TWI649543B - Method for detecting deterioration of strcutural part - Google Patents

Method for detecting deterioration of strcutural part Download PDF

Info

Publication number
TWI649543B
TWI649543B TW106140912A TW106140912A TWI649543B TW I649543 B TWI649543 B TW I649543B TW 106140912 A TW106140912 A TW 106140912A TW 106140912 A TW106140912 A TW 106140912A TW I649543 B TWI649543 B TW I649543B
Authority
TW
Taiwan
Prior art keywords
degradation
structural member
defect
frequency
detecting
Prior art date
Application number
TW106140912A
Other languages
Chinese (zh)
Other versions
TW201908699A (en
Inventor
蔡曜隆
王立華
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to CN201711422653.9A priority Critical patent/CN109254077B/en
Priority to US15/855,944 priority patent/US10481037B2/en
Application granted granted Critical
Publication of TWI649543B publication Critical patent/TWI649543B/en
Publication of TW201908699A publication Critical patent/TW201908699A/en

Links

Abstract

一種結構件的劣化偵測方法,包含以設置於結構件的感測器偵測結構件的時域振動波形。接著,以電性連接感測器的處理器對時域振動波形執行時頻域轉換以取得結構件的頻域振動波形的多個模態的實際模態參數。接著,分別將該些模態的實際模態參數與資料庫中的模態參數資料比對,以判斷結構件是否存在劣化缺陷。在結構件存在劣化缺陷時,更判斷劣化缺陷的程度與位置。其中模態參數資料包含結構件分別在多個位置具有不同程度之劣化缺陷的多組對照模態參數。A method for detecting degradation of a structural member includes detecting a time domain vibration waveform of the structural member by a sensor disposed on the structural member. Then, the processor of the electrical connection sensor performs time-frequency domain conversion on the time domain vibration waveform to obtain the actual modal parameters of the plurality of modes of the frequency domain vibration waveform of the structural member. Then, the actual modal parameters of the modalities are compared with the modal parameter data in the database to determine whether the structural component has degradation defects. When there is a deterioration defect in the structural member, the degree and position of the deterioration defect are more judged. The modal parameter data includes a plurality of sets of modal parameters having different degrees of degradation defects at a plurality of locations.

Description

結構件的劣化偵測方法Structural member degradation detection method

本發明係關於一種結構件的劣化偵測方法,特別是一種應用自然頻率及其振幅分析的結構件的劣化偵測方法。The present invention relates to a method for detecting degradation of a structural member, and more particularly to a method for detecting degradation of a structural member using natural frequency and amplitude analysis thereof.

近年來,國內工業管線相關事故頻傳, 當工業管線因異常而發生洩漏時,通常會導致重大災害,例如人員傷亡及財產損失。工業管線之異常原因最主要來自人為因素,其次則是管路/設備的材料劣化。為了避免此類災害的發生,對工業管線進行全時監測乃是當務之急。雖然各國廠商對此已開發一種監測系統,然而其概念係基於監控製程參數、分析運轉狀態與性能表現,仍缺乏劣化偵測功能。換言之,該類監測系統只能在管路損壞而洩漏時才能察覺,並無法滿足工廠安全營運與降低風險之需求。In recent years, domestic industrial pipeline-related accidents have been frequently transmitted. When industrial pipelines leak due to abnormalities, they often cause major disasters such as casualties and property losses. The most common cause of industrial pipelines is human factors, followed by material degradation of pipelines/equipment. In order to avoid such disasters, full-time monitoring of industrial pipelines is a top priority. Although manufacturers have developed a monitoring system for this purpose, the concept is based on monitoring process parameters, analyzing operating conditions and performance, and still lacks degradation detection. In other words, this type of monitoring system can only be detected when the pipeline is damaged and leaks, and it cannot meet the needs of the factory for safe operation and risk reduction.

目前工業管線安全監控的主要技術缺點歸納如下:其一是現場所建置的環境或製程參數感測器多係用於製程監控以調節生產流程,其缺少適當的邏輯判斷分析之安全診斷模組。其二、缺少可遠距感知劣化之監測技術,常用之非破壞檢測技術只適用於感測器所在之局部管線位置,且該類之偵測技術只能在管線破裂流體逸出時才能感知,並無法在劣化發生時提前發出預警訊號。其三、工業廠區運轉環境隨著系統、結構及組件而有所不同,感測器必須具有克服高溫/高濕環境與長期監測的耐久性需求。換言之,受到既有管線檢測方法及技術的限制,管線的損壞或劣化難以即時地被察覺,因而喪失即時維修與應變的良好時機。因此,於工業安全的領域中,需要開發診斷監測相關技術,以建立完整之管線安全監控體系。The main technical shortcomings of industrial pipeline safety monitoring are summarized as follows: First, the environmental or process parameter sensors built on the site are used for process monitoring to regulate the production process, and the safety diagnostic module lacks proper logic judgment analysis. . Second, there is a lack of monitoring technology for remote sensing degradation. The commonly used non-destructive detection technology is only applicable to the local pipeline location where the sensor is located, and the detection technology of this type can only be sensed when the pipeline rupture fluid escapes. It is not possible to issue an early warning signal when deterioration occurs. Third, the operating environment of the industrial plant varies with the system, structure and components. The sensor must have the durability requirement to overcome the high temperature/high humidity environment and long-term monitoring. In other words, due to limitations of existing pipeline inspection methods and techniques, damage or degradation of the pipeline is difficult to detect immediately, thus losing a good opportunity for immediate maintenance and strain. Therefore, in the field of industrial safety, it is necessary to develop diagnostic monitoring related technologies to establish a complete pipeline safety monitoring system.

本發明旨在提供一種結構件的劣化偵測方法,利用時域及頻域訊號的分析,搭配預先建置的資料庫的比對,以偵測結構件的劣化缺陷的位置與程度,以達到即時監控與告警的目的。The invention aims to provide a method for detecting deterioration of a structural member, which utilizes analysis of time domain and frequency domain signals, and compares with a pre-built database to detect the position and degree of deterioration defects of the structural member, so as to achieve The purpose of real-time monitoring and alarming.

依據本發明揭露一種結構件的劣化偵測方法,其包含以下步驟:以設置於結構件的感測器偵測結構件的時域振動波形;以電性連接感測器的處理器對時域振動波形執行時頻域轉換,以取得結構件的頻域振動波形的多個模態的實際模態參數;分別將該些模態的實際模態參數與資料庫中的模態參數資料比對,以判斷結構件是否存在劣化缺陷;在結構件存在劣化缺陷時,更判斷劣化缺陷的程度與位置;其中模態參數資料包含結構件分別在多個位置具有不同程度之劣化缺陷的多組對照模態參數。A method for detecting degradation of a structural member according to the present invention includes the steps of: detecting a time domain vibration waveform of the structural member by a sensor disposed on the structural member; and electrically connecting the processor to the time domain of the sensor The vibration waveform performs time-frequency domain conversion to obtain the actual modal parameters of the plurality of modes of the frequency domain vibration waveform of the structural member; respectively comparing the actual modal parameters of the modalities with the modal parameter data in the database To determine whether the structural member has a deterioration defect; when there is a deterioration defect in the structural member, the degree and position of the deteriorated defect are further judged; wherein the modal parameter data includes a plurality of sets of comparisons in which the structural member has different degrees of deterioration defects at a plurality of positions respectively. Modal parameters.

綜上所述,本發明所提出的結構件的劣化偵測方法,主要係利用感測器取得結構件的時域資料,再利用處理器進行時域/頻域資料的分析,並搭配存於資料庫中的結構件之相關劣化資訊進行比對,進而獲得結構件劣化缺陷的位置與程度。藉此,可以使相關人員可監控結構件的狀態,進而當結構件發生劣化時,可預先獲知劣化警訊,得以及時地進行必要的維護措施,從而降低結構件劣化所導致的工安意外的機會。In summary, the method for detecting degradation of a structural member proposed by the present invention mainly uses a sensor to obtain time domain data of a structural member, and then uses a processor to analyze time domain/frequency domain data, and The related degradation information of the structural components in the database is compared to obtain the position and extent of the structural component degradation defects. Thereby, the relevant personnel can monitor the state of the structural member, and when the structural member is deteriorated, the deterioration warning can be known in advance, and the necessary maintenance measures can be performed in time, thereby reducing the accident of the construction caused by the deterioration of the structural member. chance.

以上之關於本揭露內容之說明及以下之實施方式之說明係用以示範與解釋本發明之精神與原理,並且提供本發明之專利申請範圍更進一步之解釋。The above description of the disclosure and the following description of the embodiments of the present invention are intended to illustrate and explain the spirit and principles of the invention, and to provide further explanation of the scope of the invention.

