目標。在S2處,在使用圖3之度量衡裝置的情況下,使用一階繞射光束中之僅一者(比如-1)來獲得子目標32至35之影像。在步驟S3處,無論藉由改變照明模式或改變成像模式,抑或藉由在度量衡裝置之視場中使基板W旋轉達180º,皆可使用另一一階繞射光束(+1)來獲得疊對目標之第二影像。因此,在第二影像中捕捉+1繞射輻射。
應注意,藉由使在每一影像中包括一階繞射輻射之僅一半,此處所提及之「影像」不為習知暗場顯微法影像。疊對目標之個別疊對目標線將不被解析。每一疊對目標將簡單地由具有某一強度位準之區域表示。在步驟S4中,在每一組件疊對目標之影像內識別所關注區(ROI),將自該所關注區量測強度位準。
在已識別用於每一個別疊對目標之ROI且已量測其強度的情況下,可接著判定疊對目標之不對稱性且因此判定疊對誤差。在步驟S5中(例如,藉由處理器PU)比較針對每一子目標32至35之+1階及-1階所獲得之強度值以識別其強度不對稱性(例如,其強度之任何差)來進行此判定。術語「差」不意欲係僅指減法。可以比率形式計算差。在步驟S6中,使用用於數個疊對目標之經量測強度不對稱性,連同彼等疊對目標之任何已知經強加疊對偏置之知識,以計算疊對目標T附近之微影程序之一或多個效能參數。極大關注之效能參數為疊對。
圖7展示針對習知的相對較薄堆疊之堆疊敏感度SS相對於波長λ的例示性擺動曲線70。堆疊敏感度描述子目標之間的不對稱性信號之改變,該等子目標藉由其按常數而按比例調整之強度的平均值而正規化。在特定實例中(其他公式化係可能的),堆疊敏感度SS可由以下方程式描述: 其中+d及-d為經強加子目標偏置(具有量值d),C 為正規化此偏置之常數(距離),為+d子目標之正常強度與互補強度之不對稱性量測(強度差) (=)且為-d子目標之正常強度與互補強度之不對稱性量測(強度差)。為針對+1及-1繞射階兩者對兩個子目標+d、-d之強度量測的平均值,亦即,。自此方程式可看到,強度不對稱性愈高,堆疊敏感度愈高。
使用此擺動曲線70,可將波長選擇為使堆疊敏感度最大化,亦即在此特定實例中,可偏好500奈米波長及475奈米或533奈米中之一者用於量測。當選擇波長時亦可考量一個或多個其他準則,且因而有可能可偏好例如475奈米及533奈米波長,或展示相對較高堆疊敏感度之其他波長。然而,應避免具有極小或無堆疊敏感度之波長(例如700奈米或720奈米)。因此,可設定堆疊敏感度臨限值tss ,且僅考慮堆疊敏感度高於此臨限值tss 的彼等波長來執行實際量測。
對於經量測之兩個層之間的距離(在垂直於基板平面之z方向上)並不過大的較薄堆疊,使用諸如上文所描述之繞射度量衡方法的繞射度量衡方法進行(例如疊對)目標之量測較準確。然而,較厚堆疊之量測呈現較大困難。舉例而言,厚堆疊目標可包含在以大距離分離的兩個層中具有光柵之目標(例如針對顯影後檢測或ADI目標)。厚堆疊目標亦可包含所謂的蝕刻後檢測(AEI)或清潔後檢測(ACI)目標。AEI目標為在曝光上部光柵之步驟之後,上部光柵下方之層經蝕刻(在檢測之前)至之目標。ACI目標相似,但其中亦在檢測之前移除光堆疊(抗蝕劑/barc/darc/硬式光罩等)。在此等目標中,頂部目標之底部實際上非常接近於底部目標之頂部。然而,堆疊厚度仍為大的。大厚度可為相對於量測輻射之波長較大的厚度。更具體言之,大厚度可為大於1微米或大於3微米之厚度。詳言之,可觀測到此類厚堆疊之堆疊敏感度依據波長快速地振盪。圖8說明此情形,其展示與圖7之擺動曲線標繪圖相似,但針對厚堆疊目標的擺動曲線標繪圖。實線包含用於厚堆疊目標之經模擬擺動曲線80。振盪週期P係介於約10奈米至24奈米之間,且因此每一峰值之寬度約為5奈米至12奈米。
