TW201918908A - Method for detcting deterioation defect of a strcutural part using structual unit - Google Patents

Method for detcting deterioation defect of a strcutural part using structual unit Download PDF

Info

Publication number
TW201918908A
TW201918908A TW107107654A TW107107654A TW201918908A TW 201918908 A TW201918908 A TW 201918908A TW 107107654 A TW107107654 A TW 107107654A TW 107107654 A TW107107654 A TW 107107654A TW 201918908 A TW201918908 A TW 201918908A
Authority
TW
Taiwan
Prior art keywords
tested
degradation
modal parameters
structural
structural unit
Prior art date
Application number
TW107107654A
Other languages
Chinese (zh)
Other versions
TWI715830B (en
Inventor
蔡曜隆
王立華
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to CN201810436422.1A priority Critical patent/CN109765038B/en
Priority to US16/111,033 priority patent/US10801914B2/en
Publication of TW201918908A publication Critical patent/TW201918908A/en
Application granted granted Critical
Publication of TWI715830B publication Critical patent/TWI715830B/en

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

A method for detecting deterioration defect of a structural part using structural units includes the following steps: defining a first base structural unit and obtaining N first base modal parameters related to the first base structural unit; detecting M first subject structural units included in the subject structural part to obtain N first actual modal parameters related each first subject structural units; calculating M*N first subject modal parameters related to the M first subject structural units according to the N first actual modal parameters related to each of the M first subject structural units and M*N pieces of first predetermined ratio information stored in a database; determining whether each first subject structural unit has a deterioration defect or not by comparing the M*N first subject modal parameters to the N first base modal parameters respectively. Each first subject structural unit has the same type as the first base structural unit.

Description

應用結構單元的結構件之劣化偵測方法Deterioration detection method for structural components of structural units

本發明係關於一種結構件之劣化偵測方法,特別是一種應用結構單元的結構件之劣化偵測方法。The present invention relates to a method for detecting degradation of a structural member, and more particularly to a method for detecting degradation of a structural member using a structural unit.

工業管線經常因異常而發生洩漏,最終導致重大災害。一般來說,工業管線之異常原因可能係為人為因素或是管路/設備的材料劣化。雖然各家廠商對此已開發一種監測系統,以期降低此類災害的發生機率。然而,該種監測系統概念係基於監控製程參數、分析運轉狀態與性能表現,其仍缺乏劣化偵測功能。Industrial pipelines often leak due to anomalies, which ultimately lead to major disasters. In general, the cause of an abnormality in an industrial pipeline may be due to human factors or material degradation of the piping/equipment. Although various manufacturers have developed a monitoring system to reduce the incidence of such disasters. However, this type of monitoring system is based on monitoring process parameters, analyzing operating conditions and performance, and still lacks degradation detection.

當前的工業管線安全監控的主要技術缺點歸納如下:其一是現場所建置的環境或製程參數感測器多係用於製程監控以調節生產流程,其缺少適當的邏輯判斷分析之安全診斷模組。其二、缺少可遠距感知劣化之監測技術,常用之非破壞檢測技術只適用於感測器所在之局部管線位置,且該類之偵測技術只能在管線破裂流體逸出時才能感知,並無法在劣化發生時提前發出預警訊號。其三、工業廠區運轉環境隨著系統、結構及組件而有所不同,感測器必須具有克服高溫/高濕環境與長期監測的耐久性需求。The main technical shortcomings of current industrial pipeline safety monitoring are summarized as follows: First, the environmental or process parameter sensors built on the site are used for process monitoring to regulate the production process, and the lack of proper logic judgment analysis safety diagnostic mode. group. Second, there is a lack of monitoring technology for remote sensing degradation. The commonly used non-destructive detection technology is only applicable to the local pipeline location where the sensor is located, and the detection technology of this type can only be sensed when the pipeline rupture fluid escapes. It is not possible to issue an early warning signal when deterioration occurs. Third, the operating environment of the industrial plant varies with the system, structure and components. The sensor must have the durability requirement to overcome the high temperature/high humidity environment and long-term monitoring.

也就是說,受到傳統的管線檢測方法及技術的限制,管線的損壞或劣化難以即時地被察覺,因而喪失即時維修與應變的良好時機。更且,由於構成整個管線系統的網路通常極為龐大,此亦係難以建置偵測管線經長期使用所產生之劣化的預警報系統的主因。因此,於工業安全的領域中,需要開發診斷監測相關技術,以建立完整之管線安全監控體系。That is to say, due to the limitations of conventional pipeline detection methods and techniques, it is difficult to detect damage or deterioration of the pipeline immediately, thus losing a good opportunity for immediate maintenance and strain. Moreover, since the network constituting the entire pipeline system is usually extremely large, it is also difficult to construct a main cause of detecting a deterioration of the pre-alarm system caused by long-term use of the pipeline. Therefore, in the field of industrial safety, it is necessary to develop diagnostic monitoring related technologies to establish a complete pipeline safety monitoring system.

本發明提出一種應用結構單元的結構件之劣化偵測方法,旨在於定義適當的結構單元,且將所偵測到的結構件之振動訊號反應調整成各區域所對應之結構單元的振動反應,分別進行劣化診斷,從而達到整體結構件線上劣化監測之目的。The invention provides a method for detecting degradation of a structural component using a structural unit, which aims to define an appropriate structural unit and adjust the vibration signal response of the detected structural member to the vibration response of the structural unit corresponding to each region. Deterioration diagnosis is performed separately to achieve the purpose of deterioration monitoring on the entire structural member line.

依據本發明之一實施例揭露一種應用結構單元的結構件之劣化偵測方法,包含定義第一基礎結構單元且取得第一基礎結構單元的N個第一基礎模態參數。以設置於一待測結構件上的M個第一感測器分別對應地偵測待測結構件所包含的M個第一待測結構單元以取得每個第一待測結構單元的N個第一實際模態參數。每個第一待測結構單元與該第一基礎結構單元具有相同型態。以電性連接該些第一感測器的處理器依據該M個第一待測結構單元的該N個第一實際模態參數及資料庫內的M*N個第一預設比例資訊,運算出該M個第一待測結構單元的M*N個第一待測模態參數。以處理器將該M*N個第一待測模態參數分別比對該N個第一基礎模態參數,據以判斷每個第一待測結構單元是否存在一劣化缺陷。其中該M*N個第一預設比例資訊係關聯於該N個第一基礎模態參數與M*N個第一預設模態參數。According to an embodiment of the invention, a method for detecting degradation of a structural component using a structural unit includes disclosing a first basic structural unit and obtaining N first basic modal parameters of the first basic structural unit. Detecting, by the M first sensors disposed on a structure to be tested, respectively, M first structural units to be tested included in the structural component to be tested to obtain N N of each first structural unit to be tested The first actual modal parameter. Each of the first structural units to be tested has the same type as the first basic structural unit. The processor electrically connecting the first sensors is configured according to the N first actual modal parameters of the M first structural units to be tested and the M*N first preset ratio information in the database, Calculating M*N first modal parameters to be tested of the M first structural units to be tested. The processor compares the M*N first modal parameters to be compared with the N first basic modal parameters, respectively, to determine whether each of the first structural units to be tested has a degradation defect. The M*N first preset ratio information is associated with the N first basic modal parameters and the M*N first preset modal parameters.

綜上所述,在本發明的應用結構單元的結構件之劣化偵測方法中,主要係先定義適當的基礎結構單元且取得其基礎模態參數,接著再取得欲偵測之結構件的各結構單元之對應的實際模態參數,搭配資料庫內的預設比例資訊,以運算待測模態參數用於比對基礎模態參數,從而分別對各結構單元進行劣化偵測,最終可達成整體結構件線上劣化監測之目的。In summary, in the method for detecting degradation of structural components of the application structural unit of the present invention, the main structural unit is first defined and the basic modal parameters are obtained, and then the structural components to be detected are obtained. The corresponding actual modal parameters of the structural unit are matched with the preset proportion information in the database, and the modal parameters to be tested are used to compare the basic modal parameters, thereby respectively performing degradation detection on each structural unit, and finally achieving The purpose of deterioration monitoring on the whole structural part line.