以下在實施方式中詳細敘述本發明之詳細特徵以及優點,其內容足以使任何熟習相關技藝者了解本發明之技術內容並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖式,任何熟習相關技藝者可輕易地理解本發明相關之目的及優點。以下之實施例係進一步詳細說明本發明之觀點,但非以任何觀點限制本發明之範疇。The detailed features and advantages of the present invention are set forth in the Detailed Description of the Detailed Description of the <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> </ RTI> <RTIgt; The objects and advantages associated with the present invention can be readily understood by those skilled in the art. The following examples are intended to describe the present invention in further detail, but are not intended to limit the scope of the invention.

請一併參照圖1與圖2,圖1係依據本發明之一實施例所繪示的結構件與結構件的劣化偵測系統,而圖2係依據本發明之一實施例所繪示的結構件的劣化偵測方法。如圖所示,所述的劣化偵測系統1包含感測器12、處理器14及資料庫16。在本發明的結構件的劣化偵測系統與方法中,首先,需於待檢測的結構件10上設置感測器12,而感測器12電性連接處理器14,而處理器14連接預先建置的資料庫16,以完成劣化偵測系統1的建構。接著,透過使結構件10產生震動,以使設置於結構件10的感測器12偵測結構件10的時域振動波形,如步驟S201所示。本發明所述的結構件10係以管線來作為舉例說明,然而結構件10可以係為桶槽等其他工業常用的設備,本發明不以管線為限。於實務上,於以設置於結構件10的感測器12偵測結構件10的時域振動波形的步驟前,結構件10的劣化偵測方法更包含以激振源或流經結構件10的流體來使結構件10產生所述的時域振動波形。換言之,於實際的操作上,可以透過激振源發送訊號至結構件10使其產生震動,亦可以利用流體通過結構件10而使其產生震動。Referring to FIG. 1 and FIG. 2 together, FIG. 1 is a structural and structural degradation detecting system according to an embodiment of the present invention, and FIG. 2 is a schematic diagram of an embodiment of the present invention. Method for detecting degradation of structural members. As shown, the degradation detection system 1 includes a sensor 12, a processor 14, and a database 16. In the degradation detection system and method of the structural member of the present invention, first, the sensor 12 is disposed on the structural member 10 to be detected, and the sensor 12 is electrically connected to the processor 14, and the processor 14 is connected in advance. The database 16 is built to complete the construction of the degradation detection system 1. Then, the vibration of the structural member 10 is generated, so that the sensor 12 disposed on the structural member 10 detects the time domain vibration waveform of the structural member 10, as shown in step S201. The structural member 10 of the present invention is exemplified by a pipeline. However, the structural member 10 may be a device commonly used in other industries such as a tank, and the present invention is not limited to the pipeline. In practice, before the step of detecting the time domain vibration waveform of the structural member 10 by the sensor 12 disposed on the structural member 10, the degradation detecting method of the structural member 10 further includes exciting the source or flowing through the structural member 10 The fluid causes the structural member 10 to produce the time domain vibration waveform. In other words, in actual operation, the signal can be transmitted to the structural member 10 through the excitation source to cause vibration, and the fluid can be generated by the structural member 10 to cause vibration.

請進一步參照圖3及圖4,圖3係依據本發明之一實施例所繪示的感測器所偵測到之結構件的時域振動波形示意圖,而圖4係依據本發明之一實施例所繪示的感測器所偵測到之結構件的頻域振動波形示意圖。如圖3所示,當結構件10產生振動時,感測器12會偵測到結構件10的時域振動波形,如圖3所示。感測器12會進一步地將該時域振動波形傳送至處理器14。接著,於步驟S203中,處理器14對該時域振動波形執行時頻域轉換,以取得結構件10的頻域振動波形的多個模態的實際模態參數。如圖4所示,頻域振動波形包含多個模態M1~M5。於實務上,處理器14所執行的時頻域轉換的方式可以係為快速傅立葉轉換(Fast Fourier Transform, FFT)、希爾伯特-黃轉換(Hilbert-Huang Transform, HHT)或小波分析(Wavelet Analysis)等。Please refer to FIG. 3 and FIG. 4 . FIG. 3 is a schematic diagram of a time domain vibration waveform of a structural component detected by a sensor according to an embodiment of the present invention, and FIG. 4 is implemented according to one embodiment of the present invention. The schematic diagram of the frequency domain vibration waveform of the structural member detected by the sensor shown in the example. As shown in FIG. 3, when the structural member 10 generates vibration, the sensor 12 detects the time domain vibration waveform of the structural member 10, as shown in FIG. The sensor 12 will further transmit the time domain vibration waveform to the processor 14. Next, in step S203, the processor 14 performs time-frequency domain conversion on the time domain vibration waveform to obtain actual mode parameters of the plurality of modes of the frequency domain vibration waveform of the structural member 10. As shown in FIG. 4, the frequency domain vibration waveform includes a plurality of modes M1 to M5. In practice, the manner of time-frequency domain conversion performed by the processor 14 may be Fast Fourier Transform (FFT), Hilbert-Huang Transform (HHT), or wavelet analysis (Wavelet). Analysis) and so on.

接著,於步驟S205中,處理器14分別將模態M1~M5的實際模態參數與資料庫16中的模態參數資料比對,以判斷結構件10是否存在劣化缺陷,例如劣化缺陷Def。當處理器14判斷結構件10存在劣化缺陷時,則於步驟S207中,處理器14進一步地判斷所述的劣化缺陷的程度與位置。於此實施例中,模態參數資料包含結構件10分別在多個位置具有不同程度之劣化缺陷的多組對照模態參數。Next, in step S205, the processor 14 compares the actual modal parameters of the modalities M1 MM5 with the modal parameter data in the database 16 to determine whether the structural member 10 has a degradation defect, such as a degradation defect Def. When the processor 14 determines that the structural member 10 has a deterioration defect, then in step S207, the processor 14 further determines the degree and position of the deterioration defect. In this embodiment, the modal parameter data includes a plurality of sets of contrast modal parameters of the structural member 10 having different degrees of degradation defects at a plurality of locations.

請一併參照圖1、圖4及圖5。圖5依據本發明之一實施例所繪示的資料庫16內的多組對照模態參數的波形圖。於此實施例中,每個模態的實際模態參數包含一特性頻率(或稱為自然頻率)的振幅值,且每一組對照模態參數對應多個第一劣化曲線。如圖4與圖5所示,模態M1~M5的實際模態參數各別包含特性頻率f1~f5,而對照模態參數MA1~MA5各別對應不同的多個第一劣化曲線,其中每個第一劣化曲線對應於具有劣化程度值且位於結構件10的一位置的擬定劣化缺陷位。步驟S207所述的處理器14判斷劣化缺陷的程度與位置係包含將該些特性頻率的振幅值分別與每一組對照模態參數的該些第一劣化曲線比對,從而判斷劣化缺陷的程度與位置。具體來說,當處理器14取得結構件10的一個模態的實際模態參數時,便可以得知實際模態參數所包含一個特性頻率的振幅值,例如圖4的模態M1的實際模態參數包含特性頻率f1的振幅值V1、模態M2的實際模態參數包含特性頻率f2的振幅值V2等。於此實施例中,所述的對照模態參數MA1~MA5係個別對應於結構件10的模態M1~M5。Please refer to FIG. 1, FIG. 4 and FIG. 5 together. FIG. 5 is a waveform diagram of a plurality of sets of modal parameters in a database 16 according to an embodiment of the present invention. In this embodiment, the actual modal parameter of each modality includes an amplitude value of a characteristic frequency (or referred to as a natural frequency), and each set of modal parameters corresponds to a plurality of first degradation curves. As shown in FIG. 4 and FIG. 5, the actual modal parameters of the modal M1~M5 respectively include the characteristic frequencies f1~f5, and the contrast modal parameters MA1~MA5 respectively correspond to different first degradation curves, wherein each The first degradation curves correspond to the proposed degradation defect bits having a degree of deterioration value and located at a position of the structural member 10. The processor 14 in step S207 determines the degree and location of the degradation defect, and includes comparing the amplitude values of the characteristic frequencies with the first degradation curves of each group of the comparison modal parameters, thereby determining the degree of degradation defects. With location. Specifically, when the processor 14 obtains the actual modal parameter of a modality of the structural member 10, it can know the amplitude value of a characteristic frequency included in the actual modal parameter, such as the actual mode of the modal M1 of FIG. The state parameter includes the amplitude value V1 of the characteristic frequency f1, and the actual modal parameter of the mode M2 includes the amplitude value V2 of the characteristic frequency f2 and the like. In this embodiment, the reference modal parameters MA1~MA5 are individually corresponding to the modalities M1~M5 of the structural member 10.