由於此振盪,應使用以擺動曲線80之峰值中之一者(正或負)或附近為中心或至少以擺動曲線上之堆疊敏感度並不過低之點為中心的足夠窄頻帶輻射之波長來執行量測。然而,雖然一些度量衡裝置可提供可自由選擇的量測輻射之波長,但一些此類裝置之限制為:其無法產生足夠的窄頻帶量測輻射。替代地,由此類度量衡裝置產生之量測輻射之頻寬趨向於大約為10奈米或更大,其大小與擺動曲線80之峰值寬度可相當。此有限頻寬趨向於使堆疊敏感度之平均數達到極低值,如由擺動曲線82 (點線)所指示。此擺動曲線82為與經模擬擺動曲線80之厚堆疊目標相同的厚堆疊目標之實際經量測擺動曲線。擺動曲線82與擺動曲線80之間的唯一差異在於:用以量測目標以獲得擺動曲線82的量測輻射之頻寬係有限的(例如大約為10奈米),而經模擬擺動曲線80展示來自目標之經模擬窄頻帶(例如零頻寬)量測相對於振盪週期之量測回應。自經平均化擺動曲線82可看到,當使用寬頻帶量測輻射時實際上觀測到的堆疊敏感度SS遍及整個波長範圍充分地低於臨限值tss (幾乎不偏離零),且因此運用此寬頻帶量測輻射進行之任何量測將不可靠。
現在將描述使能夠使用寬頻帶量測輻射來可靠量測此類厚堆疊目標,藉此使能夠使用僅能夠產生此寬頻帶輻射的當前度量衡裝置之方法。該方法包含根據偵測到之寬頻帶量測值估計目標之量測參數之窄頻帶量測值。在此內容背景中之寬頻帶量測值為對應於使用寬頻帶輻射執行之量測(例如自使用寬頻帶輻射執行之量測獲得)的目標參數之量測值。所估計窄頻帶量測值為對應於使用窄頻帶輻射執行之量測的量測參數之值的估計值;例如量測輻射為窄頻帶時將已獲得之量測值。舉例而言,量測參數可為強度。
在本發明之內容背景中之「寬頻帶」及「窄頻帶」係相對於另一者而定義,且因而,「窄頻帶」描述窄於「寬頻帶」輻射之頻寬的頻寬。在一實施例中,「寬頻帶」輻射可為實際上用以執行量測之量測輻射;例如實際上自度量衡裝置輸出之輻射。替代地或另外,寬頻帶輻射可為頻寬不足夠窄以捕捉擺動曲線之細節的輻射;例如頻寬具有與對應於窄頻帶輻射之使用的擺動曲線(堆疊敏感度相對於波長)之振盪週期可相當的量值之輻射。作為特定實例,寬頻帶輻射可包含具有大於2奈米、大於3奈米;大於5奈米或大於10奈米之頻寬的輻射。相似地,作為特定實例,窄頻帶輻射可包含具有窄於10奈米、窄於5奈米、窄於1奈米、窄於0.5奈米、窄於0.1奈米之頻寬或零頻寬的輻射,其限制條件為其窄於寬頻帶輻射之頻寬。
該方法包含將與使用寬頻帶量測輻射進行之目標之量測相關的寬頻帶量測值模型化為遍及由該寬頻帶量測輻射之頻寬所界定的範圍之複數個窄頻帶量測值之線性組合。因而,該方法包含根據偵測到之寬頻帶量測值估計如自量測裝置之光學系統輸出之複數個等效窄頻帶量測值(例如窄頻帶強度信號)。
圖9在概念上說明根據一例示性實施例之模型化系統。所提議方法依賴於如下假定:寬頻帶輸出(例如強度)信號可經模型化為窄頻帶信號之線性組合,此等信號為度量衡裝置光學系統OPT之輸出至窄頻帶輸入信號(量測輻射)之估計值: 其中表示具有頻寬之寬頻帶信號的中心波長且表示針對給定中心波長使窄頻帶信號與寬頻帶信號相關的濾波器回應或轉移函數。若假定針對每一中心波長之濾波器回應相同;亦即濾波器回應對中心波長不變,則濾波器回應可被認為以(其被定義於區間中)為中心的基底函數之移位版本;亦即,。因此: 其中∗表示迴旋運算。自方程式3可觀測到,可將窄頻帶信號與寬頻帶信號之間的關係模型化為線性波長不變(linear wavelength invariant; LWI)系統。應注意,此LWI假定針對完整波長範圍可能不成立;然而,可假定其針對特定波長範圍有效。
由於可藉由迴旋模型化實際上量測之寬頻帶信號與窄頻帶信號之間的關係,則可經由使用濾波器回應之解迴旋程序而根據一組經量測之寬頻帶信號來估計所關注信號