以上之關於本揭露內容之說明及以下之實施方式之說明係用以示範與解釋本發明之精神與原理,並且提供本發明之專利申請範圍更進一步之解釋。The above description of the disclosure and the following description of the embodiments of the present invention are intended to illustrate and explain the spirit and principles of the invention, and to provide further explanation of the scope of the invention.

以下在實施方式中詳細敘述本發明之詳細特徵以及優點,其內容足以使任何熟習相關技藝者了解本發明之技術內容並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖式,任何熟習相關技藝者可輕易地理解本發明相關之目的及優點。以下之實施例係進一步詳細說明本發明之觀點,但非以任何觀點限制本發明之範疇。The detailed features and advantages of the present invention are set forth in the Detailed Description of the Detailed Description of the <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> </ RTI> <RTIgt; The objects and advantages associated with the present invention can be readily understood by those skilled in the art. The following examples are intended to describe the present invention in further detail, but are not intended to limit the scope of the invention.

請一併參照圖1至圖3。圖1及圖2係依據本發明之一實施例所分別繪示的第一基礎結構單元及待測結構件的示意圖。而圖3係為依據本發明之一實施例所繪示的應用結構單元的結構件之劣化偵測方法的方法流程圖。如圖所示,首先,於步驟S301中,定義第一基礎結構單元BP0且取得第一基礎結構單元BP0的多個第一基礎模態參數 P01~P05。於實務上,針對各種模態的結構件,可由結構件之模態識別作業中,實際測得之結構件模態與欲監測區域,以定義出適合的結構單元之尺寸。Please refer to FIG. 1 to FIG. 3 together. 1 and 2 are schematic diagrams showing a first basic structural unit and a structural member to be tested, respectively, according to an embodiment of the present invention. FIG. 3 is a flowchart of a method for detecting a degradation of a structural component of a structural unit according to an embodiment of the invention. As shown in the figure, first, in step S301, the first basic structural unit BP0 is defined and a plurality of first basic modal parameters P01 to P05 of the first basic structural unit BP0 are obtained. In practice, for structural parts of various modalities, the modality of the structural member can be identified, and the actual modality of the structural member and the area to be monitored are determined to define the size of the suitable structural unit.

於步驟S303中,以設置於待測結構件TP上的多個第一感測器10、12及14分別對應地偵測待測結構件TP所包含的個第一待測結構單元TPA~TPC以取得每個第一待測結構單元的多個第一實際模態參數。於此實施例中,第一待測結構單元TPA具有第一實際模態參數PA1~PA5、第一待測結構單元TPB具有第一實際模態參數PB1~PB5且第一待測結構單元TPC具有第一實際模態參數PC1~PC5。In step S303, the plurality of first sensors 10, 12, and 14 disposed on the structural member TP to be tested respectively respectively detect the first structural unit to be tested TPA~TPC included in the structural member TP to be tested. Obtaining a plurality of first actual modal parameters of each of the first structural units to be tested. In this embodiment, the first structural unit to be tested TPA has a first actual modal parameter PA1~PA5, the first structural unit to be tested TPB has a first actual modal parameter PB1~PB5, and the first structural unit to be tested TPC has The first actual modal parameters PC1~PC5.

於此實施例中,每個第一待測結構單元與第一基礎結構單元具有相同型態。如圖1及圖2所示,所述的相同型態係指每個第一待測結構單元TPA~TPC及第一基礎結構單元BP0均係為直管型態且具有相同尺寸。然而,上述實施例的直管型態僅係用於舉例說明,本發明不以此為限。於步驟S305中,以電性連接該些第一感測器10~14的處理器20依據該些個第一待測結構單元TPA~TPC的該些個第一實際模態參數PA1~PA5、PB1~PB5與PC1~PC5以及資料庫30內的多個第一預設比例資訊R1~R15,運算出該些個第一待測結構單元TPA~TPC的該些第一待測模態參數TA1~TA5、TB1~TB5與TC1~TC5。於步驟S307中,以處理器20將該些第一待測模態參數TA1~TA5、TB1~TB5與TC1~TC5分別比對該些第一基礎模態參數P01~P05,據以判斷每個第一待測結構單元是否存在一劣化缺陷。In this embodiment, each of the first structural units to be tested has the same type as the first basic structural unit. As shown in FIG. 1 and FIG. 2, the same type means that each of the first structural units to be tested TPA~TPC and the first basic structural unit BP0 are in a straight tube type and have the same size. However, the straight tube type of the above embodiment is for illustrative purposes only, and the invention is not limited thereto. In step S305, the processor 20 electrically connected to the first sensors 10~14 is configured according to the first actual modal parameters PA1~PA5 of the first to-be-tested structural units TPA~TPC, PB1~PB5 and PC1~PC5 and a plurality of first preset ratio information R1~R15 in the database 30, and calculating the first first modal parameters TA1 of the first to-be-tested structural units TPA~TPC ~TA5, TB1~TB5 and TC1~TC5. In step S307, the processor 20 compares the first to-be-tested modal parameters TA1~TA5, TB1~TB5, and TC1~TC5 to the first basic modal parameters P01~P05, respectively, to determine each Whether the first structural unit to be tested has a deterioration defect.

於一個實際的例子中,前述的模態參數可以係為結構單元的特性頻率。舉例來說,第一基礎模態參數 P01~P05可以包含第一基礎結構單元BP0的特性頻率。第一實際模態參數PA1~PA5、PB1~PB5與PC1~PC5可以分別包含第一待測結構單元TPA~TPC的特性頻率。於實務上,取得模態參數的方式可以係藉由激振器使結構單元產生震動,再透過時頻域轉換而達成。於此實施例中,該些第一預設比例資訊R1~R15係關聯於該些第一基礎模態參數P01~P05與多個第一預設模態參數IPA1~IPA5、IPB1~IPB5及IPC1~IPC5。請進一步參照圖4,圖4係依據本發明之一實施例所繪示的多個第一模擬結構單元的示意圖。於一實施例中,所述的結構件之劣化偵測方法更包含自多個第一模擬結構單元IPA~IPC上分別取得該些第一預設模態參數IPA1~IPA5、IPB1~IPB5及IPC1~IPC5,且將該些第一基礎模態參數P01~P05與該些第一預設模態參數IPA1~IPA5、IPB1~IPB5及IPC1~IPC5分別進行相除,據以取得出該些第一預設比例資訊R1~R15。In a practical example, the aforementioned modal parameters may be the characteristic frequencies of the structural units. For example, the first basic modal parameters P01~P05 may include the characteristic frequency of the first basic structural unit BP0. The first actual modal parameters PA1~PA5, PB1~PB5 and PC1~PC5 may respectively contain characteristic frequencies of the first structural unit to be tested TPA~TPC. In practice, the way to obtain the modal parameters can be achieved by the vibration of the structural unit by the exciter and then by the time-frequency domain conversion. In this embodiment, the first preset ratio information R1 R R15 is associated with the first basic modal parameters P01~P05 and the plurality of first preset modal parameters IPA1~IPA5, IPB1~IPB5, and IPC1. ~IPC5. Please refer to FIG. 4, which is a schematic diagram of a plurality of first analog structural units according to an embodiment of the invention. In an embodiment, the method for detecting degradation of the structural component further includes obtaining the first preset modal parameters IPA1~IPA5, IPB1~IPB5, and IPC1 from the plurality of first analog structural units IPA~IPC. ~IPC5, and the first basic modal parameters P01~P05 are respectively separated from the first preset modal parameters IPA1~IPA5, IPB1~IPB5 and IPC1~IPC5, respectively, to obtain the first Preset ratio information R1~R15.