以模態M1來舉例說明,當處理器14取得模態M1之特性頻率f1的振幅值V1時,便可以依據該振幅值V1及感測器12於結構件10上所設置的位置,於圖5所示的資料庫16內的多組對照模態參數中的對照模態參數MA1所包含的多個第一劣化曲線中找出對應的一個第一劣化曲線,而該第一劣化曲線所對應之擬定劣化缺陷位所具有之劣化程度值且位於結構件的一位置便係為結構件10的劣化缺陷的程度及位置。由於感測器12於結構件10上所設置的位置可能恰好使處理器14無法明確比對出振幅值所對應的第一劣化曲線,而導致無法查找出劣化缺陷的程度及位置,故以實務的操作來說,應用越多的結構件10的模態於圖5中進行查找,可以避免上述問題且可以越精準地比對出結構件10的劣化缺陷的程度及位置。Taking the modality M1 as an example, when the processor 14 obtains the amplitude value V1 of the characteristic frequency f1 of the modal M1, the amplitude value V1 and the position of the sensor 12 on the structural member 10 can be determined according to the figure. A plurality of first degradation curves included in the comparison modal parameter MA1 of the plurality of sets of modal parameters in the database 16 are found to be corresponding to the first degradation curve, and the first degradation curve corresponds to The degree of deterioration and the position at which the deterioration defect level is determined and located at a position of the structural member is the deterioration defect of the structural member 10. Since the position of the sensor 12 on the structural member 10 may just make the processor 14 unable to clearly compare the first degradation curve corresponding to the amplitude value, and the degree and position of the deterioration defect cannot be found, the practice is For the operation, the more the modalities of the structural members 10 are searched in FIG. 5, the above problems can be avoided and the degree and position of the deterioration defects of the structural members 10 can be more accurately compared.

由於劣化偵測系統1透過上述圖5所示的同一特性頻率下的振幅值來偵測結構件10的劣化缺陷的程度與位置時,可能受限於感測器12於結構件10上的設置位置的因素,而無法利用振幅值比對出結構件10的第一劣化曲線,以致於無法判斷結構件10的劣化缺陷的程度及位置。舉例來說,如圖5所示,當感測器12係設置於節點干擾區DA時,感測器12可能因振幅值落於一對照模態參數的多個第一劣化曲線之同一節點上。此時,感測器12並無法判斷結構件10的劣化缺陷的程度及位置係對應於多個第一劣化曲線之中的哪一個。有鑑於此,於一實施例中,在以設置於結構件10的感測器12偵測結構件10的時域振動波形之前包含依據資料庫16的每一組對照模態參數所對應特性頻率的大小,以決定感測器12於結構件10上所設置的位置。以圖1與圖5的實施例來說,處理器14依據預先建置的資料庫16的對照模態參數之特性頻率,來預估較佳的感測器12設置位置。於一較佳的實施例中,感測器12的設置位置與結構件的一端具有一距離,所述距離小於或等於具有最大值的特性頻率所對應的波長的1/2長度。因此,以圖5的實施例來說,於多個對照模態參數MA1~MA5之特性頻率當中以對照模態參數MA5的特性頻率為最大值。此時,處理器14依據照模態參數MA5之最大值的特性頻率所對應的波長的1/2長度,而判斷感測器12之理想的設置位置係為量測區TA。換言之,相關工程人員可依據處理器14的判斷結果,將感測器12設置於與待測之結構件10的兩端相距波長的1/2長度的位置。如此一來,可以避免感測器12設置的位置落於結構件10的節點干擾區DA,而導致處理器14無法取得結構件10的劣化缺陷的程度及位置。Since the deterioration detecting system 1 detects the degree and position of the deterioration defect of the structural member 10 through the amplitude value at the same characteristic frequency as shown in FIG. 5 above, it may be limited by the setting of the sensor 12 on the structural member 10. The positional factor cannot be used to compare the first degradation curve of the structural member 10 with the amplitude value, so that the degree and position of the deterioration defect of the structural member 10 cannot be judged. For example, as shown in FIG. 5, when the sensor 12 is disposed in the node interference zone DA, the sensor 12 may fall on the same node of the plurality of first degradation curves of a comparison modal parameter due to the amplitude value. . At this time, the sensor 12 cannot judge which degree of the deterioration defect of the structural member 10 and the position corresponds to which of the plurality of first degradation curves. In view of this, in an embodiment, before detecting the time domain vibration waveform of the structural member 10 by the sensor 12 disposed on the structural member 10, the characteristic frequency corresponding to each group of modal parameters according to the database 16 is included. The size is determined to determine the position of the sensor 12 disposed on the structural member 10. In the embodiment of FIG. 1 and FIG. 5, the processor 14 estimates the preferred sensor 12 setting position based on the characteristic frequency of the modal parameter of the pre-configured database 16. In a preferred embodiment, the sensor 12 is disposed at a distance from one end of the structural member that is less than or equal to 1/2 of the wavelength of the characteristic frequency having the largest value. Therefore, in the embodiment of FIG. 5, among the characteristic frequencies of the plurality of reference modal parameters MA1 to MA5, the characteristic frequency of the reference modal parameter MA5 is the maximum value. At this time, the processor 14 determines that the ideal set position of the sensor 12 is the measurement area TA according to the length of the wavelength corresponding to the characteristic frequency of the maximum value of the modal parameter MA5. In other words, the relevant engineering personnel can set the sensor 12 at a position 1/2 of the wavelength from the both ends of the structural member 10 to be tested according to the judgment result of the processor 14. In this way, it is possible to prevent the position of the sensor 12 from falling on the node interference area DA of the structural member 10, and the processor 14 cannot obtain the degree and position of the deterioration defect of the structural member 10.

前述圖5的實施例主要係應用在同一特性頻率下的振幅值來比對出結構件10的劣化缺陷的程度及位置。而於另一實施例中,可應用特性頻率的變化來比對出結構件10的劣化缺陷的程度及位置。請一併參照圖1、圖4及圖6。圖6依據本發明之另一實施例所繪示的資料庫16內的多組對照模態參數的波形圖。於此實施例中,結構件10的每個模態的實際模態參數包含一個特性頻率,例如頻率f1與f2,而每組對照模態參數MF1及MF2包含多個第二劣化曲線,例如第二劣化曲線P1~P16及Q1~Q16,如圖6所示。請進一步參照圖7,圖7依據本發明之另一實施例所繪示的結構件的劣化偵測方法的方法流程圖。圖7與圖2大致相同,惟差異在於圖7的步驟S207所述的處理器判斷劣化缺陷的程度與位置的步驟包含步驟S2071與S2072。於步驟S2071中,處理器14依據些模態的該些特性頻率與該些組對照模態參數所包含的該些第二劣化曲線,分別取得至少二組劣化預估參數。接著,於步驟S2072中,處理器14依據所述至少二組劣化預估參數判斷劣化缺陷的程度與位置。The foregoing embodiment of FIG. 5 mainly applies the amplitude values at the same characteristic frequency to compare the extent and position of the deterioration defects of the structural member 10. In yet another embodiment, a change in the characteristic frequency can be applied to compare the extent and location of the degradation defect of the structural member 10. Please refer to FIG. 1 , FIG. 4 and FIG. 6 together. FIG. 6 is a waveform diagram of a plurality of sets of modal parameters in a database 16 according to another embodiment of the present invention. In this embodiment, the actual modal parameters of each modality of the structural member 10 include a characteristic frequency, such as frequencies f1 and f2, and each set of modal parameters MF1 and MF2 includes a plurality of second degradation curves, such as The two degradation curves P1 to P16 and Q1 to Q16 are as shown in FIG. 6. Please refer to FIG. 7. FIG. 7 is a flowchart of a method for detecting a degradation of a structural member according to another embodiment of the present invention. 7 is substantially the same as FIG. 2 except that the difference between the processor determining the degree and position of the deterioration defect described in step S207 of FIG. 7 includes steps S2071 and S2072. In step S2071, the processor 14 obtains at least two sets of degradation estimation parameters according to the characteristic frequencies of the modalities and the second degradation curves included in the set of modal parameters. Next, in step S2072, the processor 14 determines the degree and location of the degradation defect according to the at least two sets of degradation estimation parameters.