在一實施例中,可反覆地執行此解迴旋。此情形可較佳,此係因為系統經欠定,且反覆方法避免了放大另外運用簡單直接解迴旋而可能出現的雜訊。反覆工序可包含使用以下方程式收斂於用於所關注窄頻帶信號之一解:(方程式4) 其中α 為判定收斂速度之可調參數、下標k 表示反覆步驟且為光學系統對頻寬中之窄頻帶輸入信號之(未知)回應的估計值。為了估計光學系統對窄頻帶信號之回應,進行目標之多個寬頻帶量測,每一寬頻帶量測係依據頻寬內之中心波長而移位;亦即,(方程式5) 濾波器回應可為已知的,否則可基於初始推測盲目執行解迴旋。方程式4之演算法開始於之初始估計/推測且繼續對進行反覆,直至收斂於針對窄頻帶信號之最終估計值(解)。隨著演算法收斂,方程式4之右側上之第二迴旋項將接近於零使得對當前反覆k + 1 之新估計值變得極接近於前一反覆k 之估計值
圖10為使用本文中所描述之技術來量測疊對之例示性方法的流程圖。然而應注意,本發明不限於疊對之量測且可用於其他(例如效能)參數之量測,此取決於目標之形式及/或進行之判定。此類參數可包括焦點及/或劑量或臨界尺寸、側壁角或其他結構尺寸參數。
在步驟S11處,經由諸如圖2之微影製造單元的微影裝置處理例如半導體晶圓之基板一或多次,以產生疊對目標(例如厚堆疊疊對目標)。在S12處,使用例如圖3之度量衡裝置,使用僅包含一階/高階繞射光束中之一者(例如+1)之量測輻射來獲得疊對目標之一組第一(正常)影像。歸因於(例如)度量衡裝置之限制,針對每一所獲得影像,量測輻射將為寬頻帶,其如所描述具有有限頻寬。在步驟S13處,使用包含另一一階/高階繞射光束(例如-1)之第二輻射來獲得疊對目標之第二(互補)影像之對應集合。在寬頻帶量測輻射之中心波長(亦即其標稱波長)已經移位至不同值的情況下獲得第一及第二影像中之每一者。中心波長移位所遍及之波長範圍可由在標稱中心波長周圍之量測輻射之頻寬界定(或接近於在標稱中心波長周圍之量測輻射之頻寬)。可同時執行步驟S12及S13 (例如藉由使用光楔來使繞射階分離)。
在步驟S14處,作出光學系統對對應於寬頻帶量測信號之窄頻帶輸入信號之回應的估計。此可使用由方程式4所描述之演算法及使寬頻帶量測值(例如自步驟S12及S13之影像獲得之強度值)與自光學系統輸出之窄頻帶信號相關的濾波器回應反覆地進行。濾波器回應可為已知(例如先前經模型化)濾波器回應,否則可盲目執行解迴旋步驟。此步驟之輸出可為對應於實際上量測之一組寬頻帶量測值的一組所估計之窄頻帶量測值(例如強度量測)。窄頻帶信號之散佈可對應於寬頻帶量測之中心波長之散佈,其之解析度取決於所進行之寬頻帶量測之數目及其頻寬/量測範圍。理論上,根據對應於任何頻寬之寬頻帶量測,可將窄頻帶量測估計為對應於任何(較窄)頻寬。僅有限制係起因於寬頻帶量測之中心移位,及針對特定波長範圍之濾波器回應之一致性。至少一對(互補與正常)此等所估計窄頻帶信號(例如窄頻帶強度值)可經選擇以用於步驟S16處之疊對判定。
在步驟S15處,可對同一目標針對其他選定中心波長重複上述步驟S12至S14一或多次。在每一狀況下之選定中心波長可經選擇為與經模擬擺動曲線(諸如圖8之擺動曲線80)上之峰值(或高於臨限值之任何其他位置)重合。應注意,擺動曲線最大值對應於較佳量測波長之狀況並非必需的。
在步驟S16處,使用來自每一組所估計窄頻帶量測值之至少一對所估計窄頻帶量測值來判定疊對(或其他參數)。
概言之,上述方法描述信號提取及解迴旋技術,其能夠僅使用經量測寬頻帶平均強度來準確地估計窄頻帶平均強度,藉此改良使用產生具有有限頻寬之量測輻射的當前度量衡裝置進行之厚堆疊目標之量測的準確度及可靠度。