具體來說,處理器20將第一預設模態參數IPA1~IPA5分別與該些第一基礎模態參數P01~P05相除,以取得第一預設比例資訊R1~R5,且將第一預設模態參數IPB1~IPB5分別與該些第一基礎模態參數P01~P05相除,以取得第一預設比例資訊R6~R10,且將第一預設模態參數IPC1~IPC5分別與該些第一基礎模態參數P01~P05相除,以取得第一預設比例資訊R10~R15。於實務上,所述的第一預設比例資訊R1~R15係為預先儲存於資料庫30內的資訊,主要係用於供處理器20將其與第一實際模態參數PA1~PA5、PB1~PB5與PC1~PC5進行相乘運算,以推得第一待測結構單元TPA~TPC個別具有之第一待測模態參數TA1~TA5、TB1~TB5與TC1~TC5。接著,處理器20逐一比對第一待測模態參數TA1~TA5、TB1~TB5與TC1~TC5是否分別與該些第一基礎模態參數P01~P05相符。若第一待測模態參數與第一基礎模態參數符合,則處理器20判斷該第一預設模態參數不具有劣化缺陷。反之,若第一待測模態參數與第一基礎模態參數不符合,則處理器20判斷該第一預設模態參數具有劣化缺陷。Specifically, the processor 20 divides the first preset modal parameters IPA1~IPA5 with the first basic modal parameters P01~P05 to obtain the first preset ratio information R1~R5, and the first The preset modal parameters IPB1~IPB5 are respectively separated from the first basic modal parameters P01~P05 to obtain the first preset proportion information R6~R10, and the first preset modal parameters IPC1~IPC5 are respectively The first basic modal parameters P01~P05 are divided to obtain the first preset ratio information R10~R15. In practice, the first preset ratio information R1 R R15 is information pre-stored in the database 30, and is mainly used by the processor 20 to compare it with the first actual modal parameters PA1~PA5, PB1. ~PB5 is multiplied by PC1~PC5 to derive the first modal parameters TA1~TA5, TB1~TB5 and TC1~TC5 which are respectively determined by the first structural unit to be tested TPA~TPC. Next, the processor 20 compares the first modal parameters TA1~TA5, TB1~TB5, and TC1~TC5 with the first basic modal parameters P01~P05, respectively. If the first modal parameter to be tested matches the first basic modal parameter, the processor 20 determines that the first preset modal parameter does not have a degradation defect. On the other hand, if the first modal parameter to be tested does not match the first basic modal parameter, the processor 20 determines that the first preset modal parameter has a degradation defect.

於此實施例中,每個第一模擬結構單元IPA~IPC與第一基礎結構單元BP0具有相同型態。所述的相同型態係指每個第一模擬結構單元IPA~IPC及第一基礎結構單元BP0均具有相同物理性質,例如為直管型態且具有相同尺寸、密度、剛性等性質。本發明所提供的結構件之劣化偵測方法可以藉由預設的第一預設比例資訊及實際模態參數而回推待測模態參數,且以回推得到的待測模態參數與基礎模態參數進行比較,進而判斷結構件中的哪些結構單元係具有劣化缺陷。換言之,整體結構件之任一區域均可經比例關係回推至單純的結構單元狀態來進行診斷,此種診斷方式可節省大量的客製資料庫建立,並提升智慧診斷學習效率與經驗分享。上述實施例所示的結構單元的數量以及模態參數的數量均係為用於舉例說明,本發明不以上述實施例為限。In this embodiment, each of the first analog structural units IPA~IPC has the same type as the first basic structural unit BP0. The same type means that each of the first analog structural units IPA~IPC and the first basic structural unit BP0 have the same physical properties, such as a straight tube type and have the same size, density, rigidity and the like. The method for detecting degradation of the structural component provided by the present invention can push back the modal parameter to be measured by using the preset first preset ratio information and the actual modal parameter, and the modal parameter to be measured obtained by the pushback is The basic modal parameters are compared to determine which structural units in the structural member have degradation defects. In other words, any area of the overall structural member can be retrospectively scaled to a simple structural unit state for diagnosis. This diagnostic method can save a large number of custom database establishment, and improve the efficiency and experience sharing of intelligent diagnosis learning. The number of structural units and the number of modal parameters shown in the above embodiments are for illustrative purposes, and the present invention is not limited to the above embodiments.

於一實施例中,所述的結構件之劣化偵測方法更包含在取得每個第一待測結構單元TPA~TPC的該些第一實際模態參數PA1~PA5、PB1~PB5及PC1~PC5之前的一段預設時間△T前,自該些第一待測結構單元TPA~TPC上分別取得該些第一預設模態參數IPA1~IPA5、IPB1~IPB5及IPC1~IPC5,且將該些第一基礎模態參數P01~P05與該些第一預設模態參數IPA1~IPA5、IPB1~IPB5及IPC1~IPC5分別進行相除,據以取得出該些第一預設比例資訊R1~R15。具體來說,於第一時點先自該些第一待測結構單元TPA~TPC上取得該些第一預設模態參數IPA1~IPA5、IPB1~IPB5及IPC1~IPC5。在第一時點中,所述的第一待測結構單元TPA~TPC係為無劣化缺陷的結構單元。而自第一時點經過一段預設時間△T後的第二時點,由於各種因素可能導致所述的第一待測結構單元TPA~TPC的至少其中之一具有劣化缺陷。換言之,不同於前述實施例所使用的該些第一模擬結構單元IPA~IPC,於此實施例中,該些第一預設模態參數IPA1~IPA5、IPB1~IPB5及IPC1~IPC5係在第一待測結構單元TPA~TPC發生劣化缺陷之前先取得,而不需額外建構該些第一模擬結構單元IPA~IPC。藉此,可以減少額外的模擬結構單元之建構成本與時間。In an embodiment, the method for detecting degradation of the structural component further includes obtaining the first actual modal parameters PA1~PA5, PB1~PB5, and PC1~ of each of the first structural units to be tested TPA~TPC. Before the preset time ΔT before the PC5, the first preset modal parameters IPA1~IPA5, IPB1~IPB5 and IPC1~IPC5 are respectively obtained from the first to-be-tested structural units TPA~TPC, and the The first basic modal parameters P01~P05 are respectively separated from the first preset modal parameters IPA1~IPA5, IPB1~IPB5 and IPC1~IPC5, respectively, and the first preset proportion information R1~ is obtained. R15. Specifically, the first preset modal parameters IPA1~IPA5, IPB1~IPB5, and IPC1~IPC5 are obtained from the first to-be-tested structural units TPA~TPC at the first time. In the first time point, the first structural unit to be tested TPA~TPC is a structural unit without degradation defects. And at a second time point after a predetermined time ΔT elapses from the first time point, at least one of the first to-be-tested structural units TPA~TPC may have a deterioration defect due to various factors. In other words, different from the first analog structural units IPA~IPC used in the foregoing embodiments, in the embodiment, the first preset modal parameters IPA1~IPA5, IPB1~IPB5, and IPC1~IPC5 are in the first A structural unit to be tested TPA~TPC is obtained before the degradation defect occurs, and the first analog structural units IPA~IPC need not be additionally constructed. Thereby, it is possible to reduce the construction cost and time of the additional analog structural unit.