以圖6的實施例來說明,圖6示出兩組不同的對照模態參數MF1與MF2,其中對照模態參數MF1包含多個第二劣化曲線P1~P16,而對照模態參數MF2包含多個第二劣化曲線Q1~Q16。每個第二劣化曲線代表不同缺陷長度及位置在不同頻率下的劣化程度。舉例來說,第二劣化曲線Q1可代表在不同頻率下,當結構件的缺陷長度為50 mm且位於1/8管長位置時,結構件10所具有的劣化程度。以另一個例子來說,第二劣化曲線Q7可代表在不同頻率下,當結構件的缺陷長度為150 mm且位於2/8管長位置時,結構件10所具有的劣化程度。Illustrated with the embodiment of FIG. 6, FIG. 6 shows two different sets of contrast modal parameters MF1 and MF2, wherein the control modal parameter MF1 includes a plurality of second degradation curves P1 P P16, and the control modal parameter MF2 contains more Second degradation curves Q1~Q16. Each second degradation curve represents the degree of degradation of different defect lengths and locations at different frequencies. For example, the second degradation curve Q1 may represent the degree of degradation that the structural member 10 has at different frequencies when the defect length of the structural member is 50 mm and is at a 1/8 tube length position. As another example, the second degradation curve Q7 may represent the degree of degradation that the structural member 10 has at different frequencies when the defect length of the structural member is 150 mm and is located at a 2/8 tube length position.

於此實施例中,假設處理器14所取得之結構件10的模態M1與M2分別對應於資料庫16中的對照模態參數MF1與MF2,且模態M1與M2的實際模態參數分別包含特性頻率f1與f2。處理器14先依據特性頻率f1於圖6所示之資料庫16中的對照模態參數MF1所包含的多個第二劣化曲線P1~P16進行比對,以查找出結構件10可能的劣化缺陷的位置與程度。如圖6所示,處理器14於對照模態參數MF1中所得到之一組劣化預估參數包含有劣化預估參數DP1~DP8。相同地,處理器14於對照模態參數MF2中所得到之一組劣化預估參數包含有劣化預估參數DQ1~DQ3。處理器14可依據劣化預估參數DP1~DP8以及劣化預估參數DQ1~DQ3來判斷結構件10可能的劣化缺陷的位置與程度。In this embodiment, it is assumed that the modalities M1 and M2 of the structural member 10 obtained by the processor 14 respectively correspond to the modal parameters MF1 and MF2 in the database 16, and the actual modal parameters of the modalities M1 and M2 are respectively Contains characteristic frequencies f1 and f2. The processor 14 first compares the plurality of second degradation curves P1 P P16 included in the reference modal parameter MF1 in the database 16 shown in FIG. 6 according to the characteristic frequency f1 to find possible degradation defects of the structural member 10. The location and extent. As shown in FIG. 6, the processor 14 obtains a set of degradation estimation parameters in the comparison modal parameter MF1 including degradation prediction parameters DP1~DP8. Similarly, the processor 14 obtains a set of degradation prediction parameters in the comparison modal parameter MF2 including the degradation estimation parameters DQ1 D DQ3. The processor 14 can determine the position and extent of possible degradation defects of the structural member 10 according to the degradation estimation parameters DP1 DPDP8 and the degradation estimation parameters DQ1 D DQ3.

更具體來說,於一實施例中,處理器14依據該二組劣化預估參數判斷該劣化缺陷的程度與位置包含將該至少二組劣化預估參數進行比對,以過濾出至少一重複的劣化預估參數,該至少一重複的劣化預估參數係關聯於該劣化缺陷的程度與位置。以此實施例來說,處理器14將劣化預估參數DP1~DP8以及劣化預估參數DQ1~DQ3進行比對,進而過濾出重複的劣化預估參數,也就是劣化預估參數DQ1~DQ3。此時,處理器14便可以得知結構件10的劣化缺陷的程度與位置係為該些劣化預估參數DQ1~DQ3之一所對應的劣化缺陷的程度及位置。More specifically, in an embodiment, the processor 14 determines, according to the two sets of degradation prediction parameters, the degree and location of the degradation defect, and includes comparing the at least two sets of degradation estimation parameters to filter out at least one repetition. The degradation prediction parameter, the at least one repeated degradation prediction parameter is associated with the degree and location of the degradation defect. In this embodiment, the processor 14 compares the degradation estimation parameters DP1 to DP8 and the degradation estimation parameters DQ1 to DQ3, thereby filtering out the repeated deterioration estimation parameters, that is, the degradation estimation parameters DQ1 to DQ3. At this time, the processor 14 can know the degree and position of the deterioration defect of the structural member 10 as the degree and position of the deterioration defect corresponding to one of the deterioration estimation parameters DQ1 to DQ3.

於實務上,若是要更精準地確認結構件10的劣化缺陷的程度與位置,處理器14可進一步地比對另一模態的實際模態參數所包之含特性頻率及另一組對照模態參數所包含的多個第二劣化曲線,以獲取另一組劣化預估參數。接著,處理器14再將該另一組劣化預估參數與前述兩組劣化預估參數進行比對,擷取出所述的三組劣化預估參數的重複部分,則可得知結構件10的更精準的劣化缺陷的程度與位置。換言之,處理器14藉由偵測取得越多的模態的特性頻率,則可越準確地判斷結構件10的劣化缺陷的程度與位置,而所述的對照模態參數MF1及MF2可以係於不同時間點所獲得,例如於一時點獲得對照模態參數MF1,而於另一時點獲得對照模態參數MF2。本發明之圖5與圖6的實施例主要係以頻率(或其振幅)的變化量來即時判斷結構件10的薄化程度與定位之技術。換言之,本發明之精神在於利用結構件所具有之自然頻率之物理特性,當結構件發生薄化時,結構件的局部剛性與質量改變而造成整體結構件本身的自然頻率產生變化,進而判斷劣化缺陷的程度與位置。如此一來,可以在不損害結構件的前提下,發展出一套結構件之劣化監測技術,以確保產業界所使用之結構件之運轉安全,例如重要管路或槽桶等,且可避免人員暴露於高風險的工作環境。In practice, if the degree and location of the degradation defect of the structural member 10 are to be more accurately confirmed, the processor 14 may further compare the characteristic frequency included in the actual modal parameter of the other modality with another set of comparison modes. A plurality of second degradation curves included in the state parameters to obtain another set of degradation estimation parameters. Then, the processor 14 compares the other set of degradation prediction parameters with the two sets of degradation estimation parameters, and extracts the repeated portions of the three sets of degradation estimation parameters, and then the structural component 10 is known. More precise degree and location of degraded defects. In other words, the processor 14 can more accurately determine the degree and position of the degradation defect of the structural member 10 by detecting the more characteristic frequency of the modality, and the contrast modal parameters MF1 and MF2 can be tied to Obtained at different time points, for example, the control modal parameter MF1 is obtained at one time point and the control modal parameter MF2 is obtained at another time point. The embodiment of Figs. 5 and 6 of the present invention is mainly a technique for instantly determining the degree of thinning and positioning of the structural member 10 by the amount of change in frequency (or its amplitude). In other words, the spirit of the present invention is to utilize the physical characteristics of the natural frequency of the structural member. When the structural member is thinned, the local rigidity and quality of the structural member change to cause a change in the natural frequency of the entire structural member itself, thereby judging deterioration. The extent and location of the defect. In this way, a set of deterioration monitoring technology for structural parts can be developed without damaging the structural parts, so as to ensure the safety of the structural parts used in the industry, such as important pipelines or tanks, and can be avoided. People are exposed to high-risk work environments.