雖然以上所描述之目標為出於量測之目的而特定設計及形成之度量衡目標,但在其他實施例中,可在為形成於基板上之器件之功能性部分的目標上量測屬性。許多器件具有規則的類光柵結構。如本文中所使用之術語「目標光柵」及「目標」並不需要已特定針對正被執行之量測來提供結構。另外,度量衡目標之間距P接近於散射計之光學系統之解析度極限,但可比藉由微影程序在目標部分C中製造之典型產品特徵之尺寸大得多。實務上,可將目標內之疊對光柵之線及/或空間製造為包括尺寸上與產品特徵相似之較小結構。
與如實現於基板及圖案化器件上之目標之實體光柵結構相關聯地,一實施例可包括電腦程式,該電腦程式含有機器可讀指令之一或多個序列,該等機器可讀指令描述量測基板上之目標之方法及/或分析量測以獲得關於微影程序之資訊。此電腦程式可執行於例如圖3之裝置中之單元PU及/或圖2之控制單元LACU內。亦可提供其中儲存有此電腦程式之資料儲存媒體(例如半導體記憶體、磁碟或光碟)。在屬於例如圖3所展示之類型之現有度量衡裝置已在生產中及/或在使用中的情況下,可藉由提供經更新電腦程式產品來實施本發明,該等經更新電腦程式產品用於使處理器執行步驟S14至S16且因此計算疊對。
程式可視情況經配置以控制光學系統、基板支撐件及其類似者以執行步驟S12至S13以用於量測關於合適複數個目標之不對稱性。
雖然上文所揭示之實施例依據以繞射為基礎之疊對量測(例如,使用圖3之(a)中所展示之裝置之第二量測分支進行的量測)進行描述,但原則上同一模型可用於以光瞳為基礎之疊對量測(例如,使用圖3之(a)中所展示之裝置之第一量測分支進行的量測)。因此,應瞭解,本文中所描述之概念同樣適用於以繞射為基礎之疊對量測及以光瞳為基礎之疊對量測。
儘管上文可特定地參考在光學微影之內容背景中對本發明之實施例之使用,但應瞭解,本發明可用於其他應用(例如壓印微影)中,且在內容背景允許之情況下不限於光學微影。在壓印微影中,圖案化器件中之構形(topography)界定產生於基板上之圖案。可將圖案化器件之構形壓入被供應至基板之抗蝕劑層中,在基板上,抗蝕劑係藉由施加電磁輻射、熱、壓力或其組合而固化。在抗蝕劑固化之後,將圖案化器件移出抗蝕劑,從而在其中留下圖案。
在以下編號條項中進一步描述根據本發明之另外實施例: 1. 一種判定一基板上之一目標之一效能參數的方法,其包含: 根據與該目標相關之一組寬頻帶量測值估計一組窄頻帶量測值;及 自該組窄頻帶量測值判定該效能參數。 2. 如條項1之方法,其中該等寬頻帶量測值係與使用寬頻帶量測輻射執行之該目標之複數個量測相關,該複數個量測中之至少一些對應於具有不同中心波長之寬頻帶量測輻射。 3. 如條項2之方法,其中該寬頻帶量測輻射之頻寬包含由用以執行該目標之該複數個量測之一量測裝置所產生的量測輻射之一頻寬。 4. 如條項2或3之方法,其包含使用該寬頻帶量測輻射來執行該目標之該複數個量測的初始步驟;該複數個量測包含運用具有一不同中心波長之量測輻射執行之量測,從而獲得該一組寬頻帶量測值。 5. 如任一前述條項之方法,其中該等窄頻帶量測值包含將自使用一頻寬窄於該寬頻帶量測輻射的窄頻帶量測輻射進行之該目標之量測所獲得的該等量測值之一估計值。 6. 如任一前述條項之方法,其中該估計步驟包含將該組寬頻帶量測值模型化為該組窄頻帶量測值之一線性組合。 7. 如任一前述條項之方法,其中該估計步驟進一步包含基於使該等寬頻帶量測值與該等窄頻帶量測值相關的一轉移函數估計該組窄頻帶量測值。 8. 如條項7之方法,其中反覆地執行該估計步驟。 9. 如條項8之方法,其中該估計步驟包含反覆地最小化該等寬頻帶量測值與在運用該轉移函數進行之先前反覆中之該組窄頻帶量測值的一估計值之一迴旋之間的一殘差。 10. 如條項9之方法,其中該估計步驟包含對每一反覆,判定由一收斂參數加權之該殘差與在該先前反覆中之該組窄頻帶量測值的該估計值之和,直至收斂於一最終估計值。 11. 如任一前述條項之方法,其中該效能參數包含疊對。 12. 如任一前述條項之方法,其中該目標在垂直於基板之一平面之一方向上具有大於1微米之一厚度。 