請一併參照圖5A至圖7。圖5A係依據本發明之另一實施例所繪示的第一基礎結構單元的示意圖,而圖5B係依據本發明之一實施例所繪示的二基礎結構單元的示意圖。圖6係依據本發明之另一實施例所繪示的待測結構件的示意圖。而圖7係為依據本發明之另一實施例所繪示的應用結構單元的結構件之劣化偵測方法的方法流程圖。相仿於前述圖1至圖3的實施例,於此圖5A至圖7的實施例中,於步驟S501中,定義第一基礎結構單元BP1(如圖5A所示)且取得第一基礎結構單元BP1的多個第一基礎模態參數 P01’~P05’。 於步驟S503中,以設置於待測結構件TP’上的多個第一感測器40、42及44分別對應地偵測待測結構件TP’所包含的個第一待測結構單元TPA’~TPC’以取得每個第一待測結構單元的多個第一實際模態參數。於此實施例中,第一待測結構單元TPA’具有多個第一實際模態參數PA1’~PA5’。第一待測結構單元TPB’具有多個第一實際模態參數PB1’~PB5’。而第一待測結構單元TPC’具有多個第一實際模態參數PC1’~PC5’。於步驟S305中,以電性連接該些第一感測器40~44的處理器50依據該些個第一待測結構單元TPA’~TPC’的該些個第一實際模態參數PA1’~PA5’、PB1’~PB5’與PC1’~PC5’以及資料庫60內的多個第一預設比例資訊R1’~R15’,運算出該些個第一待測結構單元TPA’~TPC’的該些第一待測模態參數TA1’~TA5’、 TB1’~TB5’與TC1’~TC5’。於步驟S307中,以處理器50將該些第一待測模態參數TA1’~TA5’、TB1’~TB5’與TC1’~TC5’分別比對該些第一基礎模態參數P01’~P05’,據以判斷每個第一待測結構單元是否存在劣化缺陷。Please refer to FIG. 5A to FIG. 7 together. 5A is a schematic diagram of a first basic structural unit according to another embodiment of the present invention, and FIG. 5B is a schematic diagram of two basic structural units according to an embodiment of the present invention. FIG. 6 is a schematic diagram of a structural member to be tested according to another embodiment of the present invention. FIG. 7 is a flowchart of a method for detecting a degradation of a structural component of a structural unit according to another embodiment of the present invention. Similar to the foregoing embodiment of FIG. 1 to FIG. 3, in the embodiment of FIG. 5A to FIG. 7, in step S501, the first basic structural unit BP1 (as shown in FIG. 5A) is defined and the first basic structural unit is obtained. A plurality of first basic modal parameters P01'~P05' of BP1. In step S503, the plurality of first sensors 40, 42 and 44 disposed on the structural member TP' to be tested respectively respectively detect the first structural unit to be tested TPA included in the structural member TP' to be tested. '~TPC' to obtain a plurality of first actual modal parameters of each of the first structural units to be tested. In this embodiment, the first structural unit to be tested TPA' has a plurality of first actual modal parameters PA1'~PA5'. The first structure to be tested TPB' has a plurality of first actual modal parameters PB1'~PB5'. The first structure to be tested TPC' has a plurality of first actual modal parameters PC1'~PC5'. In step S305, the processor 50 electrically connected to the first sensors 40-44 is configured according to the first actual modal parameters PA1' of the first to-be-tested structural units TPA'~TPC'. ~PA5', PB1'~PB5' and PC1'~PC5' and a plurality of first preset ratio information R1'~R15' in the database 60, and computing the first structural units to be tested TPA'~TPC 'The first measured modal parameters TA1'~TA5', TB1'~TB5' and TC1'~TC5'. In step S307, the processor 50 compares the first to-be-tested modal parameters TA1'~TA5', TB1'~TB5' and TC1'~TC5' to the first basic modal parameters P01'~ P05', according to whether each of the first structural units to be tested has a deterioration defect.

與前述圖1至圖3的實施例不同的是,所述的結構件之劣化偵測方法更包含於步驟S509中,定義第二基礎結構單元BP2(如圖5B所示)且取得第二結構單元BP2的多個第二基礎模態參數P01’~P05’。於步驟S511中,以設置於待測結構件TP’上的第二感測器46偵測待測結構件TP’更包含的第二待測結構單元TPD’,以取得該第二待測結構單元TPD’的多個第二實際模態參數PD1’~PD5’。於步驟S511中,以處理器50依據第二待測結構單元TPD’的第二實際模態參數PD1’~PD5’及資料庫60內的多個第二預設比例資訊R16’~R20’,運算出第二待測結構單元TPD’的多個第二待測模態參數TD1’~TD5’。於步驟S515中,以處理器50將該些第二待測模態參數TD1’~TD5’分別比對該些第二基礎模態參數P01’~P05’,據以判斷第二待測結構單元TPD’是否存在另一劣化缺陷。Different from the foregoing embodiments of FIG. 1 to FIG. 3, the method for detecting degradation of the structural member is further included in step S509, defining a second basic structural unit BP2 (as shown in FIG. 5B) and obtaining the second structure. A plurality of second basic modal parameters P01'~P05' of the unit BP2. In the step S511, the second sensor 46 disposed on the structure TP' to be tested detects the second structure to be tested TPD' further included in the structure to be tested TP' to obtain the second structure to be tested. A plurality of second actual modal parameters PD1'~PD5' of the unit TPD'. In step S511, the processor 50 is configured according to the second actual modal parameters PD1'~PD5' of the second structural unit to be tested TPD' and the plurality of second preset ratio information R16'~R20' in the database 60, A plurality of second modal parameters TD1'~TD5' of the second structural unit to be tested TPD' are calculated. In step S515, the processor 50 compares the second to-be-measured modal parameters TD1'-TD5' to the second basic modal parameters P01'-P05', respectively, to determine the second structural unit to be tested. Whether there is another degradation defect in TPD'.

於實務上,該些第一預設比例資訊R1’~R15’係關聯於該些第一基礎模態參數P01’~P05’與多個第一預設模態參數IPA1’~IPA5’、IPB1’~IPB5’及IPC1’~IPC5’。請進一步參照圖8,圖8係依據本發明之一實施例所繪示的多個第一模擬結構單元及第二模擬結構單元的示意圖。於一實施例中,所述的結構件之劣化偵測方法更包含自多個第一模擬結構單元IPA’~IPC’上取得該些第一預設模態參數IPA1’~IPA5’、IPB1’~IPB5’及IPC1’~IPC5’,且自第二模擬結構單元IPD’上取得該些第二預設模態參數IPD1’~IPD5’。接者,處理器50將該些第一基礎模態參數P01~P05與該些第一預設模態參數IPA1’~IPA5’、IPB1’~IPB5’及IPC1’~IPC5’分別進行相除,據以取得出該些第一預設比例資訊R1~R15,且將該些第一基礎模態參數P01~P05與IPD1’~IPD5’ 進行相除,據以取得出該些第二預設比例資訊R16~R20。換言之,於此實施例中,該些第二預設比例資訊係R16’~R20’係關聯於該些第二基礎模態參數P01’~P05’與第二模擬結構單元IPD’上所取得之多個第二預設模態參數IPD1’~IPD5’ 。In practice, the first preset ratio information R1'~R15' is associated with the first basic modal parameters P01'~P05' and the plurality of first preset modal parameters IPA1'~IPA5', IPB1 '~IPB5' and IPC1'~IPC5'. Please refer to FIG. 8. FIG. 8 is a schematic diagram of a plurality of first analog structural units and second simulated structural units according to an embodiment of the invention. In one embodiment, the method for detecting degradation of the structural component further includes obtaining the first preset modal parameters IPA1'~IPA5', IPB1' from the plurality of first analog structural units IPA'~IPC' ~IPB5' and IPC1'~IPC5', and the second preset modal parameters IPD1'~IPD5' are obtained from the second analog structural unit IPD'. The processor 50 divides the first basic modal parameters P01~P05 with the first preset modal parameters IPA1'~IPA5', IPB1'~IPB5' and IPC1'~IPC5', respectively. The first preset ratio information R1~R15 is obtained, and the first basic modal parameters P01~P05 are separated from the IPD1'~IPD5' to obtain the second preset ratios. Information R16~R20. In other words, in this embodiment, the second preset ratio information systems R16'-R20' are associated with the second basic modal parameters P01'-P05' and the second analog structural unit IPD'. A plurality of second preset modal parameters IPD1'~IPD5'.

第二模擬結構單元IPD’與第二基礎結構單元BP2具有相同形態,而第二基礎結構單元BP2與第一基礎結構單元BP1具有不同的形態。詳言之,第二基礎結構單元BP2及第二模擬第二模擬結構單元IPD’均具有彎管型態,而第一基礎結構單元BP1具有直管型態。然而,本發明不以上述結構單元的形態為限。本發明所提供的結構件之劣化偵測方法可適用於具有不同型態的結構單元所組合而成的結構件。前述圖3所示的步驟S301~S307係針對結構件所包含得多個結構單元進行偵側以判斷哪一個或哪些結構單元具有劣化缺陷。然而,以實務上來說,若要使工程人員更明確地得知結構單元所具有之劣化缺陷的位置及程度,仍需要更進一步地進行判斷。The second analog structural unit IPD' has the same form as the second basic structural unit BP2, and the second basic structural unit BP2 has a different form from the first basic structural unit BP1. In detail, the second basic structural unit BP2 and the second simulated second simulated structural unit IPD' each have an elbow type, and the first basic structural unit BP1 has a straight tube type. However, the present invention is not limited to the form of the above structural unit. The method for detecting deterioration of a structural member provided by the present invention can be applied to a structural member in which structural units having different types are combined. Steps S301 to S307 shown in FIG. 3 described above are performed on the plurality of structural units included in the structural member to determine which one or which structural units have deterioration defects. However, in practice, if the engineer is to know more clearly the location and extent of the deterioration defects of the structural unit, further judgment is needed.