本發明所提出的結構件的劣化偵測系統與方法所使用之原理係可以應用於各種不同形態的結構件。舉例來說,請一併參照圖8~11,其分別繪示不同形態之結構件的立體視圖。如圖8~11所示,可以應用的結構件之形態分別係為實心圓柱形態、彎管形態、方管形態及工字形截面形態。以圖8的實心圓柱形態來說,假設結構件的管長為L,則於結構件的1/4L及1/2L的不同模態M1~M5下的缺陷程度(%管厚)與特性頻率(Hz)之變化如下表一與表二所示。 表一 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 1/4L </td><td> M1 </td><td> M2 </td><td> M3 </td><td> M4 </td><td> M5 </td></tr><tr><td> 0% </td><td> 22.05239 </td><td> 60.7595 </td><td> 119.0305 </td><td> 196.5821 </td><td> 293.3228 </td></tr><tr><td> 25% </td><td> 21.67752 </td><td> 58.70199 </td><td> 116.0998 </td><td> 195.5517 </td><td> 292.006 </td></tr><tr><td> 50% </td><td> 20.77782 </td><td> 54.38835 </td><td> 111.2858 </td><td> 193.6701 </td><td> 289.0152 </td></tr><tr><td> 75% </td><td> 18.47006 </td><td> 47.43438 </td><td> 105.8418 </td><td> 190.2872 </td><td> 282.3232 </td></tr></TBODY></TABLE>表二 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 1/2L </td><td> M1 </td><td> M2 </td><td> M3 </td><td> M4 </td><td> M5 </td></tr><tr><td> 0% </td><td> 22.05239 </td><td> 60.7595 </td><td> 119.0305 </td><td> 196.5821 </td><td> 293.3228 </td></tr><tr><td> 25% </td><td> 21.08352 </td><td> 60.7286 </td><td> 116.2668 </td><td> 196.3019 </td><td> 287.4922 </td></tr><tr><td> 50% </td><td> 18.96757 </td><td> 60.63222 </td><td> 111.1252 </td><td> 195.4105 </td><td> 279.0904 </td></tr><tr><td> 75% </td><td> 15.04959 </td><td> 60.32965 </td><td> 104.5329 </td><td> 192.6023 </td><td> 271.1687 </td></tr></TBODY></TABLE>The principles used in the degradation detection system and method of the structural member proposed by the present invention can be applied to structural members of various shapes. For example, please refer to FIG. 8 to FIG. 11 together, which respectively show perspective views of structural members of different shapes. As shown in Figures 8-11, the shapes of the structural members that can be applied are solid cylindrical state, curved pipe shape, square tube shape and I-shaped cross-sectional shape. In the solid cylindrical state of Fig. 8, assuming that the length of the structural member is L, the degree of defect (% tube thickness) and characteristic frequency at different modes M1 to M5 of 1/4 L and 1/2 L of the structural member ( The changes in Hz) are shown in Tables 1 and 2 below. Table I  <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 1/4L </td><td> M1 </td><td> M2 </ Td><td> M3 </td><td> M4 </td><td> M5 </td></tr><tr><td> 0% </td><td> 22.05239 </td> <td> 60.7595 </td><td> 119.0305 </td><td> 196.5821 </td><td> 293.3228 </td></tr><tr><td> 25% </td><td > 21.67752 </td><td> 58.70199 </td><td> 116.0998 </td><td> 195.5517 </td><td> 292.006 </td></tr><tr><td> 50% </td><td> 20.77782 </td><td> 54.38835 </td><td> 111.2858 </td><td> 193.6701 </td><td> 289.0152 </td></tr><tr ><td> 75% </td><td> 18.47006 </td><td> 47.43438 </td><td> 105.8418 </td><td> 190.2872 </td><td> 282.3232 </td> </tr></TBODY></TABLE> Table 2  <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 1/2L </td><td> M1 </td><td> M2 </ Td><td> M3 </td><td> M4 </td><td> M5 </td></tr><tr><td> 0% </td><td> 22.05239 </td> <td> 60.7595 </td><td> 119.0305 </td><td> 196.5821 </td><td> 293.3228 </td></tr><tr><td> 25% </td><td > 21.08352 </td><td> 60.7286 </td><td> 116.2668 </td><td> 196.3019 </td><td> 287.4922 </td></tr><tr><td> 50% </td><td> 18.96757 </td><td> 60.63222 </td><td> 111.1252 </td><td> 195.4105 </td><td> 279.0904 </td></tr><tr ><td> 75% </td><td> 15.04959 </td><td> 60.32965 </td><td> 104.5329 </td><td> 192.6023 </td><td> 271.1687 </td> </tr></TBODY></TABLE>

以圖9的彎管形態來說,若結構件的管長為L,則於結構件的1/4L及1/2L的不同模態下的缺陷程度與特性頻率之變化如下表三與表四所示。 表三 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 1/4L </td><td> M1 </td><td> M2 </td><td> M3 </td><td> M4 </td><td> M5 </td></tr><tr><td> 0% </td><td> 107.6097 </td><td> 299.3441 </td><td> 576.457 </td><td> 912.6012 </td><td> 1229.042 </td></tr><tr><td> 25% </td><td> 107.0839 </td><td> 296.2418 </td><td> 571.8002 </td><td> 908.6208 </td><td> 1227.168 </td></tr><tr><td> 50% </td><td> 105.9831 </td><td> 289.5574 </td><td> 561.6209 </td><td> 900.6288 </td><td> 1222.553 </td></tr><tr><td> 75% </td><td> 102.8482 </td><td> 272.4134 </td><td> 538.6506 </td><td> 881.1895 </td><td> 1208.208 </td></tr></TBODY></TABLE>表四 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 1/2L </td><td> M1 </td><td> M2 </td><td> M3 </td><td> M4 </td><td> M5 </td></tr><tr><td> 0% </td><td> 107.6097 </td><td> 299.3441 </td><td> 576.457 </td><td> 912.6012 </td><td> 1229.042 </td></tr><tr><td> 25% </td><td> 105.8333 </td><td> 295.0557 </td><td> 574.2221 </td><td> 910.5367 </td><td> 1222.309 </td></tr><tr><td> 50% </td><td> 102.1406 </td><td> 283.489 </td><td> 567.4657 </td><td> 905.5377 </td><td> 1212.337 </td></tr><tr><td> 75% </td><td> 92.93562 </td><td> 264.4272 </td><td> 549.8736 </td><td> 889.8458 </td><td> 1207.469 </td></tr></TBODY></TABLE>In the shape of the elbow of Fig. 9, if the length of the structural member is L, the degree of defect and the characteristic frequency in different modes of 1/4L and 1/2L of the structural member are as shown in Tables 3 and 4 below. Show. Table 3  <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 1/4L </td><td> M1 </td><td> M2 </ Td><td> M3 </td><td> M4 </td><td> M5 </td></tr><tr><td> 0% </td><td> 107.6097 </td> <td> 299.3441 </td><td> 576.457 </td><td> 912.6012 </td><td> 1229.042 </td></tr><tr><td> 25% </td><td > 107.0839 </td><td> 296.2418 </td><td> 571.8002 </td><td> 908.6208 </td><td> 1227.168 </td></tr><tr><td> 50% </td><td> 105.9831 </td><td> 289.5574 </td><td> 561.6209 </td><td> 900.6288 </td><td> 1222.553 </td></tr><tr ><td> 75% </td><td> 102.8482 </td><td> 272.4134 </td><td> 538.6506 </td><td> 881.1895 </td><td> 1208.208 </td> </tr></TBODY></TABLE> Table 4  <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 1/2L </td><td> M1 </td><td> M2 </ Td><td> M3 </td><td> M4 </td><td> M5 </td></tr><tr><td> 0% </td><td> 107.6097 </td> <td> 299.3441 </td><td> 576.457 </td><td> 912.6012 </td><td> 1229.042 </td></tr><tr><td> 25% </td><td > 105.8333 </td><td> 295.0557 </td><td> 574.2221 </td><td> 910.5367 </td><td> 1222.309 </td></tr><tr><td> 50% </td><td> 102.1406 </td><td> 283.489 </td><td> 567.4657 </td><td> 905.5377 </td><td> 1212.337 </td></tr><tr ><td> 75% </td><td> 92.93562 </td><td> 264.4272 </td><td> 549.8736 </td><td> 889.8458 </td><td> 1207.469 </td> </tr></TBODY></TABLE>