13. 一種度量衡裝置,其包含: 一照明系統,其經組態以運用寬頻帶量測輻射照明一目標; 一偵測系統,其經組態以偵測起因於該目標之照明之散射輻射;及 一處理器,其可操作以: 控制該照明系統及該偵測系統以使用該寬頻帶量測輻射執行該目標之複數個量測,從而獲得與該目標相關的一組寬頻帶量測值; 根據該等寬頻帶量測值估計一組窄頻帶量測值;及 自該組窄頻帶量測值判定該效能參數。 14. 如條項13之度量衡裝置,該複數個量測中之至少一些係運用具有一不同中心波長之量測輻射予以執行。 15. 如條項13或14之度量衡裝置,其中該等窄頻帶量測值包含將自使用一頻寬窄於該寬頻帶量測輻射的窄頻帶量測輻射進行之該目標之量測所獲得的該等量測值之一估計值。 16. 如條項13至15中任一項之度量衡裝置,其中該照明系統不能夠產生具有窄於10奈米之一頻寬的量測輻射。 17. 如條項13至15中任一項之度量衡裝置,其中該照明系統不能夠產生具有窄於5奈米之一頻寬的量測輻射。 18. 如條項13至17中任一項之度量衡裝置,其中該處理器經組態以將該組寬頻帶量測值模型化為該組窄頻帶量測值之一線性組合。 19. 如條項13至18中任一項之度量衡裝置,其中該處理器經組態以基於使該等寬頻帶量測值與該等窄頻帶量測值相關的一轉移函數估計該組窄頻帶量測值。 20. 如條項19之度量衡裝置,其中該處理器經組態以反覆地根據該等寬頻帶量測值來估計該組窄頻帶量測值。 21. 如條項20之度量衡裝置,其中該處理器經組態以反覆地最小化該等寬頻帶量測值與在運用該轉移函數進行之先前反覆中之該組窄頻帶量測值的一估計值之一迴旋之間的一殘差。 22. 如條項21之度量衡裝置,其中該處理器經組態以對每一反覆,判定由一收斂參數加權之該殘差與在該先前反覆中之該組窄頻帶量測值的該估計值之和,直至收斂於一最終估計值。 23. 如條項13至22中任一項之度量衡裝置,其中該效能參數包含疊對。 24. 一種電腦程式,其包含處理器可讀指令,該等處理器可讀指令在經執行於合適之處理器控制之裝置上時,致使該處理器控制之裝置執行如條項1至12中任一項之方法。 25. 一種電腦程式載體,其包含如條項24之電腦程式。
本文中所使用之術語「輻射」及「光束」涵蓋所有類型之電磁輻射,包括紫外線(UV)輻射(例如具有為或約為365奈米、355奈米、248奈米、193奈米、157奈米或126奈米之波長)及極紫外線(EUV)輻射(例如具有在5奈米至20奈米之範圍內之波長),以及粒子束,諸如離子束或電子束。
術語「透鏡」在內容背景允許的情況下可指各種類型之組件(包括折射、反射、磁性、電磁及靜電組件)中的任一者或其組合。
對特定實施例之前述描述將因此充分地揭露本發明之一般性質:在不脫離本發明之一般概念的情況下,其他人可藉由應用熟習此項技術者所瞭解之知識針對各種應用而容易地修改及/或調適此等特定實施例,而無需進行不當實驗。因此,基於本文中所呈現之教示及指導,此等調適及修改意欲在所揭示實施例之等效者的涵義及範圍內。應理解,本文中之措辭或術語係出於例如描述而非限制之目的,以使得本說明書之術語或措辭待由熟習此項技術者按照該等教示及該指導進行解譯。
本發明之廣度及範疇不應受上述例示性實施例中之任一者限制,而應僅根據以下申請專利範圍及其等效者進行界定。
0‧‧‧零階射線/繞射射線
+1‧‧‧一階射線/繞射射線
-1‧‧‧一階射線/繞射射線
+1(N)‧‧‧+1繞射射線
-1(S)‧‧‧-1繞射射線
11‧‧‧源
12‧‧‧透鏡
13‧‧‧孔徑板
13E‧‧‧孔徑板
13N‧‧‧孔徑板
13NW‧‧‧孔徑板
13S‧‧‧孔徑板
13SE‧‧‧孔徑板
13W‧‧‧孔徑板
14‧‧‧透鏡
15‧‧‧光束分裂器
16‧‧‧物鏡/透鏡