因此,請回到圖1至圖3,於一實施例中,所述的結構件之劣化偵測方法更包含以下步驟。當處理器20判斷該些第一待測結構單元TPA~TPC其中之一存在有劣化缺陷時,以處理器20將存在該劣化缺陷的該第一待測結構單元的該些實際模態參數與資料庫30中的第一模態參數資料比對,以判斷該劣化缺陷的程度與位置。舉例來說,假設處理器20判斷第一待測結構單元TPB具有劣化缺陷Def(如圖2所示),則處理器20將該些實際模態參數PB1~PB5與資料庫30中的第一模態參數資料比對。而所述的第一模態參數資料包含存在該劣化缺陷的第一待測結構單元TPB分別在多個位置具有不同程度之劣化缺陷的多組第一對照模態參數。Therefore, please refer back to FIG. 1 to FIG. 3 . In an embodiment, the method for detecting degradation of the structural component further includes the following steps. When the processor 20 determines that one of the first structural units to be tested TPA~TPC has a degradation defect, the processor 20 will use the actual modal parameters of the first structural unit to be tested with the degradation defect. The first modal parameter data in the database 30 is compared to determine the extent and location of the degraded defect. For example, if the processor 20 determines that the first structural unit to be tested TPB has a degradation defect Def (as shown in FIG. 2), the processor 20 compares the actual modal parameters PB1 P PB5 with the first one in the database 30. Modal parameter data comparison. The first modal parameter data includes a plurality of sets of first modal parameters having different degrees of degradation defects at a plurality of locations in which the first structural unit to be tested TPB having the degradation defect respectively.

請進一步參照圖9,圖9係依據本發明之一實施例所繪示的資料庫內的多組對照模態參數的波形圖。於此實施例中,第一待測結構單元TPB的每個第一實際模態參數包含一特性頻率(或稱為自然頻率)的振幅值,假設第一實際模態參數PB1~PB5包含的特性頻率分別係為f1~f5,其分別對應振幅值V1~V5。每組第一對照模態參數MA1~MA5對應多個第一劣化曲線,判斷該劣化缺陷的程度與位置係包含將該些特性頻率的振幅值分別與每組第一對照模態參數的該些第一劣化曲線比對,據以判斷該劣化缺陷的程度與位置。每個第一劣化曲線對應於具有一劣化程度值且位於存在該劣化缺陷的第一待測結構單元TPB的一位置的一擬定劣化缺陷。所述的對照模態參數MA1~MA5係個別對應於第一待測結構單元TPB的第一實際模態參數PB1~PB5。Please refer to FIG. 9. FIG. 9 is a waveform diagram of multiple sets of modal parameters in a database according to an embodiment of the present invention. In this embodiment, each first actual modal parameter of the first structural unit to be tested TPB includes an amplitude value of a characteristic frequency (or referred to as a natural frequency), assuming that the first actual modal parameter PB1~PB5 contains characteristics. The frequencies are respectively f1~f5, which correspond to amplitude values V1~V5, respectively. Each set of first control modal parameters MA1~MA5 corresponds to a plurality of first degradation curves, and the degree and position of the degradation defects are determined to include amplitude values of the characteristic frequencies and the first comparison modal parameters of each group respectively. The first degradation curve is compared to determine the extent and location of the degradation defect. Each of the first degradation curves corresponds to a predetermined degradation defect having a deterioration degree value and located at a position of the first structural unit to be tested TPB in which the deterioration defect exists. The reference modal parameters MA1~MA5 are respectively corresponding to the first actual modal parameters PB1~PB5 of the first structural unit to be tested TPB.

以此實施例來說,當處理器20取得第一實際模態參數PB1所包含的特性頻率f1的振幅值V1時,便可以依據該振幅值V1及感測器20於第一待測結構單元TPB上所設置的位置,於圖9所示的資料庫30內的多組對照模態參數中的對照模態參數MA1所包含的多個第一劣化曲線中找出對應的一個第一劣化曲線,而該第一劣化曲線所對應之擬定劣化缺陷位所具有之劣化程度值且位於第一待測結構單元TPB的一位置便係為第一待測結構單元TPB的劣化缺陷的程度及位置。In this embodiment, when the processor 20 obtains the amplitude value V1 of the characteristic frequency f1 included in the first actual modal parameter PB1, the amplitude value V1 and the sensor 20 can be used in the first structural unit to be tested. The position set on the TPB finds a corresponding first degradation curve among the plurality of first degradation curves included in the comparison modal parameter MA1 of the plurality of sets of modal parameters in the database 30 shown in FIG. And the position of the deterioration degree of the predetermined degradation defect bit corresponding to the first degradation curve and the position of the first structural unit to be tested TPB is the degree and position of the deterioration defect of the first structural unit to be tested TPB.

前述圖9的實施例主要係應用在同一特性頻率下的振幅值來比對出第一待測結構單元TPB的劣化缺陷的程度及位置。而於另一實施例中,可應用特性頻率的變化來比對出第一待測結構單元TPB的劣化缺陷的程度及位置。請進一步參照圖10,圖10依據本發明之另一實施例所繪示的資料庫內的多組對照模態參數的波形圖。於此實施例中,第一待測結構單元TPB的每個第一實際模態參數包含一特性頻率,舉例來說,第一實際模態參數PB1~PB5包含的特性頻率分別係為f1~f5,而每組第一對照模態參數包含多個第二劣化曲線,判斷該劣化缺陷的程度與位置係包含依據該些特性頻率與該些組第一對照模態參數所包含的該些第二劣化曲線,分別取得至少二組劣化預估參數。接著,依據該至少二組劣化預估參數判斷該劣化缺陷的程度與位置。以圖10的實施例來說明,圖10示出兩組不同的對照模態參數MF1與MF2,其中對照模態參數MF1包含多個第二劣化曲線P1~P16,而對照模態參數MF2包含多個第二劣化曲線Q1~Q16。每個第二劣化曲線代表不同缺陷長度及位置在不同頻率下的劣化程度。The foregoing embodiment of FIG. 9 mainly applies the amplitude values at the same characteristic frequency to compare the extent and position of the deterioration defects of the first structural unit to be tested TPB. In another embodiment, the change in the characteristic frequency can be applied to compare the extent and location of the degradation defect of the first structural unit TPB to be tested. Please refer to FIG. 10 again. FIG. 10 is a waveform diagram of multiple sets of modal parameters in a database according to another embodiment of the present invention. In this embodiment, each first actual modal parameter of the first structural unit to be tested TPB includes a characteristic frequency. For example, the first actual modal parameters PB1 to PB5 include characteristic frequencies of f1 to f5, respectively. And each set of first control modal parameters includes a plurality of second degradation curves, and determining the degree and location of the degraded defects includes the seconds included according to the characteristic frequencies and the first set of modal parameters of the groups The degradation curve obtains at least two sets of degradation estimation parameters respectively. Then, the degree and location of the degradation defect are determined according to the at least two sets of degradation estimation parameters. Described with the embodiment of FIG. 10, FIG. 10 shows two different sets of contrast modal parameters MF1 and MF2, wherein the reference modal parameter MF1 includes a plurality of second degradation curves P1 P P16, and the control modal parameter MF2 contains more Second degradation curves Q1~Q16. Each second degradation curve represents the degree of degradation of different defect lengths and locations at different frequencies.