以圖10的方管形態來說,若結構件的管長為L,則於結構件的1/4L及1/2L的不同模態下的缺陷程度與特性頻率之變化如下表五與表六所示。 表五 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 1/4L </td><td> M1 </td><td> M2 </td><td> M3 </td><td> M4 </td><td> M5 </td></tr><tr><td> 0% </td><td> 79.61369 </td><td> 217.4225 </td><td> 420.4544 </td><td> 682.7447 </td><td> 998.1407 </td></tr><tr><td> 25% </td><td> 78.88281 </td><td> 214.2276 </td><td> 416.3346 </td><td> 680.6828 </td><td> 995.8001 </td></tr><tr><td> 50% </td><td> 77.32048 </td><td> 206.8515 </td><td> 407.3621 </td><td> 675.946 </td><td> 989.165 </td></tr><tr><td> 75% </td><td> 72.86193 </td><td> 189.1832 </td><td> 389.8823 </td><td> 624.6216 </td><td> 968.927 </td></tr></TBODY></TABLE>表六 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 1/2L </td><td> M1 </td><td> M2 </td><td> M3 </td><td> M4 </td><td> M5 </td></tr><tr><td> 0% </td><td> 79.61369 </td><td> 217.4225 </td><td> 420.4544 </td><td> 682.7447 </td><td> 998.1407 </td></tr><tr><td> 25% </td><td> 78.00208 </td><td> 217.2905 </td><td> 417.5578 </td><td> 679.9839 </td><td> 993.1377 </td></tr><tr><td> 50% </td><td> 74.25027 </td><td> 216.9309 </td><td> 409.6331 </td><td> 646.52 </td><td> 981.6498 </td></tr><tr><td> 75% </td><td> 64.82471 </td><td> 215.732 </td><td> 391.9877 </td><td> 565.5287 </td><td> 960.5893 </td></tr></TBODY></TABLE>In the form of the square tube of Fig. 10, if the length of the structural member is L, the degree of defect and the characteristic frequency in different modes of 1/4L and 1/2L of the structural member are as shown in Tables 5 and 6 below. Show. Table 5  <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 1/4L </td><td> M1 </td><td> M2 </ Td><td> M3 </td><td> M4 </td><td> M5 </td></tr><tr><td> 0% </td><td> 79.61369 </td> <td> 217.4225 </td><td> 420.4544 </td><td> 682.7447 </td><td> 998.1407 </td></tr><tr><td> 25% </td><td > 78.88281 </td><td> 214.2276 </td><td> 416.3346 </td><td> 680.6828 </td><td> 995.8001 </td></tr><tr><td> 50% </td><td> 77.32048 </td><td> 206.8515 </td><td> 407.3621 </td><td> 675.946 </td><td> 989.165 </td></tr><tr ><td> 75% </td><td> 72.86193 </td><td> 189.1832 </td><td> 389.8823 </td><td> 624.6216 </td><td> 968.927 </td> </tr></TBODY></TABLE> Table 6  <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 1/2L </td><td> M1 </td><td> M2 </ Td><td> M3 </td><td> M4 </td><td> M5 </td></tr><tr><td> 0% </td><td> 79.61369 </td> <td> 217.4225 </td><td> 420.4544 </td><td> 682.7447 </td><td> 998.1407 </td></tr><tr><td> 25% </td><td > 78.00208 </td><td> 217.2905 </td><td> 417.5578 </td><td> 679.9839 </td><td> 993.1377 </td></tr><tr><td> 50% </td><td> 74.25027 </td><td> 216.9309 </td><td> 409.6331 </td><td> 646.52 </td><td> 981.6498 </td></tr><tr ><td> 75% </td><td> 64.82471 </td><td> 215.732 </td><td> 391.9877 </td><td> 565.5287 </td><td> 960.5893 </td> </tr></TBODY></TABLE>

以圖11的工字形截面形態來說,若結構件的管長為L,則於結構件的1/4L及1/2L的不同模態下的缺陷程度與特性頻率之變化如下表七與表八所示 表七 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 1/4L </td><td> M1 </td><td> M2 </td><td> M3 </td><td> M4 </td><td> M5 </td></tr><tr><td> 0% </td><td> 219.8807 </td><td> 561.3934 </td><td> 1001.138 </td><td> 1492.311 </td><td> 2007.315 </td></tr><tr><td> 25% </td><td> 219.0764 </td><td> 557.3356 </td><td> 995.5444 </td><td> 1490.648 </td><td> 2006.844 </td></tr><tr><td> 50% </td><td> 217.4524 </td><td> 549.2907 </td><td> 984.642 </td><td> 1486.917 </td><td> 2003.783 </td></tr><tr><td> 75% </td><td> 211.2352 </td><td> 536.2614 </td><td> 967.8168 </td><td> 1481.157 </td><td> 1997.218 </td></tr></TBODY></TABLE>表八 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 1/2L </td><td> M1 </td><td> M2 </td><td> M3 </td><td> M4 </td><td> M5 </td></tr><tr><td> 0% </td><td> 219.8807 </td><td> 561.3934 </td><td> 1001.138 </td><td> 1492.311 </td><td> 2007.315 </td></tr><tr><td> 25% </td><td> 217.679 </td><td> 561.4051 </td><td> 996.8888 </td><td> 1492.386 </td><td> 2000.988 </td></tr><tr><td> 50% </td><td> 210.4497 </td><td> 561.2004 </td><td> 987.3976 </td><td> 1491.165 </td><td> 1990.76 </td></tr><tr><td> 75% </td><td> 199.0602 </td><td> 560.656 </td><td> 970.7511 </td><td> 1488.125 </td><td> 1978.935 </td></tr></TBODY></TABLE>In the shape of the I-shaped cross section of Fig. 11, if the length of the structural member is L, the degree of defect and the characteristic frequency of the different modes of 1/4L and 1/2L of the structural member are as follows: Table 7 and Table 8 Table 7 shown  <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 1/4L </td><td> M1 </td><td> M2 </ Td><td> M3 </td><td> M4 </td><td> M5 </td></tr><tr><td> 0% </td><td> 219.8807 </td> <td> 561.3934 </td><td> 1001.138 </td><td> 1492.311 </td><td> 2007.315 </td></tr><tr><td> 25% </td><td > 219.0764 </td><td> 557.3356 </td><td> 995.5444 </td><td> 1490.648 </td><td> 2006.844 </td></tr><tr><td> 50% </td><td> 217.4524 </td><td> 549.2907 </td><td> 984.642 </td><td> 1486.917 </td><td> 2003.783 </td></tr><tr ><td> 75% </td><td> 211.2352 </td><td> 536.2614 </td><td> 967.8168 </td><td> 1481.157 </td><td> 1997.218 </td> </tr></TBODY></TABLE>Table eight  <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 1/2L </td><td> M1 </td><td> M2 </ Td><td> M3 </td><td> M4 </td><td> M5 </td></tr><tr><td> 0% </td><td> 219.8807 </td> <td> 561.3934 </td><td> 1001.138 </td><td> 1492.311 </td><td> 2007.315 </td></tr><tr><td> 25% </td><td > 217.679 </td><td> 561.4051 </td><td> 996.8888 </td><td> 1492.386 </td><td> 2000.988 </td></tr><tr><td> 50% </td><td> 210.4497 </td><td> 561.2004 </td><td> 987.3976 </td><td> 1491.165 </td><td> 1990.76 </td></tr><tr ><td> 75% </td><td> 199.0602 </td><td> 560.656 </td><td> 970.7511 </td><td> 1488.125 </td><td> 1978.935 </td> </tr></TBODY></TABLE>

於一實施例中,每個模態的模態參數包含一特性頻率,所述的特性頻率具有於第一方向上的頻率及於第二方向上的頻率。本發明的結構件的劣化偵測方法更包含依據所述的第一方向上的頻率與第二方向上的頻率,以判斷劣化缺陷的形式。具體來說,於此實施例中,本發明的感測器12可以係為三軸加速規,用於偵測到不同方向的頻率,例如X軸方向上的頻率與Y軸方向上的頻率。接著,處理器14依據X軸方向上的頻率與Y軸方向上的頻率之變化量來判斷結構件10的劣化缺陷的形式,所述之劣化缺陷的形式可例如是均勻缺陷或是局部缺陷。更詳細來說,於一實施例中,處理器14依據該第一方向上的頻率與該第二方向上的頻率以判斷劣化缺陷的形式的步驟包含判斷第一方向的頻率與第二方向的頻率變化量是否一致。當第一方向的頻率與第二方向的頻率係為一致時,則處理器14判斷劣化缺陷的形式係為均勻缺陷。反之,當第一方向的頻率與第二方向的頻率不為一致時,則處理器14判斷該劣化缺陷的形式係為局部缺陷。In one embodiment, the modal parameter of each mode includes a characteristic frequency having a frequency in the first direction and a frequency in the second direction. The method for detecting degradation of the structural member of the present invention further includes determining the form of the degradation defect according to the frequency in the first direction and the frequency in the second direction. Specifically, in this embodiment, the sensor 12 of the present invention may be a three-axis accelerometer for detecting frequencies in different directions, such as frequencies in the X-axis direction and frequencies in the Y-axis direction. Next, the processor 14 determines the form of the deterioration defect of the structural member 10 based on the amount of change in the frequency in the X-axis direction and the frequency in the Y-axis direction, which may be, for example, a uniform defect or a partial defect. In more detail, in an embodiment, the step of the processor 14 determining the form of the degradation defect according to the frequency in the first direction and the frequency in the second direction comprises determining the frequency of the first direction and the second direction. Whether the frequency change is consistent. When the frequency of the first direction is consistent with the frequency of the second direction, the processor 14 determines that the form of the degradation defect is a uniform defect. On the other hand, when the frequency of the first direction does not coincide with the frequency of the second direction, the processor 14 determines that the form of the degradation defect is a local defect.