17‧‧‧第二光束分裂器
18‧‧‧光學系統
19‧‧‧第一感測器/光瞳平面影像感測器
20‧‧‧光學系統
21‧‧‧孔徑光闌
22‧‧‧光學系統
23‧‧‧影像感測器
31‧‧‧量測光點
32‧‧‧子疊對目標/子目標
33‧‧‧子疊對目標/子目標
34‧‧‧子疊對目標/子目標
35‧‧‧子疊對目標/子目標
40‧‧‧陰影區域
41‧‧‧圓形區域
42‧‧‧矩形區域/影像
43‧‧‧矩形區域/影像
44‧‧‧矩形區域/影像
45‧‧‧矩形區域/影像
70‧‧‧擺動曲線
80‧‧‧擺動曲線
82‧‧‧擺動曲線
AD‧‧‧調整器
AS‧‧‧對準感測器
B‧‧‧輻射光束
BD‧‧‧光束遞送系統
BK‧‧‧烘烤板
C‧‧‧目標部分
CH‧‧‧冷卻板
CO‧‧‧聚光器
DE‧‧‧顯影器
hF‧‧‧濾波器回應
I‧‧‧量測輻射射線/入射射線
IF‧‧‧位置感測器
IL‧‧‧照明光學系統/照明器
IN‧‧‧積光器
I/O1‧‧‧輸入/輸出埠
I/O2‧‧‧輸入/輸出埠
LA‧‧‧微影裝置
LACU‧‧‧微影控制單元
LB‧‧‧裝載匣
LC‧‧‧微影製造單元
LS‧‧‧位階感測器
M1‧‧‧光罩對準標記
M2‧‧‧光罩對準標記
MA‧‧‧圖案化器件
MT‧‧‧圖案化器件支撐件或支撐結構/光罩台
O‧‧‧光軸
OPT‧‧‧度量衡裝置光學系統
P‧‧‧振盪週期
P1‧‧‧基板對準標記
P2‧‧‧基板對準標記
PM‧‧‧第一定位器
PS‧‧‧投影光學系統
PU‧‧‧處理器
PW‧‧‧第二定位器
RO‧‧‧基板處置器或機器人
ROI‧‧‧所關注區
SC‧‧‧旋塗器
SCS‧‧‧監督控制系統
SO‧‧‧輻射源
S1‧‧‧步驟
S2‧‧‧步驟
S3‧‧‧步驟
S4‧‧‧步驟
S5‧‧‧步驟
S6‧‧‧步驟
S11‧‧‧步驟
S12‧‧‧步驟
S13‧‧‧步驟
S14‧‧‧步驟
S15‧‧‧步驟
S16‧‧‧步驟
T‧‧‧度量衡目標
TCU‧‧‧塗佈顯影系統控制單元
W‧‧‧基板
WTa‧‧‧基板台
WTb‧‧‧基板台
現在將參看隨附圖式僅作為實例來描述本發明之實施例,在該等圖式中: 圖1描繪根據本發明之一實施例之微影裝置; 圖2描繪根據本發明之一實施例之微影製造單元或叢集; 圖3包含(a)用於使用第一對照明孔徑來量測目標之暗場散射計的示意圖;(b)用於給定照明方向之目標光柵之繞射光譜的細節;(c)在使用散射計以用於以繞射為基礎之疊對量測時提供另外照明模式之第二對照明孔徑;及(d)組合第一對孔徑與第二對孔徑之第三對照明孔徑; 圖4描繪基板上的已知形式之多重光柵目標及量測光點之輪廓; 圖5描繪圖3之散射計中獲得的圖4之目標之影像; 圖6為展示使用圖3之散射計之疊對量測方法之步驟的流程圖; 圖7展示針對薄堆疊目標之堆疊敏感度相對於波長的例示性擺動曲線標繪圖; 圖8展示針對厚堆疊目標之堆疊敏感度相對於波長的例示性經模擬擺動曲線標繪圖,及自使用寬頻帶量測輻射執行之實際量測獲得的針對厚堆疊目標之對應經量測擺動曲線標繪圖; 圖9在概念上說明根據本發明之一例示性實施例的模型化系統;及 圖10為描述根據本發明之一實施例的判定諸如疊對之效能參數之方法的流程圖。

Claims (12)

  1. 一種判定一基板上之一目標之一效能參數的方法,其包含: 根據與該目標相關之一組寬頻帶量測值估計一組窄頻帶量測值;及 自該組窄頻帶量測值判定該效能參數。
  2. 如請求項1之方法,其中該等寬頻帶量測值係與使用寬頻帶量測輻射執行之該目標之複數個量測相關,該複數個量測中之至少一些對應於具有不同中心波長之寬頻帶量測輻射。
  3. 如請求項2之方法,其中該寬頻帶量測輻射之頻寬包含由用以執行該目標之該複數個量測之一量測裝置所產生的量測輻射之一頻寬。