舉例來說,第二劣化曲線Q1可代表在不同頻率下,當第一待測結構單元TPB的缺陷長度為50 mm且位於1/8管長位置時,第一待測結構單元TPB所具有的劣化程度(%)。以另一個例子來說,第二劣化曲線Q7可代表在不同頻率下,當第一待測結構單元TPB的缺陷長度為150 mm且位於2/8管長位置時,第一待測結構單元TPB所具有的劣化程度(%)。於此實施例中,假設處理器20所取得之第一實際模態參數PB1與PB2分別對應於資料庫16中的對照模態參數MF1與MF2,且第一實際模態參數PB1與PB2分別包含特性頻率f1與f2。處理器20先依據特性頻率f1於圖10所示之資料庫30中的對照模態參數MF1所包含的多個第二劣化曲線P1~P16進行比對,以查找出第一待測結構單元TPB可能的劣化缺陷的位置與程度。如圖10所示,處理器20於對照模態參數MF1中所得到之一組劣化預估參數包含有劣化預估參數DP1~DP8。相同地,處理器20於對照模態參數MF2中所得到之一組劣化預估參數包含有劣化預估參數DQ1~DQ3。處理器20可依據劣化預估參數DP1~DP8以及劣化預估參數DQ1~DQ3來判斷第一待測結構單元TPB可能的劣化缺陷的位置與程度。以此實施例來說,處理器20將劣化預估參數DP1~DP8以及劣化預估參數DQ1~DQ3進行比對,進而過濾出重複的劣化預估參數,也就是劣化預估參數DQ1~DQ3。此時,處理器14便可以得知第一待測結構單元TPB的劣化缺陷的程度與位置係為該些劣化預估參數DQ1~DQ3之一所對應的劣化缺陷的程度及位置。For example, the second degradation curve Q1 may represent degradation of the first structural unit to be tested TPB when the defect length of the first structural unit to be tested TPB is 50 mm and is located at a 1/8 tube length position at different frequencies. degree(%). As another example, the second degradation curve Q7 may represent the first structural unit to be tested TPB at different frequencies when the defect length of the first structural unit to be tested TPB is 150 mm and is located at a 2/8 tube length position. The degree of deterioration (%). In this embodiment, it is assumed that the first actual modal parameters PB1 and PB2 obtained by the processor 20 respectively correspond to the modal parameters MF1 and MF2 in the database 16, and the first actual modal parameters PB1 and PB2 respectively include Characteristic frequencies f1 and f2. The processor 20 first compares the plurality of second degradation curves P1 P P16 included in the reference modal parameter MF1 in the database 30 shown in FIG. 10 according to the characteristic frequency f1 to find the first structural unit to be tested TPB. The location and extent of possible degradation defects. As shown in FIG. 10, the processor 20 obtains a set of degradation estimation parameters in the comparison modal parameter MF1 including degradation prediction parameters DP1 to DP8. Similarly, the processor 20 obtains a set of degradation prediction parameters in the comparison modal parameter MF2 including the degradation estimation parameters DQ1 D DQ3. The processor 20 can determine the position and extent of possible degradation defects of the first structural unit to be tested TPB according to the degradation estimation parameters DP1 DD DP 8 and the degradation estimation parameters DQ1 DD DQ3. In this embodiment, the processor 20 compares the degradation estimation parameters DP1 to DP8 and the degradation estimation parameters DQ1 to DQ3, and filters out the repeated deterioration estimation parameters, that is, the degradation estimation parameters DQ1 to DQ3. At this time, the processor 14 can know the degree and position of the deterioration defect of the first structural unit to be tested TPB as the degree and position of the deterioration defect corresponding to one of the degradation estimation parameters DQ1 to DQ3.

於一實施例中,所述的結構件之劣化偵測方法,其中每一該實際模態參數包含一特性頻率,該特性頻率具有於第一方向上的頻率及於第二方向上的頻率,所述的結構件之劣化偵測方法更包含依據第一方向上的頻率與第二方向上的頻率,以判斷該劣化缺陷的形式。於一實施例中,依據該第一方向上的頻率與該第二方向上的頻率,以判斷該劣化缺陷的形式的步驟包含判斷第一方向的頻率與第二方向的頻率是否一致。接著,當第一方向的頻率與第二方向的頻率係為一致時,則判斷劣化缺陷的形式係為均勻缺陷。反之,當第一方向的頻率與該第二方向的頻率不為一致時,則判斷劣化缺陷的形式係為局部缺陷。In one embodiment, the method for detecting degradation of a structural member, wherein each of the actual modal parameters includes a characteristic frequency having a frequency in a first direction and a frequency in a second direction, The method for detecting degradation of the structural member further includes determining a form of the degradation defect according to a frequency in the first direction and a frequency in the second direction. In an embodiment, the step of determining the form of the degradation defect according to the frequency in the first direction and the frequency in the second direction comprises determining whether the frequency of the first direction is consistent with the frequency of the second direction. Next, when the frequency of the first direction and the frequency of the second direction are identical, it is determined that the form of the deterioration defect is a uniform defect. On the other hand, when the frequency of the first direction does not coincide with the frequency of the second direction, it is determined that the form of the deterioration defect is a local defect.

以實際例子來說,設於具有劣化缺陷之第一待測結構單元TPB上的感測器12可以係為三軸加速規,用於偵測到不同方向的頻率,例如X軸方向上的頻率與Y軸方向上的頻率。接著,處理器20依據X軸方向上的頻率與Y軸方向上的頻率之變化量來判斷第一待測結構單元TPB的劣化缺陷的形式,所述之劣化缺陷的形式可例如是均勻缺陷或是局部缺陷。更詳細來說,於一實施例中,處理器20依據第一方向上的頻率與第二方向上的頻率以判斷劣化缺陷的形式的步驟包含判斷第一方向的頻率與第二方向的頻率變化量是否一致。當第一方向的頻率與第二方向的頻率係為一致時,則處理器20判斷劣化缺陷的形式係為均勻缺陷。反之,當第一方向的頻率與第二方向的頻率不為一致時,則處理器20判斷該劣化缺陷的形式係為局部缺陷。In a practical example, the sensor 12 disposed on the first structural unit to be tested TPB having a degraded defect may be a three-axis accelerometer for detecting frequencies in different directions, such as frequencies in the X-axis direction. The frequency in the direction of the Y axis. Next, the processor 20 determines the form of the deterioration defect of the first structural unit to be tested TPB according to the amount of change in the frequency in the X-axis direction and the frequency in the Y-axis direction, and the form of the degradation defect may be, for example, a uniform defect or It is a local defect. In more detail, in an embodiment, the step of the processor 20 determining the form of the degradation defect according to the frequency in the first direction and the frequency in the second direction comprises determining the frequency of the first direction and the frequency variation of the second direction. Whether the quantity is consistent. When the frequency of the first direction is consistent with the frequency of the second direction, the processor 20 determines that the form of the degradation defect is a uniform defect. On the other hand, when the frequency of the first direction does not coincide with the frequency of the second direction, the processor 20 determines that the form of the degradation defect is a local defect.

綜上所述,在本發明的應用結構單元的結構件之劣化偵測方法中,主要係先定義適當的基礎結構單元且取得其基礎模態參數,接著再取得欲偵測之結構件的各結構單元之對應的實際模態參數,搭配資料庫內的預設比例資訊,以運算待測模態參數用於比對基礎模態參數,從而分別對各結構單元進行劣化偵測,最終可達成整體結構件線上劣化監測之目的。再者,本發明的劣化偵測方法可藉由將整體結構件之任一區域經比例關係回推至單純的結構單元狀態來進行診斷,進而可節省大量的客製資料庫建立,並提升智慧診斷學習效率與經驗分享。In summary, in the method for detecting degradation of structural components of the application structural unit of the present invention, the main structural unit is first defined and the basic modal parameters are obtained, and then the structural components to be detected are obtained. The corresponding actual modal parameters of the structural unit are matched with the preset proportion information in the database, and the modal parameters to be tested are used to compare the basic modal parameters, thereby respectively performing degradation detection on each structural unit, and finally achieving The purpose of deterioration monitoring on the whole structural part line. Furthermore, the degradation detection method of the present invention can be diagnosed by pushing back any region of the overall structural member to a simple structural unit state, thereby saving a large amount of custom database establishment and improving wisdom. Diagnose learning efficiency and experience sharing.

雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明。在不脫離本發明之精神和範圍內,所為之更動與潤飾,均屬本發明之專利保護範圍。關於本發明所界定之保護範圍請參考所附之申請專利範圍。Although the present invention has been disclosed above in the foregoing embodiments, it is not intended to limit the invention. It is within the scope of the invention to be modified and modified without departing from the spirit and scope of the invention. Please refer to the attached patent application for the scope of protection defined by the present invention.