於一實施例中,資料庫16係為一局部缺陷子資料庫或一均勻缺陷子資料庫,結構件的劣化偵測方法更包含處理器14依據劣化缺陷的形式,以決定資料庫16係為局部缺陷子資料庫或均勻缺陷子資料庫。更詳細來說,在一個實際的例子中,本發明的結構件的劣化偵測方法係使處理器14先依據第一方向上的頻率及於第二方向上的頻率判斷結構件10的劣化缺陷之形式。當確認結構件10的劣化缺陷係為局部缺陷時,則資料庫16係為局部缺陷子資料庫。反之,當確認結構件10的劣化缺陷係為均勻缺陷時,則資料庫16係為均勻缺陷子資料庫。接著,處理器14才依據局部缺陷子資料庫或是均勻缺陷子資料庫之一,進行圖5或圖6的劣化缺陷的程度與位置的偵測程序。更具體來說,本發明的結構件的劣化偵測方法優先確認劣化缺陷之形式,再利用圖5及/或圖6所示的方式進行劣化缺陷的程度與位置之確認,以提升劣化缺陷的程度與位置之判斷的準確度。於實務上,本發明所提供的劣化偵測系統及方法可與其他可攜式裝置,例如平板電腦、智慧型手機、筆記型電腦等結合,以提供即時的監控與預先告警的資訊。In one embodiment, the database 16 is a partial defect sub-database or a uniform defect sub-database. The method for detecting degradation of the structure further includes the processor 14 determining the database 16 according to the form of the degradation defect. Local defect sub-database or uniform defect sub-database. In more detail, in a practical example, the method for detecting degradation of the structural member of the present invention causes the processor 14 to first determine the degradation defect of the structural member 10 according to the frequency in the first direction and the frequency in the second direction. Form. When it is confirmed that the deterioration defect of the structural member 10 is a local defect, the database 16 is a partial defect sub-database. On the other hand, when it is confirmed that the deterioration defect of the structural member 10 is a uniform defect, the database 16 is a uniform defect sub-database. Then, the processor 14 performs the detection procedure of the degree and location of the degradation defect of FIG. 5 or FIG. 6 according to one of the partial defect sub-database or the uniform defect sub-database. More specifically, the deterioration detecting method of the structural member of the present invention preferentially confirms the form of the deterioration defect, and then confirms the degree and position of the deterioration defect by using the method shown in FIG. 5 and/or FIG. 6 to improve the deterioration defect. The accuracy of the judgment of the degree and position. In practice, the degradation detection system and method provided by the present invention can be combined with other portable devices, such as a tablet computer, a smart phone, a notebook computer, etc., to provide instant monitoring and pre-alarm information.

綜合以上所述,本發明所提供的劣化偵測系統及方法係以感測器量測資訊,經由時域及頻域訊號分析,且配合使用關聯於結構件之劣化缺陷的資料庫,進而提供即時的監控與預先告警的資訊以達到解決結構件(例如工業管線/槽桶)意外事故之發生。本發明所提供的劣化偵測系統及方法更可結合跨裝置的無線傳輸技術,以建構工業安全監控平台,提供高效能且安全的遠端監控服務。In summary, the degradation detection system and method provided by the present invention provides sensor measurement information, analyzes signals in time domain and frequency domain, and uses a database associated with deterioration defects of structural components to provide Instant monitoring and pre-alarming information to resolve accidents in structural components such as industrial pipelines/slots. The degradation detection system and method provided by the invention can be combined with the wireless transmission technology of the device to construct an industrial security monitoring platform, and provide a high-performance and secure remote monitoring service.

雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明。在不脫離本發明之精神和範圍內,所為之更動與潤飾,均屬本發明之專利保護範圍。關於本發明所界定之保護範圍請參考所附之申請專利範圍。Although the present invention has been disclosed above in the foregoing embodiments, it is not intended to limit the invention. It is within the scope of the invention to be modified and modified without departing from the spirit and scope of the invention. Please refer to the attached patent application for the scope of protection defined by the present invention.

1‧‧‧劣化偵測系統1‧‧‧Degradation detection system

10‧‧‧結構件10‧‧‧Structural parts

12‧‧‧感測器12‧‧‧ Sensors

14‧‧‧處理器14‧‧‧ Processor

16‧‧‧資料庫16‧‧‧Database

Def‧‧‧劣化缺陷Def‧‧‧Deterioration defect

M1~M5‧‧‧模態M1~M5‧‧‧modal

f1~f5‧‧‧特性頻率F1~f5‧‧‧ characteristic frequency

V1~V5‧‧‧振幅值V1~V5‧‧‧ amplitude value

DP1~DP8、DQ1~DQ3‧‧‧劣化預估參數DP1~DP8, DQ1~DQ3‧‧‧ Deterioration estimation parameters

MF1、MF2、MA1~MA5‧‧‧對照模態參數MF1, MF2, MA1~MA5‧‧‧ contrast modal parameters

P1~P16、Q1~Q16‧‧‧第二劣化曲線P1~P16, Q1~Q16‧‧‧Second degradation curve

DA‧‧‧ 節點干擾區DA‧‧‧ node interference zone

TA‧‧‧量測區TA‧‧‧ measurement area

圖1係依據本發明之一實施例所繪示的結構件與結構件的劣化偵測系統的示意圖。 圖2係依據本發明之一實施例所繪示的結構件的劣化偵測方法的方法流程圖。 圖3係依據本發明之一實施例所繪示的感測器所偵測到之結構件的時域振動波形示意圖。 圖4係依據本發明之一實施例所繪示的感測器所偵測到之結構件的頻域振動波形示意圖。 圖5依據本發明之一實施例所繪示的資料庫內的多組對照模態參數的波形圖。 圖6依據本發明之另一實施例所繪示的資料庫內的多組對照模態參數的波形圖。 圖7依據本發明之另一實施例所繪示的結構件的劣化偵測方法的方法流程圖。 圖8~11係分別繪示不同形態之結構件的立體視圖。1 is a schematic diagram of a degradation detecting system for a structural member and a structural member according to an embodiment of the invention. 2 is a flow chart of a method for detecting a degradation of a structural member according to an embodiment of the invention. 3 is a schematic diagram of a time domain vibration waveform of a structural member detected by a sensor according to an embodiment of the invention. 4 is a schematic diagram of frequency domain vibration waveforms of a structural member detected by a sensor according to an embodiment of the invention. FIG. 5 is a waveform diagram of a plurality of sets of modal parameters in a database according to an embodiment of the present invention. FIG. 6 is a waveform diagram of a plurality of sets of modal parameters in a database according to another embodiment of the present invention. FIG. 7 is a flow chart of a method for detecting a degradation of a structural member according to another embodiment of the present invention. 8 to 11 are perspective views respectively showing structural members of different shapes.

Claims (10)