  4. 如請求項2或3之方法,其包含使用該寬頻帶量測輻射來執行該目標之該複數個量測的初始步驟;該複數個量測包含運用具有一不同中心波長之量測輻射執行之量測,從而獲得該一組寬頻帶量測值。
  5. 如請求項1至3中任一項之方法,其中該等窄頻帶量測值包含將自使用一頻寬窄於該寬頻帶量測輻射的窄頻帶量測輻射進行之該目標之量測所獲得的該等量測值之一估計值。
  6. 如請求項1至3中任一項之方法,其中該估計步驟包含:將該組寬頻帶量測值模型化為該組窄頻帶量測值之一線性組合。
  7. 如請求項1至3中任一項之方法,其中該估計步驟進一步包含:基於使該等寬頻帶量測值與該等窄頻帶量測值相關的一轉移函數估計該組窄頻帶量測值。
  8. 如請求項7之方法,其中反覆地執行該估計步驟。
  9. 如請求項8之方法,其中該估計步驟包含反覆地最小化該等寬頻帶量測值與在運用該轉移函數進行之先前反覆中之該組窄頻帶量測值的一估計值之一迴旋之間的一殘差。
  10. 如請求項9之方法,其中該估計步驟包含對每一反覆,判定由一收斂參數加權之該殘差與在該先前反覆中之該組窄頻帶量測值的該估計值之和,直至收斂於一最終估計值。
  11. 如請求項1至3中任一項之方法,其中該效能參數包含疊對。
  12. 如請求項1至3中任一項之方法,其中該目標在垂直於基板之一平面之一方向上具有大於1微米之一厚度。
TW107128395A 2017-08-15 2018-08-15 度量衡方法、裝置及電腦程式 TW201921137A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17186295.6A EP3444676A1 (en) 2017-08-15 2017-08-15 Metrology method, apparatus and computer program
??EP17186295 2017-08-15

Publications (1)

Publication Number Publication Date
TW201921137A true TW201921137A (zh) 2019-06-01

Family

ID=59631635

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107128395A TW201921137A (zh) 2017-08-15 2018-08-15 度量衡方法、裝置及電腦程式

Country Status (4)

Country Link
US (1) US10794693B2 (zh)
EP (1) EP3444676A1 (zh)
TW (1) TW201921137A (zh)
WO (1) WO2019034411A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4224254A1 (en) * 2022-02-04 2023-08-09 ASML Netherlands B.V. Metrology method and associated metrology device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3690632B2 (ja) * 1998-03-17 2005-08-31 株式会社小松製作所 狭帯域モジュールの検査装置
NL1036245A1 (nl) 2007-12-17 2009-06-18 Asml Netherlands Bv Diffraction based overlay metrology tool and method of diffraction based overlay metrology.