10~14、40~42‧‧‧第一感測器10~14, 40~42‧‧‧ first sensor

46‧‧‧第二感測器46‧‧‧Second sensor

20、50‧‧‧處理器20, 50‧‧‧ processor

30、60‧‧‧資料庫30, 60‧‧ ‧ database

BP0、BP1‧‧‧第一基礎結構單元BP0, BP1‧‧‧ first basic structural unit

BP2‧‧‧第二基礎結構單元BP2‧‧‧Second basic structural unit

IPA~IPC、IPA’~IPC’‧‧‧第一模擬結構單元IPA~IPC, IPA’~IPC’‧‧‧ first analog structural unit

IPD’‧‧‧第二模擬結構單元IPD’‧‧‧Second analog structural unit

TP‧‧‧結構件TP‧‧‧ structural parts

Def‧‧‧劣化缺陷Def‧‧‧Deterioration defect

TPA~TPC、TPA’~TPC’‧‧‧第一待測結構單元TPA~TPC, TPA’~TPC’‧‧‧ first structural unit to be tested

TPD’‧‧‧第二待測結構單元TPD’‧‧‧second structural unit to be tested

DP1~DP8、DQ1~DQ3‧‧‧劣化預估參數DP1~DP8, DQ1~DQ3‧‧‧ Deterioration estimation parameters

MF1、MF2、MA1~MA5‧‧‧對照模態參數MF1, MF2, MA1~MA5‧‧‧ contrast modal parameters

P1~P16、Q1~Q16‧‧‧第二劣化曲線P1~P16, Q1~Q16‧‧‧Second degradation curve

圖1係依據本發明之一實施例所繪示的第一基礎結構單元的示意圖。 圖2係依據本發明之一實施例所繪示的待測結構件的示意圖。 圖3係為依據本發明之一實施例所繪示的應用結構單元的結構件之劣化偵測方法的方法流程圖。 圖4係依據本發明之一實施例所繪示的多個第一模擬結構單元的示意圖。 圖5A係依據本發明之另一實施例所繪示的第一基礎結構單元的示意圖。 圖5B係依據本發明之一實施例所繪示的第二基礎結構單元的示意圖。 圖6係依據本發明之另一實施例所繪示的待測結構件的示意圖。 圖7係為依據本發明之另一實施例所繪示的應用結構單元的結構件之劣化偵測方法的方法流程圖。 圖8係依據本發明之一實施例所繪示的多個第一模擬結構單元及第二模擬結構單元的示意圖。 圖9係依據本發明之一實施例所繪示的資料庫內的多組對照模態參數的波形圖。 圖10依據本發明之另一實施例所繪示的資料庫內的多組對照模態參數的波形圖。FIG. 1 is a schematic diagram of a first basic structural unit according to an embodiment of the invention. 2 is a schematic view of a structural member to be tested according to an embodiment of the invention. FIG. 3 is a flow chart of a method for detecting a degradation of a structural component of a structural unit according to an embodiment of the invention. 4 is a schematic diagram of a plurality of first analog structural units according to an embodiment of the invention. FIG. 5A is a schematic diagram of a first basic structural unit according to another embodiment of the present invention. FIG. 5B is a schematic diagram of a second basic structural unit according to an embodiment of the invention. FIG. 6 is a schematic diagram of a structural member to be tested according to another embodiment of the present invention. FIG. 7 is a flow chart of a method for detecting a degradation of a structural component of a structural unit according to another embodiment of the present invention. FIG. 8 is a schematic diagram of a plurality of first analog structural units and second simulated structural units according to an embodiment of the invention. FIG. 9 is a waveform diagram of a plurality of sets of modal parameters in a database according to an embodiment of the present invention. FIG. 10 is a waveform diagram of a plurality of sets of modal parameters in a database according to another embodiment of the present invention.

Claims (9)

一種應用結構單元的結構件之劣化偵測方法,包含:定義一第一基礎結構單元且取得該第一基礎結構單元的N個第一基礎模態參數;以設置於一待測結構件上的M個第一感測器分別對應地偵測該待測結構件所包含的M個第一待測結構單元,以取得每一該第一待測結構單元的N個第一實際模態參數,其中每一該第一待測結構單元與該第一基礎結構單元具有相同型態;以電性連接該些第一感測器的一處理器依據該M個第一待測結構單元的該N個第一實際模態參數及一資料庫內的M*N個第一預設比例資訊,運算出該M個第一待測結構單元的M*N個第一待測模態參數;以及以該處理器將該M*N個第一待測模態參數分別比對該N個第一基礎模態參數,據以判斷該M個第一待測結構單元之中的每一個是否存在一劣化缺陷;其中該M*N個第一預設比例資訊係關聯於該N個第一基礎模態參數與M*N個第一預設模態參數。A method for detecting degradation of a structural component of a structural unit includes: defining a first basic structural unit and obtaining N first basic modal parameters of the first basic structural unit; and being disposed on a structural component to be tested The M first sensors respectively detect the M first structural units to be tested included in the structural component to be tested, so as to obtain N first actual modal parameters of each of the first structural components to be tested. Each of the first structural unit to be tested has the same type as the first basic structural unit; a processor electrically connecting the first sensors is based on the N of the M first structural units to be tested The first actual modal parameter and the M*N first preset ratio information in a database, and the M*N first modal parameters to be tested of the M first structural units to be tested are calculated; The processor compares the M*N first modal parameters to be tested to the N first basic modal parameters, respectively, to determine whether there is a degradation in each of the M first structural units to be tested. a defect; wherein the M*N first preset ratio information is associated with the N first basic mode parameters Number and M*N first preset modal parameters. 如請求項1所述的結構件之劣化偵測方法,更包含:自M個第一模擬結構單元上取得該M*N個第一預設模態參數;以及將該N個第一基礎模態參數與該M*N個第一預設模態參數分別進行相除,據以取得出該M*N個第一預設比例資訊;其中每一該第一模擬結構單元與該第一基礎結構單元具有相同型態。The method for detecting degradation of a structural component according to claim 1, further comprising: obtaining the M*N first preset modal parameters from the M first analog structural units; and the N first basic modes The state parameter is separately divided by the M*N first preset modal parameters, thereby obtaining the M*N first preset ratio information; wherein each of the first analog structural unit and the first basic The structural units have the same type. 如請求項1所述的結構件之劣化偵測方法,更包含:在取得每一該第一待測結構單元的該N個第一實際模態參數之前的一段預設時間前,自該M個第一待測結構單元上取得該M*N個第一預設模態參數;以及將該N個第一基礎模態參數與該M*N個第一預設模態參數分別進行相除,據以取得出該M*N個第一預設比例資訊。The method for detecting degradation of a structural component according to claim 1, further comprising: before obtaining a preset time before the N first actual modal parameters of each of the first structural components to be tested, Obtaining the M*N first preset modal parameters on the first structural unit to be tested; and dividing the N first basic modal parameters and the M*N first preset modal parameters separately According to the data, the M*N first preset ratio information is obtained. 如請求項1所述的結構件之劣化偵測方法,更包含:定義一第二基礎結構單元且取得該第二基礎結構單元的N個第二基礎模態參數;以設置於該待測結構件上的一第二感測器偵測該待測結構件更包含的一第二待測結構單元,以取得該第二待測結構單元的N個第二實際模態參數;以該處理器依據該第二待測結構單元的該N個第二實際模態參數及該資料庫內的N個第二預設比例資訊,運算出該第二待測結構單元的N個第二待測模態參數;以及以該處理器將該N個第二待測模態參數分別比對該N個第二基礎模態參數,據以判斷該第二待測結構單元是否存在一另一劣化缺陷;其中該N個第二預設比例資訊係關聯於該N個第二基礎模態參數與一第二模擬結構單元上所取得之N個第二預設模態參數,且該第二模擬結構單元與該第二基礎結構單元具有相同形態,而該第二基礎結構單元與該第一基礎結構單元具有不同的形態。The method for detecting degradation of a structural member according to claim 1, further comprising: defining a second basic structural unit and obtaining N second basic modal parameters of the second basic structural unit; a second sensor on the device detects a second structural unit to be tested further included in the structural component to be tested, to obtain N second actual modal parameters of the second structural unit to be tested; Calculating N second test modes of the second structural unit to be tested according to the N second actual modal parameters of the second structural unit to be tested and N second preset ratio information in the database And determining, by the processor, the N second modal parameters to be compared with the N second basic modal parameters, respectively, determining whether the second structural component to be tested has another degradation defect; The N second preset ratio information is associated with the N second basic modal parameters and the N second preset modal parameters obtained on a second simulated structural unit, and the second simulated structural unit Having the same form as the second infrastructure unit, and the second base knot Units having different morphology and the first infrastructure element. 如請求項1所述的結構件之劣化偵測方法,更包含:當該處理器判斷該M個第一待測結構單元其中之一存在該劣化缺陷時,以該處理器將存在該劣化缺陷的該第一待測結構單元的該N個第一實際模態參數與該資料庫中的一第一模態參數資料比對,以判斷該劣化缺陷的程度與位置;其中該第一模態參數資料包含存在該劣化缺陷的該第一待測結構單元分別在多個位置具有不同程度之劣化缺陷的N組第一對照模態參數。The method for detecting degradation of a structural component according to claim 1, further comprising: when the processor determines that the degradation defect exists in one of the M first structural units to be tested, the processor will have the degradation defect The N first actual modal parameters of the first structure to be tested are compared with a first modal parameter data in the database to determine the degree and location of the degradation defect; wherein the first mode The parameter data includes N sets of first contrast modal parameters of the first structural unit to be tested in which the degradation defect has different degrees of deterioration defects at a plurality of locations. 如請求項5所述的結構件之劣化偵測方法,其中存在該劣化缺陷的該第一待測結構單元的每一該第一實際模態參數包含一特性頻率的振幅值,且每一組第一對照模態參數對應多個第一劣化曲線,判斷該劣化缺陷的程度與位置係包含將該些特性頻率的振幅值分別與每一組第一對照模態參數的該些第一劣化曲線比對,據以判斷該劣化缺陷的程度與位置;其中,每一該第一劣化曲線對應於具有一劣化程度值且位於存在該劣化缺陷的該第一待測結構單元的一位置的一擬定劣化缺陷。The method for detecting degradation of a structural member according to claim 5, wherein each of the first actual modal parameters of the first structural unit to be tested in which the degradation defect exists includes an amplitude value of a characteristic frequency, and each group The first contrast modal parameter corresponds to the plurality of first degradation curves, and the degree and the position of the deteriorated defect are determined to include the amplitude values of the characteristic frequencies and the first degradation curves of each set of first contrast modal parameters respectively Aligning, determining the degree and location of the degradation defect; wherein each of the first degradation curves corresponds to a formulation having a degree of deterioration value and located at a position of the first structural unit to be tested in which the degradation defect exists Deterioration defects. 如請求項5所述的結構件之劣化偵測方法,其中存在該劣化缺陷的該第一待測結構單元的每一該第一實際模態參數包含一特性頻率,每一組第一對照模態參數包含多個第二劣化曲線,判斷該劣化缺陷的程度與位置係包含:依據該些特性頻率與該些組第一對照模態參數所包含的該些第二劣化曲線,分別取得至少二組劣化預估參數;以及依據該至少二組劣化預估參數判斷該劣化缺陷的程度與位置。The method for detecting degradation of a structural member according to claim 5, wherein each of the first actual modal parameters of the first structural unit to be tested in which the degradation defect is present comprises a characteristic frequency, and each group of first comparison modes The state parameter includes a plurality of second degradation curves, and determining the degree and location of the degradation defect includes: obtaining at least two according to the characteristic frequencies and the second degradation curves included in the first comparison modal parameters of the groups a group deterioration estimation parameter; and determining a degree and a position of the deterioration defect according to the at least two sets of deterioration estimation parameters. 如請求項5所述的結構件之劣化偵測方法,其中存在該劣化缺陷的該第一待測結構單元的每一該第一實際模態參數包含一特性頻率,該特性頻率具有於一第一方向上的頻率及於一第二方向上的頻率,該結構件之劣化偵測方法更包含依據該第一方向上的頻率與該第二方向上的頻率,以判斷該劣化缺陷的形式。The method for detecting degradation of a structural member according to claim 5, wherein each of the first actual modal parameters of the first structural unit to be tested in which the degradation defect exists includes a characteristic frequency, and the characteristic frequency has a first The frequency detecting in one direction and the frequency in a second direction, the method for detecting degradation of the structural member further comprises determining a form of the degraded defect according to a frequency in the first direction and a frequency in the second direction. 如請求項8所述的結構件之劣化偵測方法,其中依據該第一方向上的頻率與該第二方向上的頻率,以判斷該劣化缺陷的形式的步驟包含:判斷該第一方向的頻率與該第二方向的頻率是否一致;當該第一方向的頻率與該第二方向的頻率係為一致時,則判斷該劣化缺陷的形式係為均勻缺陷;以及當該第一方向的頻率與該第二方向的頻率不為一致時,則判斷該劣化缺陷的形式係為局部缺陷。The method for detecting degradation of a structural member according to claim 8, wherein the step of determining the form of the degradation defect according to the frequency in the first direction and the frequency in the second direction comprises: determining the first direction Whether the frequency is consistent with the frequency of the second direction; when the frequency of the first direction is consistent with the frequency of the second direction, determining that the form of the degradation defect is a uniform defect; and when the frequency of the first direction When the frequency in the second direction does not coincide, it is determined that the form of the deterioration defect is a local defect.
TW107107654A 2017-11-10 2018-03-07 Method for detcting deterioation defect of a strcutural part using structual unit TWI715830B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201810436422.1A CN109765038B (en) 2017-11-10 2018-05-09 Degradation detection method for structural member applying structural unit
US16/111,033 US10801914B2 (en) 2017-11-10 2018-08-23 Method for detecting deterioration defect of structural part using structural unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762584636P 2017-11-10 2017-11-10
US62/584,636 2017-11-10