一種結構件的劣化偵測方法,包含:以設置於一結構件的一感測器偵測該結構件的一時域振動波形;以電性連接該感測器的一處理器對該時域振動波形執行時頻域轉換以取得該結構件的一頻域振動波形的多個模態的實際模態參數,每一該模態的實際模態參數包含一特性頻率;以及分別將該些模態的實際模態參數的該些特性頻率與一資料庫中的一模態參數資料所包含的多組對照模態參數比對,以判斷該劣化缺陷的程度與位置;其中該些對照模態參數用於指示該結構件分別在多個位置具有不同程度之劣化缺陷。 A method for detecting degradation of a structural member includes: detecting a time domain vibration waveform of the structural member by a sensor disposed on a structural member; and vibrating the time domain by a processor electrically connected to the sensor The waveform performs time-frequency domain conversion to obtain actual modal parameters of a plurality of modalities of a frequency domain vibration waveform of the structural member, and each of the modal actual modal parameters includes a characteristic frequency; and respectively respectively The characteristic frequencies of the actual modal parameters are compared with a plurality of sets of modal parameters included in a modal parameter data in a database to determine the extent and location of the degraded defects; wherein the modal parameters are compared It is used to indicate that the structural member has different degrees of deterioration defects at a plurality of locations. 如請求項1所述的結構件的劣化偵測方法,其中每一該模態的實際模態參數包含該特性頻率的振幅值,且每一組對照模態參數對應多個第一劣化曲線,判斷該劣化缺陷的程度與位置係包含將該些特性頻率的振幅值分別與每一組對照模態參數的該些第一劣化曲線比對,據以判斷該劣化缺陷的程度與位置;其中,每一該第一劣化曲線對應於具有一劣化程度值且位於該結構件的一位置的一擬定劣化缺陷位。 The method for detecting degradation of a structural member according to claim 1, wherein an actual modal parameter of each modality includes an amplitude value of the characteristic frequency, and each set of modal parameters corresponds to a plurality of first degradation curves, Determining the degree and location of the degradation defect includes comparing the amplitude values of the characteristic frequencies with the first degradation curves of each set of the control modal parameters, thereby determining the degree and location of the degradation defect; Each of the first degradation curves corresponds to a proposed degradation defect bit having a degradation level value and located at a location of the structural member. 如請求項1所述的結構件的劣化偵測方法,其中每一組對照模態參數包含多個第二劣化曲線,判斷該劣化缺陷的程度與位置係包含:依據該些模態的該些特性頻率與該些組對照模態參數所包含的該些第二劣化曲線,分別取得至少二組劣化預估參數;以及 依據該至少二組劣化預估參數判斷該劣化缺陷的程度與位置。 The method for detecting degradation of a structural member according to claim 1, wherein each group of the control modal parameters includes a plurality of second degradation curves, and determining the degree and location of the degradation defects comprises: according to the modalities The characteristic frequency and the second degradation curves included in the set of modal parameters respectively obtain at least two sets of degradation estimation parameters; Determining the extent and location of the degradation defect based on the at least two sets of degradation estimation parameters. 如請求項3所述的結構件的劣化偵測方法,其中依據該至少二組劣化預估參數判斷該劣化缺陷的程度與位置係包含將該至少二組劣化預估參數進行比對,以過濾出至少一重複的劣化預估參數,該至少一重複的劣化預估參數係關聯於該劣化缺陷的程度與位置。 The method for detecting degradation of a structural member according to claim 3, wherein determining the degree of the degradation defect and the position system according to the at least two sets of degradation estimation parameters comprises comparing the at least two sets of degradation estimation parameters to filter At least one repeated degradation prediction parameter is associated, the at least one repeated degradation prediction parameter being associated with the extent and location of the degradation defect. 如請求項1所述的結構件的劣化偵測方法,其中在以設置於該結構件的該感測器偵測該結構件的時域振動波形之前包含:依據該資料庫的每一組對照模態參數所對應一特性頻率的大小,以決定該感測器於該結構件上所設置的位置。 The method for detecting degradation of a structural member according to claim 1, wherein before detecting the time domain vibration waveform of the structural member by the sensor disposed on the structural member, the method includes: comparing each group according to the database The modal parameter corresponds to a characteristic frequency to determine the position of the sensor on the structure. 如請求項5所述的結構件的劣化偵測方法,其中該感測器的設置位置與該結構件的一端具有一距離,該距離小於或等於具有最大值的特性頻率所對應的波長的1/2長度。 The method for detecting degradation of a structural member according to claim 5, wherein the sensor is disposed at a distance from one end of the structural member, the distance being less than or equal to a wavelength corresponding to a characteristic frequency having a maximum value; /2 length. 如請求項1所述的結構件的劣化偵測方法,其中該特性頻率具有於一第一方向上的頻率及於一第二方向上的頻率,該結構件的劣化偵測方法更包含依據該第一方向上的頻率與該第二方向上的頻率,以判斷該劣化缺陷的形式。 The method for detecting degradation of a structural member according to claim 1, wherein the characteristic frequency has a frequency in a first direction and a frequency in a second direction, and the method for detecting degradation of the structural member further comprises The frequency in the first direction and the frequency in the second direction to determine the form of the degradation defect. 如請求項7所述的結構件的劣化偵測方法,其中依據該第一方向上的頻率與該第二方向上的頻率,以判斷該劣化缺陷的形式的步驟包含:判斷該第一方向的頻率與該第二方向的頻率是否一致;當該第一方向的頻率與該第二方向的頻率係為一致時,則判斷該劣化缺陷的形式係為均勻缺陷;以及 當該第一方向的頻率與該第二方向的頻率不為一致時,則判斷該劣化缺陷的形式係為局部缺陷。 The method for detecting degradation of a structural member according to claim 7, wherein the step of determining the form of the degradation defect according to the frequency in the first direction and the frequency in the second direction comprises: determining the first direction Whether the frequency is consistent with the frequency of the second direction; when the frequency of the first direction is consistent with the frequency of the second direction, determining that the form of the deteriorated defect is a uniform defect; When the frequency of the first direction does not coincide with the frequency of the second direction, it is determined that the form of the degradation defect is a local defect. 如請求項7所述的結構件的劣化偵測方法,其中該資料庫可以係為一局部缺陷子資料庫或一均勻缺陷子資料庫,該結構件的劣化偵測方法更包含依據該劣化缺陷的形式,以決定該資料庫係為該局部缺陷子資料庫或該均勻缺陷子資料庫。 The method for detecting degradation of a structural member according to claim 7, wherein the database may be a partial defect sub-database or a uniform defect sub-database, and the degradation detection method of the structural component further includes the degradation defect The form is used to determine whether the database is the local defect sub-database or the uniform defect sub-database. 如請求項1所述的結構件的劣化偵測方法,其中於以設置於該結構件的該感測器偵測該結構件的時域振動波形的步驟前,該結構件的劣化偵測方法更包含以一激振源或流經該結構件的流體使該結構件產生該時域振動波形。The method for detecting degradation of a structural member according to claim 1, wherein the method for detecting degradation of the structural member is performed before the step of detecting a time domain vibration waveform of the structural member by the sensor disposed on the structural member Further comprising a source of excitation or a fluid flowing through the structure causes the structural member to generate the time domain vibration waveform.
TW106140912A 2017-07-14 2017-11-24 Method for detecting deterioration of strcutural part TWI649543B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201711422653.9A CN109254077B (en) 2017-07-14 2017-12-25 Degradation detection method of structural member
US15/855,944 US10481037B2 (en) 2017-07-14 2017-12-27 Method for detecting deterioration defect of structural part

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762532924P 2017-07-14 2017-07-14
US62/532,924 2017-07-14

Publications (2)

Publication Number Publication Date
TWI649543B true TWI649543B (en) 2019-02-01
TW201908699A TW201908699A (en) 2019-03-01

Family

ID=66213516

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106140912A TWI649543B (en) 2017-07-14 2017-11-24 Method for detecting deterioration of strcutural part

Country Status (1)

Country Link
TW (1) TWI649543B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI449883B (en) * 2011-02-10 2014-08-21 Univ Nat Taiwan Science Tech Method for analyzing structure safety
CN104535323A (en) * 2015-01-12 2015-04-22 石家庄铁道大学 Locomotive wheelset bearing fault diagnosis method based on angular domain-time domain-frequency domain

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI449883B (en) * 2011-02-10 2014-08-21 Univ Nat Taiwan Science Tech Method for analyzing structure safety
CN104535323A (en) * 2015-01-12 2015-04-22 石家庄铁道大学 Locomotive wheelset bearing fault diagnosis method based on angular domain-time domain-frequency domain

Also Published As

Publication number Publication date
TW201908699A (en) 2019-03-01

Similar Documents

Publication Publication Date Title
CN109254077B (en) Degradation detection method of structural member
US7369948B1 (en) System and methods for predicting failures in a fluid delivery system
US7918126B2 (en) Intelligent underwater leak detection system
CN108050396A (en) A kind of fluid line source of leaks monitoring and positioning system and method
WO2015072130A1 (en) Leakage determination system and leakage determination method
CN107003175B (en) Apparatus and method for monitoring water level in a pipeline
US11835423B2 (en) Pipeline leak detection apparatus, and methods thereof
JP6248933B2 (en) Leakage inspection apparatus, leakage inspection method, and leakage inspection program
TWI649543B (en) Method for detecting deterioration of strcutural part
CN113236985A (en) Fluid pipeline leakage online monitoring and positioning device and control method thereof
US10801914B2 (en) Method for detecting deterioration defect of structural part using structural unit
WO2014050512A1 (en) Leak position identification device, leak position identification method, leak position identification program, and leak position identification system
WO2016095236A1 (en) Pipeline structure stress and fatigue monitoring method
CN109855536B (en) Oil and gas pipeline blockage detection method based on strain measurement
WO2022069990A1 (en) Method and system for monitoring and testing industrial valves
KR20220105039A (en) Apparatus And Method For Remotely Detecting Pipe Leakage In A Non-contact and Non-destructive Manner Through Ultrasonic Sound
CN211853551U (en) Pipeline safety system based on leakage monitoring
TWI715830B (en) Method for detcting deterioation defect of a strcutural part using structual unit
KR102584912B1 (en) Apparatus and Method for Detecting Wall-thining of Pipe
US20210041324A1 (en) Pipeline leak detection apparatus and methods thereof
Abushanab Inexpensive pipelines health evaluation techniques based on resonance determination, numerical simulation and experimental testing
Wang et al. Oil pipeline leak detection system based on acoustic wave technology
Gupta Recent technologies for leak Detection in Pipeline: A review
Banna et al. A Review on Various in-pipe Inspection Methods for a Pipeline
CN110886967A (en) Pipeline state sensing device and using method