NL1036597A1 (nl) 2008-02-29 2009-09-01 Asml Netherlands Bv Metrology method and apparatus, lithographic apparatus, and device manufacturing method.
KR101429629B1 (ko) 2009-07-31 2014-08-12 에이에스엠엘 네델란즈 비.브이. 계측 방법 및 장치, 리소그래피 시스템, 및 리소그래피 처리 셀
KR20120058572A (ko) 2009-08-24 2012-06-07 에이에스엠엘 네델란즈 비.브이. 메트롤로지 방법 및 장치, 리소그래피 장치, 리소그래피 처리 셀 및 메트롤로지 타겟들을 포함하는 기판
NL2007425A (en) 2010-11-12 2012-05-15 Asml Netherlands Bv Metrology method and apparatus, and device manufacturing method.
WO2017216242A1 (en) * 2016-06-15 2017-12-21 Carl Zeiss Meditec Ag Efficient sampling of optical coherence tomography data for explicit ranging over extended depth
EP3293574A1 (en) 2016-09-09 2018-03-14 ASML Netherlands B.V. Metrology method, apparatus and computer program
US11815347B2 (en) * 2016-09-28 2023-11-14 Kla-Tencor Corporation Optical near-field metrology

Also Published As

Publication number Publication date
WO2019034411A1 (en) 2019-02-21
US20190056220A1 (en) 2019-02-21
US10794693B2 (en) 2020-10-06
EP3444676A1 (en) 2019-02-20

Similar Documents

Publication Publication Date Title
US10331041B2 (en) Metrology method and apparatus, lithographic system and device manufacturing method
TWI651514B (zh) 用於量測微影程序之參數的度量衡方法及裝置、非暫態電腦可讀媒體及微影系統
US8797554B2 (en) Determining a structural parameter and correcting an asymmetry property
TWI618988B (zh) 決定臨界尺寸相關特性之方法、檢測裝置及器件製造方法
TWI712772B (zh) 度量衡方法、裝置及電腦程式
IL266447B1 (en) Design and repair using stack diff
TWI723285B (zh) 用於判定圖案化製程參數的方法和系統、度量衡設備、及非暫時性電腦程式產品
TWI673576B (zh) 度量衡方法及裝置及相關電腦產品
WO2016124393A1 (en) Metrology method and apparatus, computer program and lithographic system
TWI711894B (zh) 度量衡方法、圖案化裝置、設備及電腦程式
TW201917491A (zh) 度量衡參數判定及度量衡配方選擇
TW201832015A (zh) 度量衡方法、裝置及電腦程式
TWI716729B (zh) 度量衡方法、設備及系統、量測方法及其相關非暫時性電腦程式產品
TWI756417B (zh) 度量衡參數判定及度量衡配方選擇
TW201921127A (zh) 度量衡方法及裝置及電腦程式
TWI734284B (zh) 用於判定微影製程之效能參數之目標
TWI734983B (zh) 度量衡方法、裝置及電腦程式
TWI793593B (zh) 包含目標配置之基板及相關聯之至少一個圖案化裝置、微影方法及度量衡方法
TWI790651B (zh) 改良所關注參數之量測的方法、處理配置、微影設備及度量衡設備
TW201921137A (zh) 度量衡方法、裝置及電腦程式
TWI792789B (zh) 量測基板上之目標之方法
TW202340851A (zh) 包含目標配置之基板和其相關聯的至少一個圖案化裝置、微影方法及度量衡方法