Publications (2)

Publication Number Publication Date
TW201918908A true TW201918908A (en) 2019-05-16
TWI715830B TWI715830B (en) 2021-01-11

Family

ID=67347476

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107107654A TWI715830B (en) 2017-11-10 2018-03-07 Method for detcting deterioation defect of a strcutural part using structual unit

Country Status (1)

Country Link
TW (1) TWI715830B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5184516A (en) * 1991-07-31 1993-02-09 Hughes Aircraft Company Conformal circuit for structural health monitoring and assessment
US8788218B2 (en) * 2011-01-21 2014-07-22 The United States Of America As Represented By The Secretary Of The Navy Event detection system having multiple sensor systems in cooperation with an impact detection system
WO2013172876A1 (en) * 2012-05-16 2013-11-21 Hidden Solutions, Llc Method and system for multi-path active defect detection, localization, and characterization with ultrasonic guided waves
US9689844B2 (en) * 2015-07-27 2017-06-27 The Boeing Company Ultrasonic inspection using flexible two-dimensional array applied on surface of article

Also Published As

Publication number Publication date
TWI715830B (en) 2021-01-11

Similar Documents

Publication Publication Date Title
JP5547945B2 (en) Pressure relief valve monitoring
US8620602B2 (en) System for detecting leaks in single phase and multiphase fluid transport pipelines
US20130231876A1 (en) Leakage Detection and Leakage Location In Supply Networks
JP2010532021A (en) Diagnosis system and diagnosis method based on detection of mechanical wave in cooling system and / or home appliance
CN103969280B (en) Detect abnormal method and the air-conditioner of cold-producing medium
WO2015072130A1 (en) Leakage determination system and leakage determination method
CN109254077B (en) Degradation detection method of structural member
JP6981464B2 (en) Diagnostic cost output device, diagnostic cost output method and program
US7516649B2 (en) System and method for determining duct leakage and fan flow efficiency
EP2694938B1 (en) A method and means for detecting leakages in pipe installations
JP6310930B2 (en) Method for operating a compressor when one or more measurement signals are faulty
Chis Pipeline leak detection techniques
US10801914B2 (en) Method for detecting deterioration defect of structural part using structural unit
TW201918908A (en) Method for detcting deterioation defect of a strcutural part using structual unit
JPWO2019117053A1 (en) Analyzers, diagnostic methods and programs
TWI649543B (en) Method for detecting deterioration of strcutural part
JP4394520B2 (en) Method and apparatus for detecting leakage of fluid flowing through a pipeline
JP2009085692A (en) Flow rate measuring device and gas supply system using the same
Sadeghioon et al. Wireless sensor network based pipeline failure detection system using non-intrusive relative pressure and differential temperature measurements
CN205081788U (en) A OTDR device for communicating by letter optical cable fault point location with report an emergency and ask for help or increased vigilance function
KR102584912B1 (en) Apparatus and Method for Detecting Wall-thining of Pipe
JP7110047B2 (en) Plant monitoring system
Barrett et al. Finding Big Leaks with Big Data: Case Studies from an Internet-of-Things Leak Detection Platform
WO2023152069A1 (en) Method and system for detection of leakages in process industry
Yang et al. First Loop Loose Parts Field Diagnosis